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Abstract

The native conformation of structured proteins is stabilized by a complex network of interactions. We
analyzed the elementary patterns that constitute such network and ranked them according to their
importance in shaping protein sequence design. To achieve this goal, we employed a cluster expansion
of the partition function in the space of sequences and evaluated numerically the statistical importance
of each cluster. An important feature of this procedure is that it is applied to a dense, finite system.
We found that patterns that contribute most to the partition function are cycles with even numbers
of nodes, while cliques are typically detrimental. Each cluster also gives a contribute to the sequence
entropy, which is a measure of the evolutionary designability of a fold. We compared the entropies asso-
ciated with different interaction patterns to their abundances in the native structures of real proteins.

Keywords: Protein designability, interaction network, elementary patterns.

1 Introduction

The native state of proteins is stabilized by a com-
plex set of heterogeneous interactions among their
amino acids. Approximating these interactions as
two–body and short–ranged, one can simplify the
description of the native state in terms of a net-
work whose nodes are the amino acids and whose
edges are their mutual interactions (for a review,
see ref. [1]).

The analysis of the interaction networks
between amino acids of single–domain proteins
is not trivial due to the fact that they are usu-
ally small, and thus the features that characterize

quantitatively the associated networks vary on
limited ranges. Nonetheless, such networks were
found to be usually small–world [2] and display
clusters of interactions [3], which are often related
to the biological properties of the protein. Even
small clusters of contacts can be highly relevant for
protein kinetics [4], by nucleating the folding pro-
cess [5] and for the thermodynamics stabilization
of the native state [6].

To produce well–folding proteins, evolution
was supposed to insert in the nodes of the net-
work the twenty types of amino acids with the
purpose of obtaining a particularly low energy in
the native conformation [7], trying to minimize the
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2 Key interaction patterns in proteins

frustration of the system [8]. In this respect, evo-
lution can be regarded as a stochastic process in
the space of sequences controlled by the energy of
the native conformation, being the rest of the con-
formational spectrum sequence–independent [9].
Assuming that it reached a stationary state [10],
evolution can then be described by a canonical
ensemble associated to the space of sequences, the
temperature Ts being a parameter that sets the
evolutionary bias towards sequences having a low
energy in the native states.

It was suggested that some protein confor-
mations are more ‘designable’ than others, being
able to act as native state of more sequences
[11]. Several properties of the native conformation
have been associated with an increased designabil-
ity, including conformational symmetries [12–14],
abundance of local interactions [15], of returning
loops [16], of loops of specified size [17], or a large
local entropy [18].

The goal of the present work is to study if
there are specific patterns in the interaction net-
work that can favour the evolution of the proteins
displaying them. In principle, one could study the
partition function of the protein in the space of
sequences, a problem analogous to a Potts model
on an irregular lattice defined by the contact
map of the native conformation. However, this
approach has two drawbacks. First, it can be used
only for small systems because the number of pro-
tein sequences of size N to be summed in the
partition function scales as 20N , a very fast growth
even for small–sized proteins. Moreover, calculat-
ing the partition function for a given protein gives
only information on that protein, while we would
like to learn what are the most important ‘bricks’
that drive sequence design in general.

For this purpose, we employed a standard tool
of statistical mechanics, that is the cluster expan-
sion [19], on the network of interactions that
stabilize the native states of proteins. The terms of
the cluster expansions are the ‘bricks’, which are
independent on the overall contact map of the pro-
tein. There are some important differences with
the standard cluster expansion of dilute gases.
Most importantly, proteins, even large ones are
small systems and the thermodynamic limit can-
not be applied. Also, proteins are dense systems
and we do not expect that the highest–degree
terms of the expansion vanish. Our approach is
to evaluate what are the most important terms of

each degree and eventually to infer what are the
elementary structures of the proteins that most
contribute to the partition function. On the other
hand, studying a finite system we do not need to
worry about the convergence of the expansion.

In Sect. 5 we will compare the elementary
structures with highest entropy in the space of
sequences with those found most commonly in
natural proteins.

