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Abstract: Photochemical sealing of a nerve wrap over the repair site isolates and optimizes the
regenerating nerve microenvironment. To facilitate clinical adoption of the technology, we inves-
tigated photosealed autologous tissue in a rodent sciatic nerve transection and repair model. Rats
underwent transection of the sciatic nerve with repair performed in three groups: standard microsur-
gical neurorrhaphy (SN) and photochemical sealing with a crosslinked human amnion (xHAM) or
autologous vein. Functional recovery was assessed at four-week intervals using footprint analysis.
Gastrocnemius muscle mass preservation, histology, and nerve histomorphometry were evaluated at
120 days. Nerves treated with a PTB-sealed autologous vein improved functional recovery at 120 days
although the comparison between groups was not significantly different (SN: −58.4 +/− 10.9; XHAM:
−57.9 +/− 8.7; Vein: −52.4 +/− 17.1). Good muscle mass preservation was observed in all groups,
with no statistical differences between groups (SN: 69 +/− 7%; XHAM: 70 +/− 7%; Vein: 70 +/− 7%).
Histomorphometry showed good axonal regeneration in all repair techniques. These results demon-
strate that peripheral nerve repair using photosealed autologous veins produced regeneration at least
equivalent to current gold-standard microsurgery. The use of autologous veins removes costs and
foreign body concerns and would be readily available during surgery. This study illustrates a new
repair method that could restore normal endoneurial homeostasis with minimal trauma following
severe nerve injury.

Keywords: rose bengal; neurorrhaphy; sciatic nerve; nerve repair; photochemistry amniotic
membrane; crosslinking; microsurgery

1. Introduction

Despite considerable progress in many aspects of reconstructive microsurgery, pe-
ripheral nerve injury still represents a significant clinical challenge. It has been estimated
that more than 2 million people suffer peripheral nerve injuries each year, mainly affecting
young and healthy patients [1–3]. Microsurgical suture repair is the gold standard, but out-
comes are often inadequate, even with optimal surgical treatment. Poor functional recovery
and common sequelae such as sensory and motor dysfunction and neuroma formation
considerably impact quality of life, leading to a severe socioeconomic burden [2,4–7].

To address this issue, most recent studies have examined biological changes that
follow peripheral nerve injury as well as surgical techniques and biomaterials utilized for
repair. Although the exact molecular mechanisms are only partially understood, the critical
aspects following a peripheral nerve injury are well known. Damaged axons lose their
normal intraneural function, and an extensive regeneration process guides and promotes
axonal repair [8].
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Schwann cells play an essential role in this process since they initiate upregulation and
downregulation of a series of genes in an attempt to restore normal intraneural homeosta-
sis [9]. Schwann cells, along with macrophages, participate in the Wallerian degeneration
process that consists of initial clearance of damaged axons from the proximal and distal
nerve stumps. Subsequently, Schwann cells release neurotrophic factors to support axonal
regeneration and regrowth. The goal of an optimal regrowth microenvironment is crucial to
recreating nerve continuity [9,10]. Moreover, several studies have underlined the positive
effect of vascular endothelial growth factor (VEGF) on Schwann cell proliferation and nerve
regeneration with a mix of neurotrophic and neuroprotective effects [11,12].

With conventional suture repair, the ultimate goal of sealing the repair site and iso-
lating it from the surrounding tissues is not always achieved. Without sealing, the con-
centration of growth factors is locally reduced, which hinders regeneration of axons and
restoration of nerve function [13]. Although microsurgical techniques enable approxi-
mation of the proximal and distal ends, other drawbacks should be considered. Firstly,
the passage of the needle through the epineurium is traumatic and can alter the complex
mechanism of nerve regeneration. Secondly, suture material left after nerve repair can
increase the chance of inflammation and scar formation with substantial repercussions on
axon regeneration [14].

Thus, researchers have pursued alternative repair techniques that could isolate the
repair site from the surrounding microenvironment and regenerate homeostasis [15]. Fibrin
glue has been tested, with mixed results [16–19]. Koulaxosidis et al. found that fibrin glue
repair led to enhanced axonal elongation during early peripheral nerve regeneration in a
mouse model [16]. Conversely, Maragh et al. reported a failure rate of 13% after fibrin glue
repair and no failures after standard suture repair in a rat model [17]. The combination of
fibrin glue and nerve growth factors or mesenchymal stem cells has also been investigated
with promising results, but further analyses are required [18,19]. Our own studies with
fibrin glue in a rat sciatic nerve model proved less successful than standard microsurgery
or PTB [20].

