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Abstract: Cerebrovascular diseases represent a leading cause of disability, morbidity, and death
worldwide. In the last decade, the advances in endovascular procedures have not only improved
acute ischemic stroke care but also conceded a thorough analysis of patients’ thrombi. Although
early anatomopathological and immunohistochemical analyses have provided valuable insights into
thrombus composition and its correlation with radiological features, response to reperfusion therapies,
and stroke etiology, these results have been inconclusive so far. Recent studies applied single- or multi-
omic approaches—such as proteomics, metabolomics, transcriptomics, or a combination of these—to
investigate clot composition and stroke mechanisms, showing high predictive power. Particularly, one
pilot studies showed that combined deep phenotyping of stroke thrombi may be superior to classic
clinical predictors in defining stroke mechanisms. Small sample sizes, varying methodologies, and
lack of adjustments for potential confounders still represent roadblocks to generalizing these findings.
However, these techniques hold the potential to better investigate stroke-related thrombogenesis
and select secondary prevention strategies, and to prompt the discovery of novel biomarkers and
therapeutic targets. In this review, we summarize the most recent findings, overview current strengths
and limitations, and present future perspectives in the field.

Keywords: ischemic stroke; thrombi; clots; proteomics; metabolomics; transcriptomics; multiomic;
large vessel occlusion; thrombectomy

1. Introduction

The etiological diagnosis of acute ischemic stroke (AIS) subtypes is paramount to
drive accurate secondary prevention strategies (such as anticoagulation in cardioembolic
stroke—CE, associated with atrial fibrillation or antiplatelets in large artery atherosclerosis
stroke—LAA), and to avoid recurrences. Undetermined stroke accounts for at least one-
third of stroke patients [1], and up to 50% in certain subpopulations (e.g., cancer patients) [2],
posing several challenges regarding secondary prevention.

In the last decade, the number of endovascular thrombectomy (EVT) interventions
in patients with stroke and large vessel occlusions (LVOs) has dramatically increased
following positive findings from crucial clinical trials [3], enabling histological, biochemical,
and structural analysis of retrieved thrombi [4]. These analyses have correlated thrombi
composition with histological and immunohistochemical methods with EVT recanalization
rates, response to intravenous thrombolysis (IVT), radiological features, stroke severity,
and functional outcomes. In addition, the cellular and molecular characteristics of cerebral
thrombi are heterogeneous and provide information about their etiology [4]. Early studies
investigated mainly red blood cells (RBCs), fibrin, and platelets [4,5], while more recent
reports measured other components such as leukocytes, von Willebrand factor (VWF), and
neutrophil extracellular traps (NETs) [6–8]. Particularly, two studies found that CE thrombi
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were richer in platelets than LAA thrombi [9,10], but others found the opposite [11,12].
In addition, although leukocytes may not be related to stroke etiology [13–15], some
studies suggested a correlation between higher leukocyte content and a CE source [16,17].
Regarding VWF, this is present in all thrombi, ranging from 0.1 to 95% in concentration,
independently of the origin [9,18,19]. Unfortunately, these findings have been largely
inconclusive so far [20].

Recent studies [21–26] have evaluated omic techniques to assess thrombi composi-
tion. These refer to a variety of technologies enabling deep phenotyping of biological
samples to define their molecular characteristics [27]. These approaches include proteomics,
metabolomics, transcriptomics, or combinations of these. Though at early stages, these
technologies may be instrumental to better defining stroke etiology [21], studying the
mechanisms of thrombogenesis, and evaluating new molecular targets. In this topical
review, we examine the most important associations between clot composition assessed
using multi-omic technologies and stroke etiology and outcomes. We present the available
studies, and we discuss current limitations and future perspectives. This work is based on
all reports available (until December 2022) using omic analyses on stroke thrombi. For a
more in-depth description of omic technologies in stroke and other analyses of thrombi, we
refer to other recently published reviews [7,28].

2. Anatomopathological Studies

In the last few years, different studies have tried to correlate thrombus composition
with stroke etiology and outcomes. Detailed histopathological and immunohistochemical
analysis indicate that thrombus content in stroke is highly heterogeneous [12,18]. Clot
composition typically consists of a variable amount of RBCs, platelet/fibirin (PF), leuko-
cytes, bacteria, VWF, NETs, and extracellular DNA [5,7]. The architecture of RBC-rich clots
has a limited complexity and is composed of RBCs densely packed within a thin fibrin
network, and a small number of leukocytes. In contrast, PF-rich clots are more convoluted
and contain VWF, WBCs, NETS, and extracellular DNA [7,29].

