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Markers of blood-brain
barrier disruption increase
early and persistently in
COVID-19 patients with
neurological manifestations
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Background: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2

infection is associated with disorders affecting the peripheral and the central

nervous system. A high number of patients develop post-COVID-19 syndrome

with the persistence of a large spectrum of symptoms, including neurological,

beyond 4 weeks after infection. Several potential mechanisms in the acute

phase have been hypothesized, including damage of the blood-brain-barrier

(BBB). We tested weather markers of BBB damage in association with markers

of brain injury and systemic inflammation may help in identifying a blood

signature for disease severity and neurological complications.

Methods: Blood biomarkers of BBB disruption (MMP-9, GFAP), neuronal

damage (NFL) and systemic inflammation (PPIA, IL-10, TNFa) were measured

in two COVID-19 patient cohorts with high disease severity (ICUCovid; n=79)

and with neurological complications (NeuroCovid; n=78), and in two control

groups free from COVID-19 history, healthy subjects (n=20) and patients with

amyotrophic lateral sclerosis (ALS; n=51). Samples from COVID-19 patients

were collected during the first and the second wave of COVID-19 pandemic in
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Lombardy, Italy. Evaluations were done at acute and chronic phases of the

COVID-19 infection.

Results: Blood biomarkers of BBB disruption and neuronal damage are high in

COVID-19 patients with levels similar to or higher than ALS. NeuroCovid

patients display lower levels of the cytokine storm inducer PPIA but higher

levels of MMP-9 than ICUCovid patients. There was evidence of different

temporal dynamics in ICUCovid compared to NeuroCovid patients with PPIA

and IL-10 showing the highest levels in ICUCovid patients at acute phase. On

the contrary, MMP-9 was higher at acute phase in NeuroCovid patients, with a

severity dependency in the long-term. We also found a clear severity

dependency of NFL and GFAP levels, with deceased patients showing the

highest levels.

Discussion: The overall picture points to an increased risk for neurological

complications in association with high levels of biomarkers of BBB disruption.

Our observations may provide hints for therapeutic approaches mitigating BBB

disruption to reduce the neurological damage in the acute phase and potential

dysfunction in the long-term.
KEYWORDS

COVID-19, neurological damages, blood-brain barrier, inflammation, blood
biomarkers, critical care
Introduction

SARS-CoV-2 infection is associated with neurological

symptoms and complications that range from headache,

anosmia and dysgeusia, to severe complications such as

cerebrovascular events, encephalopathy, Guillain-Barré

syndrome, and dementia-like syndrome (1). In addition, many

COVID-19 patients develop a ‘post-COVID-19 syndrome’

defined as the persistence of a wide spectrum of symptoms

beyond four weeks after infection (2). In symptomatic COVID-

19 patients, a community-based study with over half a million

people in the UK estimated that about one in three experienced

at least one persistent symptom for 12 weeks or more (3). In a

population-based study in Lombardy, the post-COVID-19

condition was associated with death, rehospitalization and use

of health resources (4). Long-term neuropsychological

impairments such as executive, attentional and memory

deficits, are reported even after mild infection (5). While the

exact causes of post-COVID-19 syndrome remain largely

elusive, the prevalence of associated neurological symptoms

with an increased risk of anxiety and depression at 16-month

follow-up (6) suggests a brain origin (7, 8).

There is neurochemical evidence of neuronal injury in

patients with COVID-19 (9, 10), with reports of a severity-

dependent increase of neurofilament light chain (NFL) at 4-
02
month follow-up, further supporting ongoing brain injury even

weeks and months after acute infection (11). Not surprisingly,

the neurological complications are associated with worse

functional outcome, particularly in older subjects and those

with comorbidities (12).

Hypotheses of pathogenic processes implicated in acute and

delayed brain injury following a SARS-CoV-2 infection include: i)

viral invasion, ii) bioenergy failure, iii) autoimmunity, and iv) innate

neuroimmune responses (13). In all these processes the blood-brain

barrier (BBB), which maintains the specialized microenvironment

of the neural tissue by regulating the trafficking of substances

between the blood and brain compartments, has a central role.

