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Background. Patients with solid or hematological tumors or neurological and immune-inflammatory disorders are potentially
fragile subjects at increased risk of experiencing severe coronavirus disease 2019 and an inadequate response to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination.

Methods. We designed a prospective Italian multicenter study to assess humoral and T-cell responses to SARS-CoV-2
vaccination in patients (n= 378) with solid tumors (ST), hematological malignancies (HM), neurological disorders (ND), and
immunorheumatological diseases (ID). A group of healthy controls was also included. We analyzed the immunogenicity of the
primary vaccination schedule and booster dose.

Results. The overall seroconversion rate in patients after 2 doses was 62.1%. Significantly lower rates were observed in HM
(52.4%) and ID (51.9%) than in ST (95.6%) and ND (70.7%); a lower median antibody level was detected in HM and ID versus
ST and ND (P, .0001). Similar rates of patients with a positive SARS-CoV-2 T-cell response were found in all disease groups,
with a higher level observed in ND. The booster dose improved the humoral response in all disease groups, although to a lesser
extent in HM patients, whereas the T-cell response increased similarly in all groups. In the multivariable logistic model,
independent predictors of seroconversion were disease subgroup, treatment type, and age. Ongoing treatment known to affect

the immune system was associated with the worst humoral
response to vaccination (P, .0001) but had no effect on T-
cell responses.
Conclusions. Immunosuppressive treatment more than

disease type per se is a risk factor for a low humoral response
after vaccination. The booster dose can improve both
humoral and T-cell responses.
Keywords. Fragile patients; SARS-CoV-2 mRNA vaccine;

humoral immunity; T-cell immunity.

In immunocompromised patients, coronavirus disease 2019
(COVID-19) has been associated with an increased risk of hos-
pitalization and death in comparison with the general
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population [1–4]. The messenger RNA (mRNA)-1273
(Moderna) and BNT162b2 (Pfizer BioNTech) vaccines have
shown high efficacy in preventing COVID-19 in healthy indi-
viduals [5, 6]. However, patients with solid tumors (ST), hema-
tological malignancies (HM), and immunorheumatological
(ID) and neurological (ND) diseases were not included in piv-
otal trials. A poor humoral response after natural infection [7]
or vaccination [8–16] was reported in patients with malignan-
cies and/or diseases requiring immunosuppressive therapies.
This impaired response varies according to the intensity of
the immune suppressive treatment. Although data on serocon-
version are available, the effectiveness of vaccination on the
antigen-specific T-cell response as well as the effect of a booster
dose in these fragile populations remains largely unknown [17, 18].
In addition, time-dependent waning of the vaccine-induced im-
mune response [19] has been reported in healthy subjects, high-
lighting the potential need for a booster [20]. In September 2021,
the Italian authorities approved the administration of an additional
vaccine dose to fragile patients, including the 4 categories evaluated
in the present study.

Thirteen Italian research hospitals conducted a prospective
study (VAX4FRAIL) aimed at evaluating the efficacy and safety
of mRNA-based vaccination in patients affected by HM, ST,
ND, and ID [21]. Here, we present the results on the humoral
and T-cell responses after complete mRNA-based vaccination
and after the booster dose.

METHODS

Study Design

BetweenMarch andAugust 2021, 570 patients with a diagnosis of
HM, ST, ND, or IDwere included in the study. The study was ap-
provedby the ItalianMedicinesAgencyandby the ethics commit-
tee (code 304, 2021). The control group consisted of 180 healthy
healthcare workers (HCWs)matched for sex and age.Written in-
formed consent was obtained from all study participants.

Other inclusion criteria were age ≥18 years, mRNA-based
vaccination, and a life expectancy of at least 12 months at the
time of vaccine administration. The main exclusion criterion
was the presence of a previous laboratory-confirmed severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection (serology and/or molecular test). Patients experiencing
a molecularly confirmed SARS-CoV-2 breakthrough infection
(reverse transcriptase-polymerase chain reaction assay) or se-
roconversion to anti-Nucleocapsid antibody during follow-up
were also excluded (n= 16). Given the disease heterogeneity
of the study population, patients were subdivided into 4 sub-
groups according to the expected immune impairment attrib-
utable to their immunosuppressive treatment (detailed in the
Supplementary Materials).

In September 2021, the Italian authorities approved for im-
munocompromised patients an additional dose (booster) to

be administered at least 28 days after the second dose.
Because most patients in our study were vaccinated between
March and April 2021 and the administration of the third
dose started in September 2021, the median interval between
the second and third dose was 5 months.