Several studies found an association between RBC-rich clots and LAA etiology while
PF-rich clots have been related to cardioembolic mechanisms [13,14,16,30]. Recently, Brinjiki
et al. obtained similar findings in a large multicenter study with thrombi from 1350 pa-
tients [30]. Conversely, other authors reported a correlation between RBC-rich clots and
cardioembolic etiology [31]. Thus, these studies have been inconclusive so far to demon-
strate the role of immunohistopathological analyses of clots in clinical practice.

Regarding undetermined etiologies, data from histopathological studies highlighted
similar features between cryptogenic and cardioembolic clots, in particular, similar pro-
portions of PF [18]. A recent meta-analysis of 21 studies found that cardioembolic and
cryptogenic clots have a high PF content and indicated a positive association between
RBC-rich clots and better reperfusion rates [32]. Accordingly, several studies showed that
IVT and EVT are more effective in clots with higher content of RBCs [16,33,34]. Growing
evidence pointed out that high content of NETs and WBCs of CE origin might be correlated
with worse outcomes [20].

Although thrombus immunohistopathology has provided valuable data in stroke re-
search, the wide variability of the findings currently hampers clinical translatability [20,32].
The implementation of more standardized methods and the complementary use of novel
biomolecular techniques in future studies—such as omic technologies—may lead to more
reliable results that could better guide therapeutic decisions.

3. Multiomic Studies

Data from multi-omic analysis on retrieved clots from patients with LVOs are scant
and based on pilot studies with small sample sizes. Possible approaches include proteomic,
metabolomic, and transcriptomic analyses. Currently, only two studies used a combination
of methods (proteomic and metabolomic) [21]. All the other researches are based on
single-method approaches (Table 1).
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Table 1. Published omic studies on clots retrieved from patients with large vessel occlusion.

Technique Author Sample
Size Goal of the Study Main Findings

Proteomics

Rao et al. [25] 20
To identify and correlate
clot DEPs 1 with clinical

features.

Septin-2, phosphoglycerate kinase-1,
integrin α-M present in clots from patients

with high LDL.

Munoz et al. [24] 4 DEPs characterization of
the clot.

342 DEPs clustered with immunological,
cardiovascular, and platelet function

processes.

Darganzanli et al. [22] 60
To identify and correlate

DEPs clot with AIS
etiology.

438 DEPs clustered according to metabolic
pathways, cell adhesion, leukocyte

activation, and migration.
Clot-endothelium interaction pathway

predicts etiology.
Coagulation Factor XIII levels are higher in

CE clots.

Rossi et al. [35] 31
To identify and correlate

DEPs clot with AIS
etiology.

14 out of 1581 DEPs involved in distinct
pathways differ between LAA and CE
etiologies (statistically non-significant.)

Abbasi et al. [36] 48
Protein signatures
correlate with AIS

etiology.

Platelet signaling, in particular
platelet-immune cell communication,

prevails in CE clots.

Metabolomics Martha et al. [23] 5 To identify lipid clot
profile.

Glycerophospholipid and fatty acids as the
most represented lipids.

Transcriptomics

Tutino et al. [37] 73 To establish a protocol for
RNA seq on clots.

Only 48 out of 73 clots were available for
informative RNA sequencing.

Tutino et al. [38] 38
To assess clot gene
expression and AIS

etiology.

CE clots presented higher expression of
genesinvolved in neutrophil activity,
platelet function, and innate immune

system activation processes.
LA clots presented higher expression of

genes involved in T cell-mediated processes
and oxidoreductase activity.

Combined
(Proteomics +
Metabolomics)

Suissa et al. [21] 48 To predict AIS etiology
by multi-omic analyses.

Combined proteomic and metabolomic clot
profiles have significant predictive power

(100%sensitivity) of CE etiology.

Suissa et al. [26] 41
Multi-omic profile of

clots and correlation with
outcomes.

Multi-omic profile of clots and association
with outcomes.

1 DEPs (differentially expressed proteins).

3.1. Proteomics

Proteomics refers to the large-scale analysis of the protein landscape in a biological
entity at a specific time that is performed on bodily fluids and other biological materials
in healthy individuals or patients with specific conditions, including stroke [28]. Since
proteins are involved in most cellular processes, the composition of the proteome provides
crucial information.