Brain endothelial cells are the primary unit in close

association with pericytes and astrocytes (14). Pericytes, which

are key cells in maintaining and supporting vascular homeostasis

and barrier function (15), are also the main source of matrix

metalloproteinase 9 (MMP-9) (16, 17). Inflammatory stimuli

very rapidly activate MMP-9 at the pericyte somata, leading to

degradation of the underlying tight junction complexes. Thus,

MMP-9 can act as a toxic culprit of BBB disruption after acute

(18, 19) and neurodegenerative diseases (20). Peptidyl prolyl cis-

trans isomerase A (PPIA), also known as cyclophilin A, acts as

an activator of MMP-9 (21, 22) through binding to its CD147

receptor, which in addition has been proposed as an alternative

route for SARS-CoV-2 infection (23).
frontiersin.org
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Mechanistically, it has been demonstrated that the severe

COVID-19-related cytokine storm is induced by a “spike

protein-CD147-PPIA signaling axis” (24). In vivo experiments

using a preclinical mouse model indicated that an anti-CD147

antibody inhibited the cytokine storm of SARS-CoV-2 (24).

Astrocytic end-feet containing glial fibrillary acidic protein

(GFAP) are an essential component of the BBB. High blood

GFAP is a marker of structural damage in the acute phase of

brain injury and a severity-dependent increase has been detected

in COVID-19 patients (11, 25). These data highlight PPIA,

MMP-9, and GFAP as key disease biomarkers, so their

measurement in association with NFL, an established marker

of brain injury, may help identify a blood signature for disease

severity and neurological complications in COVID-19

patients (NeuroCovid).

We identified significant effects associated with SARS-CoV-

2 infection in COVID-19 patients, with NeuroCovid subjects

showing the highest levels of biomarkers associated with BBB

disruption, while patients in the intensive care unit (ICUCovid)

had higher levels of inflammatory response biomarkers.
Materials and methods

Study approval

The study was approved by the ethics committees of the clinical

centers involved: Fondazione IRCCS Ca’ Granda Ospedale

Maggiore Policlinico, Milano (approval #868_2020, 28.10.2020),

ASST Papa Giovanni XXIII, Bergamo (approval #123/20,

14.05.2020). Written consent was obtained from patients

themselves or their legal representatives when they lacked

capacity to consent. Wherever possible, informed consent was
Frontiers in Immunology 03
collected verbally. However, in most cases, due to the patient’s

inability to provide informed consent or to collect it in compliance

with the contagion prevention measures, the principle of secondary

use of data was used in accordance with art. 28, paragraph 2, letter

b) of the November 20, 2017 law, no. 167, included in the legislative

decree 196/03 of art. 110-bis.
Study populations

Two COVID-19 populations, referred to as ICUCovid and

NeuroCovid, were recruited between February 2020 and

February 2021. All participants received a positive PCR test for

SARS-CoV-2 RNA on nasopharyngeal swab. Control groups

free from COVID-19 history were patients with amyotrophic

lateral sclerosis and a healthy population. Their main

demographic and clinical characteristics are reported in Table 1.

ICUCovid
All patients admitted to the ICU, Rianimazione 1 Fiera

Milano COVID-19 (Fondazione IRCCS Ca’ Granda Ospedale

Maggiore Policlinico, Milan, Italy) were screened for eligibility.

Inclusion criteria for this study population were: i) signed

informed consent and ii) >18 years of age. Exclusion criteria

were: i) known previous neurological conditions; ii) more than

48h in another ICU before admission; iii) pregnancy. Out of 296

screened patients, 79 were recruited for the study.

NeuroCovid
Patients admitted to the COVID-19 wards (ASST Papa

Giovanni XXIII , Bergamo, Italy) with neurological

manifestations confirmed by a neurological consultation/
TABLE 1 Demographic and clinical characteristics of the patient cohorts.

Characteristics ICUCovid NeuroCovid ALS Healthy

N 79 78 51 20

Age at sampling, years, median
(IQR)

65
(58–70)

61
(53-71)

67
(62-71)

61
(58-63)

Sex (% males) 77% 73% 51% 35%

Hospitalization, days, median (IQR)
17

(10-28)
29

(10-51)
– –

Mortality
(% deceased)