Laboratory Procedures

Anti-Spike SARS-CoV-2 antibodies and T-cell response were
monitored at 5 time points (Figure 1): day of first dose admin-
istration (T0); day of second dose administration (T1); 5–7
weeks after T0 in patients receiving the Pfizer/BioNTech vac-
cine and 6–8 weeks after T0 in patients receiving the
Moderna vaccine (T2); day of the booster dose (pre-3rd
dose, T pre-3D); and 3 or 4 weeks after (T post-3D).
The primary endpoint of the study was the seroconversion

rate assessed at T2 in patients compared with HCWs.
Secondary endpoints were the humoral and cellular responses
at each time point in the fragile population compared with
the HCW group. The immune response was evaluated also in
disease- and treatment-specific subgroups. A final secondary
endpoint was the neutralization activity of vaccine-induced
anti-Spike antibodies. The humoral response was analyzed by
quantifying anti-N-protein immunoglobulin G and anti-
receptor binding domain (RBD) immunoglobulin G
(Architect i2000sr, Abbott Diagnostics, Chicago, IL, USA). A
neutralization assay was performed on anti-RBD-positive sam-
ples to evaluate the functional activity of vaccination-induced
anti-Spike antibodies.
The T-cell response to vaccination was assessed through a

standardized whole-blood assay as previously described [22]
and detailed in the Supplementary Materials.

Statistical Methods

Quantitative variables were summarized as median and inter-
quartile range (IQR), whereas categorical variables were report-
ed as absolute count and percentage. Differences in
seroconversion rates across subgroups were analyzed using
the χ2 test, and from a multivariable logistic regression model
we obtained the odds ratios with their 95% confidence intervals
(CIs). The model outcome was the seroconversion status at T2
(yes vs no), and independent variables were identified on the
basis of availability as required by the study protocol (disease,
age, sex, comorbidities, and therapy) and used to adjust the vac-
cination effect on outcome. Current therapy was classified into
4 classes (no therapy and 3 groups) according to the presumed
treatment-induced immunosuppression.
The Mann-Whitney test was used to assess differences in an-

tibody titers and correlations between humoral and cellular
immunity were evaluated with Spearman’s rho correlation
coefficient.
The SPSS v.20.0 (IBM) statistical software was used for the

analysis.
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RESULTS

Patient Characteristics

Between March and August 2021, 570 patients and 180 HCWs
were enrolled in the VAX4FRAIL study; 465 patients received
the BNT162b2 and 105 the mRNA-1273 vaccine. One hundred

and ninety-five of 570 patients were excluded because they did
not meet the inclusion criteria or because the samples were not
collected at all prespecified timepoints. Our analysis was there-
fore conducted on a final cohort of 375 patients; the median age
was 59 years (range, 19–86) and 209 patients (55.7%) were
women. One hundred patients (26.7%) had HM, 114 (30.4%)
ST, 79 (21.0%) ID, and 82 (21.9%) ND (Table 1).

Impact of Different Diseases on Humoral Response to Vaccination

Overall, a significantly lower proportion of patients (69.1%;
95% CI, 64.4–73.7) compared with HCWs (100%, P,
.00001) seroconverted after the second dose (T2). Similarly,
we reported a lower median titer of anti-RBD antibodies at
T2 in patients compared with HCWs (patient median: 172.8
[IQR: 0.7–1387.0] vs HCW median: 2405 [IQR: 1343.0–
3848.0], P, .0001).
The disease groups showed different humoral response ki-

netics, leading to a different frequency of responder patients
as described in Figure 2A. Specifically, patients affected by
HM and ID had a significantly lower seroconversion rate at
T2 (52.4%; 95% CI, 42.2–61.8 and 51.9%; 95% CI, 39.6–61.6,

Figure 1. Study design. Schematic representation of the timeline of immune monitoring of the clinical study. Abbreviations: RBD, receptor binding domain; T0, before
vaccination; T1, after 3–4 weeks from T0; T2, 5–8 weeks from T0; Tpre-3D. 5 months from T2; Tpost-3D, 2-4 weeks from Tpre-3D.

Table 1. Demographic and Clinical Features of Enrolled Patients

HM (n= 100) ST (n=114) ID (n=79) ND (n=82)

Sex (no., %)

Male 54 (54.0%) 48 (42.1%) 32 (40.5) 32 (39.0)

Female 46 (46.0%) 66 (57.9%) 47 (59.5) 50 (61.0)

Age (median, IQR) 61 (52–69) 62 (54–70) 58 (48–64) 55 (39–65)

Comorbidities (no., %)a

Yes 63 (63.6%) 66 (62.3%) 44 (55.7%) 38 (46.3%)

Metabolic 17 (17.0%) 20 (17.5%) 14 (17.7%) 4 (4.9%)

Cardiological 35 (35.0%) 42 (36.8%) 12 (15.2%) 21 (25.6%)

Pneumological 5 (5.0%) 5 (4.4%) 17 (21.5%) 9 (11.0%)

Other 39 (39.0%) 39 (34.2%) 28 (35.4%) 24 (29.3%)

Abbreviations: HM, hematological malignancies; ID, immunorheumatological diseases; ND,
neurological disorders; ST, solid tumors.
aComorbidities include metabolic, cardiological, pneumological, and other relevant
diseases.

Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in Fragile Patients • CID • 3



respectively) compared with ST and ND patients (95.6%; 95%
CI, 92.4–98.8 and 70.7%; 95% CI, 60.9–80.6, respectively, P,
.00001) and HCWs (100%).

