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Simple Summary: The use of automation and sensor-based technologies has the potential to enable 

dairy farmers to control and manage their herds better and in less time, based on a wealth of infor-

mation about the production process, the herd and the individual animal. However, the effective-

ness of this information depends on its effective integration into the decision-making process. To-

day, the proliferation of ever-larger dairy cattle farms makes it difficult to monitor individual ani-

mals directly in the herd, with the risk of compromising their health, welfare, and production per-

formance, which will inevitably affect the farm budget. The Internet of Things (IoT), a system of 

devices and sensors that communicate via cloud computing, could narrow this gap and open up 

new opportunities for dairy farmers. 

Abstract: The expansion of dairy cattle farms and the increase in herd size have made the control 

and management of animals more complex, with potentially negative effects on animal welfare, 

health, productive/reproductive performance and consequently farm income. Precision Livestock 

Farming (PLF) is based on the use of sensors to monitor individual animals in real time, enabling 

farmers to manage their herds more efficiently and optimise their performance. The integration of 

sensors and devices used in PLF with the Internet of Things (IoT) technologies (edge computing, 

cloud computing, and machine learning) creates a network of connected objects that improve the 

management of individual animals through data-driven decision-making processes. This paper il-

lustrates the main PLF technologies used in the dairy cattle sector, highlighting how the integration 

of sensors and devices with IoT addresses the challenges of modern dairy cattle farming, leading to 

improved farm management. 
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1. Internet of Things 

1.1. Concept and Vision 

Although the expression “Internet of Things” (IoT) is widely used today, there has 

always been some fuzziness about its precise definition. The challenge lies in the fact that 

IoT represents a convergence of various concepts and technologies—such as sensor net-

works, cloud data, and smart devices—without clearly defined boundaries. Initially, the 

idea of IoT was centred on the connectivity of devices, focusing on linking objects to the 

internet, allowing basic data collection and remote control. For example, sensors would 

collect data from objects like thermostats or refrigerators, sending information to a cen-

tralised platform for monitoring or remote operation. However, more recently, the expres-

sion has expanded into a far more complex and integrated ecosystem, with a key shift 

towards intelligence and autonomy. Nowadays, IoT systems often incorporate advanced 
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analytics in order to transform simple data into intelligence, allowing automated decision-

making without human intervention. 

Additionally, the scope and scale of IoT networks have grown dramatically. Early 

IoT implementations involved a small number of connected devices in limited contexts, 

such as home automation or logistics tracking. Today, IoT is applied across a variety of 

sectors, from healthcare and agriculture to smart cities and industrial systems. 

The shift towards intelligence also meant a much higher focus on edge computing. 

Initially, IoT data would be sent to centralised cloud servers for processing. With the in-

creasing number of devices and the need for faster real-time decision-making, the need 

for systems able to process data closer to where the data is generated has greatly increased 

to reduce latency and improve performance, particularly for time-sensitive applications. 

Therefore, twenty years ago, IoT could have been correctly described by the Interna-

tional Telecommunication Union [1] as a connection between product identification and 

sensing technologies and their capacity to engage with the surroundings. From that per-

spective, the “Internet” is described as “the worldwide network of interconnected com-

puter networks, based on a standard communication protocol, the Internet suite 

(TCP/IP)”, while a “Thing” is defined as “an object not precisely identifiable”, making IoT, 

“a worldwide network of interconnected objects uniquely addressable, based on a stand-

ard communication protocol” [2]. This definition, today, is missing the more contempo-

rary aspects; therefore, we can summarise the current IoT concept with three key charac-

teristics [3]: 

1. It creates a digital representation of a physical entity, often referred to as a digital 

twin. 

2. It involves the use of various sensors and can alter the environment through actua-

tors. 

3. It has the capability to perform at least some level of information processing. 

In summary, the Internet of Things can be described as a physical entity paired with 

its digital counterpart interacting through various devices. This combination of physical 

and digital creates an augmented entity that supports services accessed by end users, typ-

ically humans. These services run on resources that are directly connected to the devices 

(Figure 1). 

 

Figure 1. Domain model for the Internet of Things. The solid lines indicate the transposition from 

real to digital world and the direct actions or processes. Dashed lines represent interactions (e.g., 

user services, device data and resources). Blue words highlight key components. 
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From a functional perspective, various functional models have been proposed to de-

fine how IoT functional blocks operate across their different layers and use cases. These 

models help to understand the underlying architecture and enable the design of IoT sys-

tems that can efficiently meet the demands of diverse applications. 

Initially, a three-layer model was proposed consisting of the following: 

• Perception Layer: This is the physical layer that includes all the sensors and devices 

that collect data from the environment. The primary function is to gather information 

through IoT devices and sensors. 

• Network Layer: Responsible for transmitting the data collected from the perception 

layer to other layers or systems. 

• Application Layer: Where the data is processed and utilised by applications, provid-

ing services to users. 

While this model is simple and clear, it is now considered limited as IoT has grown 

more complex. To capture the growing complexity of IoT environments, two more layers 

were introduced: 

• Processing Layer: Also known as the middleware layer, this handles data storage, 

processing, and management. This layer might involve cloud computing and big 

data platforms that perform analytics or decision-making. 

• Business Layer: This layer focuses on managing and orchestrating the IoT system as 

a whole, including policies, privacy, and business models. It helps ensure that the IoT 

deployment aligns with organisational goals and provides value. 

The ITU-T introduced a more comprehensive model with seven layers. This model is 

designed to offer a comprehensive look at all aspects of IoT, from connectivity to data 

usage: 

• Device Layer: Where sensors and actuators reside. 

• Network Layer: Manages communication between IoT devices and the back-end sys-

tems. 

• Service Support and Application Support Layer: Provides the necessary computing 

power and storage for IoT services. 

• Service Layer: Enables different services and applications to run efficiently over the 

infrastructure. 

• Application Layer: Focuses on delivering services to end users. 