34% 16% – –

PaO2/FIO2 ratio, median (IQR)
131

(93-180)
– – –

ALSFRS-R1 at sampling, median (IQR) – –
33

(22-38)
–

1ALSFRS-R: Revised Amyotrophic Lateral Sclerosis Functional Rating Scale.
fro
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neurophysiological assessment/neuroradiologic investigation

were recruited. Patients’ samples had been collected in an

observational study on neurological manifestations in COVID-

19 patients approved by the local Ethics Committee (257/2020,

13/5/2020) (26). The neurological diagnoses in this cohort are

summarized in Table 2 and included peripheral neuropathies

(33% of patients), encephalopathies/encephalitis (33%) and

cerebrovascular disorders (23%). Inclusion criteria were: i)

signed informed consent; ii) > 18 years of age; iii) cognitive or

neurological symptoms presenting during COVID-19

hospitalization, for which a neurological consultation/

neurophysiological assessment/neuroradiologic investigation

was required; iv) blood samples available. Of the 137

NeuroCovid patients, 78 fitted these criteria and their samples

were included in the study. Patients were stratified based on

clinical outcome: discharged fully recovered (moderate),

discharged with sequalae (severe), and deceased (dead).

ALS patients and healthy controls
Informed written consent was obtained from all subjects

involved and the study was approved by the ethics committee of

Azienda Ospedaliero Universitaria Città della Salute e della

Scienza, Turin. Healthy subjects and ALS patients had no

COVID-19 history. The diagnosis of ALS was based on a

detailed medical history and physical examination and

confirmed by electrophysiological evaluation. Inclusion criteria

for ALS patients were: i) >18 years old; ii) diagnosis of definite,

probable or laboratory-supported probable ALS, according to
Frontiers in Immunology 04
revised El Escorial criteria. Exclusion criteria were: i) diabetes or

severe inflammatory conditions; ii) active malignancy; iii)

pregnancy or breast-feeding. ALS patients served as positive

controls for severe neurodegeneration.
Study design

The study design is summarized in Figure 1. Two COVID-19

populations and ALS and healthy control groups were included (see

Study Populations above). In the ICUCovid cohort, blood samples

were drawn acutely at ICU admission (T0) and after 7 (T7) and 14

(T14) days. Clinical data were collected throughout the ICU stay

and CT scans were done every two weeks when feasible. For the

NeuroCovid cohort, the blood samples had initially been collected

for clinical and not experimental purposes, so the samples available

did not precisely match those collected in the ICUCovid cohort;

therefore, we retrieved available samples from week 1 to week 2 in

the ward (acute: T0-T14) and from longer timepoints (long-term:

T15-T90). Clinical data were retrieved from medical records. Blood

samples and clinical analyses were then done at the Istituto di

Ricerche Farmacologiche Mario Negri IRCCS.
Biomarker analysis

Bloods were processed at the contributing centers and plasma

samples were aliquoted, cryopreserved at -80°C and shipped to the

Istituto di Ricerche Farmacologiche Mario Negri IRCCS for

biomarker analyses. Levels of NFL, GFAP, IL-10 and TNFa
were measured using commercially available single molecule

array assay kits on an SR-X Analyzer (Neuro 2-Plex B

(#103520), interleukin-10 (IL-10) (#101643) and tumor necrosis

factor (TNFa) (#101580) advantage kits) as described by the

manufacturer (Quanterix, Billerica, MA). A single batch of

reagents was used for each analyte. MMP-9 was measured with

an AlphaLISA kit for the human protein (#AL3138, PerkinElmer).

AlphaLISA signals were measured using an Ensight Multimode

Plate Reader (PerkinElmer). PPIA was measured with an ELISA

for the human protein (#RD191329200R, BioVendor).
Other laboratory data

Clinical and outcome data were retrieved from medical

records for all patients.
Statistical analysis

For each variable the differences between experimental

groups were analysed by a Mann Whitney test or Kruskall-

Wallis test, followed by Dunn’s post-hoc tests. Two-way

ANOVA for repeated measures followed by Sidak’s post-hoc
TABLE 2 Case definition for NeuroCovid cohort.

NeuroCovid total patients (N) 78

Neurological complications N (%)

Cerebrovascular disorders1 18 (23)

Ischemic stroke 13

Hemorrhagic stroke 4

Transient ischemic attack 1

Peripheral neuropathies 26 (33)

Guillain Barrè Syndrome2 26

Encephalopathies/Encephalites3 26 (33)

Miscellaneous 8 (10)

Epilepsy 4

Myelopathy 1

Syncope 1

Movement disorder
Headache

1
1

1As defined by Sacco et al. (27)
2As defined by Sejvar et al. (28)
3As defined by Quist-Paulsen et al. (29)
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test was used to analyse biomarkers in ICUCovid patients. P

values below 0.05 were considered significant. Prism 8.0

(GraphPad Software Inc., San Diego, CA) was used.
Data availability

All data produced in the present study are available upon

reasonable request to the authors.
Results

Blood biomarkers of BBB disruption
and neuronal damage are high in
COVID-19 patients with levels
similar to or higher than in a severe
neurodegenerative disease