In each patient group, vaccination stimulated a humoral re-
sponse with a significant increase in anti-RBD antibodies (P,
.0001 for each group, Figure 2B). However, a lower titer at T2
was observed in the HM and ID groups compared with ST,
ND, and HCWs (P, .001, Figure 2C). We therefore checked
the neutralizing activity against SARS-CoV-2 infectivity in a
BSL-3 facility. This assay was performed on anti-RBD–positive
samples. The percentage of patients showing neutralizing activ-
ity at T2 was 73% (HM), 80.7% (ST), 69.2% (ID), and 74.9%
(ND) vs 100% in HCWs. A positive correlation between
anti-RBD titer and neutralization was observed (rho= 0.92,
P, .0001, Figure 2D). All patients had a significantly lower
titer of neutralizing antibodies than HCWs, and the values in
HM patients were lower than in ST patients (P, .0001;
Figure 2E).

HM patients treated with B-cell–depleting therapies had the
lowest seroconversion rate (0%) and the lowest median anti-
body titer (0.01 BAU/mL, IQR 0.01–0.04). In the ID subgroups,
the lowest antibody levels were detected in patients with anti-
neutrophil cytoplasmic antibody-associated vasculitis or inter-
stitial lung disease undergoing treatment with anti-CD20
monoclonal antibodies with or without corticosteroids
(25.0%; 95% CI, 11.6–38.4 and median= 0.02 BAU/mL, IQR
0.01–0.06). Among ND patients, the lowest humoral response
rate was documented in individuals with multiple sclerosis re-
ceiving anti-CD20 monoclonal antibodies, with a seroconver-
sion rate of 39.4% (95% CI, 22.7–51.1) and a median
antibody titer of 0.03 U/mL (IQR 0.01–0.10).

Disease Subgroups and T-cell Response to Vaccination

A lower frequency of spike-specific T-cell responses (defined as
interferon-γ [IFN-γ] levels ≥12 pg/mL) was detected in pa-
tients compared with HCWs (80.0%; 95% CI, 75.9–84.0 vs
100%, P, .001). A T-cell response was observed in 218
(84.2%) patients also having antibodies and in 82 (70.7%)
who did not seroconvert (P= .003). Only 34 (9.1%) patients
were negative for both types of immune response.

The level of T-cell response significantly increased over time
in patient groups as well as in HCWs (P, .0001, Figure 3A).
Nevertheless, HM, ST, and ID patients had significantly lower
IFN-γ production at T2 than ND patients and HCWs (P, .05,
Figure 3B). The T-cell response in the ND group was similar to
that of HCWs. Among fragile patients, IFN-γ values were di-
rectly correlated with interleukin-2 and tumor necrosis
factor-α levels (rho= 0.87 and rho= 0.63, P, .0001 for
both), suggesting a coordinated T-cell response to vaccination
(Figure 3C). A significant correlation between anti-RBD and
T-cell response was observed in HCWs (P= .0016, r=
0.2334) but not in fragile patients (P= .1429, r= 0.1406).

Booster Dose Effect on B-cell and T-cell Response

The median interval between the second and third vaccine dose
was 5months in patients and 8months inHCWs. Samples before
(T pre-3D) and after (T post-3D), the third dose was collected in a
cohort of 120 patients (HM= 19, ST= 37, ID= 37, and ND=
27). Themedianhumoral andT-cell response levels before and af-
ter the booster dose were compared with those of 67 HCWs.
The antibody level decreased after the second dose of vaccine

in patient groups as well as in HCWs (P, .001) except for ID
patients, in whom the level was maintained (Figure 4A). HM
patients had the lowest antibody titer, and a large proportion
became seronegative (74.3%). The median fold decrease in
anti-RBD antibodies between T2 and T pre-3D was 3.1, 6.6,
1, and 1.4 for HM, ST, ID, and ND, respectively. Comparison
between groups highlighted the lowest anti-RBD titer in HM
versus all other groups (HM: 0.3 BAU/mL [IQR 0.1–8.1]; ST:
158.1 BAU/mL [IQR 58.0–444.6]; ID: 6.6 BAU/mL [IQR:
0.2–59.9]; ND: 32.6 BAU/mL [IQR: 9.3–151.9], P, .0001).
The neutralization test performed on anti-RBD-positive sam-
ples also confirmed a significant reduction of protective anti-
bodies in all groups (Figure 4B).
After the third dose, the prevalence of anti-SARS-CoV-2 an-

tibodies in the entire population showed a slight, nonsignificant
increase from 67.0% (95% CI, 57.4–76.7) to 81.5% (95% CI,
73.0–89.9). In particular, 33% of patients not responding to
the first 2 doses seroconverted after the third dose. The third
dose was effective in increasing the anti-RBD titer in all groups,
although with different strengths (Figure 4A). In HM patients,
the seroconversion rate was persistently low (44.5%), whereas
in ID patients it increased markedly, reaching 90%
(Figure 4E). Similar results were seen in the evaluation of neu-
tralization (Figure 5B). Specifically, the neutralizing titers after
the third dose showed a positive correlation with anti-RBD
data (rho= 0.8965, P, .0001, Figure 4F) and a significant im-
provement in all groups (P, .01) except for HM (Figure 4B).
Compared with HCWs, all patient groups showed lower
anti-RBD titers (Figure 4C). The neutralization titers of patients
were comparable to those of HCWs in all groups except HM.
The T-cell response after the first 2 doses decreased over time