2 The cluster expansion

The partition function in the space of sequences,
for a fixed native conformation, is

Z =
∑
{σ}

exp

[
−βs

∑
i<j

Eσiσj∆ij

]
, (1)

where σ is the N -element vector that specifies a
protein sequence, βs ≡ 1/Ts, Eσπ is the interac-
tion energy between amino acids of type σ and
π, and ∆ij is the contact map of the protein,
that is a binary matrix that specifies what amino
acids is in spatial contact with what amino acid
in the native conformation. Two amino acids are
defined to be in contact if any two atoms belong-
ing, respectively, to each of them have a distance
lower than a threshold dc and they are separated
by at least other imin residues along the chain.

Defining the Mayer functions fij ≡
e−βsEσiσj∆ij − 1, the partition function can be
rearranged as

Z =
∑
{σ}

1 +
∑
{σ}

∑
i<j

fij +
∑
{σ}

∑
i<j,k<l

fijfkl

+
∑
{σ}

∑
i<j,k<l,m<n

fijfklfmn + · · · . (2)

Due to the presence of the binary function ∆ij in
the Mayer’s function, the different terms of this
sum reflect the geometry of the interactions and
can be represented as graphs like, for example

=
∑
{σ}

∑
i<j

fij = n qN−2
∑
σπ

(e−βsEσπ − 1) (3)

= n qN × , (4)

where n =
∑

i<j ∆ij is the number of times that
this specific graph appears in the protein, q is the
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number of types of amino acids and

≡ 1

q2

∑
σπ

e−βsEσπ − 1 (5)

is a shorthand notation for the term contain-
ing the average over the types of amino acids.
Graphs with empty circles will be called ‘inter-
action graphs’ because they depend only on the
interaction matrix Eσπ and not on the overall
structure of the protein. Similarly,

=
∑
{σ}

∑
i<j<k

(fijfjk + fikfjk + fijfik) (6)

= n qN × , (7)

where

≡ 1

q3

∑
σπρ

e−β(Eσπ+Eπρ)−2
1

q2

∑
σπ

e−βsEσπ+1,

(8)
and n =

∑
i<j<k (∆ij∆jk + ∆ik∆jk + ∆ij∆ik),

and so on for the other graphs. Using this formal-
ism, the partition function reads

Z = qN + + + + + +

+ + + · · · . (9)

For proteins, the number of terms is finite and
the highest–order term can be, at most, of order
of the number of contacts. Anyway, the strategy
we will follow is that of selecting a priori a lim-
ited set Γ of connected graphs to investigate that
are common to realistic protein conformations and
study their contribution to the partition function.
Vice versa, the summation of all possible graphs
that compose the interaction network of a protein
is equivalent to summing its partition function, is
computationally hard and yields results that can
be hardly generalized to other conformations.

There are two properties that are useful in this
expansion. First, in each term the ‘energetic’ and
the ‘geometric’ parts of the graph factorize, and
consequently all of them are in the form

γ = nγq
N γ̃, (10)

where γ denotes the kind of graph, nγ is the num-
ber of times that the specific graph appears in the
native conformation of the protein and γ̃ is the
corresponding interaction graph, that is

γ̃ ≡ 1

qN

∑
{σ}

∏
(i,j)∈edges

(
e−βsEσiσj − 1

)
(11)

Moreover, if the native conformation of a pro-
tein displays disjoint interaction patterns, the
partition function factorizes into their connected
components.

An unhandy feature of Eq. (9) is that it con-
tains not only connected graphs describing the
interaction patterns contained in the native struc-
ture, but also all possible disjoint combinations
of them. If the protein were an infinite system,
with all residue pairs in contact with each other,
one could use the connected–graph theorem [19]
and the partition function in the grand-canonical
ensemble could be written as the exponential of
the sum of contributions from connected graphs
only. Since we are focusing on finite–size proper-
ties, we followed another strategy.

The value of a disjoint interaction graph is
just the product of its components. The prob-
lem is to count the number of occurrences of the
corresponding pattern in the protein. For example,

= qN
[(
n

2

)
− n

]
·

2

(12)

where the binomial coefficient counts the number
of ways one can extract two links from the native
contact map with n edges and n removes from
that count the number of instances in which the
two links are sharing a common node, thus not
contributing to Eq. (12). Similarly,

= qN
[(
n

1

)(
n

1

)
− n − n − n

− n n / ]× , (13)

where the negative terms enumerate all possi-

ble cases in which the connected components

and can be found as superimposing elements
in the native contact map, that is sharing com-
mon nodes and/or edges. In particular, n / = 2
counts in how many ways the disjoint components
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of the graph can be superimposed to form

the graph . As a matter of fact, all terms of

Eq. (9) can be written in a form analogous to
Eq. (12),

Z = qN
n∑
k1=0

n∑
k2=0

· · ·
[(

n

k1

)(
n

k2

)
· · · − νk1,k2,...