• Management Layer: Responsible for managing all resources, ensuring scalability, 

and monitoring the network’s health. 

• Security Layer: Ensures data protection, privacy, and secure communication across 

the system. This layer has become more prominent with the increasing focus on cy-

bersecurity in IoT deployments. 

It is important to note that multiple initiatives are currently working in parallel to 

develop a comprehensive reference model for the IoT ecosystem. Among these efforts are 

IoT-A [4], IEEE P2413 [5], ITU-T [6], IIC [7], and oneM2M [8]. While these frameworks 

often employ varied terminologies, the underlying concepts are largely consistent across 

them. For example, as shown in Figure 2, the functional models of IoT-A, ITU-T’s refer-

ence architecture, and oneM2M’s functional architecture are quite comparable in their 

structure and approach. 
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Figure 2. The similarities between different IoT functional models (IoT-A, ITU-T and oneM2M). 
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In the context of smart dairy farming, deploying Internet of Things (IoT) devices 

equipped with sensors represents a pivotal aspect of monitoring livestock health and 

productivity. Wearable sensors attached to cows track parameters, allowing for the collec-

tion of real-time data on each animal’s health status. 

Recent advances like artificial intelligence, computer vision algorithms such as YOLO 

(You Only Look Once) v9, and automated sensors have been introduced, for example, to 

characterise the barn environment and assess cow behaviour in relation to it [9] and to 

detect changes in health indicators [10], highlighting the potential of these technologies 

for more effective herd monitoring and management. These technologies have the ad-

vantages of being non-contact and therefore non-stressful, with low cost and high yield 

potential [11]. 

In light of the potential for transformative change offered by the Internet of Things 

(IoT) in agriculture, particularly in dairy farming, undertaking a comprehensive review 

of the technologies currently available in this sector is of great importance. This review 

aims to collate and assess the numerous advancements in smart farming, emphasising 

integrating IoT solutions and their implications for economic sustainability. By analysing 

the current landscape of these technologies, insights can be provided into how they en-

hance operational efficiency, improve herd management and support animal welfare. 

A deep understanding of the developments under this framework will inform farm-

ers about the management of resources and cost reduction. Besides that, this review re-

ports a reflection on the economic sustainability of intelligent farming technology as an 

avenue for enhancing production with the certainty of the long-term viability of dairy 

farms. As a matter of fact, farmers in the competitive market are compelled to adopt such 

improvements to fulfil their economic and environmental responsibilities and enhance 

performance. 

1.2. IoT and Dairy Cattle Farming 

IoT and data-driven techniques can provide new opportunities for dairy farmers to 

manage their farms. IoT acts as a bridge between virtual and physical domains, focusing 

on wireless communication through smart devices such as sensors that use local and 

global infrastructures to connect and enable fully autonomous operation of IoT systems 

[12,13]. This creates an on-farm network consisting of sensors on or in the body of the 

dairy animal connected to other points in the farm [14], which requires an efficient com-

munication system using multiple protocols. The integration of sensors with network 

technology has led to the development of sensor nodes [15], entities that can generate data 

(edge), process or transform data (fog) and store data (cloud). An example of how this 

network works is the real-time monitoring of body temperature changes in dairy cows. In 

this case, the temperature sensor in the rumen, which is both the data source and the far-

thest node in the network (edge node) from the central hub, sends data to the collar, which 

has computational and analytical capabilities, such as pre-processing data and identifying 

behavioural patterns, making it a fog node in the network. Finally, the data are uploaded 

through the network gateway to remotely accessible cloud storage, where subsequent ac-

tions such as analysing body temperature data through deep learning algorithms to detect 

disease, oestrus, parturition, or mastitis become possible [16,17]. This architecture is par-

ticularly suited to dairy farms using large-scale wireless sensor networks, where large 

amounts of data are generated and need to be transmitted. The computational and ana-

lytical capabilities of edge and fog nodes allow low-level devices to process and act on 

data as they are generated, providing a decentralisation of data processing and decision-

making that results in low-latency and efficient networks [18]. Recently, fog and edge 

computing infrastructures have been incorporated into several systems developed for an-

imal health monitoring and management [19–23]. 

Reduced data redundancy, reduced data transmission, more self-sufficient and ro-

bust networks, and lower bandwidth requirements are the main advantages of fog and 

edge computing-based livestock monitoring and management systems. Limitations to the 
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adoption of edge and fog computing on livestock farms include the cost of specialised 

edge devices available on the market. They also require regular updates or replacements 

over time, increasing the investment for the dairy farmer. On the other hand, the use of 

open-source solutions such as Raspberry Pi (Raspberry Pi Foundation, San Francisco, CA, 

USA) and Arduino (https://www.arduino.cc/ accessed on 14 October 2024) requires exper-

tise that is not easy to find on dairy farms [17]. 

The adoption of IoT-based sensors on dairy farms is rather heterogeneous, with some 

sensors, such as those for measuring cow activity and milk production, being widely used 

and others, such as those for lameness detection and body condition score assessment, 

being newly adopted [24–28]. A critical factor in adoption is user acceptance, which in-

volves a complex and dynamic decision-making process influenced by contextual factors, 

perceptions and social conditions. Acceptance depends on both cognitive (e.g., cost-bene-

fit analysis) and affective (e.g., emotions and trust) factors, the role of which in shaping 

adoption decisions is not yet fully understood. The complexity of the adoption process 

suggests that strategies to improve adoption should address both rational and emotional 

factors, as well as technical and infrastructural barriers, to promote greater integration of 

IoT-based sensors in dairy farming. 

High investment, initial installation and maintenance costs are perceived as the main 

barriers to the adoption of IoT technologies on dairy farms, while compatibility issues 

with existing systems hinder wider adoption. Infrastructure challenges, such as limited 

access to broadband, further complicate the adoption process. Farmers’ confidence in the 

reliability and perceived benefits of these technologies also affect adoption [29,30]. 