Photochemical tissue bonding (PTB) employs a photoactivated dye to crosslink a
nerve wrap to the epineurial surface resulting in a tight seal around the neurorrhaphy to
isolate and optimize the regenerating nerve microenvironment, while reducing the suture
burden. We previously demonstrated the ability of PTB to bond and seal several tissues
using different materials, including human amniotic membrane (HAM) [21]. This approach
has demonstrated a superior regenerative outcome for nerve deficit repair compared to
microsurgery and fibrin glue [20].

Amnion is a somewhat immune-privileged tissue with a broad number of beneficial
effects. Its commercial availability and ease of manipulation is attractive as a tool in regen-
erative medicine [22]. Although human amnion has some immune privilege, subsequent
commercial processing, cost, and foreign body concerns may limit its use as a wrap in PTB
for peripheral nerve repair. In contrast, veins are “free”, often readily available, and can be
harvested with minimal additional morbidity to the patient, or even utilized as a spare part
from an amputated limb if present. As an autologous tissue harvested from the patient,
there are no immunoreactivity concerns that could cause adhesion scarring or secondary
compression. We have already shown amnion and veins to be highly effective as nerve
photosealants in preventing neuroma formation after peripheral nerve injury in a rat sciatic
nerve transection model [23]. While care must be taken in applying nerve wrap materials to
ensure compression does not result when sutured in place, both vein and amnion are ideal
in terms of their ability to self-adhere to the nerve prior to photosealing without causing
compression [24,25].

In this study, we investigated the efficacy of autologous veins as a photosealed wrap
over 16 weeks in a sciatic nerve transection and repair model, testing the motor and sensory
function of the limb combined with histologic assessment. The photosealed vein was
compared to photosealed xHAM as a positive control for photosealing and also to the
standard of care microsurgical neurorrhaphy. The overall goal of this study was to identify
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a peripheral nerve repair technique that could restore normal endoneurial homeostasis
in a less traumatic fashion while removing any concerns of immunogenicity of the wrap
material. If so, this may ultimately bridge the gap that still exists in the field of nerve
reconstructive microsurgery.

2. Results
2.1. Functional Recovery

Animals treated with an autologous vein wrap and sealed with PTB (experimental
group 3) showed better SFI compared to the other groups at day 120 (Table 1). Nevertheless,
there was no statistical difference between the sciatic function indices of the autologous
vein and xHAM wraps and the group treated with standard neurorrhaphy.

Table 1. Regenerative outcome metrics at end of study (120 days). Values are provided as mean +/−
standard deviation for n = 8–12 per group.

Group SFI (120 Days) % Muscle Mass Intrafascicular
Area Ratio (D/P)

Axon Diameter
Ratio (D/P)

Microsurgery −58.4 +/− 10.9 69 +/− 7 0.84 +/− 0.22 0.77 +/− 0.17
PTB/xHAM −57.9 +/− 8.7 70 +/− 7 0.98 +/− 0.19 0.78 +/− 0.20
PTB/vein −52.4 +/− 17.1 70 +/− 7 0.95 +/− 0.19 0.80 +/− 0.26

At earlier time points it was difficult to calculate SFI due to inconclusive heel prints
due to the animals dragging the denervated foot in the walking tracks. However, the toe
prints were clear in all cases allowing the measurement of toe spreads. Overall, when
measuring outer toe spread, the group with the autologous vein wrap sealed with PTB
showed a slight improvement at each timepoint from day 30 to day 120 (Table 2), without
reaching statistical significance.

Table 2. Experimental toe spread (ETS) measurements in mm at each timepoint. Values are provided
as mean +/− standard deviation for n = 12 per group.

Group Preop 30 Days 60 Days 90 Days 120 Days

Microsurgery 19.4 +/− 1.8 7.9 +/− 2.2 8.5 +/− 2.7 12.8 +/− 2.3 11.7 +/− 1.9
PTB/xHAM 19.9 +/− 0.9 8.5 +/− 1.6 10.0 +/− 3.5 12.0 +/− 1.6 12.1 +/− 1.3
PTB/vein 19.2 +/− 0.7 8.7 +/− 1.9 11.2 +/− 1.8 12.7 +/− 2.1 12.9 +/− 2/3

2.2. Gastrocnemius Muscle Mass Retention

Percentage gastrocnemius muscle mass retention is shown in Table 1 and was very
similar in groups with no statistically significant differences.