in all groups, but more significantly in ST and ND (P, .01,
Figure 5A). The median fold decrease in T-cell response (level
of IFN-γ) between T2 and T pre-3D was 1.9, 2.1, 0.6, and 2.5 for
HM, ST, ID, and ND, respectively. Nevertheless, the median
T-cell response level before the booster dose was not different
across groups (P= .2366). The third dose was able to improve
the T-cell response in all groups (P, .0001). A significantly
lower T-cell response was observed in HM and ND patients,
whereas ST and ID patients showed an activity similar to that
of HCWs (Figure 5B). Of note, in patients receiving the third
dose the percentage of double-negatives, defined as individuals
failing to develop both B-cell and T-cell responses to vaccina-
tion, decreased from 7.8% to 1.3%.

4 • CID • Corradini et al.



Impact of Different Treatments on Response to Vaccination

Humoral and T-cell responses were then evaluated in patients
according to the received or ongoing treatment and its

presumed immunosuppression (Table 2). The treatments of
the high-risk group (ie, those with predicted high immunosup-
pressive activity) were associated with a markedly lower

Figure 2. Impact of different diseases on humoral response. A, The percentage of patients (HM, green dot; ST, red dots; ID, blue dots; ND, black dots; HCW, white dots)
presenting a positive anti-RBD response (.7.1 BAU/mL) at each time point (T0, T1, and T2) is shown. B, Kinetics of humoral immune response before and after vaccination in
HM (green dots), ST (red dots), ID (blue dots), ND (black dots), and HCW (gray dots). SARS-CoV-2 specific anti-RBD Abs were measured in sera samples at each time point.
Anti-RBD-immunoglobulin G are expressed as BAU/mL and values .7.1 BAU/mL are considered positive. Differences were evaluated by Friedman paired test.
****P, .0001. C, The level of anti-RBD antibodies at T2 was compared among groups and was expressed as BAU/mL. Differences were evaluated by Kruskal-Wallis
test. *P, .05; **P, .01; ***P, .001; ****P, .0001. HM: median= 10.0 BAU/mL (IQR 0.1–392.5 BAU/mL); ST: 1094.6 BAU/mL (IQR 265.1–2697.9 BAU/mL); ID: 9.2
BAU/mL (IQR 0.2–503.8 BAU/mL); NT: 172.9 BAU/mL (IQR 1.7–1457.8 BAU/mL) and HCW: 2405.0 BAU/mL (IQR 1343–3848 BAU/mL, respectively). D, The correlation
between the levels of anti-RBD and neutralization titer at T2 for all fragile patients are shown. Each black dot represents one sample. Spearman test: rho= 0.9202,
P, .0001. E, The levels of neutralizing antibody at T2 were quantified by microneutralization assay (MNA90) in all groups and were expressed as reciprocal of dilution.
Differences were evaluated by Kruskal-Wallis test. *P, .05; ****P, .0001. HM: median= 20 reciprocal of dilution (IQR 5–80); ST: 80 reciprocal of dilution (IQR 20–2-
40); ID: 20 reciprocal of dilution (IQR 5–80); NT: 40 reciprocal of dilution (IQR 8.75–160) and HCW: 160 (IQR 80–320). Abbreviations: Abs, antibodies; HCW, health care
workers; HM, hematological malignancies; ID, immune-rheumatological diseases; IQR, interquartile range; ND, neurological disorders; RBD, receptor binding domain;
SARS-CoV-2, severe acute respiratory syndrome 2 virus; ST, solid tumors; T0, before vaccination; T1, after 3–4 weeks from T0; T2, 5–8 weeks from T0.
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Figure 3. Impact of different diseases on T-cell response. A, Kinetic of T-cell response before and after vaccination in HM (green dots), ST (red dots), ID (blue dots), ND
(black dots), and HCW (gray dots). Spike-specific T-cell response was measured after stimulation of whole blood with specific peptides at each time point. T-cell response was
expressed as pg/mL of IFN-γ and values .12 pg/mL are considered positive. Differences were evaluated by Friedman paired test. ****P, .0001. B, The level of T cell
response at T2 was compared among groups and was expressed as pg/mL of IFN-γ. Differences were evaluated by Kruskal-Wallis test. *P, .05; **P, .01; ***P, .001;
****P, .0001. HM: median= 60.2 pg/mL (IQR 9.4–247.2 pg/mL); ST: 98.6 pg/mL (IQR 18.9–335.1 pg/mL); ID: 81.8 pg/mL (IQR 12.1–284.1 pg/mL); NT: 268.5 pg/mL (IQR 10-
7.6–505.5 pg/mL) and HCW: 331.9 pg/mL (IQR 189.9–765.0 pg/mL, respectively). C: The correlation between the levels of IFN-γ and interleukin-2 or IFN-γ and tumor necrosis
factor-α at T2 for all fragile patients are shown. Each black dot represents one sample. Spearman test: rho= 0.8739 and .6368, P, .0001. Abbreviations: HCW, health care
workers; HM, hematological malignancies; ID, immune-rheumatological diseases; ND, neurological disorders; ST, solid tumors; T0, before vaccination; T1, after 3–4 weeks
