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ABSTRACT

We present SAMPLE, a Python package of tools for spec-
tral analysis and modal parameters estimate. The core of
the package is an implementation of the “Spectral Analy-
sis for Modal Parameters Linear Estimate” (SAMPLE) al-
gorithm. This includes a custom implementation of a Si-
nusoidal Analysis algorithm based on Spectral Modelling
Synthesis. Our custom implementation is specifically de-
signed for modal tracking. We also included utilities for
automatically tuning the algorithm parameters, using a
Bayesian optimization method based on Gaussian Process-
es. For this purpose, we implemented efficient routines for
computing perceptual audio representations for loss func-
tions, such as the multiscale-spectrogram, the mel-spectro-
gram and the cochleagram. The package also comes with
a Graphical User Interface, which allows to load and trim
audio inputs, set the algorithm parameters, run the algo-
rithm, listen to a resynthesis of the input, and export the
results. The GUI is distributed both as an extra for the
Python package and as a standalone executable.

1. INTRODUCTION

Modal synthesis [1] is an approach to sound synthesis based
on physical or pseudo-physical models. It is used to gener-
ate sounds as results of interactions between objects, such
as impacts and frictions [2], and it is becoming more and
more relevant with the recent advancements in audio for
videogames and extended-reality.

In many cases, technical issues stand between the sound
designer and physical models. In modal synthesis, many
are the parameters that the sound designer must finely tune:
they have to decide dozens of modal frequencies, ampli-
tudes, and decay times.

We introduce the SAMPLE Python package. It includes
the implementation of several algorithms aimed at the au-
tomatic estimate of modal parameters from audio exam-
ples, including SAMPLE [3] and BeatsDROP.

It is available via the Python Package Index, on GitHub
and on Zenodo [4]. In can be installed as a Python package,
or used via the GUI as a standalone executable.
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The package is thoroughly tested with unit tests using
the Python builtin module unittest [5]. Code coverage is
100% on all the code base, excluding the GUI module.

2. SAMPLE

Our main goal for this package was to implement the “Spec-
tral Analysis for Modal Parameters Linear Estimate” (SAM-
PLE) algorithm [3] in such a way that it would be easily
available, distributable, and usable.

Most components of the package gravitate around the
SAMPLE class. We designed this class following the pat-
terns of the scikit-learn API [6, 7]. Every SAMPLE object
includes a sinusoidal model and a regressor, that can be
either a linear regressor or a semi-linear regressor.

Instances of the SAMPLE class can be fitted to audio
examples to estimate the modal amplitudes, frequencies
and decay times of the recorded objects. The input audio
should be a sound generated hitting the object.

2.1 Sinusoidal Model

The SinusoidalModel class implements the analysis algo-
rithm of Sinusoidal Modelling Synthesis (SMS) [8, 9, 10].
This includes both the spectral peak detection and the spec-
tral peak continuation algorithms. Processing audio back-
wards is also supported. This is common in analysis tech-
niques for additive synthesis [11].

The ModalModel class inherits from SinusoidalModel
and adds custom functionalities for modal sounds. Dur-
ing the analysis step a ModalModel can check additional
constraints. A ModalModel can discard trajectories if the
modal frequencies are out of the desired boundaries, e.g.
infrasounds or ultrasounds. It will, also, discard ill-behaved
partials whose magnitude increases with time, instead of
decreasing. When a trajectory stops, its starting amplitude
is estimated and it can be discarded if it is too quiet. Fi-
nally, the stopped trajectory can be merged with a previous
trajectory if their frequencies are similar.

2.2 Hinge Regression

The HingeRegression class implements the regression al-
gorithm for the modal amplitudes and decay times. It is
based on the Rectangular Trust Region Dogleg Approach
(DogBox) [12] for non-linear least-squares optimization,
implemented in SciPy [13].