]

×
k1 k2

· · · , (14)

where a given choice of k1, k2, ... corresponds to an
in general disjoint graph, and νk1,k2,... is the num-
ber of ways this graph can be formed by extracting
its disjoint components from the native pattern of
interactions in such a way that at least some of
those components superimpose with each other.
For example, ν2,0,0,... = n , ν1,1,0,... = n + n +
n + n n / (while ν0,0,0,... = 0 for the graph
with no links, and ν1,0,... = ν0,...,0,1,0,... = 0 for all
connected graphs).

Importantly, the sums in Eq. (14) are taken
only for connected graphs in our preselected set
Γ; otherwise, Eq. (14) would be as intractable and
ungeneralizable as Eq. (1). Note also that in gen-
eral several prefactors [. . . ] in Eq. (14) can be
zero.

One can evaluate Z in mean–field theory by
applying an approximation similar to saddle–point
to the sums in Eq. (14). The largest term in
each binomial sum is that associated with kγ =
nγ γ̃/(γ̃ + 1). If γ̃ � 1 then the dominant term
is kγ ≈ nγ , corresponding to the disjoint graphs
with the maximum number of connected sub-
graphs belonging to Γ. For this graph, the term
ν cannot be neglected because the probability of
superimposing nodes is also maximum. The dom-
inant term is then given keeping the subgraphs
associated with the largest γ̃ whose nodes do not
overlap. We call Γ∗ this set and ñγ the number of
subgraphs γ present in the dominant term (in gen-
eral ñγ < nγ due to the no-overlap constraint). In
this case the prefactor of the subgraphs in Eq. (14)
is of the order of 1 and thus

Z ≈ qN
∏
γ∈Γ∗

γ̃ñγ . (15)

Note that Γ∗ and ñγ depend on the given native
state contact map. A simple way to calculate them

is to order the γ̃ ∈ Γ from the largest, identifying
in this descending order which of them are present
in the contact map of the protein, and exclude
those whose nodes overlap with the selected ones.
For example, assuming that

> > · · · > (16)

belong to Γ, one obtains

Z


 ≈ qN × × (17)

A way equivalent to that of Eq. (15) to esti-
mate the importance of the graphs is to consider
the corresponding free energy, that in the case
γ̃ � 1 reads

−Ts logZ = −TsN log q−Ts
∑
γ∈Γ∗

ñγ log γ̃. (18)

Note that Eq. (18) defines an approximate free
energy, due to using only connected graphs from
Γ in the cluster expansion and to the saddle point
approximation discussed above.

The quantities one needs to study numeri-
cally are then the log γ̃ for the different types of
connected graphs in Γ.

3 Numerical evaluation of the
contribution of connected
graphs

The partition function depends not only on the
native contact map, but also on the interaction
matrix Eσπ and on the evolutionary temperature
Ts.

3.1 The system

As interaction matrix we employed that of Table
VI of the Miyazawa–Jernigan (MJ) work [20],
obtained from the statistics of contacts in the
Protein Data Bank. Although these potentials
are a crude simplification of the actual inter-
actions between amino acids [21], they contain
the basic features that are needed in a coarse–
grained description of proteins as that given by



Springer Nature 2021 LATEX template

Key interaction patterns in proteins 5

Eq. (1), like attraction between opposite charges
and among hydrophobic residues, repulsion of sim-
ilar charges, etc. We have modified the MJ matrix
removing the term associated with the interac-
tion between cysteines (substituting it with the
matrix average) because disulphide bonds display
physical mechanisms, different from those of the
other pairs, whose consideraion goes beyond the
scope of the present work. As controls, we used
random matrices in which the elements of the
MJ matrix are reshuffled, loosing the correlations
present in the original MJ, and random matrices
with the same Gaussian distribution of elements as
the original MJ (E = 0.02 and σE = 0.30). More-
over, we also tested the effect of random matrices,
either reshuffled from the MJ or extracted from
a Gaussian distribution, in which all the diagonal
elements are set to E.