From a technical point of view, global and targeted mass spectrometry (MS) and
antibody- and aptamer-based approaches have provided valuable results to study stroke
proteomics [28]. These have been instrumental to investigate the composition of clots
retrieved from patients with large vessel occlusions. Other authors have already published
guidelines on blood and thrombi sampling for gene expression and proteomics analy-
ses [39]. An exploratory proteomic study analyzed 20 thrombi from patients with AIS
and correlated their content expressed in differentially expressed proteins (DEPs) with
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clinical features and laboratory parameters [25]. The concentration of 3 DEPs (septin-2,
phosphoglycerate kinase-1, and integrin α-M) corresponded to the levels of serum low-
density lipoprotein (LDL), while another peptide, septin-7, inversely correlated with the
erythrocyte sedimentation rate. A smaller study assessed the proteome of 4 thrombi from
AIS patients and found 341 out of 1600 proteins that were identified in all samples [24].
Bioinformatic analyses revealed clusters of proteins associated with immunological func-
tions, cardiopathy-related proteins, and peripheral vascular processes. In addition, they
identified four proteins (protein-glutamine gamma-glutamyltransferase 2, Actin α cardiac
muscle 1, macrophage-capping protein, and putative elongation factor 1-α-like 3) that
are specifically associated with platelet function and clots. Interaction network analy-
ses suggested that some specific networks may be involved in clot formation, such as
fibronectin 1 and 14-3-3 family of proteins and the TGFβ signaling. Fibronectin plays a
role in platelet function [40] and can predict the hemorrhagic conversion of infarction and
malignant ischemic stroke [41,42], whereas protein 14-3-3 is associated with platelet surface
receptor and glycoprotein (GP) ib-IX-V complex-dependent signaling, which can initiate
thrombus formation [43]. TGF-β is highly represented in platelets and is implicated in
neuroinflammation after AIS [44]. Despite being tempered by the small sample size, the
results from these studies demonstrate the feasibility of studying proteomics in clots from
AIS patients.

Besides the descriptive characterization of the thrombus, proteomic analyses can
inform on stroke etiology (Figure 1).

One important unanswered question is whether omic analyses would increase diag-
nostic accuracy compared with currently available radiological diagnostics and clinical
scores. Darganzanli et al. compared 32 thrombi from patients with CE stroke vs. 28 with an
LAA etiology using mass spectrometry and a machine learning method (support vector
machine—SVM) [22]. Machine learning aimed to differentiate AIS etiologies based on
specific subsets of proteins. They identified 438 out of 2455 proteins in all the analyzed sam-
ples, which clustered for key biological processes, such as metabolic pathways, cytokines
assembly, leukocyte activation, migration, and cell adhesion. SVM highlighted that three
proteins (eukaryotic translation initiation factor 2 subunit 3, Ras GTPase-activating-like
protein IQGAP2, and coagulation factor XIII) classified correctly the 2 groups with an 88%
accuracy. On univariate analysis, the coagulation factor XIII, the eukaryotic translation
initiation factor 2 subunit 3, and the myosin light chain kinase levels were significantly
different between the CE and LAA groups. When coupled with classic clinical predictors
of CE etiology (e.g., history of cardiac failure), the predictive accuracy of the model raised
to 97%. This study provided exploratory evidence suggesting that pathways associated
with the clot-endothelium interaction may help to differentiate AIS etiologies.

Rossi et al. used mass spectrometry to compare 16 CE vs. 15 LAA thrombi in AIS
patients [35]. They found 14 DEPs among 1581 identified proteins. LAA thrombi pre-
sented higher amounts of proteins involved in the ubiquitin-proteasome pathway, blood
coagulation, or plasminogen-activating cascade. Clots from patients with CE strokes had
more proteins involved in the ubiquitin-proteasome pathway, cytoskeletal remodeling of
platelets, platelet adhesion by interaction with the VWF, and blood coagulation. However,
adjusted analyses did not reveal significant differences between the two groups. The con-
servation of the samples in formalin instead of ice, a small sample size, no information
on pre-stroke antithrombotic therapies, and the workflow time for stroke care could have
hampered the generalizability of these data.