HingeRegression fits an amplitude trajectory output by
the sinusoidal model to a hinge function hk,q,α(t), which
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is a function that is linear for t < α and then continues as
a constant.

hk,q,α(t) = k ·min (t, α) + q (1)

HingeRegression improves the parameters estimate with
respect to linear least-squares when the noise floor is high.
In this case, linear regression is biased towards lower val-
ues for both the amplitude and the decay time [3].

2.3 BeatsDROP

The package also includes the implementation of the “Beats
Duality for the Resolution Of Partials” (BeatsDROP) al-
gorithm. The DualBeatRegression class implements a re-
gression model for two modal partials with very similar
frequencies. In this case, the sinusoidal model would not
find two different trajectories, but it would output a single
trajectory, in which the two partials interfere.

DualBeatRegression fits the modal frequencies, ampli-
tudes and decay times of both partials to the sinusoidal
model trajectory. The loss function includes the differ-
ences for both the amplitude and the frequency of the tra-
jectory. This algorithm exploits the fact that beats of un-
even amplitudes produce modulations of both amplitude
and frequency. This regessor can be used instead of Hinge-
Regression, to find two sets of modal parameters from one
trajectory.

3. GRAPHICAL USER INTERFACE

We designed a Graphical user Interface to enable non-de-
velopers to access to our methods. It allows to load an au-
dio file, apply the SAMPLE model, and export the results
as a JSON file. Figure 1 displays a series of screenshots of
the GUI in action.

3.1 Load Audio

The first pane of the GUI is the “Load Audio” pane, which
allows the user to load and trim a target audio file.

The “Load” button opens a file browser for selecting
the audio file to load. After loading a file, the GUI displays
the audio waveform. We initialize the region-of-interest
(ROI) using an algorithm for onset detection [14] and high-
light it in a different color.

The SAMPLE algorithm will only process audio in the
selected ROI. The users can adjust the ROI by specifying
the desired “start” and “stop” timestamps in the text input
boxes. Alternatively, they can modify the start and the stop
timestamps by clicking on the waveform display: when the
user clicks down on the display the GUI decides whether to
affect the start or the stop timestamp (depending on which
one is closer), while the specific timestamp value is deter-
mined on mouse release. The user can zoom in and out the
waveform display for a finer selection of the ROI.

The user can listen to the currently selected ROI of the
audio by clicking on the “Play” button. We handle audio
playback for multiple platforms using PyGame [15].

Figure 1. The three panes of the GUI, as they render on
Ubuntu 20.04 with the arc theme. In the “Load Audio”
pane, the user can load, trim and play the audio input. In
the “Settings” pane, the user can tweak the algorithm pa-
rameters. In the “Analysis” pane, the user can run the algo-
rithm, play an audio resynthesis and export the estimated
modal parameters.



3.2 Settings

The second pane of the GUI is the “Settings” pane, which
allows the user to specify most of the parameters for the
SAMPLE algorithm.

• n modes controls the maximum number of modes
that will be resynthesized by the model. Only the
modes with the highest energy will be synthesized.
The user can use this parameter to explicitly set the
level of audio detail (LOAD). This parameter only
affects the resynthesis, and not the analysis.

• n sines controls the maximum number of sinu-
soidal peaks that SAMPLE will track in each STFT
frame.

• fft size is the dimension of the FFT for each
frame. The user input is automatically rounded up
to the next power of 2.

• hop size is the distance between STFT frames on
the time axis, in samples.

• window size is the dimension of the STFT anal-
ysis window, in samples. It doesn’t have to be a
power of 2 and it is capped at the current fft size.

• window type is the name of the window function.
It can be any of the window functions supported by
SciPy [13] which doesn’t need any more arguments
than the window size.

• frequency deviation offset is the thresh-
old for the peak continuation at 0 Hz, in hertz. Peaks
at a frequency difference below the threshold will be
considered the continuation of one another.

• frequency deviation slope determines the
increment of the threshold for the peak continuation
with frequency. The threshold at frequency f is

τ(f) = τoffset + τslope · f (2)

• lower frequency bound is the minimum fre-
quency for accepting a trajectory, in hertz.