IoT systems enable large-scale data collection and monitoring, incorporating a wider 

range of parameters, while cloud computing and machine learning facilitate high-preci-

sion simulations. These innovations are expected to drastically reduce both the time and 

cost associated with developing models and decision support systems necessary to im-

prove livestock farm management [31]. However, in the agricultural sector, the implemen-

tation of IoT infrastructure faces substantial challenges, primarily due to the variability of 

production cycles and the remote nature of many farms. In fact, the high cost of deploying 

such infrastructure, particularly in isolated areas, is often prohibitive, especially for 

smaller-scale farmers with limited financial resources. 

IoT can automate labour-intensive tasks, such as real-time health monitoring of live-

stock, thereby reducing labour costs by delivering individualised, real-time data. In live-

stock management, where feed and disease control are the primary costs, advanced tech-

nologies such as AI and machine learning algorithms can optimise decision-making pro-

cesses related to feed rates, diet formulation, and treatment plans [32]. Repeated daily 

operations (milking, cleaning, etc.) may also have a reduced economic impact due to lower 

labour requirements [33]. 

Despite these benefits, although there are low-cost sensors available on the market, 

the high upfront investment required for IoT adoption remains a critical barrier [13,34]. 

The financial burden associated with implementing IoT in Precision Livestock Farming 

(PLF) is compounded by ongoing maintenance and data management expenses. Although 

the potential advantages—such as labour savings, improved resource efficiency, and en-

hanced environmental sustainability—are widely acknowledged, the uncertainty sur-

rounding return on investment (ROI) complicates the decision-making process for farm-

ers. This is especially significant in agricultural operations with narrow profit margins, 

where the costs of IoT devices and integrated systems may outweigh the potential finan-

cial benefits [35]. 

Additionally, poor internet connection in rural areas and long-term data manage-

ment further exacerbate the costs and complexity of IoT implementation. Although tech-

nological advancements are expected to reduce costs and improve accessibility in the near 

future, the economic viability of IoT adoption in agriculture remains a major concern. Rig-

orous cost-benefit analyses and case studies are necessary to provide farmers with the 

insights required to make informed decisions regarding IoT investments [36]. 
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In summary, while IoT technologies hold substantial promise for transforming agri-

culture and livestock management, the high costs of implementation—including infra-

structure deployment, sensor maintenance, and data management—represent significant 

barriers to their widespread adoption [13]. Addressing these financial challenges through 

technological innovation, policy initiatives, and comprehensive research is essential to en-

suring the sustainable integration of IoT into agricultural and zootechnical practices. 

2. Dairy Farm Automation 

Automation of the production processes in dairy farming is rising throughout the 

world. In general terms, automation refers to using machines, control systems, and infor-

mation technologies to enhance productivity in the production processes [37]. The major 

drivers of this change are the reduction of physical labour and labour costs [38,39]. 

The application of automation fits with the trend of fewer but larger herds, narrower 

profit margins than in the past, and continuous improvement of technology already avail-

able that becomes less costly [40–42]. Automation allows collection of a large amount of 

data from the monitored animals and the surrounding environment. After an appropriate 

elaboration process, data provide helpful information for farmers to control and manage 

herds by allowing them to make the right decisions [25]. 

This latter aspect plays a key role in dairy farm management, encouraging a proactive 

rather than a reactive approach. However, this is dependent on each farmer’s individual 

skills. While automation and technology may not solve problems directly, they can iden-

tify areas that need attention. By adopting this perspective, automation can make a posi-

tive contribution to profitability, animal welfare, milk quality, and overall lifestyle im-

provements. 

An important aspect to consider in automating the dairy cattle sector is the different 

rearing methods available: enclosed facilities, where cows are essentially kept in barns; 

grazing; and the mixed system, which is a combination of the aforementioned two. The 

utilisation of these technologies is more prevalent in closed farms, whereas their adoption 

in pasture systems is comparatively limited. An illustrative example of pervasive technol-

ogy in grazing-based dairy farms includes heat detection sensors and chew sensors, which 

record mandibular activity, allowing the assessment of forage availability in the area 

where animals are kept [43]. Figure 3 summarises the main processes that can be auto-

mated and monitored using specific sensors. 

 

Figure 3. Main processes and tasks that can be potentially automated and monitored in dairy cattle, 

depending on the rearing system. 

Considering the barn solution, dairy farm automation usually concerns two main ar-

eas: (i) Animal IoT sensors and (ii) Farm IoT sensors. 
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2.1. Animal IoT Sensors 

Continuous on-farm monitoring of livestock using IoT sensors enables early detec-

tion of health problems, optimisation of feeding regimes and improvement of animal wel-

fare, reducing veterinary costs, increasing productivity and improving the quality of dairy 

products. 

The sensors used in these systems can be attached or detached from the cow, depend-

ing on the specific requirements of the monitoring process. The attached sensors can be 

external, as in the case of on-cow sensors (e.g., pedometers) or internal, as in the case of 

in-cow sensors (e.g., rumen boluses). Sensors detached from the cow are called off-cow 

sensors and can be divided into two categories: (i) in-line sensors work by continuously 

monitoring variables in the milk stream (e.g., milk electrical conductivity); (ii) online sen-

sors are equipped to automatically collect and analyse milk samples, such as those used 

to determine somatic cell count [42]. 

In addition to these sensors, instruments based on image and sound have emerged 

as a novel approach in the field of dairy farming. Cameras that are equipped with data 

processing tools are able to scan moving objects and analyse a number of features, includ-

ing posture, walking speed and gait. This allows for the diagnosis of various health issues 

in animals, such as sore legs, sickness and emaciation. Similarly, sound-based sensors can 

analyse vocalisations and environmental sounds to detect indications of distress, respira-

tory issues, or alterations in behaviour. 

The integration of these sophisticated technologies serves to enhance the precision of 

health monitoring, offering a more real-time comprehension of the animal’s status. 