To set a realistic value for Ts we explored the
thermodynamic properties of the sequence space
of three small proteins (the villin headpiece [pdb
code: 1bpi] of 36 residues, protein G [1pgb] of 56
residues, erabutoxin B [3ebx] of 62 residues) in the
canonical ensemble at varying evolutionary tem-
peratures with an adaptive simulated tempering
algorithm [22]. We calculated numerically (Fig. 1)
the average energy 〈E〉 of the protein as a function
of Ts for the three proteins interacting with the
MJ matrix and with randomly–reshuffled matri-
ces. As expected [23], at low temperatures, 〈E〉 is
a linear function of Ts, while at high temperatures
〈E〉 ∼ 1/Ts which is typical of the random energy
model. The crossover between the two behav-
iors is slightly system–dependent and takes place
between T c1s = 0.5 and = 1.0. The statistical prop-
erties of natural sequences are compatible with the
low–temperature regime [24]; we then focused our
study on Ts = 0.25, at which all curves are in the
linear regime.

3.2 Contribution of the connected
graphs

Due to the factorization of all graphs γ into a geo-
metric factor nγ and an interaction term γ̃, it is
interesting to identify the largest values γ̃ that
yield the main contributions to the partition func-
tion. They can be either positive or negative (cf.
Eqs. (5) and (8)) according to whether the typical
contribution is attractive or repulsive, respec-
tively. In principle, an even number of negative

0.2 0.4 0.6 0.8 1 1.2 1.4
−50

−40

−30

−20

−10

0

Ts

⟨E
⟩

1bpi
1pgb
3ebx

Fig. 1 The average energy 〈E〉 as a function of evolu-
tionary temperature Ts for three proteins (in the legenda,
their pdb codes) interacting with the MJ interaction
matrix (solid curves) and for randomly–reshuffled matrices
(dashed curves). The vertical bar indicates the tempera-
ture we chose, that is in the low–temperature regime for
all systems.

terms can result in a large positive contribution to
the partition function (14). However, this would
be a stabilization mechanism hardly to be general-
ized. Therefore, in our cluster expansion strategy
we will consider only connected graphs with a
large positive contribution as possible subsets of
Γ∗.

The values for all connected graphs with up to
4 links and for some graphs with a larger num-
ber of links, computed for the MJ matrix, (blue
bars in Fig. 2) are compared with the average
contributions of random matrices. If the native
conformation is made of n independent contacts,
the approximate free energy (18) is straightfor-

wardly proportional to the logarithm of = 0.97

multiplied by n . If these contacts are assembled
in more complex patterns, this value of the free
energy is corrected by including the corresponding
graphs in Γ∗.

Note that, in the simple “diluted” example of
n independent contacts, one can explicitly sum
the binomials in Eq. (14), so that the exact result

is logZ = N log q+n log( +1), as it should. The

cluster expansion strategy that we propose fails in
this simple example, but is in fact meant for dense
connected graphs.

Since the protein is a dense system, the value
of γ̃ tends to increase with the number of links.
The graphs displaying the largest relative contri-
bution to the partition function for the MJ matrix
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are the cycles with even number of links (Fig. 3).
The largest contribution to this graphs comes
from arrangements of pairs of residues of the
kind αβαβ . . . , where the Eαβ belong to the low–
energy tail of the distribution of energies. These
arrangements are equally likely for the random
matrices; however, for purely random matrices
whose elements are extracted from the Gaussian
distribution with the same first two moments as
the MJ interactions, these arrangements remain
the favoured ones only when constraining the diag-
onal matrix terms (see discussion below). On the
other hand, the reshuffled MJ matrices display
similar values for the even cycles, both with and
without the constraint on diagonal terms.

The fact that the contributions of even cycles
with the MJ matrix are larger than those with the
randomly reshuffled matrices indicates that the
MJ matrix displays specific correlations between
residues, like the case of charged and of hydropho-
bic residues.