Abbasi et al. recently compared 25 CE vs. 23 LAA thrombi using proteomic techniques
and applying pathway analyses and reverse-phase protein arrays to assess cellular interac-
tions within the clots [36]. The analysis revealed strong interactions between PPAR-gamma,
arginase-1, CD63, CD234, PKCαβ Thr 638/641, and VWF in CE clots, indicating that platelet
signaling dominates in CE vs. LAA thrombi. The presence of multiple protein connections
within inflammatory and immune cell proteins supports the concept of platelet-immune
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cell communication in CE clots. This concept is further reinforced by the enrichment of
WBCs detected in the histological analysis of CE emboli.
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Figure 1. Proteomic studies on clots retrieved from mechanical thrombectomy. (A) Patients with
large vessel occlusion can be treated with mechanical thrombectomy, making the retrieved thrombus
available for further analysis. (B) Mass spectrometry and pathway analyses of generated data are
instrumental to investigate proteins extracted from clots. (C) Available reports using proteomic
technologies point out a different composition between clots with cardioembolic and atherosclerotic
origins, with the formers containing more proteins associated with red blood cells and the coagulation
cascade and the latter with the proteasome-ubiquitin pathway.

The growing use of thrombectomy has also enabled the collection of intracranial blood
samples during EVT. Comparing the protein content of intracranial and systemic blood
can provide insights into the changes that occur in the brain during AIS. A pilot study
using plasma proteome analysis found that several proteins, including ficolin-2, fetuin-B,
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prolyl endopeptidase fibroblast activation protein, uromodulin, and phospholipid transfer
protein, were present at lower levels in intracranial blood compared to systemic arterial
blood [45]. However, it is still unclear whether these differences are specific to stroke
or simply reflect differences between blood sources. In a follow-up study, the authors
found that elevated levels of VCAM1 in intracranial blood were positively associated with
infarction and edema volume, indicating that VCAM1 may play a harmful role in stroke
pathology [46]. VCAM1 is a molecule that links leukocytes to endothelial cells and has been
linked to ischemic stroke pathologies [47]. Seminal studies on the topic have shown that
cerebrovascular ischemia raises levels of leukocyte-endothelial adhesion molecules [48,49],
which facilitates the adhesion and migration of inflammatory cells through blood vessels.
Ischemic events worsen brain tissue damage by disrupting the endothelium and enabling
leukocytes to migrate into the brain tissue [50]. Consistently with these results, protein
clusters for key biological pathways in thrombi include leukocyte activation, migration, and
cell adhesion [22]. These findings support the potential complementary value of coupling
proteomic analyses of clots with that of intracranial blood sampled during EVT.

Overall, these proteomic studies are very preliminary for deriving generalizable
conclusions. Inflammatory pathways and platelet function may be two key players in clot
formation and changes in platelet-related pathways may provide clues to differentiating
between CE and LAA etiologies.

3.2. Metabolomics

Metabolomics refers to the systematic investigation of the metabolites (i.e., small-
molecule profiles) in biological samples, providing the molecular fingerprint of specific
cellular processes [51,52].

Compared with proteomic techniques, metabolomics investigates smaller molecules
(<2 kDa). The separation, precipitation, and removal of proteins are usually performed
with simple extraction technologies, yielding metabolites. Recently, more focused analyses
of metabolite subsets have resulted in new terms, such as “lipidomics”. This refers to the
study of the variety of lipid species in eukaryotic cells that control cell membrane processes,
and energy production and serves as precursors of bioactive molecules [53].

Available data on the use of metabolomic approaches on clots retrieved from AIS
patients with LVOs are scant. So far, one study performed metabolomic analysis only, and
2 others metabolomic coupled with proteomics (combined proteomic and metabolomic
paragraph). Early results on 5 thrombi indicate that the 10 most represented lipids were
part of the phosphoethanolamine, phosphocholine, and fatty acids groups [23]. Plasma
lipoproteins may play a role in thrombi formation through the interaction between rup-
tured atherosclerotic plaques and platelets [23]. In addition, patients with hypercholes-
terolemia present more frequently abnormal platelet function, such as alterations of
lipoprotein-surface receptors interactions, increased platelet activation, and leukocyte
recruitment [23,54]. Thus, the characterization of lipid composition in clots from AIS
patients could help to better understand the role of different lipids in thrombogenesis,
investigate the mechanisms of atherosclerotic plaque disruption in LAA-associated stroke,
develop more tailored lipid-lowering and antithrombotic secondary prevention strategies
for AIS.

