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Abstract
Alliances and conflicts in social, political and economic relations can be represented
by positive and negative edges in signed networks. A cycle is said to be positive if the
product of its edge signs is positive, otherwise it is negative. Then, a signed network
is balanced if and only if all its cycles are positive. An index characterizing how
much a signed network deviates from being balanced is known as a global balance
index. Here we give a step forward in the characterization of signed networks by
defining a local balance index,which characterizes howmuch a given vertex of a signed
network contributes to its global balance. We analyze the mathematical foundations
and unique structural properties of this index. Then, we apply this index to the study
of the evolution of international relations in the globe for the period 1816–2014. In
this way we detect and categorize major historic events based on balance fluctuations,
helping our understanding towards newmixed approaches to history based on network
theory.
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1 Introduction

Complex systems are, by definition, networked [1]. Therefore, their complexities
demands the use of a combination of global and local graph-theoretic invariants to
understand their structures and functions [2, 3]. A particular case of complex system
is the representation of conflicting interactions bymeans of signed networks [4]. In this
case, for instance, positive relations may refer to friendship, collaboration or alliances,
and negative ties represent enmities, opposite view about a topic, or conflicts. When
the set of vertices of a signed network can be split into two subsets such that every edge
between nodes within each subset is positive, and negative edges only interconnecting
vertices of the different sets, the system is called balanced [5, 6]. A balanced network
does not contain negative cycles—that is, cycles in which the product of the edge
signs is negative. When a signed network is not balanced, it is important to know how
unbalanced it is, whichwill give rise to an index characterizing the degree of balance of
the network as a whole [7–12]. Moreover, in an unbalanced network not every vertex
contributes the same to the global level of balance of the graph. Thus, it is important
to know the local degree of balance of the vertices. This concept was proposed by
Harary [13] and further by Cartwright and Harary [6]. However, these authors did not
systematically studied any particular index of the degree of local balance in signed
graphs.

The theory of network balance emerged from the early days of social network
analysis [14, 15], and nowadays has become an important paradigm for the analysis
of sociometric relations ranging from individuals, to institutions and countries [7, 8,
10–12, 16]. In particular, balance theory plays an important role in the analysis of
international relations (IR), where signed networks are used to represent countries
and their alliances/conflicts [17–24]. This represents an alternative approach to the
more classical, statistically-oriented, frameworks of “quantitative history” [25–27],
and “cliodynamics” [28]. Coalition models for IR have also been proposed to account
for local versus global alignment among countries, showing that, for example, the
existence of two competing world coalitions leads to a more stable distribution of
actors, while a single world leadership enables the emergence of unstable relationships
[29]. These previous studies on networks in IR (NIR) have focused on detecting global
patterns on the temporal evolution of the world as a whole. However, to connect
NIR with historical narrative it is necessary to zoom in the individual contribution
of every country to the balance/unbalance of the world in a given historic period.
Consequently, here we define a local balance index based on algebraic graph theory
and study several of its mathematical properties. In addition, we design an approach
based on this index to identify the major events in the world history for the period
between 1816 and 2014. In this way we connect a graph-based quantitative analysis of
NIR with the qualitative, narrative account of history [27, 30]. The current work can
be contextualized in a general framework of quantitative history based on the so-called
“mixed method”, which “combines quantitative and qualitative research techniques,
methods, approaches, concepts or language into a single study” [31, 32].

The current paper is subdivided into two interrelated parts. In Part I we motivate,
develop, analyze, interpret and compare a new local balance index. The goals of
this part of the paper are: (1) to provide a motivation about the necessity for the
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development of a local balance index; (2) to define mathematically a local balance
index that accounts for the role of an individual vertex to the global balance in a signed
network; (3) to analyze several of themathematical characteristics of this local balance
index remarking its structural interpretability; (4) to provide an interpretation of the
local balance index in terms of a dynamical process taking place in signed (social)
networks. In Part II we develop a general methodology for connecting significant
changes in the local balance index of individual countrieswith historic events involving
those countries at a given time. The goals of this second part of the paper are: (1)
to apply the local balance index to the study of IR among countries in the world;
(2) to design and test a general methodology allowing to match the changes (peaks
and valleys) in the time series of countries’ local balance with major historic events
involving those countries at this time; (3) to perform a classification of major historic
events on the basis of the nature of the change (peaks and valleys) occurring in the local
balance; (4) to link the identification of peaks and valleys with a narrative of historic
events; (5) to analyze the temporal series of local balance of individual countries in
their respective networks of IR in the period 1816–2014.