2.1.1. Sensors for Body Measurement 

Body measurements, such as Body Condition Score (BCS) and Body Weight (BW), 

are crucial for making informed management decisions, such as refining breeding strate-

gies, evaluating nutritional health, and tracking daily weight gain [44]. 

BCS is an indicator of weight loss and gain in the early lactation and pre-calving pe-

riods, respectively. In the first case, it is useful for limiting metabolic disorders, while in 

the second, it is useful for managing dry cows. It is based on a visual method carried out 

by experts and provides an assessment of the animal’s energy reserves at different stages 

of lactation [44,45]. The Edmond scale [27] assigns a score between 1 (underweight animal) 

and 5 (overweight animal) to a cow based on the assessment of specific anatomical regions 

of the body. A score of 3–3.5 corresponds to a healthy condition. 

In order to automate the analysis of the BCS index, a series of experimental trials 

were conducted, wherein the BCS value was typically defined through a model based on 

image analysis [28]. In particular, Peacock et al. [46] and Bewley et al. [29] used a 2D cam-

era. A thermal camera was applied by Halachmi et al. [30] to extract the cow’s body shape 

from its background and to evaluate, with an opportune algorithm, the BCS of a single 

cow. Spolianski et al. [47] and Calcante et al. [48] proposed a system based on low-cost 3D 

cameras to estimate the BCS automatically. Kuzuhara et al. [49] and Gomes et al. [50] also 

used the same technique to develop models for BW assessment. 

Body weight can be defined by analysing the lateral or dorsal image of a cow. These 

models have a commendable evaluation capability. In the first case, BW (kg) is defined 

based on measurements of height (m), body depth (m) and lateral body volume (m3), 

while in the second it is calculated by trunk (m), thorax (m) and dorsal area (m2) [44]. 

Implementing a fully automated system still presents some challenges, particularly 

regarding image quality and processing [44]. 

However, in this way, the farmer can monitor the herd at the most appropriate time 

with high precision and objectivity and can modify the feeding of a single cow by acting 

on the feeding system in terms of the quantity and quality of the ration. 
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2.1.2. Sensors for Activity Monitoring 

Monitoring the cow’s basic behaviours (eating, rumination, standing, lying, walking, 

drinking, and mounting) allows one to ascertain the cow’s overall health status [51]. Mon-

itoring animal behaviour activity patterns allows early detection of specific conditions 

such as lameness, thermal discomfort, oestrus or calving events, and diseases. For exam-

ple, some studies have shown that podiatric pathologies are associated with changes in 

walking speed [52] and altered leg swing patterns [53]. 

Lameness can also be detected through a pressure-sensor mat, which is capable of 

detecting alterations in footfall and weight distribution, crucial indicators of potential 

foot-related issues [54]. The advent of lameness sensors represents a substantial advance-

ment in the sustainable and holistic management of dairy herds. The sensors transmit real-

time data to farmers, enabling prompt intervention when necessary. 

This method of monitoring behaviour improves performance and animal welfare and 

makes it easier to make decisions and respond to situations [55]. 

Several types of sensors exist for this purpose, usually integrated with collars, leg 

bands, or ear tags. However, the most common animal-related sensors are pedometers 

and accelerometers for automatic oestrus detection, such as those produced by SCR by 

Allflex (Netanya, Israele), Nedap (Groenlo, Paesi Bassi) and DeLaval (Tumba, Svezia ) [56]. 

Pedometers are electronic devices attached to the cow’s leg that can record the cow’s 

movements: with each step taken by the animal, the device increments a counter in the 

internal memory. The final daily step count and the cow’s identification code are trans-

mitted to a receiver after the animal has been identified by an antenna in the barn [57]. If 

the animal’s activity exceeds a user-defined threshold, an alarm is generated at a specific 

time to advise the farmer to proceed with artificial insemination [58]. 

Accelerometers are attached to the cow’s neck collar and measure accelerations asso-

ciated with head and neck movements during walking and herding behaviour. A triaxial 

accelerometer allows the collection of three-dimensional information and gravity [59]. 

Data are read by an antenna placed near the milking system and transmitted via IR 

signal to the herd management software. Through the comparison of the currently meas-

ured data with the stored activity pattern, the cow’s daily activity is separated from activ-

ities associated with oestrous behaviour using specially developed algorithms. The herds-

man receives an alert when cows exceed a user-defined threshold [60,61]. 

Various parameters, including neck activity, ear movement, leg position and activity, 

the number of steps, the duration and frequency of rest intervals, rumination behaviour, 

feeding times and reticulum temperature, can be used to indicate the onset of oestrous. 

The application of machine learning techniques to collect data automatically appears 

promising in identifying the onset of oestrous [62]. The advantages of automatic detection 

of oestrous compared to visual observation have been demonstrated, allowing a higher 

heat detection rate and improving fertility index in dairy cattle herds [63]. Enhanced de-

tection accuracy translates to reduced wastage of insemination, time-saving and dimin-

ished economic loss [64]. 

2.1.3. Sensors and Systems for Calving Monitoring 

Calving time in dairy farms can be crucial, especially for primiparous cows, as it can 

lead to complications and trauma for the cow and calf [65]. Difficult delivery can decrease 

milk production, cause uterine infection, increase veterinary intervention expenses, and 

potentially cause infertility in the cow, followed by premature culling [66]. 

Accurate calving prediction can reduce potential health risks to the calf from the 

mother or the environment [67]. This is more critical for cows with first-calving problems 

and those producing high-value calves, such as those obtained by embryo transfer [68]. 