Metabolomics and the Risk of AIS

Although metabolomics in clot research is still in its infancy, its broader use in AIS
patients has offered new insights into predicting the risk of stroke. Sun et al. investigated
the relationship between serum levels of 245 fasting metabolites and incident ischemic
stroke in 3904 men and women [55]. Cox proportional hazard models were used to analyze
the data and the results were validated in a separate sample of 114 stroke cases and
112 healthy controls. The results showed that levels of two long-chain dicarboxylic acids
involved in theω-oxidation of fatty acids, tetradecanedioate, and hexadecanedioate, were
strongly correlated with CE strokes, independently of known risk factors. The findings
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suggest that these metabolites may be used as novel biomarkers for AIS and that pathways
related to intracellular hexadecanedioate synthesis may play a role in stroke risk.

Similarly, two other studies found an association between altered levels of metabolites
and the risk of AIS [56,57]. In patients at higher risk of stroke, Lee et al. reported lower
levels of N6-acetyl-l-lysine, 5-aminopentanoate, cadaverine, 2-oxoglutarate, nicotinamide,
l-valine, S-(2-methylpropionyl)-dihydrolipoamide-E and ubiquinone, and elevated levels
of homocysteine sulfonic acid. Sensitivity analysis on patients with diabetes and smoking
showed that these metabolites were specifically related to stroke, independently from
potential confounders. Thus, lower lysine catabolites in patients at risk of stroke compared
to controls support the idea of using these compounds as novel biomarkers for the early
detection of stroke. Khan and colleagues compared 99 patients at risk of stroke and 301 non-
risk controls and found that the former presented differential levels of 35 amino acids [57].
These included 10 metabolites, such as including L-tryptophan and homocysteine sulfinic
acid, which were elevated in stroke patients at risk, providing evidence for the use of these
compounds as biomarkers for early and non-invasive detection of AIS.

In a recent meta-analysis of 7 prospective cohorts, 10 metabolites seemed associated
with a reduced risk of stroke. These included amino acids (such as histidine), high-density
lipoprotein (HDL)2 cholesterol subfractions, pyruvate, and alpha-1-glycoprotein, a marker
of acute phase response. Cholesterol in medium HDL and triglycerides in medium-large
LDL were linked to overall stroke incidence, while phenylalanine and HDL subfractions
(cholesterol and free cholesterol in HDL) were related to ischemic but not hemorrhagic
stroke. Particularly, the strongest correlation was observed between histidine and stroke
risk [58].

3.3. Combined Proteomic and Metabolomics

The combination of proteomic and metabolomic analysis on clots could help to better
predict outcomes after AIS. In one study on 41 clots, 18 patients with favorable outcomes
(modified Rankin Scale (mRS) score < 2) at 3 months had higher glucose and sorbitol
levels; the latter was also an independent predictor of a good outcome. Though glucose
is the substrate for sorbitol synthesis and is metabolized in the glycolytic pathway, this
did not seem affected in these patients, as shown by proteomic analysis. Conversely, the
excess of extracellular glucose in patients with AIS may be converted into sorbitol by
the polyol pathway at stroke onset [26]. Regarding the predictive models, the authors
applied the sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) to determine the
relationship between relevant metabolites and favorable clinical outcomes. After analyzing
the loadings of features selected by the sPLS-DA model, they identified 20 variables per
component for a total of 40 variables. The receiver operating characteristic (ROC) curve
and Youden plot were then used to evaluate the association between major metabolites and
the clinical outcome.

Recently, Suissa et al. used proteomic and metabolomic approaches in retrieved
thrombi from AIS patients sampled consecutively to predict a CE vs. LAA etiology ac-
cording to the ASCOD classification (A: atherosclerosis; S: small-vessel disease; C: cardiac
pathology; O: other causes; D: dissection) [59]. Using liquid chromatography and mass
spectrometry, the authors quantified a specific proteomic and metabolomic molecular sig-
nature in both groups and built a model with a significantly better predictive power (100%
sensitivity/85.7% specificity) than classic clinical predictors of CE stroke (age, clinical sever-
ity at admission, and plasma levels of brain natriuretic peptide) [60,61]. In addition, they
distinguished a peculiar proteomic signature in the 2 groups, with increased glycophorin-A
(marker of red blood cells) and fibrinogen in CE strokes. Methodologically, the performance
of classical predictors of CE and omic signatures was evaluated using ROC curves and
area under curves receiver operating characteristic (AUROC). Similarly to the previously
discussed study by Suissa et al. [26], the authors used sPLS-DA to discriminate between
different origins of cerebral thrombi, applied logarithm transformations to the data, and
analyzed untargeted proteomic and metabolomic results. The internal validity was checked
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using resampling methods and cross-validations. To externally validate each model, the
authors assessed the prediction of new AF cases documented at 3-month follow-up in
patients initially discharged as embolic strokes of undetermined source (ESUS). Finally, the
predictive performance of both classical predictors and omic signatures was compared us-
ing AUROC pairwise comparison. Overall, this study and the one by Darganzanli (section
on proteomics) provide evidence for the use of single or multiomic techniques to better
predict stroke etiology in AIS patients, particularly regarding CE vs. LAA strokes.