PPIA, an inducer of MMP-9 (22) and cytokine storm (24),

showed the highest levels in ICUCovid patients (Figure 2A), while

MMP-9, which is strictly related to BBB disruption, is highest in

NeuroCovid patients (Figure 2B). Both PPIA and MMP-9 in

hospitalized COVID-19 patients are substantially higher than ALS

patients, characterized by severe neurodegeneration, and healthy

controls (Figures 2A, B). Plasma concentrations of GFAP were
Frontiers in Immunology 05
also high, irrespective of the neurological complications compared

to healthy controls and were equal to or higher than the levels in

ALS patients (Figure 2C). NFL has similar behavior, with the

highest levels in NeuroCovid significantly higher than in

ICUCovid patients (Figure 2D). These data suggest a clear

neurological implication and call for a granular description of

biomarker changes in these patient cohorts in relation to time

and severity.
NeuroCovid patients have lower levels of
the cytokine storm inducer PPIA but
higher levels of BBB disruption markers

We characterized the severity-dependent changes and

temporal dynamics of PPIA, MMP-9, GFAP and NFL in

ICUCovid and NeuroCovid patients. In the acute phase,

ICUCovid patients had higher PPIA levels than NeuroCovid

patients (Figure 3A). Among ICUCovid patients, a slight

temporal increase was observed in the deceased group, leading

to higher PPIA levels at 14 days than in alive patients (T14,

Figure 3B). NeuroCovid patients showed no severity dependency

in the acute and the longer phases (Figures 3C, D). In the acute

phase, ICUCovid patients had lower MMP-9 levels than

NeuroCovid patients (Figure 3E). In the ICUCovid cohort,
FIGURE 1

Schematic workflow for the biomarker characterization in two cohorts of COVID-19 patients and two cohorts of controls (ALS and healthy). The
two cohorts of COVID-19 patients analyzed in the study are COVID-19 patients admitted to the ICU ward Rianimazione 1 Fiera Milano COVID-
19 (ICUCovid; n=79) and to COVID-19 wards ASST Papa Giovanni XXIII, Bergamo, with neurological complications (NeuroCovid; n=78). Blood
samples were drawn acutely at ICU admission and after 7-14 days (T0-T14), and in the long-term between 15 and 90 days in the ward (T15-
T90). Plasma samples were isolated and then analyzed for PPIA, MMP-9, GFAP, NFL, IL-10 and TNFa biomarkers. Control groups were ALS
patients (n=51) and healthy subjects (n=20). Plasma samples were isolated and then analyzed for PPIA, MMP-9, GFAP and NFL.
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there was a slight decrease over the first two weeks in alive

patients, leading to significantly lower levels on day 14 compared

to deceased patients (T14, Figure 3F). In the NeuroCovid cohort,

MMP-9 levels were similarly high in alive and deceased patients

in the acute phase, while in the longer term they showed severity

dependency (Figures 3G, H).

In the acute phase, GFAP levels did not differ between

groups (Figure 4A). The longitudinal trajectories in ICUCovid

patients showed an increase only in deceased patients, with the

highest difference at admission (T0, Figure 4B). NeuroCovid

patients displayed a high heterogeneity in GFAP levels in the

acute phase (Figure 4A). This is due to GFAP severity

dependency, significant in the acute phase and as a tendency

in the long-term (Figures 4C, D).

In the acute phase, ICUCovid patients showed NFL levels

like NeuroCovid patients (Figure 4E). The trajectories of live and

death ICUCovid cohorts highlight a steep increase in NLF levels

over the first two weeks, reaching the highest value for deceased

patients at 14 days from ICU admission (T14, Figure 4F). While

in the acute phase live and dead NeuroCovid patients have

similar NFL levels (Figure 4G), in the long-term NFL levels

showed a clear severity dependency (Figure 4H).

Inflammatory markers of systemic immune response,

including IL-10 and TNFa, were also measured. In the acute

phase, IL-10 levels were highest in ICUCovid compared to

NeuroCovid patients (Figure 5A), with a clear increase in
Frontiers in Immunology 06
ICUCovid deceased patients at day 14 (T14, Figure 5B).

Within the NeuroCovid cohort, IL-10 levels were similar in

alive and deceased patients (Figure 5C). In the long-term,

however, severity dependency was observed (Figure 5D).