Moreover, uncertainty in determining the exact time of birth reduces the chances of timely 

intervention [69]. 
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The use of sensors in animals to detect parturition is well documented in the scientific 

literature. Most studies use accelerometers in collars, ear tags or pedometers. These de-

vices can measure behavioural changes associated with parturition, such as a decrease in 

rumination and the duration of the decubitus position [70]. Various methods have also 

been evaluated to predict calving time by measuring changes in body temperature [71,72], 

ultrasound [73], blood levels of estrone sulphate and 17-b-estradiol [74] or progesterone 

[68,75]. Other methods include observing the progress of relaxation of the pelvic structure 

[76] and measuring electrolyte levels in milk [77]. However, these methods are often time-

consuming and expensive. An alternative method is the intravaginal sensor, which is 

placed near the cervix. At the moment of parturition, the sensor is released by detecting 

changes in temperature and light. These changes trigger an alarm to the farmer [78]. This 

sensor can be particularly useful in pasture and intensive farming where parturition takes 

place in specific, confined areas. Accurate prediction of calving time is of paramount im-

portance for cows reared in extensive grazing areas. The large area makes it difficult to 

intervene in time to prevent adverse calf outcomes caused by the parturient cow or an 

adverse environment. To address this, Calcante et al. [79] developed a GPS/GSM calving 

alarm system, the GPS-CAL (GPS-Calving Alarm). This device accurately predicts calving 

time and sends a text message to the farmer with the date and time of calving, animal ID 

and GPS coordinates of the calving location. These coordinates are in a Google Maps com-

patible format, allowing the farmer to easily locate the calving location using a mobile 

phone application. 

2.1.4. Sensors for Mastitis Detection 

Mastitis in dairy cows has a significant impact on animal health and welfare, leading 

to reduced milk yield and quality. This condition results in significant economic losses 

due to veterinary interventions, medical treatments and, in severe cases, culling [80]. 

The electrical conductivity (EC) of milk has been identified as a critical indicator for the 

early detection of mastitis in dairy cows. To this end, several researchers have proposed pre-

dictive models based on time series analysis of EC measurements and comparison with EC 

values from different quarters during the milking process [81–86]. The possibility to measure 

EC continuously and automatically during milking by means of electrodes integrated into the 

milking unit makes this parameter particularly useful for early detection of mastitis, especially 

when combined with milk yield and average milk flow [87]. Although studies have confirmed 

that the EC of milk from cows with both clinical and subclinical mastitis is significantly higher 

than that of healthy cows [83,86], other factors unrelated to mastitis (e.g., animal breed, num-

ber and stage of lactation, time between milkings, chemical composition of milk), may influ-

ence the EC of milk [81,86,88–90]. 

As milk EC is closely related to the physiological and health status of the individual 

animal, it is not sufficient to use absolute thresholds to detect changes. Instead, conduc-

tivity values should be compared with historical data from the same animal and differ-

ences analysed between quarters or over several days to identify pathological changes in 

the udder. Although changes in milk EC can be a useful indicator, they are not always 

reliable or sensitive enough to make a conclusive diagnosis [91,92]. 

Therefore, the integration of additional mastitis detection systems, such as somatic 

cell count (SCC) measurements, a milk colour sensor (the presence of a yellowish colour 

may indicate an underlying infection, whereas a reddish colour could be due to the pres-

ence of blood) or a biosensor to detect specific enzymes (e.g., L-lactate dehydrogenase), 

may facilitate a more comprehensive understanding. 

Lactate dehydrogenase (LDH) has great potential in the detection of clinical mastitis 

[93] and a biosensor using dry-stick technology with 82% sensitivity is commercially avail-

able [94]. 

One of the latest generations of devices is the NIRS analyser, which can determine 

milk quality (in terms of fat, protein and lactose concentrations) in real time [95]. The 

availability of data on high-yielding cows allows early detection of specific diseases such 
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as metabolic disorders, milk changes and mastitis, reducing financial losses and improv-

ing animal welfare [96]. 

2.2. Farm IoT Sensors 

IoT technologies allow a further advantage, which is real-time monitoring that guar-

antees automatic, fast, and efficient assistance in case of machine failure. Additionally, the 

implementation of robotic automation solutions has the potential to enhance productivity 

and foster competitiveness. The development of automation in dairy farming has led to a 

wide range of monitoring and control applications. These include using sensors for herd 

management, milk production optimisation, feed distribution efficiency and environmen-

tal control [97]. 

2.2.1. Automatic Milking System (AMS) 

Automatic milking systems (AMSs) can optimise the milking process and cow man-

agement compared to conventional milking systems [98]. The introduction of AMSs rep-

resents a breakthrough in dairy farming, as this system is not simply a replacement for a 

conventional milking parlour, but rather a new approach to managing a dairy farm [99]. 

AMSs change milking and the farmer’s schedule, feeding and housing management 

[100], allowing cows to voluntarily visit the robots several times a day. This increases milk 

production and improves animal welfare [100–102]. 

AMSs integrate sensor technology and employ M2M communication to automate 

many aspects of farm management, such as measuring and distributing concentrated feed 

based on the stage of lactation and milk production levels and monitoring milk quantity 

and quality at different scales (from the single udder quarter to the entire cow). This sen-

sor technology application can also provide information about physiological parameters 

linked to animal health (milk somatic cells, milk colour and conductivity, composition of 

milk, rumination activity) and herd fertility (heat activity). 

Thousands of data points are gathered daily by remote sensors fitted into the milking 

robot arm and into wearable devices (e.g., cow collar and pedometer), sent wirelessly to 

a network where they are next routed, often through the Internet, or to a server such as a 

personal computer or, more commonly, stored in the cloud. At this point, the data are 

analysed and acted upon according to the specific software in place, allowing deviations 

from the reference performance to be identified and the herdsman to be alerted to cows 

that require special attention (management by exception). IoT technologies offer the addi-

tional advantage of real-time monitoring of the AMS, ensuring automatic, fast and effi-

cient assistance in the event of machine failure. Finally, an application on a mobile device 

can be used to check that the AMS is working properly and to switch it off in the event of 

a problem. 

Overall, when evaluating the integration of an automatic milking system (AMS), the 

specific technical and operational characteristics of the farm should be taken into account. 

The success of AMS implementation depends firstly on the attitudes and expectations of 

dairy farmers [103–105]. 