2.3. Histology and Histomorphometry

Toluidine blue-stained sections showed the presence of regenerated myelinated axons
both proximal and distal to the repair site in all of the experimental groups (Figure 1).
Table 1 details the histomorphometric analysis for the distal to proximal (D/P) intrafas-
cicular area ratio and D/P axon diameter ratio for each group. The intrafascicular area
ratio (D/P) was found to be higher in the photosealed groups (PTB/Vein: 0.95 +/− 0.19;
PTB/xHAM: 0.98 +/− 0.19) than the microsurgery group (SN: 0.84 +/− 0.22), with high
values indicative of excellent axonal regeneration and intraneural organization. Axon diam-
eters are significantly smaller in distal sections in all groups, but the ratio (D/P) showed no
statistically significant difference between groups (PTB/Vein: 0.80 +/− 0.26; PTB/xHAM:
0.78 +/− 0.20; SN: 0.77 +/− 0.17).
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Figure 1. Toluidine blue-stained cross-sections of nerve 5 mm distal to the repair site showing myeli-
nated axons. (A) Standard neurorrhaphy. (B) Magnified inset (red box) of standard neurorrhaphy
group. (C) Photosealed xHAM. (D) Magnified inset (red box) of photosealed xHAM. (E) Photosealed
autologous vein. (F) Magnified inset (red box) of photosealed autologous vein. Scale bars for (A,C,E) =
250 µm. Scale bars for (B,D,F) = 50 µm.

3. Discussion

In this study, we compared regenerative outcomes following photosealing with a vein
to microsurgery (a standard of care reference) and photosealing with human amniotic
membrane, which was previously demonstrated in our group to produce excellent regener-
ative outcomes in both transection and nerve deficit repair [22,26–30]. Results demonstrate
that photochemical sealing of the peripheral nerve repair site with an autologous vein
can result in functional and histological regeneration similar to standard microsurgical
neurorrhaphy and is equivalent to photosealing with human amniotic membrane. Amnion
is a thin (~30 µm) membrane that can be easily wrapped around the peripheral nerve repair
site, and its transparency allows the activating green light to penetrate through the amnion
to the epineural–amnion interface [31,32] for efficient crosslinking. Additionally, amnion
contains many growth factors that assist in wound healing and tissue regeneration [33]
and has been used in a wide range of tissue repair models [34–39]. Many commercial nerve
wraps do not possess the above characteristics that are essential for a photosealed wrap.

However, commercial amniotic membrane products, derived from human placenta,
must undergo strict screening for potential infectious diseases and post-processing may also
contribute to immunoreactivity, despite all efforts to minimize foreign body reactions. These
products are also costly, and the combination of high cost and potential immunoreactivity
has led us to investigate alternatives that retain the efficacy of photosealed HAM in nerve
repair. While veins are slightly thicker and not quite as translucent as HAM, they allow
sufficient light penetration through the vein to the vein–epineurium interface to activate
crosslinking to seal the repair site. Rose bengal does not penetrate into the bulky vein, so
reactivity is limited to the interfacial side of the vein in contact with the epineurium [40,41].
Crosslinking is evident in the PTB/vein group through photobleaching of the red color of
RB, similar to that seen for PTB/xHAM.

Interestingly, the positive outcomes of the human amniotic membrane + PTB and
autologous vein + PTB highlight the broad applicability of photochemical technology
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with biological wraps. The beneficial effect of biological wraps on functional outcomes
and nerve regeneration relied on the photochemical sealing process. It has already been
demonstrated that the collagen content is mandatory when PTB is applied, and that rose
bengal creates covalent crosslinks between collagen molecules on tissue surfaces [21]. Our
studies showed that the amnion and epineurium stromal layer comprises collagen and can
seal in a watertight fashion [27,30,42]. We postulate that the endothelial surface is also rich
in collagen, thin, and translucent, suggesting that photochemical tissue bonding occurs to
seal off the endoneurium from the outside environment. Even if not reaching statistical
significance, the autologous vein wrap + PTB method showed slightly better results than
the amnion wrap, suggesting that sealing the autologous vein wrap with PTB over the
repair site is a viable approach.