from T0; T2, 5–8 weeks from T0.
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Figure 4. Kinetic of humoral response after 2 and 3 doses of vaccine in diseases groups. A, The level of the anti-RBD antibody was compared in HM (green dots), ST (red
dots), ID (blue dots), ND (black dots), and HCW (gray dots) at 3 different time points: after 2 doses (T2) and before (pre-3D) and after (post-3D) the booster dose. Differences
were evaluated by Wilcoxon paired test. HM: median T2: 3.4 BAU/mL (IQR 0.1-238.8 BAU/mL); median pre-3D: 0.3 BAU/mL (IQR 0.1-8.1 BAU/mL); median post-3D:
3.6 BAU/mL (IQR 0.1-555.6 BAU/mL). **P, .001. ST: median T2: 2089 BAU/mL (IQR 956.7–3652.0 BAU/mL); median pre-3D: 158.1 BAU/mL (IQR 58.0–444.6 BAU/mL); me-
dian post-3D: 4093 BAU/mL (IQR 1051.0–5769.0 BAU/mL). *P, .05; ****P, .0001. ID: median T2: 3.7 BAU/mL (IQR 0.15–400.4 BAU/mL); median pre-3D: 6.6 BAU/mL (IQR
0.2–59.9 BAU/mL); median post-3D: 694.0 BAU/mL (IQR 150.0–1356.0 BAU/mL). ***P, .001. ND: median T2: 107.0 BAU/mL (IQR 7.8–1510.0 BAU/mL); median pre-3D:
32.6 BAU/mL (IQR 9.3–151.9 BAU/mL); median post-3D: 443.0 BAU/mL (IQR 48.0–1770.0 BAU/mL). **P, .01, ****P, .0001. HCW: median T2: 2646.0 BAU/mL (IQR
1529.0–3958.0 BAU/mL); median pre-3D: 60.20 BAU/mL (IQR 39.3–93.5BAU/mL); median post-3D: 4608.0 BAU/mL (IQR 3302.0-6030.0 BAU/mL). ****P, .0001. B, The level
of the neutralizing antibodywas compared in HM (green dots), ST (red dots), ID (blue dots), ND (black dots), and HCW (gray dots) at 3 different time points: after 2 doses (T2) and
before (pre-3D) and after (post-3D) the booster dose. Differences were evaluated byWilcoxon paired test. HM: median T2: 20 reciprocal of dilution (IQR 5–60); median pre-3D: 5
reciprocal of dilution (IQR 5–7.5); median post-3D: 60 reciprocal of dilution (IQR 5–560). ST: median T2: 160 reciprocal of dilution (IQR 80–320); median pre-3D: 10 reciprocal of
dilution (IQR 6.2–40.0); median post-3D: 320 reciprocal of dilution (IQR 80–640). **P, .01, ***P, .001, ****P, .0001. ID: median T2: 15 reciprocal of dilution (IQR 5–100);
median pre-3D: 5 reciprocal of dilution (IQR 5–20); median post-3D: 120 reciprocal of dilution (IQR 12.5–320). *P, .05, **P, .01. ND: median T2: 40 reciprocal of dilution (IQR
5–160); median pre-3D: 5 reciprocal of dilution (IQR 5–40); median post-3D: 160 reciprocal of dilution (IQR 80–320). **P, .01, ***P, .001. HCW: median T2: 160 reciprocal of
dilution (IQR 80–160); median pre-3D: 5 reciprocal of dilution (IQR 5–10); median post-3D: 320 reciprocal of dilution (IQR 160-640). **** P, .0001. C, The level of anti-RBD
antibodies at Tpost-3D was compared among groups and was expressed as BAU/mL. Differences were evaluated by Kruskal-Wallis test. *P, .05; **P, .01; ****P, .0001.
HM: median= 3.6 BAU/mL (IQR .1-555.6 BAU/mL); ST: 4093.0 BAU/mL (IQR 1051.0–5769.0 BAU/mL); ID: 694.0 BAU/mL (IQR 150.0–1356.0 BAU/mL); ND: 443 BAU/mL (IQR
48.1–1770.0 BAU/mL) and HCW: 4608.0 BAU/mL (IQR 3302.0–6030.0 BAU/mL, respectively). D, The level of neutralizing antibodies at Tpost-3D was compared among groups
and was expressed as reciprocal of dilution. Differences were evaluated by Kruskal-Wallis test. *P, .05. HM: median= 60 reciprocal of dilution (IQR 5–560); ST: 320 re-
ciprocal of dilution (IQR 80–640); ID: 120 reciprocal of dilution (IQR 12.5–320); ND: 160 reciprocal of dilution (IQR 180–320) and HCW: 320 reciprocal of dilution (IQR 160–640,
respectively). E, The percentage of patients (HM, green dot; ST, red dots; ID, blue dots; ND, black dots; HCW, white dots) presenting a positive anti-RBD response (.7.1 BAU/
mL) at T2, before (pre-3D) and after (post-3D) the booster dose is shown. F, The correlation between the levels of anti-RBD and neutralization titer at T post-3D for all fragile
patients is shown. Each black dot represents 1 sample. Spearman test: rho: .8965, P, .0001). Abbreviations: HCW, health care workers; HM, hematological malignancies; ID,
immune-rheumatological diseases; IQR, interquartile range; ND, neurological disorders; ST, solid tumors; T2: 5–8 weeks from T0; Tpre-3D, 5 months from T2; Tpost-3D, 2–4
weeks from Tpre-3D.
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humoral response to the first 2 doses (22.9%; 95% CI, 15.0–
30.8) than in the intermediate- and low-risk groups (84.2%;
95% CI, 77.6–90.7, P, .0001, and 97.3%; 95% CI, 94.3–100,
P, .0001, respectively). Similar results were obtained for the
response to the third dose: the high-risk treatment group
showed a lower humoral response (41.2%) than the