On the other hand, cycles with an odd num-
ber of links cannot benefit from simply looping
the elements with low Eαβ , but their value is con-
trolled by the existence (by chance or by specific
correlations in the interaction matrix) of a residue
kind γ such that also Eαγ and Eβγ are attrac-
tive enough. The fact that the contributions for
odd cycles (triangles and pentagons) interacting
with the reshuffled matrix, with the constraint on
diagonal terms, are smaller than those interact-
ing with the MJ matrix suggests the presence of
anti–correlations in the interactions between nat-
ural amino acids (i.e., if Eαβ � 0 then the same
is not true for Eαγ + Eβγ).

Also the values for paths (i.e., unlooped chains
of linked nodes) and stars (i.e., nodes linked only
to a central node) yield a positive, non–negligible
contribution which is similar between paths and
stars with the same number of links. In all cases
the graphs associated with the MJ matrix are
larger than the randomly–reshuffled ones.

The different control models interacting with
random energies display specific features (Fig. 2).
The graphs calculated with matrices randomly
reshuffled from the MJ do not change apprecia-
bly their behavior whether the diagonal elements
are randomly reshuffled like all the other elements
(red bars) or they are set equal to a constant value
equal to the average E of the matrix. On the con-
trary, in the case of matrices obtained by a random

extraction of energies from a Gaussian distribu-
tion (gray bars), one can obtain average values
that are very large and not self–averaging (cf. the
error bars), corresponding to the realizations of
the matrix in which a particularly negative ele-
ment appears on the diagonal. In this case, the
value of all graphs become much larger then in the
typical case because of the multiple appearance
of the corresponding amino acids. In fact, matri-
ces in which off–diagonal elements are generated
randomly and diagonal elements are set to E (cf.
purple bars) do not display this effect.

The overall scaling of the different free contri-
butions with the number of links (Fig. 3), suggests
that a sensible way of identifying Γ∗ in the contact
map of a protein is first to search for even cycles,
then for stars and paths.

Cliques (i.e., fully–connected sets of nodes)
made of four or more nodes yield a negative contri-
bution (cf. Fig. 2). This appears as a consequence
of the frustration of the system; according to the
MJ matrix it is not possible to allocate more than
three amino acids in such a way that all pairs
are attractive. Cliques interacting with random
matrices without a constrain on diagonal terms
(red and gray bars in Fig. 2) display large posi-
tive averages, but they are not self–averaging. In
fact, the average arises from a distribution with a
long tail (cf. e.g. the inset of Fig. 2), producing
a standard deviation that is similar to the aver-
age. The reason is that there is a non–negligible
probability that some realizations of the random
matrix display blocks of negative elements (e.g.,
a 2 × 2 block with Eαβ , Eαα, Eββ � −Ts). The
larger the block, the (exponentially) larger the
contribution to the clique but the lower the proba-
bility that the specific realization of the matrix can
achieve such large values. This results in a wide
distribution of values for cliques and thus in its
non–self–averaging character. Diagonal elements
are essential for this mechanism, as shown by the
fact that random matrices with ‘typical’ elements
E on the diagonal cannot display such large values
for cliques. Cliques are the graphs that can build
the largest number of links with a given number
of nodes and thus can occasionally produce very
large values.
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Fig. 3 The same data for the modified MJ matrix, shown
as blue bars in Fig. 2 for paths, cycles and stars, displayed
in semi–logarithmic scale as a function of the number of
edges.

3.3 Dependence on the temperature

The relative weight of different graphs changes
with Ts in a non–straightforward way (Fig. 4).
Increasing the temperature from Ts = 0.25 one
can observe several crossings between the curves
associated with the different graphs. Above T c1s ≈
0.6, when the statistical properties of sequences
space are described by the random energy model,
the term associated with a single link becomes
dominant for a large range of temperatures and, in
general, simple small graphs become larger than
more complex ones.

All graph contributions go to zero at large
evolutionary temperature (βs → 0) because each

Mayer function vanishes. Keeping only the first–
order term in the high–temperature expansion of
each factor of Eq. (11), one obtains

lim
β→0

γ̃ = βk
(−1)k

qN

∑
{σ}

Eσ1σ2Eσ3σ4 · · ·Eσ2k−1σ2k
,

(19)
where the relations among the indexes of the ele-
ments of the vector σ reflect the structure of the
graph and k is the number of edges. Thus, one
can obtain the k–point correlation function of the
MJ matrix from the high–temperature limit of the
graphs.