Though valuable, this pilot study included a small and unbalanced number of thrombi
per group (41 cardioembolic vs. 7 LAA), the predictive model did not consider radiological
data and histopathological features, known as potential predictors of stroke etiology [4,62]
and the authors did not check for consistency using other stroke subtype classification
systems (e.g., TOAST, CCS). In addition, the model was based on 40 omic features, currently
not feasible in clinical practice in many centers and the predictors of CE origin did not
include electrocardiographic (ECG) data associated with atrial cardiomyopathy.

Atrial cardiomyopathy is a condition characterized by abnormalities in the structure
and function of the atria and has been linked to a heightened risk of cardiovascular com-
plications, independently from AF. The use of ECG parameters has become a crucial tool
in predicting atrial cardiopathy. P wave parameters (PWPs) are an effective method for
diagnosis, as they reveal underlying atrial structure, size, and electrical activation and
can be quickly obtained through a standard 12-lead ECG [63,64]. PWPs include markers
such as P wave duration, interatrial block, P wave terminal force in V1, P wave axis, P
wave voltage, P wave area, and P wave dispersion, and can be combined to form a P wave
index, such as the morphology-voltage-P-wave duration ECG risk score [65]. Abnormal
PWPs may be linked with increased risks of AF, sudden cardiac death, and ischemic stroke
in population-based cohort studies [63]. PWPs, either alone or in combination, may also
improve the prediction of AF or ischemic stroke. Although further work is needed to
standardize PWPs measurements, assess their accuracy and predictiveness, integrate novel
techniques such as wavelet analysis and machine learning, and determine the benefits and
risks of specific interventions for high-risk individuals, the widespread use of 12-lead ECGs
coupled with thrombi analyses may help to improve the diagnosis, study, and treatment of
CE stroke.

The Integration of Multiomic Techniques

The previously discussed findings suggest that the combination of multi-omic analyses
may perform better than single omics and traditional clinical predictors in identifying stroke
etiology. Particularly, the association of electrocardiographic and multi-omic analyses on
thrombi may even provide further advancements in the field.

Overall, the combination of multi-omic technologies provides some advantages to
understanding the complex and interconnected biological processes involved in AIS, in-
cluding transcriptomic, proteomic, and metabolomic factors. These technologies will help
in identifying new biomarkers, improving diagnosis accuracy and personalized medicine,
and unraveling the underlying mechanisms of AIS. The integration of multiple data sets
will lead to a better comprehension of the disease, enabling the discovery of new biological
pathways and potential targets for therapeutic interventions. Additionally, multi-omics
technology may improve the design and development of more effective drugs and inter-
ventions by providing a more detailed molecular characterization of AIS.

The so called “integromics”—i.e., the integration of multiple omic techniques—represents
a further advancement in the field [66]. The process of integrating multiple omics starts by
normalizing and reducing data to identify variations in patients with AIS; then the different
types of molecular data are analyzed separately and finally combined to generate a com-
prehensive model [67]. The integration and analysis of multi-omics data aim to develop an
efficient disease classification and prognosis model by exploring correlations and differences
between the data, providing a foundation for precise and targeted patient treatment.
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3.4. Transcriptomics

Transcriptomic refers to the use of next-generation sequencing (NGS) technology
to obtain a complete set of RNA transcripts (RNA-seq) from different tissues [68]. This
provides an accurate gene expression profile, offers more details on the cellular composition
of samples, and enables the study of the molecular features involved in the various stages
of the disease.