In the acute phase, TNFa levels did not differ between

ICUCovid and NeuroCovid patients (Figure 5E) and within

ICUCovid cohort there were no temporal changes in alive and

deceased patients up to day 14 (T14, Figure 5F). In the NeuroCovid

cohort, acute TNFa levels were similar in alive and deceased

patients (Figure 5G). In the long-term, however, NeuroCovid

patients showed a significant severity dependency (Figure 5H).
Discussion

This study examined the effects of SARS-CoV-2 infection on

blood biomarkers of BBB disruption, neuronal damage and

systemic inflammation by longitudinally monitoring two

patient cohorts of COVID-19, with increasing disease severity

and neurological complications. Blood biomarkers of BBB

disruption were elevated in COVID-19 patients with levels

comparable to or even higher than in ALS patients, pointing

to neurological implications over a range of disease severities.

There was evidence of different temporal dynamics in

ICUCovid compared to NeuroCovid patients with PPIA, the

potent activator of the cytokine storm and MMP-9 inducer, and
A B

DC

FIGURE 2

Biomarkers comparison between COVID-19 and a neurodegenerative disorder. (A-D) PPIA (A), MMP-9 (B), GFAP (C), and NFL (D) concentrations
were measured in plasma samples from ICUCovid patients (ICU n=79), NeuroCovid patients (n=78), ALS patients (PPIA n=50; MMP-9 n=51;
GFAP and NFL n=34); and healthy controls (PPIA n=18; MMP-9 n=20; GFAP and NFL n=9). Violin plots indicate median, variability and
probability density of biomarker concentrations. (A, B, D) Kruskal-Wallis, p < 0.0001; (C) Kruskal-Wallis, p = 0.0003. (A-D) *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001 by Kruskal-Wallis, Dunn’s post hoc test.
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FIGURE 3

Analysis of PPIA and MMP-9 in plasma of two cohorts of COVID-19 patients. (A-H) PPIA (A-D) and MMP-9 (E-H) concentrations were measured
respectively by ELISA and AlphaLISA technology in plasma samples from two cohorts of COVID-19 patients. (A, E) Violin plots indicate the
median, variability and probability density of PPIA (A) and MMP-9 (E) at acute phase, in ICUCovid (n=79) and NeuroCovid samples (n=31). Dotted
line indicates the mean level of healthy controls. (A, E) Mann Whitney, ****p < 0.0001. (B, F) The concentrations of PPIA (B) and MMP-9 (F) were
measured in ICUCovid patients over time, at ICU admission (T0) and after 7 (T7) and 14 days (T14). ICUCovid patients were stratified as alive
(n=32) and dead (n=14). Data (mean ± SEM) indicate biomarker concentrations. (B) Two-way ANOVA for repeated measures, p = 0.0248;
(F) two-way ANOVA for repeated measures, p = 0.0197. (C, G) The concentrations of PPIA (C) and MMP-9 (G) were measured at acute phase, in
samples from NeuroCovid patients, stratified as alive (n=23) and dead (n=8). Violin plots indicate median, variability and probability density of
biomarker concentrations. (C) Mann Whitney, p = 0.3966; (G) Mann Whitney, p = 0.5498. (D, H) The concentrations of PPIA (D) and MMP-9 (H)
in the long-term, in samples from NeuroCovid patients, stratified as moderate (n=18), severe (n=42) and dead (n=8). Violin plots indicate
median, variability and probability density of biomarker concentrations. (D) Kruskal-Wallis, p = 0.1175. (H) Kruskal-Wallis, p = 0.0048; *p < 0.05,
**p < 0.01 by Kruskal-Wallis, Dunn’s post hoc test.
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FIGURE 4