This correlation function for the MJ matrix
can be either positive or negative. Its sign deter-
mines whether γ̃ approaches zero from the positive
or the negative side. For example, in the MJ

matrix the two–point correlation function is
positive while the three–point correlation function

is negative.

3.4 Average Energy and Entropy

Since −Ts log γ̃ is the contribution of the differ-
ent graphs of Γ∗ to the free energy of sequences,
one can split them into an energetic and an
entropic contribution. The average energy is
〈E〉 = −∂ logZ/∂βs, and thus the contributions
to it of the different graphs are −∂ log γ̃/∂βs.

The contribution of the different graphs
belonging to Γ∗ to the entropy can be obtained
applying the thermodynamic relation S = βs〈E〉+
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Fig. 4 The dependence of some graph cluster expansion
contributions with MJ interactions on the evolutionary
temperature Ts in semi–log scale. Some curves are dis-
played only partially because they become negative.

logZ to Eq. (18), thus obtaining

S = N log q + ñ

(
1− βs

∂

∂βs

)
log
[ ]

+ ñ

(
1− βs

∂

∂βs

)
log

[ ]
+ · · · . (20)

Each term of the sum should be read as
an entropic cost with respect to the infinite–
temperature entropy N log q (cf. Fig. 5, where the
graphs are ordered according to their contribu-
tion to the free energy). Importantly, the entropic
contribution of graphs is comparable to their ener-
getic contribution, thus the sequence probability
results from a non–trivial balance between sta-
bilization of a given pattern and its degeneracy
in sequence space. The contributions from dif-
ferent graphs to energy, entropy and free energy
are roughly proportional to each other. Notable
exceptions to this pattern are the squares and the
6–paths that yield a energy contribution compa-
rable to the other graphs with the same number
of edges but with a lower entropic cost.

4 Patterns in small systems

In the case of small networks of few amino acids,
the approximations that lead to Eq. (18), the main
result of our cluster expansion strategy, would not
be justified. In this case, the partition function can
be summed directly and the energy and entropy
can be calculated exactly as 〈E〉 = −∂ logZ/∂β

and S = ∂(T logZ)/∂T , respectively. In this con-
text we will consider densities dividing extensive
quantities by the number of nodes. In case of dis-
joint patterns the partition function is the product
of the connected patterns and the free energy is
the sum of the associated free energies.

The densities of energy and entropy calculated
for some small systems are displayed with cyan
and blue bars, respectively, in Fig. 6. The sum of
the two bars gives, for each system, the density
of free energy. The largest density of free energy
is associated, also in the case of small systems, to
even cycles. On the other hand, cliques are now
not as penalized as in the case of larger systems.

A problem associated with this calculation is
that the partition function includes, and may be
dominated by, sequences with unrealistic concen-
tration of the twenty amino acids. Specifically,
the dependence of the stability of proteins on the
native energy only [9] requires fixed concentra-
tions. When studying the role of small graphs in
a large protein, this is expected to be a minor
problem, because the amino acids surrounding the
graph of interest act as a reservoir of amino acids.
For small systems this can become a problem.

We then studied small systems with different
interaction patterns, by adding twenty chemical
potentials µσ to set the average concentration
of amino acids to their natural values [25]. The
associated partition function is

Z =
∑
σ

exp

[
−βs

(∑
i<j

Eσiσj∆ij −
∑
i

µσinσi

)]
,

(21)
where nσ is the number of residues of kind σ in
the sequence σ.

To obtain explicit equations for the chemi-
cal potentials, one can approximate the average
number of amino acids for a given system with
that associated with the same number of indepen-
dent contacts. One can begin evaluating µσ in the
high–temperature limit, that gives

µσ =
1

q(2q−1)−1

[∑
ρπ

Eρπ −
∑
π

Eσπ −
1

β
log

(
2nσ
N

)]
.