Over the past three decades, AMSs have made it possible to fully automate milking 

activities, overcome difficulties in finding skilled labour, reduce heavy milking workloads 

and increase the number of milking events without additional labour costs. These ele-

ments, combined with improved animal welfare and increased milk yields, have led to 

more than 50,000 AMSs being in operation worldwide in 2020 and more than 50% of dairy 

farms in north-western Europe being equipped with automated milking systems by 2025 

[106]. These systems can be used in free-stall and pasture-based environments, and since 

2008 robotic milking has been extended to dairy buffaloes on a commercial farm in south-

ern Italy [107]. Recently, robotics tailored to rotary parlours have been trialled in Australia 

and are starting to spread in Europe, too. Automated rotary systems are suitable for large 

herds (>500 cows), allowing milking with much higher throughput levels than 
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conventional systems. Like AMSs, they employ sensor technology and M2M communica-

tion to identify individual cows and monitor milk quality and animal health. 

The latest evolution in automated milking introduces batch milking—a dairy farm-

ing practice where cows are milked by AMSs in groups at fixed milking times, typically 

two or three times a day. Robotic batch milking takes advantage of automated milking 

technology while allowing producers to manage cows and farm labour in their own way. 

2.2.2. Automatic Feeding Systems (AFS) 

Feeding represents a significant financial burden on dairy farms, accounting for up 

to 50% of total operating costs, and is the second most time-consuming task after milking. 

Automation of feeding practices has mainly involved the use of automatic concentrate 

feeders for cows to address nutritional deficiencies that cannot be met by a total mixed 

ration, while self-feeders for calves ensure that each animal receives a precise ratio of feed 

tailored to its nutritional requirements (Figure 4). Incorporating these technologies re-

duces the time needed to prepare and distribute feed, while increasing the ability to mon-

itor the health of individual cows and calves. 

 

Figure 4. Top-view photo of a calf feeding from an automatic milk delivery system. 

In the 2000s, advances were made in automated feeding systems designed for TMR 

and partially mixed rations (PMR) [108,109]. These systems remove the need for farmers 

to prepare and deliver TMR or PMR and allow programmable feed distribution and more 

frequent daily feeding. Recent studies have shown that this technology can reduce reli-

ance on manual labour, increase flexibility of work schedules [110], encourage cow feed-

ing activity, increase dry matter intake and promote natural feeding behaviour by provid-

ing meals more regularly [111–115]. 

Most robotic feeding systems consist of feed bunkers that are typically refilled every 

1–3 days. The feed is automatically loaded into a stationary mixer where the TMR is pre-

pared and then distributed to the cows by rail-mounted distribution wagons. Other AF 

systems are based on self-contained, battery-powered mixing and feeding robots. 

The weighing and programming of TMR are controlled by a dairy farm management 

system that connects the different barn elements (milking, feeding, monitoring, and sort-

ing equipment) into a network, according to the IoT logic. This system offers full control 

over TMR management, enabling the handling of feed components, recipes, animal 

groups, and batches. Other benefits include access to feeding history, stock control and 

assessment of economic evaluations related to feed composition, nutrient content and 

costs associated with variations in milk production volumes. This ensures better control 
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over feed efficiency, facilitated by specific web and smartphone applications that are usu-

ally connected to the cloud where the data are stored. 

NIR sensors enable non-disruptive, instant monitoring of ration composition, which 

has proven to be very useful in mitigating seasonal fluctuations and minimising differ-

ences between feed and rations [116]. In Tangorra et al. [117], a NIR diode was employed 

to calculate the homogeneity of the TMR produced in the tank of a mixer wagon. The 

application of NIR technology facilitates the consistent production of TMR, accompanied 

by cost and waste reduction and an enhanced economic efficiency and yield of the system 

[118]. 

Optical sensors, consisting of cameras that take multiple frames during mixing, are 

also employed for characterising the TMR, including measuring fibre length and ration 

homogeneity. These sensors minimise the potential for operator error by ensuring the pro-

vision of a more suitable feed. 

Automatic feed-pushing systems can reduce feed sorting. This tool has revolution-

ised farming activities by eliminating the need for manual re-pushing in the barn. Feed 

pushing is essential to increase animal intake [119,120]. 

The last automated feeding system realized represents the highest level of automa-

tion currently available. These devices can undertake tasks such as ration preparation, 

distribution, and re-pushing (Figure 5). Over 1250 automatic feeding robots have been 

installed to date [121]. 

 

Figure 5. Example of commercially available automatic feeding system solution. 

Each system comprises a kitchen and a distribution robot. The kitchen stores the raw 

materials required for ration production, and in the most advanced models the cutting 

and preliminary preparation of raw materials can also be conducted autonomously by 

automated system. Automatic distributors can be classified into three categories based on 

the level of automation achieved. The lowest level of automation is limited to distribution 

and mixing. The second level is capable of self-loading feed. Finally, the third-level AFS 

exhibits a comprehensive degree of automation, encompassing all necessary activities 

[119]. 

Automated feeding systems are transforming the dairy farming industry, boosting 

efficiency, reducing labour costs and improving animal health and productivity. As tech-

nology continues to advance, these systems are likely to become an increasingly integral 

part of modern dairy operations, providing a sustainable solution to the challenges of feed 

management. 

2.2.3. Environmental Quality Sensors 

Environmental sensors on cattle farms play a pivotal role in monitoring climatic and 

environmental conditions, including temperature, humidity, and air quality. The data 
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obtained from these sensors facilitate maintaining an optimal microclimate for the welfare 

and health of cattle, reducing the risk of heat stress and other climate-related issues. 

Heat stress disrupts animal homeostasis due to excessive temperature, resulting in 

higher-than-normal body temperature and increased respiratory and heart rate [122]. This 

multifaceted condition affects various physiological functions, including metabolism, the 

endocrine system, the immune system, and reproduction [123,124]. According to several 

studies, heat stress significantly impacts cattle metabolism and immune function, leading 

to a decline in overall health and productivity [123,124]. 