Analysis of GFAP and NFL in plasma of two cohorts of COVID-19 patients. (A-H) GFAP (A-D) and NFL (E-H) concentrations were measured by
Simoa technology in plasma samples from two cohorts of COVID-19 patients. (A, E) Violin plots represent the median, variability and probability
density of GFAP (A) and NFL (E) at acute phase, in ICUCovid (n=79) and NeuroCovid samples (n=31). Dotted line indicates the mean level of
healthy controls. (A) Mann Whitney, p = 0.7910; (E) Mann Whitney, p = 0.7054. (B, F) The concentrations of GFAP (B) and NFL (F) were measured
in ICUCovid patients over time, at ICU admission (T0) and after 7 (T7) and 14 days (T14). ICUCovid patients were stratified as alive (n=32) and
dead (n=14). Data (mean ± SEM) indicate biomarker concentrations. (B) Two-way ANOVA for repeated measures, p = 0.0477; **p < 0.005 alive
versus dead at T0 by Sidak’s post hoc test; (F) Two-way ANOVA for repeated measures, p = 0.0073; ***p < 0.001 alive versus dead at T14 by
Sidak’s post hoc test. (C, G) The concentrations of GFAP (C) and NFL (G) were measured at acute phase, in samples from NeuroCovid patients,
stratified as alive (n=23) and dead (n=8). Violin plots indicate median, variability and probability density of biomarker concentrations. (C) Mann
Whitney, **p = 0.0088; (G) Mann Whitney, p = 0.2868. (D, H) The concentrations of GFAP (D) and NFL (H) in long-term samples from
NeuroCovid patients, stratified as moderate (n=18), severe (n=42) and dead (n=8). Violin plots indicate median, variability and probability density
of biomarker concentrations. (D) Kruskal-Wallis, p = 0.0570; (H) Kruskal-Wallis, p < 0.0001. ***p < 0.001 by Dunn’s post hoc test.
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IL-10, the master regulator of immunity to infection, with the

highest levels in ICUCovid patients in the acute phase (Figure 6).

In contrast, MMP-9 was significantly higher in the acute phase

in NeuroCovid patients, with severity dependency in the longer

term. In line with previous findings, we found also clear severity

dependency of NFL and GFAP levels with the highest levels in

deceased patients, and severe NeuroCovid patients showing a

tendency to maintain higher values than moderate patients in

the longer term.

PPIA is a foldase and a molecular chaperone with multiple

functions and substrates, including viral proteins essential for

coronavirus replication (30). PPIA is a major target of redox

regulation in activated lymphocytes (31, 32). Under stress

conditions PPIA is secreted extracellularly by several types of

cells, including pericytes, vascular smooth muscle cells and

macrophages, behaving as a pro-inflammatory cytokine, with

potent chemotactic activity toward leukocytes (21, 33, 34).

Through the interaction with its CD147 receptor, in a NF-kB-
dependent pathway, PPIA is an inducer of MMP-9 and of pro-

inflammatory cytokines and chemokines (22, 35). High levels of

PPIA have been seen in biofluids of several conditions associated

with inflammation, including neurological and cardiovascular

diseases (22, 36). Interestingly, high plasma concentrations of

PPIA have also recently been reported in COVID-19 patients

with mechanistic evidence for its involvement in the induction

of the cytokine storm by activating CD147 (24).

A growing body of clinical data suggests that the cytokine

storm is associated with COVID-19 severity, ICU admission,

and is a crucial cause of death (37). In agreement with this, our

ICUCovid patients had PPIA concentrations substantially

higher than NeuroCovid patients. Also noteworthy is the

extremely high PPIA plasma concentration in all COVID-19

patients. This may be linked to its up-regulation upon

interaction of SARS-CoV-2 with CD147, as observed in animal

models (24), and may favor viral replication (30, 38). Similarly,

MMP-9 was very high in all COVID-19 patients. However,

NeuroCovid patients had the highest levels of MMP-9 in the

acute phase, with persistent high levels in most severe patients in

the long-term. MMP-9 is a metalloproteinase with a wide

substrate spectrum and is an important mechanism for fine-

tuning cellular processes, but if aberrantly activated it is a key

factor in BBB disruption and neuronal damage, by degrading

tight junction proteins and laminin (18–20). MMP-9 can be

induced by inflammatory signaling cascades with CD147 acting

as the major upstream inducer in the CNS (39). CD147 is highly

expressed in the brain capillary endothelium and various sub-

regions of the brain (40). Brain pericytes are the main source of

MMP-9 at the neurovascular unit and it is rapidly released in

response to inflammatory stimuli (16, 17). It has also been

demonstrated in vitro and in vivo that SARS-CoV-2 can infect

the brain microvascular endothelial cells and cross the BBB by

MMP-9-mediated disruption of basement membrane (41).

Therefore, one can hypothesize that a local, early high MMP-9
Frontiers in Immunology 09
concentration at the neurovascular unit in NeuroCovid patients,

rather than extensive systemic inflammation as in ICUCovid

patients, may be responsible for the BBB disruption that triggers

neurological complications following SARS-CoV-2 infection.