(22)
However, the average concentrations
〈nσ〉 = β−1

s ∂ logZ/∂µσ calculated in the high–
temperature approximations are not in good
agreement with the correct ones (cf. red bars in
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Fig. 5 The cluster expansion contribution of different graphs to the entropy in sequence space (upper panel) and to the
energy (lower panel) for the MJ matrix at Ts = 0.25.

the inset of Fig. 6) and we corrected them in an
iterative way applying 100 times

µσ =
1

β
log

(
pσ

∑
ρπ e−β(Eρπ−µρ−µπ)∑
π e−β(Eσπ−µπ)

)
. (23)

In this way, the average concentrations are well
estimated even for non–trivial interaction patterns
(cf. the inset of Fig. 6). Not unexpectedly, in the
grand–canonical ensemble the potential energies
are slightly less negative than in the canonical
ensemble (with the exception of the single link)
and the entropies slightly more positive. In fact,
the constraints in the composition of the protein
eliminate states where few types of amino acids
are repeated in a regular way. Overall, the free
energies in the grand–canonical ensemble do not

depart drastically from the canonical ones (cf.
Fig. 6).

5 Analysis of patterns in real
proteins

Since the entropy (Eq. (20)) is a measure of the
abundance of protein sequences displaying specific
conformational patterns, we analyzed the contact
maps of a set of natural proteins and compared
the number of occurrences of the patterns (Fig. 5)
with the corresponding entropy. We calculated the
contact map of a set of 565 non–redundant pro-
teins obtained from the pdb (< 25% sequence
similarity).

To define the contact map, one has first to
define what a contact is. We define two amino
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Fig. 6 The density of energy (cyan) and entropy (blue) calculated for some small patterns of interaction in the canonical
ensemble. The density of energy (orange), entropy (red) and chemical potential (yellow) in the grand–canonical ensemble. In
the inset, the natural fraction of the twenty types of amino acids (blue bars), the averages calculated in the high–temperature
approximation from the grand–canonical partition function (orange) and those obtained from the iterative estimation of
the chemical potentials (brown for an isolated contact, gray for a 2-edge path, purple for a 3-node clique and green for a
3-edge star.

acids to be in contact if any two atoms belong-
ing to each of them, respectively, are closer than a
distance d∗ and farther than three residues along
the sequence. We have chosen for d∗ the value
3.7Å, at which the mean number of contacts in
the dataset displays a sharp increase (cf. Fig. 7a).
This value is also close to that at which the size
of the giant component of the network has a
sharp increase and is consistently lower than the
percolation threshold (cf. Fig. 7b).

The naive counting of small patterns of con-
tacts in the database of proteins displays some
qualitative features predicted from the cluster
expansion (Fig. 5, with counting of pattens in
log scale). First, as discussed in Sect. 3.2, cliques
are not likely. We can find in real proteins fewer
small cliques than other kinds of graph and there
are not cliques of degree higher than four. Small
paths displaying large entropy (Fig. 7c) are quite
abundant in real proteins. Moreover, squares and
3–edge stars are abundant and display rather large
entropy. On the contrary, pentagons are found in
real proteins but display a rather low entropy from
the cluster expansion. Also, paths with increasing
length are more and more present in real pro-
teins, although their entropy roughly decreases
with their length in Fig. 5.

However, it should be considered that the dif-
ferent graphs enumerated in the protein data set
are not mutually exclusive. For example, paths are

present in essentially all other graphs; in fact, they
are the most abundant, increasing combinatorially
with the number of edges. On the other hand, the
estimation of the free energy in Eq. (18) requires
the knowledge of the number ñγ of graphs found
as disjoint components, which is not the overall
number nγ of graphs in the native contact map.

The calculation of ñγ is not straightforward
because their definition requires to specify the
order in which they have to be enumerated (cf.
Eq. (16)). Following the prescription of Eq. (18),
we defined a set Γ∗ of graphs ordered according
to the associated value of γ̃ and enumerated the
graphs in that order, removing the nodes after
they have been counted once (from left to right in
Fig. 7d).

The simplest graphs and are the

most abundant ones and correspond to a large
entropy contribution (upper panel in Fig. 5). The

graphs and are predicted to display
large entropy but they are suppressed by our
node removal strategy (they are not displayed

in Fig. 7d). The graphs and are cor-

rectly predicted as the most abundant ones after
those already described. For the 4 most abundant
graphs, remarkably, the counts found in natural
proteins are larger than for random decoys (red
bars in Fig. 5), obtained from the collapse of a
protein model in which all atoms interact with the
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same energy [18]. Finally, our strategy to avoid
double counting of nodes allows (roughly) to find
a similar behaviour as a function of length for
the paths abundances in real proteins (Fig. 7d)
and the cluster expansion entropy (Fig. 5, upper
panel), including the reduced entropy loss for
6–paths.