In response to heat stress, food intake decreases due to the direct negative impact on 

the hypothalamus’ appetite centre and the animal’s attempt to minimize endogenous heat 

production [125,126]. 

In addition, heat exposure alters the composition of the ruminal microbiome, reduc-

ing buffering capacity, which leads to an increase in lactate production. This metabolic 

imbalance, combined with a reduction in dry matter ingestion, results in an acidification 

of the rumen pH, which raises susceptibility to metabolic disorders [127]. 

Heat stress adversely affects rumination time, which is closely related to milk pro-

duction. During stress, the concentration of fat and protein in milk decreases due to a 

decrease in protein synthesis and an increase in somatic cells [128,129]; both milking du-

ration and time spent in the milking parlour decrease, further contributing to reduced 

production [130]. Therefore, it is imperative that appropriate measures are taken to man-

age and mitigate the damaging effects of these adverse climatic conditions. 

Barn design and natural ventilation are fundamental from a structural and plant en-

gineering perspective. Farms should be designed with appropriate orientation to promote 

natural ventilation and improve structural aeration [131,132]. 

An example of a typical cooling system applied in a dairy farm can be observed in 

Figure 6. 

 

Figure 6. Cooling system applied in an Italian dairy farm equipped with high-speed fans and low-

pressure foggers. 

Convective cooling, using high-speed fans designed for low air volume (LVHS) and 

low-speed fans meant for high air volume (HVLS), can help in reducing barn temperature 

[133]. The combination of fans and wetting systems has shown to improve ingestion, boost 

production, and enhance animal comfort [134]. 
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In hot dry climates, high-pressure foggers reduce the ambient temperature by releas-

ing small water droplets, while low-pressure foggers with large water droplets are opti-

mal for climates with high relative humidity [135]. 

A well-regulated cooling system controlled by the Temperature-Humidity Index 

(THI) effectively allows management of heat stress in dairy cows. 

The THI index, which considers dry temperatures, wet bulb temperatures, and rela-

tive humidity on livestock, is fundamental in assessing heat impact on cows [122,136]. The 

THI is calculated in several ways, but the most recognized formula is as follows (1): 

𝑇𝐻𝐼𝑖𝑗𝑘 = (1.8 ×  𝐸𝑇𝑖𝑗𝑘 + 32) − (0.55 − 0.0055 ×  𝑅𝐻𝑖𝑗𝑘) ×  (1.8 𝑥 𝐸𝑇𝑖𝑗𝑘 + 32) − 58 (1) 

where ET is the environmental temperature (°C) and RH is the relative humidity (%) [137]. 

The threshold value for animals’ welfare is around 68, but can vary based on factors like 

breed, age, and lactation number [138]. 

This system combines wetting and force ventilation to promote heat dissipation by 

evaporation, which is more efficient and economical than indirect cooling. 

Sensors along the feeding aisle detect cow presence during mealtimes and when the 

THI exceeds the threshold value of 68, foggers moisten the animals, followed by fan acti-

vation to facilitate evaporation and maintain optimal surface temperature. Wetting, paus-

ing, and fan activation times are automatically adjusted according to THI levels, ensuring 

optimal cooling and animal comfort (Figure 7). 

 

Figure 7. Sprinkler systems installed above the cow feeding area in a typical Italian farm. 

The assessment of environmental conditions in cattle farms is conducted using dif-

ferent types of sensors. While THI is determined solely by temperature and relative hu-

midity, a comprehensive and accurate evaluation of ambient environment requires mon-

itoring of additional parameters, including the following: 

- Temperature (°C), measured using a thermometer. It is the most critical parameter 

for monitoring ambient temperature to avoid extreme heat conditions. 

- Relative humidity (%), assessed using a hygrometer. When combined with tempera-

ture data, provides a clearer understanding of heat stress risks and THI Index. 



Animals 2024, 14, 3071 16 of 24 
 

- Air velocity (m/s), measured using an anemometer (3D anemometer can also meas-

ure wind direction). It is fundamental for evaluating ventilation efficiency and ensur-

ing proper airflow in barns. 

- Solar radiation (W/m2), monitored with a pyrheliometer. It helps in assessing the im-

pact of direct sunlight on animals, especially in outdoor or semi-open farm environ-

ments. 

The use of weather stations enables correlation of indoor and outdoor conditions al-

lowing for more precise management of open or semi-open naturally ventilated buildings. 

These sensors continuously collect various environmental data and send them to a control 

unit to adjust cooling units. This type of automated system ensures precise intervention 

when necessary, reducing water and energy wastage. 

The development of sophisticated automated monitoring techniques has enabled the 

integration of sensors for environmental monitoring with other physiological parameters 

of animals, providing detailed real-time information on individual animals. Parameters 

examined include rectal temperature [122], deep body temperature, e.g., vaginal temper-

ature [139], the utilisation of thermo-recorders implanted in the skin, rumen temperature 

sensors, infrared thermography and milk temperature recording [140], as well as heart 

rate, respiration rate, sweating rate, and lying patterns of the animals. This integration 

enhances the ability to predict heat stress and respond with tailored interventions. 

Moreover, cameras used for imaging analysis can offer additional insights into ani-

mal behavioural patterns, such as feeding and drinking activities, which have been 

demonstrated to be strongly related to heat stress conditions. By combining environmen-

tal and behavioural data, farms can more accurately assess cattle welfare and take preven-

tive measures. 

Finally, the integration of environmental sensors with data management systems en-

ables predictive analysis and timely intervention, improving production efficiency and 

sustainability [135]. By anticipating heat stress events and automating cooling measures, 

farms can minimize production losses and optimize resource use, contributing to both 

animal welfare and farm profitability. 

3. Discussion 

Automatic and IoT technologies enable the control and management of larger herds 

by providing detailed information on each cow. Precision Dairy Farming (PDF) involves 

using advanced technologies to monitor and manage cows individually, enhancing farm 

efficiency and animal welfare. 