Excellent outcomes of the autologous vein group in terms of intrafascicular area
ratio (D/P), axon diameter ratio (D/P), and sciatic function index may be linked to early
restoration of the blood–nerve barrier function, which is a significant factor in creating a
suitable microenvironment for axonal regeneration [43]. After nerve transection injury, the
blood–nerve barrier becomes more permeable, allowing proteins to enter the endoneurium.
Although the exact role of the blood–nerve barrier in aiding neural repair is not clear, the
necessity of restoring endoneurial homeostasis has already been established [44].

This study tested the ability of two clinically available materials (HAM and autologous
veins) to photoseal a peripheral nerve repair site to optimize regeneration. Both photo-
sealed wraps led to good functional and histological outcomes. PTB of nerve repairs with
biological membranes has additional benefits such as reducing the number of epineurial
sutures, decreasing trauma and axonal escape, and reduced foreign body responses such as
fibrosis and inflammation with minimal additional morbidity for patients [45,46]. Other
advantages of this technique are reduced operative time and ease of surgical technique
to accomplish nerve transection repairs when compared to microsurgery. An additional
advantage specific to photosealing with veins is that autologous veins are often readily
available at the time of injury and can be easily collected during surgery with little adverse
effect on the patient, nor additional financial cost.

In photosealing, the ability to form an intimate seal over the repair site is crucial to
optimize the regenerative endoneurial environment. Photosealing is essentially applicable
to all collagenous materials with sufficient pliability and transparency to act as nerve wraps.
Newer nerve wrap initiatives include a drug delivery aspect to enhance regeneration (e.g.,
tacrolimus [47]). The crosslinking process modifies the tissue to a degree and we have
seen inhibition of inflammatory cell migration in some tissues following the process [48].
However, it is very unlikely that small molecular and even macromolecular drugs would
be inhibited from diffusing to target tissue. Thus, we believe that photosealing would also
be applicable to such materials.

In peripheral nerve repair, the only FDA-approved materials are for nerve conduit.
These conduits are made of different biomaterials such as type I collagen, polyglycolic acid
(PGA), poly-DL-lactide-co-caprolactone (PLCL), and polyvinyl alcohol (PVA), and they can
be bioresorbable, such as Neurotube (PGA), Neurolac (PLCL), NeuraGen (type I collagen),
and NeuroMatrixNeuroflex (type I collagen), or non-resorbable, such as SaluBridge (PVA
hydrogel) [49,50]. Nevertheless, results are poor mainly due to the thickness of the materials
and manipulation difficulties [51,52]. Autologous tissue would remove issues related to
regulatory authorization with no need for FDA approval.

4. Materials and Methods
4.1. Preparation of Crosslinked Human Amnion (xHAM)

Placenta obtained from healthy donors following cesarian delivery was stripped of
chorion, yielding HAM. The procedure for preparation of crosslinked HAM (xHAM) was
performed as previously described [23]. The xHAM was washed 5 times with sterile PBS to
ensure no crosslinking solution remained and was then placed on sterile parafilm in PBS
before use.
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4.2. Surgical Procedures

The Massachusetts General Hospital Institutional Animal Care and Use Committee
(IACUC) and the Animal Care and Use in Research Office (ACURO) of the US Army
Medical Research and Development Command approved all procedures in this study.
Furthermore, all experiments were conducted and reported in accordance with the AR-
RIVE guidelines [53]. Forty-two female Lewis rats weighing 220–250 g were purchased
from Charles River Laboratories (Wilmington, MA, USA) and were acclimatized for three
days before surgery in standard animal facilities at the Massachusetts General Hospital.
Thirty-six animals were randomized in three groups (standard neurorrhaphy, photosealed
xHAM wrap, and photosealed autologous vein wrap) and six animals were used as bi-
lateral femoral vein donors. The animals received pre-operative doses of Buprenorphine
(0.01 mg/kg s.c.) and Carprofen (5 mg/kg s.c.) and were anesthetized with Isoflurane
inhalation (1–5%), titrated to effect. The fur of the right hindlimb on each animal was then
shaved and the skin prepared with betadine. A dorsolateral, muscle-splitting 2 cm incision
was made over the right hindquarter of each animal with a No. 15 scalpel. The sciatic
nerve was exposed and isolated from the sciatic notch to the distal trifurcation. Under an
operating microscope, the nerve was then sharply transected approximately 1 cm proximal
to the distal trifurcation. Rats were then randomized to one of three experimental groups,
listed below.