There are three main different techniques used for transcriptome analysis: bulk RNA
seq, single-cell analysis (scRNA-seq), and spatial transcriptomics (sp RNA-seq). Although
bulk RNA seq provides important data regarding the main molecular pathways underlying
the disease, it fails to capture specific cell types and spatial information. To overcome the
transcriptional diversity at the single-cell scale, scRNA-seq was developed for the first
time in 2009 [68], enabling a deeper characterization of cellular heterogeneity in diseases,
including cerebrovascular disorders [69]. SpRNA-seq is a novel technique that results in a
gene expression matrix throughout tissue space. This methodology combines the strengths
of bulk RNAseq and in situ hybridization, without requiring dissociation and manipulation
of the sample, thus preserving the spatial organization of the tissues [70]. Currently, two
commercially available platforms of spRNA-seq are available: 10X spatial transcriptomics
from 10XGenomics and digital spatial profiler from NanoString Technologies.

The literature investigating the role of transcriptomic analysis in stroke research is
scant. Current limitations include the quality of the retrieved material (e.g., number of
cells), the collection, and the preservation of the samples. Most of the available studies
were conducted on thrombi obtained during carotid endarterectomy and investigated not
only the plaque but also the intima and the tunica media of the involved vessel [69]. So
far, only Tutino et al. have performed bulk RNA seq in the clots of AIS. In 2021, they
developed a new protocol to ensure sufficient RNA quality for further RNA seq analysis.
In 73 clot samples retrieved by EVT, RNA seq analysis was feasible only in 48 thrombi,
showing the limitations of this approach in terms of quantity and quality of samples and
storage methods [37]. Recently, the same group studied the transcriptome profile of 38
thrombi identifying 174 differentially expressed genes (DEGs), 20 of which were shared
by clots of different etiologies. RNA-seq highlighted with bioinformatic gene ontology
analysis showed that CE clots express high levels of different genes involved in immuno-
logical processes (such as RANTES, PTGS1, MPO, MMP8, MMP9, C1QA, C1QB, NGAL,
APOE, APOC1), suggesting an overall neutrophil, platelet, and innate immune system-
dependent activation. Differently, LAA clots transcriptomes had greater enrichment of
oxygen transport, oxidoreductase activity, and T-cell activation processes (with increased
expression of HBD, HBA1/2, HBB, HBM, TRBC2, TRAC, IL7R, CCR7, CXCL5). Crypto-
genic clots clustered in several profiles are potentially consistent with multiple concurrent
etiologies [38].

Another study investigated specific pathways using quantitative real-time polymerase
chain reaction (qRT-PCR) on clots [71]. Baek and colleagues explored the role of inflam-
mation in stroke pathophysiology by measuring mRNA expression levels of interleukin
(IL)-1β, IL-6, IL-8, IL-18, tumor necrosis factor (TNF)-α, matrix metallo-proteinase (MMP)-
2, and MMP-9 in retrieved thrombi. In addition, they correlated these results with the
presence of the susceptibility vessel sign (SVS), a radiological marker of paramagnetic
content (e.g., deoxygenated hemoglobin), which is more frequently associated with an LAA
etiology [72]. Out of 82 clots, 9 were associated with an LAA etiology and had a higher
content of IL-1β. They demonstrated that patients lacking the SVS had higher expression
of IL-1β, tumor necrosis factor-α, and matrix metalloproteinase-9 [71]. Altogether, these
results suggest the value of combining analyses of transcription processes with radiological
methods to better define stroke etiology.

The use of transcriptomic approaches could provide some advantages to studying clots
in AIS patients. First, scRNA-seq could allow the study not only of cell-to-cell interactions
but also of novel and rare cellular subtypes inside the clots. Second, spRNA-seq—by cou-
pling extensive spatial barcoding of mRNAs on tissue with advanced imaging techniques
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and reconstructions—may provide unrivaled spatial resolution to distinguish different
disease-relevant areas inside the thrombi, increasing the understanding of tissue hetero-
geneity and thrombogenesis. For instance, the two poles of a thrombus occluding an artery
may show a varying composition according to the underlying etiology and different local
microenvironments and potentially present a variable response to reperfusion therapies.
Third, spRNA seq combined with other omic methodologies could achieve further steps for-
ward in dissecting the composition of clots and thus increasing the knowledge of complex
molecular mechanisms and allowing the discovery of new therapeutic targets in AIS.