As defined by [141], PDF is “the use of information and communication technologies 

for improved control of fine-scale animal and physical resource variability to optimise 

economic, social, and environmental farm performance”. Similarly, Bewley [142] de-

scribes PDF as the use of new technologies to measure physiological, behavioural, and 

production indicators of individual cows to improve management strategies and farm 

performance. 

PDF systems use sophisticated technology to collect data that enables farmers to 

make data-driven decisions. Figure 8 outlines the different stages of a typical PDF system 

[42,143]: (i) data acquisition, where sensors monitor and collect specific animal-related pa-

rameters; (ii) data interpretation, where specific algorithms process the data collected in 

the previous stage and extract meaningful insights (e.g., reduced rumination combined 

with a rise in temperature may indicate illness or imminent calving). These can be en-

hanced by historical records and non-sensor data [144]; (iii) information integration, 

where the data processed in stage (ii) is combined with other relevant information (tech-

nical, economic, etc.) to support management decisions; (iv) decision execution, where, 

based on the information, actions are recommended and executed autonomously by the 

farmer or the system (e.g., the system can adjust feeding strategies or trigger a medical 

intervention based on health indicators). 
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Figure 8. From sensor data to decision-making in a dairy farm management system (modified from [42]). 

Effective data interpretation relies on algorithms that transform raw data into meaningful 

insights. This process requires a clear definition of the animal or farm status to be monitored 

and an established standard for comparison. The challenge is that there is considerable varia-

bility among individual cows, which makes signal interpretation more difficult. 

However, the variability among cows can make signal interpretation complex. For 

example, current models for detecting illnesses often struggle with false alarms due to 

diverse data inputs. This trade-off between sensitivity and specificity [42] highlights the 

challenge of achieving accurate diagnoses. 

Making informed decisions depends on the system’s ability to apply suitable man-

agement strategies based on the data [145]. False positives or negatives can reduce the 

effectiveness of interventions, making the system’s precision critical for practical use. 

The success of PDF systems depends on their cost-effectiveness and socio-economic 

impact. While many PDF systems focus on improving disease management (e.g., masti-

tis), increasing production efficiency (e.g., automatic feeders), and reducing labour (e.g., 

automated milking), these improvements must be balanced against the financial invest-

ment required [145,146]. For farmers, the long-term benefits—such as enhanced herd 

health, improved production, and labour savings—must justify the initial setup and on-

going operational costs. 

The PDF approach incorporates a comprehensive range of technologies designed to 

optimise the efficiency, productivity and welfare of dairy cattle [147]. Integrating data 

from milking, feeding, and monitoring systems offers greater potential. Using a comput-

erized information system to combine and interpret data from sensors, databases, and 

models enables farmers to maximize the value of the information collected [40,148]. For 

example, integrating milking and feeding systems with health monitoring allows farms 

to detect critical issues or optimize feeding strategies across the herd. Comprehensive 

farm management tools like Lely Horizon (https://www.lely.com/gb/solutions/farm-man-

agement/horizon/ accessed on 14 October 2024) or DeLaval DelPro Farm Management 

(https://www.delaval.com/en-gb/ accessed on 14 October 2024) streamline decision-mak-

ing, facilitating improvements in production quality, cost reduction, and feed optimiza-

tion. Additionally, multi-criteria analysis (MCA) tools can help refine farm strategies, bal-

ancing different factors to enhance overall farm performance. 

From this perspective, PDF should go beyond monitoring technologies to include 

automated and mechanised systems that improve dairy management processes. These 

technologies are increasingly moving towards online platforms, using reliable network 

solutions to provide better services to users [149]. This trend marks the growing role of 

the “Internet of Things” (IoT) in modern dairy farming, with increasingly connected sys-

tems enhancing farm management capabilities. 
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However, in the agricultural context, several limitations hinder the diffusion of IoT 

systems, including digital infrastructure and connectivity, the costs associated with adopt-

ing new technologies, and the skill levels of farmers [26]. Worker training is needed to 

develop the capacity to manage and analyse the data collected through IoT technologies. 

This new approach significantly facilitates herd monitoring and management practices 

[150]. The Smart Farming approach maintains high animal welfare standards to increase 

animal production performance and longevity. This is achieved through data collection 

technologies that, when properly processed, enable the early detection and prevention of 

potential issues [151]. 

Further advancements are needed to prioritize data protection and cybersecurity, 

emphasizing the importance of implementing robust security measures to safeguard val-

uable information [26]. As technology advances in the agricultural sector, it is important 

to ensure data protection to maintain consumer confidence and uphold the integrity of 

dairy operations. Proactive measures must be taken to address these challenges and effec-

tively mitigate potential cybersecurity threats. 

4. Conclusions 

This paper presents an overview of new technologies potentially relevant to dairy 

farms, including automated milking systems (AMSs), cow monitoring sensors, automated 

feeding systems and environmental quality sensors. The integration of these technologies 

within the Internet of Things (IoT) represents a transformative shift in dairy farming, en-

abling farmers to increase herd productivity, improve animal health and control produc-

tion cycles proactively, compared to the traditional reactive approaches prevalent in con-

ventional dairy farming. 

Precision Dairy Farming (PDF) revolutionises dairy management by enabling indi-

vidual cow monitoring, optimising feeding and health strategies and reducing labour re-

quirements. The success of these systems depends not only on the quality of the data col-

lected but also on the seamless integration of different systems and their cost-effective-

ness. By strategically aligning technology investments with practical farm needs, PDF of-

fers farmers the potential for improved efficiency, productivity and sustainability. Studies 

have shown that farms using these smart technologies can achieve productivity gains, un-

derlining their importance. 

However, several constraints hinder the widespread adoption of IoT systems in ag-

riculture, so it is crucial to prioritise the digitisation of farms and implement robust secu-

rity measures to protect sensitive data to ensure consumer trust and the long-term success 

of these innovations in the dairy industry. 
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