intermediate- and low-risk groups (90.0%, P= .0003 and
100%, P, .0001).
A lower anti-RBD titer to the first 2 doses and the booster

dose was also observed with high-risk treatments compared
with the other groups (P, .0001, Figure 6A). The neutraliza-
tion assay performed on anti-RBD-positive patients showed
lower activity in the high-risk group, highlighting a heavily
dampened humoral response (Figure 6B). Accordingly, in the
multivariable logistic model (Table 3), the independent predic-
tors of seroconversion were disease subgroup, treatment sub-
group, and age. Compared with HCWs, the anti-RBD and
neutralization titers were lower in patient groups at T2 (P,
.0001), whereas after the third dose the significant reduction
with respect to HCWs was limited to patients receiving high-
and intermediate-risk treatments (P, .0001). In striking con-
trast, the T-cell response was similar in all groups after 2 and
3 vaccine doses, regardless of the treatment type (Figure 6C),
but lower than in HCWs (P, .0001 and P, .05, respectively).

DISCUSSION

In this prospective multicenter trial, we found a suboptimal im-
mune response induced by BNT16b2 and mRNA-1273

Figure 5. Kinetics of T-cell response after 2 and 3 doses of vaccine in diseases groups. A, S-specific T-cell response expressed as pg/mL of IFN-γwas quantified before and
after the booster dose in HM, ST, ID, ND and HCW. Differences were evaluated by Wilcoxon paired test. HM: median T2: 116.5 pg/mL (IQR 23.2–436.6 pg/mL); median
pre-3D: 7.24 pg/mL (IQR 2.3–94.6 pg/mL); median post-3D: 68.5 pg/mL (IQR 9.5–378.3 pg/mL). *** P, .001. ST: median T2: 122.8 pg/mL (IQR 23.0–250.8 pg/mL); median
pre-3D: 41.3 pg/mL (IQR 10.0–104.7 pg/mL); median post-3D: 163.1 pg/mL (IQR 95.2–522.7 pg/mL). ****P, .0001. ID: median T2: 158.45 pg/mL (IQR 10.6–354.8 pg/mL);
median pre-3D: 49.4 pg/mL (IQR 4.8–402.3 pg/mL); median post-3D: 590.2 pg/mL (IQR 92.4–2223.0 pg/mL). *P, .05, ***P, .001. ND: median T2: 152.8 pg/mL (IQR 42.9–
358.6 pg/mL); median pre-3D: 50.6 pg/mL (IQR 8.3-170.3 pg/mL); median post-3D: 167.5 pg/ml (IQR 31.6-624.5 pg/mL). *P, .05, ***P, .001. HCW: median T2: 335.9 pg/mL
(IQR 199.0–679.0 pg/mL); median pre-3D: 190.8 pg/mL (IQR 88.7–437.2 pg/ml); median post-3D: 448.9 pg/mL (IQR 197.3–862.2 pg/mL). **P, .01, ***P, .001, ****P,
.0001. B, S-specific T-cell response at Tpost-3D was compared among groups and was expressed as pg/mL. Differences were evaluated by Kruskal-Wallis test. *P, .05;
**P, .01; ****P, .0001. HM: median= 68.6 pg/mL (IQR 9.5–378.3 pg/mL); ST: 163.1 pg/mL (IQR 95.2–522.7 pg/mL); ID: 590.2 pg/mL (IQR 92.4–2223.0 pg/mL); ND:
167.5 pg/mL (IQR 31.6–624.5 pg/mL) and HCW: 448.9 pg/mL (IQR 197.3–852.2 pg/mL). Abbreviations: HCW, health care workers; HM, hematological malignancies;
ID, immune-rheumatological diseases; IQR. interquartile range; ND, neurological disorders; ST, solid tumors; T2, 5–8 weeks from T0; Tpre-3D, 5 months from T2; Tpost-3D,
2–4 weeks from Tpre-3D.