• upper frequency bound is the maximum fre-
quency for accepting a trajectory, in hertz.

• onset threshold is the initial amplitude thresh-
old for accepting a trajectory, in dBFS. If the linear
fit of the amplitude trajectory returns an intercept be-
low the threshold, the trajectory is discarded.

• peak detection threshold is the threshold
for detecting a peak in the STFT, in dBFS.

• minimum sine duration is the minimum tra-
jectory length for accepting a trajectory, in seconds.

• strip time is the maximum onset time for ac-
cepting a trajectory, in seconds. Trajectories starting
later than this time will be discarded.

• reverse controls whether to process the audio back-
wards or not.

• gui theme is the name of the GUI theme, as de-
fined in ttkthemes [16]. The new theme is ap-
plied the next time the GUI starts. When the theme
is changed, the user is prompted whether they want
to reload the GUI or not.

3.3 Analysis

The last pane of the GUI is the “Analysis” pane. The “An-
alyze” button runs the SAMPLE algorithm on the target
audio. A progress bar displays how much of the target au-
dio has been analyzed by the algorithm.

Once the analysis process has finished, the GUI pop-
ulates the visual display. The top left subplot shows the
spectrogram of the target audio in grayscale. The frequency
trajectories are overlayed in different colors. The top right
subplot displays the amplitude trajectories. Finally, the
bottom subplot shows the waveform of the target and of
the resynthesized audio. The resynthesis is a simple addi-
tive synthesis, where all partials have exponential ampli-
tude envelopes.

x̂(t) =

n modes∑
i=1

ai exp

(
− 2

di
t

)
cos (2πνit+ φi) (3)

Where ai is the modal amplitude, di the decay time, and νi
the modal frequency of the i-th mode. Phase values φi can
be chosen arbitrarily, at random, or set to zero.

The user can listen and compare to the target audio and
the resynthesis, by clicking on the “Play Original” button
and “Play Resynthesis” buttons, respectively.

The “Export JSON” button saves the inferred modal pa-
rameters as a JSON file. The “Export WAV” button saves
the resynthesised audio as a WAV file. A file browser opens
to make the user choose where to save the file.

4. AUTOMATIC OPTIMIZATION

The SAMPLE algorithm has many hyperparameters and it
is not always obvious a-priori what the best values might
be for the specific target sound. For this reason, we imple-
mented a module to apply automatic hyperparameter op-
timization to SAMPLE. Figure 2 shows the loss function
values estimated by the minimization process while opti-
mizing the analysis window size, the number of peaks, the
peak threshold and the minimum trajectory duration.

The class SAMPLEOptimizer allows to define the op-
timization problem with great flexibility. The developer
can specify the value for any number of hyperparameters,
which will not be optimized. A good practise is to spec-
ify a maximum number of modes to use in resynthesis, to
avoid overfitting, because having a high number of modes
often causes noise to be modelled as sinusoids even for
a small decrease in the loss function. The specific value
depends on the complexity of the input sound, but we gen-
erally obtained satisfactory results setting the number of
modes between 16 and 128.
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Figure 2. Partial Dependence plots for SAMPLE hyperparameter optimization on a synthetic modal sound. They show
the dependence of the cochleagram loss function on each individual or pair of hyperparameters. A partial dependence
plot (PDP) shows “the dependence between the target response and a set of input features of interest, marginalizing over
the values of all other input features” [6]. Visualizing a function of more than two inputs would be impossible, so PDPs
visualize different views of the same function. The line plots on the diagonal show the dependence of the loss function on
one hyperparameter at a time. The contour plots in the lower triangle show the dependence of the loss function on two
hyperparameters at a time.



Alternatively, the developer can specify hyperparame-
ters as Scikit-Optimize [17] dimensions. These hyperpa-
rameters will be optimized by a Bayesian optimization al-
gorithm based on Gaussian Processes (skopt.gp minimize).