Group 1: Standard Neurorraphy (n = 12)

This group of animals received standard microsurgical neurorrhaphy. The proximal
stump was reconnected to the distal nerve stump with 10-0 nylon epineurial sutures,
approximately 6 sutures depending on nerve size. No photochemical tissue bonding was
performed;

Group 2: Photosealed xHAM Wrap (n = 12).

This group received xHAM wrap, sealed over the neurorraphy using PTB. The prox-
imal stump was reconnected to the distal nerve stump with only 2 epineurial sutures
(180 degrees apart) with 10-0 nylon. A sterile solution of 0.1% w/v rose bengal (RB) (4,5,6,7-
tetrachloro-2’,4’,5’,7’-tetraiodofluorescein) was prepared by dissolving RB (Sigma-Aldrich)
in sterile PBS (Sigma-Aldrich, St. Louis, MO, USA)) and filtering through a 0.22 µm sy-
ringe filter (EMD Millipore, Burlington, MA, USA). The human amnion was trimmed to
a 1 × 1 cm section, gently dried with a cotton swab, and RB solution was applied to the
surface to contact the nerve. The wrap was shielded from light and the dye was allowed to
infiltrate the wrap material for a period of 4 min and excess dye was removed by blotting
with a sterile cotton swab. The RB-impregnated xHAM was then carefully wound around
the neurorraphy site using microforceps, ensuring very close contact between the stained
portion of the wrap and the epineurium. The wrap material was bonded to the epineurium
via illumination at 532 nm from a continuous-wave KTP laser (Laserscope Aura-i, San Jose,
CA, USA; irradiance of 0.4 W/cm2) in two increments of 180 degrees around the nerve
stump for 60 s each. Photobleaching of RB dye observed postillumination indicated that
photosealing reactions had occurred;

Group 3: Photosealed Autologous vein Wrap (n = 12).

This group of animals received an autologous vein wrap sealed over the neurorraphy
using PTB. Six donor Lewis rats were anesthetized, and the fur of their bilateral inguinal
regions were shaved and the skin prepared with betadine. Bilaterally, a 2 cm incision was
made in the groin crease with a No.15 blade. Dissection was performed to expose the
femoral vessels under an operating microscope. Following ligation of branches, the femoral
veins were sharply excised. The vein grafts were copiously irrigated with heparinized
saline and then stored in PBS prior to immediate use. The sciatic nerve was then exposed
and transected in the recipient animal. Neurorrhaphy was performed with 2 epineurial
sutures 180 degrees apart with 10-0 nylon to reconnect the proximal stump and distal nerve
stumps. A sterile solution of 0.1% of RB (w/v) was applied to the endothelial surface, and
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the dye was allowed to absorb for 4 min. Once approximated, the RB-stained femoral
vein wrap was applied and then exposed to green light using the parameters described for
Group 2.

In all groups, the surgical wounds were subsequently closed in multiple layers with
absorbable suture. All animals had subsequent free access to food and water. Figure 2
shows examples of immediate post-repair nerves in all three groups.
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4.3. Functional Recovery

Walking tracks for all animals were performed 1 day prior to the initial surgery, one
day prior to euthanasia (120 days), and at intermediate timepoints of 30, 60, and 90 days
postoperatively. Rats had their hind paws dipped in ink and traversed a walking track
with their footprints recorded on paper. SFI measurements were obtained from footprints
using Equation (1), as described by Sarikcioglu et al. [54] (Figure 3).

SFI = −38.3
(

EPL − NPL
NPL

)
+ 109.5

(
ETS − NTS

NTS

)
+ 13.3

(
EIT − NIT

NIT

)
− 8.8 (1)
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Figure 3. Representative rodent footprints and analysis. (A) Pre-operative (normal). (B) Immediately
post-op (no recovery). (C) 16 weeks post-op (partial recovery) for photosealed vein, showing mea-
surement parameters and equation for sciatic function index (SFI) calculation. NPL and EPL (normal
and experimental print length; NTS and ETS (normal and experimental toe spread); NIT and EIT
(normal and experimental intermediate toe spread).