Astrocytic end feet cover more than 99% of the neurovascular

surface and directly affect BBB permeability (42). GFAP is a highly

expressed protein of the CNS, almost exclusively in astrocytes. In

neuropathological conditions, GFAP is released into the

bloodstream either by direct venous drainage or through a

compromised BBB (43). Blood GFAP can therefore serve as a

useful biomarker and prognostic tool for numerous neurological

conditions (25).

While classically considered a marker of astrogliosis, the

presence of glial-derived proteins in peripheral body fluids has

been suggested as indicating BBB disruption in acute CNS injury

(44). In the case of traumatic brain injury, it has been recently

suggested that high blood GFAP concentrations might reflect

damage to astrocytic end feet enveloping the BBB, thus releasing

GFAP directly into the blood when the BBB is injured (45).

Elevated GFAP plasma levels have been reported in COVID-19

patients (10, 45) and were in line with neuropathological data

indicating post-mortem evidence of BBB disruption and gliosis

(46). In accordance with this, here we report high GFAP levels in

a severity-dependent manner, with significantly higher levels at

acute timepoints in deceased patients. GFAP only tended to be

higher in NeuroCovid patients than in ICUCovid patients.

However, the NeuroCovid cohort included several patients

with Guillain-Barré syndrome in which blood-nerve-barrier

(BNB) disruption is a key step (47). BNB lacks astrocytes and

glia limitans, so the detection of barrier damage through GFAP

in these cases is underestimated. Maladaptive microglia and

monocyte activation may also exert a detrimental effect on BBB

function and integrity in COVID-19 (14). Interestingly, a recent

publication has shown that microglia−derived chemokine MCP-

1 (also known as CCL2) seems to have a major role in neocortex

neuroinflammation and BBB disruption in a mouse model of

autoimmune encephalomyelitis (48). Moreover, high blood

MCP-1 levels have been associated with disease severity and

mortality in COVID-19 (49). Although not measured in our

study, longitudinal analyses of MCP-1 in plasma and CSF of

COVID-19 patients and correlation with neurological symptoms

will shed light on this aspect in future studies.

NFL is an established marker of axonal injury (50). Although

axonal degeneration is not a specific feature of ALS, NFL is

considered its most characteristic biomarker since its

concentration is higher than in any other neurological disease

(51, 52). This may be because neurofilaments are abundantly

expressed in the large myelinated axons involved in the

degenerative process, which is particularly fast and severe in

ALS compared to other diseases. The only other condition in

which the NFL plasma concentration is as high as in ALS is HIV-

associated dementia (HAD) (53). Interestingly, it seems that

HIV-related CNS degeneration starts during primary infection
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FIGURE 5

IL-10 and TNFa in plasma of two cohorts of COVID-19 patients. (A-H) IL-10 (A-D) and TNFa (E-H) concentrations were measured by Simoa
technology in plasma from two cohorts of COVID-19 patients. (A, E) Violin plots of IL-10 (A) and TNFa (E) in the acute phase, in ICUCovid
(n=79) and NeuroCovid samples (n=31). (A) Mann Whitney, ***p < 0.001. (E) Mann Whitney, p = 0.085. (B, F) IL-10 (B) and TNFa (F) were
measured in ICUCovid patients at ICU admission (T0) and after 7 (T7) and 14 days (T14). ICUCovid patients were stratified as alive (n=32) or dead
(n=14). Data (mean ± SEM) indicate biomarker concentrations. (B) Two-way ANOVA for repeated measures, p < 0.01 for cohort factor; **p <
0.005 alive versus dead at T14 by Sidak’s post hoc test. (F) Two-way ANOVA for repeated measures, p = 0.4709. (C, G) IL-10 (C) and TNFa (G)
were measured in the acute phase in samples from NeuroCovid patients, stratified as alive (n=23) or dead (n=8). (C) Mann Whitney, p = 0.6652;
(G) Mann Whitney, p = 0.5498. (D, H) The concentrations of IL-10 (D) and TNFa (H) at a longer time, in samples from NeuroCovid patients,
stratified as moderate (n=18), severe (n=42) or dead (n=8). (D) Kruskal-Wallis, p < 0.0001; ***p < 0.001 by Kruskal-Wallis, Dunn’s post hoc test.
(H) Kruskal-Wallis, p < 0.01; *p < 0.05, **p < 0.01 by Kruskal-Wallis, Dunn’s post hoc test.
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and continues during subsequent stages of the disease. However,