4. Limitations and Perspectives of Omic Studies in Acute Ischemic Stroke

The use of omic approaches to study clots in AIS patients is still in its infancy and
needs optimization. Current limitations include (1) the small size of study samples, (2) the
lack of data on potential confounders (e.g., timing of administration, amount and type
of thrombolytic therapy, pre-stroke antithrombotic therapies, workflow times, and stroke
classification systems), (3) the heterogeneity of sampling procedures and study protocols,
and (4) high costs. In addition, (5) the technology to perform such analyses is available only
in selected comprehensive stroke centers, hampering the potential use in clinical practice,
particularly in rural areas. The use of standardized protocols for sampling and analyz-
ing data, the definition of shared guidelines, and the reduction in costs from improved
technology could increase the use of omics in clinical practice (Figure 2).

Currently, omic analyses of clots are not routinely used in clinical practice. However,
the possible future clinical impact of these analyses include: (I) identifying biomarkers for
stroke mechanisms and prognosis, which could help clinicians to make more informed
decisions about patient care; (II) better selecting antithrombotic treatments following the
molecular characterization of clots, improving their efficacy; (III) evaluating the impact
of risk factors such as genetics, lifestyle, and comorbidities on thrombosis and AIS; (IV)
assessing the risk of recurrence based on the composition of clots, thereby opening up new
avenues for personalized medicine for stroke patients in terms of better controlling vascular
risk factors and selecting secondary prevention strategies.

Regarding future perspectives, a recent new tool in proteomic studies—Alphafold
2—represents a novel technological breakthrough in the field [73,74]. Alphafold 2 is a
deep learning-based protein folding prediction algorithm developed by Deepmind. It
uses artificial neural networks to predict the 3D structures of proteins from their amino
acid composition with high accuracy, which is critical for understanding the functions
of proteins and drug discovery. Alphafold 2 is trained on a large dataset of proteins
and has achieved state-of-the-art results in predicting protein structures, outperforming
traditional protein folding prediction methods. Although not tested on clots from AIS
patients, Alphafold 2 may provide interesting results in stroke research. First, it could help
in generating predictive models of protein structures in clots to provide novel insights
into the molecular mechanisms of thrombosis. Second, it could improve the identification
and quantification of proteins in clots, thereby increasing the understanding of thrombi
composition and helping to select appropriate antithrombotic treatments. Third, it may
support the integration of genomic, transcriptomic, and proteomic data to better understand
the interplay between gene expression and protein synthesis leading to thrombi formation.
Fourth, Alphafold may offer novel insights into the post-translational modifications of
proteins in clots, offering new perspectives into the regulation of thrombosis. Fifth, it may
become instrumental in modeling the effects of drugs acting on protein-protein interactions
in clots to expand treatment options and identify new therapeutic targets.
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Figure 2. Current application and future perspectives on clot research using multi-omic approaches.
Thrombi retrieved from patients with large vessel occlusions can be analyzed using proteomic,
metabolomic, and transcriptomic approaches, or combinations of these. Recently, metabolomic
studies have focused on specific subtypes of metabolites, i.e., lipids. These are involved in cell
membrane dynamics, transport of bioactive macromolecules, and molecular synthesis, holding the
potential to increase knowledge on the cellular composition of clots. Regarding transcriptomic
analyses, available reports both on human and animal models used bulk RNA, namely the pooled
RNA derived from all the cells in a sample. Further interesting approaches would include single-cell
RNA and spatial transcriptomics. The former investigates the whole transcripts of each cell in the
clot, while the latter provides a spatial map based on barcoded RNAs with high spatial resolution,
enabling the investigation of rare cell types and new molecular targets.

Incorporating machine learning algorithms into the analysis of omic data will provide
further advancements in the field [66]. Particularly, machine learning can enhance the
analysis of omic data by allowing the identification of complex patterns and relationships
within the data, beyond what is possible through traditional statistical methods. This can
improve the accuracy of disease classification, prognosis, recurrence risk modeling, and
drug response prediction. Machine learning algorithms, such as decision trees, random
forests, and artificial neural networks, can be trained on large omic datasets to identify
significant features and predict outcomes with high accuracy [75]. In addition, machine
learning can enable the integration of multiple omics data types, such as genomics, tran-
scriptomics, proteomics, and metabolomics, to generate more comprehensive models of
disease mechanisms. This can lead to a deeper understanding of the underlying molecular
mechanisms of AIS and inform the development of personalized therapeutic strategies.
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