The subsequent SFI values from day 120 were compared to day 30 measurements, as
previously described [55]. Additionally, outer toe spread was measured at each time point.

4.4. Gastrocnemius Muscle Mass Retention

Animals were euthanized postoperatively at day 120 via injection of pentobarbital
(100 mg/kg, i.p.) (Euthasol, Virbasc AH, Inc., Fort Worth, TX, USA). The right (operative)
and left (control) gastrocnemius muscles were carefully dissected under the operative
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microscope. The muscles were weighed, and their wet weights compared to analyze the
percentage of gastrocnemius muscle mass preserved in the experimental leg.

4.5. Histology and Histomorphometry

Samples were prepared for histology as previously described [20]. Tissues were fixed
in Karnovsky fixative (K2 buffer) (Electron Microscopy Sciences, EMS, Hatfield, PA, USA),
2.5% glutaraldehyde (EMS), and 2% paraformaldehyde in 0.1 M sodium cacodylate buffer
(wash buffer) (EMS) at 4 ◦C for up to 24 h. After washing, tissues were post-fixed with 1%
OsO4 (EMS) plus 1.5% Potassium Ferrocyanide (EMS) in a wash buffer, for 1.5 h at 4 ◦C.
After washing, the tissues were treated with 1% Tannic Acid (EMS) in ddH2O for 40 min,
and were then en bloc stained with 1% uranyl acetate substitute (EMS) for 20 min and 3%
lead Citrate (EMS) for 15 min. Tissues were then dehydrated in gradient alcohol series (50%,
70%, 95%, and 100%), infiltrated with propylene oxide/Epon t812 gradient mix (100%/0%,
70%/30%, 50%/50%, 30%/70%, and 0%/100%), and embedded in Epon t812 (Tousimis,
Rockville, MD, USA). Semi-thin cross sections (0.5 µm) were cut and stained with toluidine
blue. Histologic specimens were digitally imaged with a Hamamatsu NanoZoomer 2.0-HT
slide scanner (Meyer Instruments, Houston, TX, USA) and then evaluated using NDP2
software (Hamamatsu Corp., Bridgewater, NJ, USA). Images from sections taken 5 mm
distal to the neurorraphy were analyzed.

Histomorphometric scoring of peripheral nerve regeneration can be undertaken in
various ways. Factors such as axon diameter and count, myelin thickness, and the G-factor
have all been used to analyze regenerative outcomes [28,29]. Following our experience in
these previous studies, we addressed nerve histomorphometry via a different approach.
All areas in the nerve cross-section that encompass distinct axon-containing nerve fascicles
were summed for each image. Additionally, average axon diameter was also measured
from axons contained withing distinct fascicles. A minimum of 3 sections per specimen
were imaged and analyzed using NDP2 software (Hamamatsu Corp., Bridgewater, NJ,
USA) and evaluated by three independent evaluators, blinded to the treatment/control
nature of the samples. Evaluators choose the fascicular areas and individual axons for
axon diameter measurement. Sections were taken ~5 mm proximal (P) and distal (D) to the
neurorraphy, reflecting normal and regenerated nerve architecture, respectively. The mean
of the three measurements in each case is presented and excellent agreement was observed
between evaluators’ analyses in all analyses.

4.6. Statistical Analysis

Statistical analysis was performed using KaleidaGraph for Windows v4.1 (Synergy
Software, Reading, PA, USA). Sciatic Function Index (SFI) and outer toe spread data were
analyzed using repeated measures analysis of variance to detect the existence of significant
differences over time. All remaining analysis between treatment groups was performed
using ANOVA and the post hoc Bonferroni test. Values of p < 0.05 were considered
statistically significant.

5. Conclusions

The results of this study demonstrated that photosealing the peripheral nerve repair
site with an autologous vein wrap is effective in terms of functional recovery and histo-
morphometric regeneration parameters, compared to conventional suture neurorrhaphy.
The effectiveness of the PTB/vein method could facilitate the clinical applicability of PTB,
avoiding costs and foreign body concerns of amnion-derived products or other natural or
synthetic wrap materials.
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