CSF NFL levels in primary infection are associated with CNS

immune activation and BBB disruption but are not accompanied

by high CSF total tau and low amyloid beta peptides, as in

subjects with HAD (54). This indicates that this early neuronal

injury is less severe and/or involves a different mechanism and

can in fact be halted by antiretroviral therapy (55). Plasma NFL

levels were high in all COVID-19 patients, with NeuroCovid

patients reaching the same high levels as in HAD (53). Although

the overall picture points to an increased risk for neurological

dysfunctions in the long-term, the mechanism and extent to

which acute axonal damage, in combination with systemic

inflammation and BBB disruption, can predispose to

neurodegeneration calls for further investigation.

Our observations may provide hints for a preventive

approach. Should further evidence confirm that the neuronal

damage found is secondary to, or exacerbated by, BBB

disruption, therapies reducing BBB damage could serve as a

valuable aid in attenuating the neurological damage in the acute

phase and potential dysfunction in the longer term.

Interestingly, MMP-9 stands as a druggable target since a set

of potent MMPs inhibitors are already available for clinical use

(56), furthermore drugs targeting the PPIA-CD147-MMP-9

signaling pathway are also under investigation. A PPIA
Frontiers in Immunology 11
i nh i b i t o r , c y c l o spo r i n e A (CsA) , a we l l - known

immunosuppressive drug, and Meplazumab, an anti-CD147

monoclonal antibody, are being assessed in clinical trials up to

phase 2/3 (NCT05113784) for the treatment of severe COVID-

19 (57). There are some indications from observational studies

of milder COVID-19 and lower mortality in solid organ

transplant recipients and autoimmune disease patients under

CsA treatment (58). Last, there is evidence that Annexin A1, an

endogenous molecule endowed with resolving/protecting action

on tight junctions, may have therapeutic potential in restoring

c e r eb rova s cu l a r damage and BBB d i s rup t i on in

neurodegenerative diseases and metabolic disorders (59).

Indeed, human recombinant annexin A1 has been recently

shown to restore BBB integrity and reduce the expression and

activity of MMP-9 in brain microvessels when administered in

an experimental model of metabolic diabetic disorder (60). Thus,

also Annexin A1 could be a therapeutic avenue for COVID-19 to

explore in future studies.

There are limitations in this study that should be

highlighted. First, neurocognitive assessment in these cohorts

of patients was not performed, thus the question as to whether

BBB biomarker changes may predict late cognitive dysfunction

is still open and should be addressed in future studies. 13%

NeuroCOVID patients had a known history of mild cognitive
FIGURE 6

Highlights of the results. The effect of SARS-CoV-2 infection on blood biomarkers of BBB disruption (MMP-9, GFAP), neuronal damage (NFL)
and systemic inflammation (PPIA, IL-10, TNFa) was measured in patient cohorts with high disease severity (ICUCovid) and with neurological
complications (NeuroCovid). There were higher levels of PPIA and IL-10 in ICU compared to NeuroCovid patients, while MMP-9 was
significantly higher in NeuroCovid patients. Over-activation of MMP-9 may lead to degradation of tight junctions (TJ), basement membrane (BM)
and laminin, implying BBB disruption, penetration of SARS-CoV-2 into the brain and neuronal damage. Blood biomarkers of BBB disruption and
neuronal damage were elevated in all COVID-19 patients suggesting potential neurological dysfunctions in the long-term, over a range of
disease severities. Figure created with BioRender.com.
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impairment possibly contributing to the altered neurologic state

observed in the acute phase. However, in these patients acute

NFL levels were comparable to or even lower than the other

patients in the NeuroCovid group, making it unlikely that an

already altered CNS homeostasis was the cause of the biomarker

changes. Notably, in the ICU cohort there were no patients with

pre-existing neurological conditions thus reinforcing the finding

that COVID-19 per se may induce markers of BBB disruption

and neurological damage. Last, patients in our study were

recruited before the vaccination campaign. Although there is

increasing evidence that COVID-19 vaccination may have a

protective effect against the post-COVID-19 syndrome (61, 62),

this aspect has not been fully explored, calling for follow-up

studies to monitor distinct long-term consequences in

vaccinated and non-vaccinated subjects.

Despite these caveats, our study may provide hints for

upcoming therapeutic approaches for COVID-19 mitigating at

the same time BBB disruption and neurodegeneration to reduce

the neurological damage in the acute phase and potential

dysfunction in the long-term.
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