One can argue that the absence of triangles
is due to the fact that they are not compatible
with the formation of hydrogen bonds, that is one
of the most important stabilizing interactions in
protein. On the contrary, squares and paths can
be stabilized by hydrogen bonds.

It is also known that proteins are rich of sec-
ondary structures, most notably α–helices and
β–sheets. From the point of view of the graphs as
defined above, both kind of structures are prod-
ucts of paths of various length, in the case of
β–sheets sometimes decorated with squares (cf.
Fig. 8).

Overall, paths and squares seem particularly
abundant in proteins because associated with
large entropy in sequence space.

6 Conclusions

A cluster expansion is a suitable tool to study
the partition function of proteins. In the case of
the partition function in the space of sequences
of proteins with a specified native state, the clus-
ters have a very clear meaning of patterns of
interactions defined by the geometry of the native
conformation.

Proteins are dense, finite systems. For this
reason, the cluster expansion has to be handled
differently than in simpler diluted systems, like
non–ideal gases. Here, one cannot expect that the
terms of higher degree become negligible. This is
not a problem for the convergence of the expan-
sion, because it contains a finite set of terms, but
makes the evaluation of the importance of the dif-
ferent clusters tricky. Finding the most important
cluster corresponds to a huge and complicated
graph spanning most of the amino acids of the
protein would not be particularly useful. It would
be as cumbersome as summing the full partition
function and the results for a protein could be
hardly generalized to other proteins. For this rea-
son, we studied classes of clusters (e.g., paths,
polygons, etc.), comparing their relative impor-
tance. We also developed a sensible strategy to

identify small important clusters in a connected
network of interactions, solving the problem of
avoiding a double–counting of the nodes.

Using a standard parametrization for the con-
tact energies between amino acids, we found that
clusters that contribute most to the partition
functions are cycles with even numbers of nodes,
while cliques are detrimental. These contribu-
tions can be partitioned into an energetic and an
entropic part. Low–energy clusters are important
for protein stability, high–entropy clusters for des-
ignability of the fold. As a rule, these two features
are correlated. Small paths are highly entropic but
poorly stabilizing. Stars and polygons are stabi-
lizing but poorly entropic. Important exceptions
are the square and the 6–path, that are both
stabilizing and entropic.

We compared these results with the countings
of different small contact patterns in real proteins.
Overall, the kinds of patterns that are over-
represented in real proteins tend to agree with
those predicted to have large entropy. In partic-
ular, paths and squares are patterns particularly
abundant in α–helices and β–structures, respec-
tively, that are the basic secondary structures of
proteins.

Of course, one should consider that the ther-
modynamic stability is an epistatic constraint,
but it is not the only factor that determines the
evolutionary fitness of a protein. The formation
of active sites, the kinetic accessibility, the need
of avoiding aggregation are other requirements
that could explain the differences between high–
entropy graphs predicted by the model and those
found in real proteins. Our findings can thus be
regarded as the baseline on which evolution adds
more stringent requirements.

Author contribution: MT performed the
numerical calculations and helped to develop the
theoretica calculations; AT and GT developed the
theoretical calculations; GT wrote the manuscript
with the help of MT and AT.

All data and codes used in this work can be
downloaded from https://github.com/guidotiana/
cluster-expansion .
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Fig. 7 (a) Average number of contacts in the protein
dataset as a function of the threshold distance d∗. (b)
Numerical derivative of the size of the graph giant compo-
nent as a function of d∗. (c) The number of graphs found
in a non–redundant dataset of natural proteins, (d) the
average number of graphs per protein (blue bars), enumer-
ated without double–counting nodes in the order displayed
along the horizontal axis from left to right. In red, the same
quantity calculated on a set of random decoys.
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(a)

(b)

(c)

Fig. 8 The graphs arising from (a) the α–helix of 1pgb
protein, (b) the first β–hairpin of protein 1h4x and (c) the
first 3-β–sheet of protein 3mmy.
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