Some arguments of the SAMPLE class are not suitable
for optimization. For example, the analysis window is a
high-dimensional vector: optimizing all the values in the
vector would be absurd. Instead, we would like to find the
best window size and type. A remap function can be speci-
fied to transform hyperparameters into valid arguments for
the constructor. The default remap function allows to spec-
ify the logarithm of the FFT size, to define the window with
a name and a window size (as a fraction of the FFT size)
and to specify the window overlap as a fraction of the size,
instead of specifying the hop size in samples.

The loss function defines the optimization objective. It
accepts the two arrays of original samples and resynthe-
sized samples and returns a score, where lower is better.
By default, it is a multi-scale spectral loss.

4.1 Loss Functions

We implemented several time-frequency audio representa-
tions with the aim of defining perceptually-based loss func-
tions.

The first loss function we implemented is the multi-
scale spectral loss. This is defined as the weighted sum of
the Lp distances (usually with p = 1) between the spectro-
grams of the two sounds, with linear amplitude and in deci-
bel, for different window sizes [18]. Given a set of spectro-
gram functions with different resolutions Σ, the loss func-
tion is defined as

`Σ,α,p(x, y) :=
∑
Si∈Σ

‖Si(x)− Si(y)‖p +

+α
∑
Si∈Σ

‖logSi(x)− logSi(y)‖p
(4)

To make this function more efficient, we optionally allow
developers to specify a number of jobs or a process pool to
compute the different spectrograms in parallel.

We also implemented a fast cochleagram function. A
cochleagram is a time-frequency representation whose time
and frequency resolution change with frequency and mimic
human perception [19]. Because of this property, there is
no need to compute cochleagrams at different resolutions
to define a perceptually-based loss function. We imple-
mented the cochleagram as the convolutions of the audio
signal with a set of impulse responses (IRs) of gammatone
filters. Traditionally, after the convolution a simple non-
linearity would be applied, such as half-wave rectification.
We allow the option of convolving the signal with the ana-
lytic signals of the IRs: this is equivalent to computing the
analytic signal of the output [20], but faster. In this case,
the output is complex and the default non-linearity is the
absolute value, so that the cochleagram is real.

The resulting cochleagram has the same sampling rate
as the input. This is usually excessive, especially for the
purpose of defining a loss function, and the cochleagram is
downsampled to the desired sample rate. This is wasteful,
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Figure 3. Speed-up of cochleagram method using the cus-
tom implementation for strided convolution. Speed-up is
the ratio between the run-time of the custom implementa-
tion and the run-time of the best of four convolution meth-
ods (direct, fft, auto, and overlap-and-add). Speedup is
evaluated for different input sizes and stride lengths (0 ms
means 1 sample of stride) at 44.1 kHz averaging the run-
times of 32 trials per case.

because we compute a high-resolution output and then dis-
card a great portion of it. We implemented a custom func-
tion for what is commonly known as a strided convolution:
the output for a strided convolution with stride s ∈ N+ at
sample i is the output for a convolution at sample s · i.

(x ∗s y)[i] := (x ∗ y)[si] (5)

For a sufficiently big stride, our implementation is faster
than using the best of all of the convolution methods avail-
able in SciPy [13], which are: direct (convolution in the
time-domain), fft (product in the frequency-domain), auto
(automatically determines whether to use direct or fft), and
overlap-and-add [21]. Figure 3 shows the average speed-
up for different strides and input sizes.

5. CONCLUSION

We presented the SAMPLE package for Python and its
main components. The package is tested with unit tests
with full code coverage.

We provided a general overview of the classes that im-
plement the SAMPLE [3] and the BeatsDROP algorithms
for the analysis of modal sounds.

We presented the Graphical User Interface for the SAM-
PLE method and how it constitutes a sufficient environ-
ment for preprocessing target audio files, configuring the
algorithm hyperparameters, running the algorithm, inspect-
ing and exporting the results.

Finally, we presented a module for interfacing SAM-
PLE with a Bayesian hyperparameter optimization func-
tion based on Gaussian Processes.

In the future, we plan to keep adding to the package any
method related to SAMPLE that we may develop.
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