Table 2. Patients Were Grouped into 4 Different Subgroups According to
Expected Immune Impairment Attributable to Their Immunosuppressive
Treatment

HM (n=100) ST (n=114) ID (n=79) ND (n=82)

No therapy 20 (20.0%) 5 (4.6%) 0 (0%) 4 (4.9%)

Low riska 30 (30.0%) 57 (52.3%) 1 (1.3%) 24 (29.3%)

Medium riskb 15 (15.0%) 47 (43.1%) 37 (46.8%) 21 (25.6%)

High riskc 35 (35.0%) 0 (0%) 41 (51.9%) 33 (40.2%)

Abbreviations: HM, hematological malignancies; ID, immunorheumatological diseases; ND,
neurological disorders; ST, solid tumors.
aLow risk: anti-CD30MoAb, checkpoint inhibitors MoAb; target therapies; hypomethylation
agents, or corticosteroids.
bMedium risk: chemotherapy (ongoing or in the last 6 months); Bruton’s tyrosine kinase
inhibitors; BCL-2 inhibitors; anti-CD38 MoAb without immunomodulatory drugs (IMIDs);
immunosuppressive agents like methotrexate, mycophenolate mofetil, azathioprine, and
cyclosporine.
cHigh risk: Anti-B-cell therapy (ongoing or in the last 12 months): anti-CD20 monoclonal
antibody (MoAb) or anti-CD19 chimeric antigen receptor T-cell therapies); allogeneic HSCT.
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Figure 6. Impact of different therapy on immune response. Independently from the diseases, the patients were divided on the basis of therapy in 4 groups: untreated (white
dots) or treated by therapy with a low (light violet dots), medium (dark violet dots), and high (blue dots) impact on the immune system. A group of HCWwas added as a control.
The immunogenicity of 2 or 3 doses of vaccine was compared among groups. A, The levels of anti-RBD in the 4 patient groups and in HCW are shown. Differences were
evaluated by Kruskal-Wallis test. **P, .01; ***P, .001; ****P, .0001. Response after 2 doses: no therapy: median= 94.2 BAU/mL (IQR .4–1133.0 BAU/mL); low impact:
1144.0 BAU/mL (IQR 368.1–11,360.0 BAU/mL); medium impact: 420.3 BAU/mL (IQR 17.4–1563.0 BAU/mL); high impact: 0.2 (IQR 0.1–6.4 BAU/mL); HCW: 2405.0 BAU/mL
(IQR 1343–3848 BAU/mL). Response after the third dose: no therapy: median= 1748 BAU/mL (IQR 95.4–3917.0 BAU/mL); low impact: 3044 BAU/mL (IQR 998.8–6175.0
BAU/mL); medium impact: 1088.0 BAU/mL (IQR 380.1–2536.0 BAU/mL); high impact: 3.5 (IQR .4–39.6 BAU/mL); HCW: post-3D: 4608.0 BAU/mL (IQR 3302.0–6030.0
BAU/mL). B, The level of neutralizing antibodies in the 4 groups is shown. Differences were evaluated by Kruskal-Wallis test. *P, .05; ****P, .0001. Response after
2 doses: no therapy: median= 80 reciprocal of dilution (IQR 10–160); low impact: 80 reciprocal of dilution (IQR 20–160); medium impact: 40 reciprocal of dilution (IQR
6.2–160.0); high impact: 5 reciprocal of dilution (IQR 5–20); HCW: 160 (IQR 80–320). Response after the third dose: no therapy: median= 120 reciprocal of dilution (IQR
10–560); low impact: 320 reciprocal of dilution (IQR 140–400); medium impact: 160 reciprocal of dilution (IQR 80–320); high impact: 5 reciprocal of dilution (IQR 5–10);
HCW: 320 reciprocal of dilution (IQR 160–640). C: The T-cell response, analyzed by quantifying IFN-γ in the 4 groups is shown. Differences were evaluated by
Kruskal-Wallis test. Response after 2 doses: no therapy: median= 74.9 pg/mL (IQR 2.7–338.4 pg/mL); low impact: 105.9 pg/mL (IQR 26.3–291.9 pg/mL); medium impact:
69.2 pg/mL (IQR 18.1–297.3 pg/mL); high impact: 186.3 pg/mL (IQR 22.7–390.0); HCW: 331.9 pg/mL (IQR 189.9–765.0 pg/mL). Response after the third dose: no therapy:
median= 127.2 pg/mL (IQR 15.8–192.0 pg/mL); low impact: 158.9 pg/mL (IQR 87.2–536.4 pg/mL); medium impact: 243.4 pg/mL (IQR 69.3–799.7 pg/mL); high impact:
545.3 pg/mL (IQR 171.9–2049.0). HCW: 448.9 pg/mL (IQR 197.3–852.2 pg/mL). Abbreviations: HCW, health care workers; IQR, interquartile range; RBD, receptor binding
domain; T2, 5–8 weeks from T0; Tpost-3D, 2–4 weeks from Tpre-3D.
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vaccines in fragile patients. HM and ID patients showed the
lowest prevalence of anti-SARS-CoV-2 antibodies, similarly
to other published studies [8, 9, 23]. This finding is largely
due to the detrimental effect of anti-B-cell therapies. Our re-
sults highlight that treatment-defined subgroups were more ca-
pable than disease-defined ones of predicting the humoral
response. A model combining disease types with treatment-
induced immunosuppression will be more informative for
health authorities.

The negative effect of B-cell–depleting therapies, resulting
mostly from anti-CD20 monoclonal antibodies, lasted up to
12 months after the end of treatment, in line with other recent
reports [17, 24, 25]. This can be explained by the prolonged
half-life of these drugs and by the subsequent long-lasting
B-cell depletion [26, 27]. As in other recent studies, we ob-
served a high seroconversion rate among ST patients, probably
because of using treatments with low lympholytic activity [13,
28]. However, the antibody titers were lower than those of
HCWs, suggesting an impaired immune response.

Although the precise definition of all factors responsible for
protection against COVID-19 remains to be determined, the
relationship between in vitro neutralization levels and protec-
tion against symptomatic COVID-19 has been widely de-
scribed [29]. Interestingly, we reported not only reduced
antibody levels, but also a reduced neutralizing activity.

In contrast to the humoral response, less is known about the
protection induced by the T-cell response. Several groups re-
ported a role of T cells in protecting against severe
COVID-19 [30–32], also in HM patients [33]. In a recent study,
we evaluated the cellular response in 99 hematological patients

after 2 doses of mRNA vaccines and a specific T-cell response
was detected in 86% of them. Of note, 74% of seronegative pa-
tients had a T-cell response, but both cellular and humoral re-
sponses were absent in 13.1% [17]. Our study confirms the T
cell–mediated response rate after 2 doses of vaccine. In addi-
tion, we were able to demonstrate the lack of association be-
tween humoral and cellular responses and the substantial
stability of the T-cell response independent of treatment.
Our study was conducted when the Omicron variant was not

yet prevalent. However, considering that the protection against
Omicron achieved after the third vaccine dose in healthy sub-
jects is also dependent on the T-cell activity directed against in-
variant epitopes of the spike protein [34], we can hypothesize a
positive role of the cellular response also among our patients.
The scientific community concurs about the need for a boos-

ter dose, given the rapid spread of delta and omicron variants in
addition to the waning immunity provided by the primary vac-
cination [35, 36]. The greatest benefit froma booster dose is pos-
tulated in immunocompromised patients, and several recent
studies have reported an improved humoral response [20, 37–
39]. At 4 weeks after the booster dose, we saw an increase in
humoral response and neutralizing antibodies, but the serocon-
version rate and antibody titers were lower in HM than other
diseases, highlighting the peculiar immune impairment of these
patients. By contrast, ID patients showed an excellent response
to the third dose, reaching a.90% seroconversion rate and an
anti-RBD titer higher than after the first 2 doses. ID patients also
showed an increase in antibody levels over time after the 2 doses
rather than a decrease, suggesting that this population requires
more time to reach a strong B-cell response, which can be fur-
ther improved by a booster dose.
A significant increase in the T-cell immune response after

the third dose was observed in all disease groups. In contrast,
Shroff et al reported no T-cell improvement early after the
booster dose in patients with cancer [37]. This discrepancy
with respect to our data could be due to the different timing
of the analyses (2–4 weeks vs 1 week), suggesting the need
for a longer time (at least 2 weeks) to see the positive effect
on the T-cell response in fragile patients. However, given the
still unknown protective effect of T-cell immunity, we might
consider all patients who fail to develop a detectable humoral
response after 3 doses of vaccine eligible for prophylaxis with
passive immunization with anti-spike monoclonal antibodies.
On the other hand, our results showed that the rate of serocon-
version increased after the third dose, so we cannot rule out a
potential benefit from a fourth dose in patients who have al-
ready completed their treatments. A potential limitation of
our study is the lack of measurement of neutralization titers
against the emerging omicron variant. However, it must be tak-
en into account that in healthy subjects, a significant increase in
the neutralizing response against this variant has already been
demonstrated after the third dose [40, 41].

Table 3. Factors Associated With the Humoral Response at T2
(Multivariable Logistic Model)

OR (95% CI) P Value

Sex

Male .97 (0.51–1.84) 0.93

Female 1

Age, y .97 (.95–.99) .026

Comorbidities

Yes .90 (.45–1.78) .76

No 1

Subgroups

Hematological 1 .001

Solid tumors 8.09 (2.38–27.53) .068

Immunorheumatological 2.36 (.94–5.91) .006

Neurological 3.72 (1.45–9.54)

Current therapy (impact on immune system)

No therapy 1 ,.0001

Low 16.75 (3.85–72.85) 0.23

Medium 1.98 (0.65–6.07) ,.0001

High 0.112 (0.04–0.35)

An OR .1 means a positive association between that characteristic and humoral
response. P values lower than .05 are indicated in bold.

Abbreviations: CI, confidence interval; OR, odds ratio.
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In conclusion, we found a lower seroconversion prevalence
among immunosuppressed patients compared with HCWs.
The lowest humoral response was reported in patients treated
with anti–B-cell therapies. The T-cell response showed more
encouraging results, suggesting a possible benefit of vaccina-
tion because of cellular immunity, particularly in light of the
observation that T-cell epitopes are shared among wild-type
and omicron variants [42]. Finally, the data on the third dose
indicate a potential benefit of the booster and identify HM pa-
tients as the most fragile group.
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