2 Preliminaries

A binary undirected signed network is represented by a triple G = (V , E, σ ), where
V is the set of the n nodes, E is the set of the undirected edges e = (v,w) with
v,w ∈ V , and σ is a mapping σ : E → {±1} which assigns to each edge a sign.
The signed network can be completely characterized by the n × n signed adjacency
matrix A = [Avw]. Specifically, if there is no edge (v,w), Avw = 0; otherwise,
Avw = +1 represents a positive edge, and Avw = −1 represents a negative edge. We
assume graphs without self-loops so that the matrix A has null diagonal entries. The
underlying unsigned network, i.e. the graph obtained from G by ignoring the sign of
the edges, is associated with the matrix |A| of the absolute value entries of A. The
absolute degree of a node v, denoted by kv , is defined to be the number of edges incident
to that node, irrespective of the edge signs, that is kv = ∑

w |Avw|. A non-empty path
in which only the first and the last node coincide is called cycle. The sign of a cycle
is the product of the signs of its edges. A signed graph G is structurally balanced if
there are no negative cycles, or, equivalently, there are no cycles with an odd number
of negative edges (see [6]). In a balanced network, the set V can be partitioned into
two subsets such that every edge between them is negative, while every edge within
them is positive (see [5]).

3 Part I. Local balance index

3.1 Motivation of the local balance index

Let us motivate the necessity of defining a local balance index with one example
from the real-world. In the period 1904–1906 France and Russia were allies (Franco-
Russian treaty), as were Japan and Britain (Anglo-Japanese alliance) and France and
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Fig. 1 a Illustration of the relations between Great Britain, France, Russia and Japan during the Russo-
Japanese war (1904–05). b The mathematical framework for the theory is the representation of IR as signed
networks, in which positive edges (green solid lines) represent interstates alliances and negative ones (red
dashed lines) are reserved for any kind of conflict/enmities between the parts. c Temporal evolution of the
“local balance” of the countries in the examined time period. The gray area highlights the years in which
the Russo-Japanese war took place. (Color figure online)

Britain (Entente Cordiale). However, Russia and Britain were enemies at the time
when Russia went to war with Japan. Therefore, France, Great Britain and Russia
formed a signed triangle [4] with two positive and one negative edge (see Fig. 1a).
Then, if Britain made effective its support to Japan, Russia may declare war against its
enemy Great Britain. This would oblige France to make effective its support to Russia
as they were allies, but to enter into a contradiction with its new ally, the United
Kingdom. This conflictive situation is a consequence of the fact that the triangle
UK-Russia-France is unbalanced (Fig. 1b, top panel). The real consequence was that
neither France supported Russia during the war, nor Great Britain made its alliance
with Japan effective. These contradictions would not exist if the triangle between these
countries were balanced (Fig. 1b, bottom panel), where two factions (Russia-France
vs. Japan-UK) would be formed.

As can be seen in Fig. 1b, top panel, UK–Japan–Russia formed a balanced triangle.
Consequently, in total, Japan participates in one balanced triangle and in zero unbal-
anced ones, Russia and Great Britain are part of one balanced and one unbalanced
triangle, and France participates in an unbalanced one. Thus, not all countries have
the same balancing position in this historic event. To capture these differences in the
contribution of individual nodes to the global balance of the network we will define a
local balance index.
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3.2 Definition andmathematical properties of the local balance index

A closer look at Fig. 1b, top panel, reveals that France is not only related to the rest
of conflicting nations via a balanced triangle, but also by means of the unbalanced
square RUS-JAP-UKG-FRA. The importance of considering cycles beyond triangles
for characterizing the degree of balance of a network iswell known since the pioneering
works of Cartwright and Harary [6] (see also [11]). Instead of counting signed cycles,
which is a computationally costly procedure, we will quantify the local balance by
counting local closed walks (LCW). A LCW of length k starting at node v in a signed
network G is given by

(
Ak

)
vv
, where A is the adjacency matrix of the network. The

diagonal elements of the k−power of this matrix can also be written as: (Ak)vv =
# of positive LCW of length k − |# of negative LCW of length k|.

Let us consider a LCW of length k with one negative edge e = {p, q}. Every node
v �= p, q is at distance i from p and at distance n − i − 1 (i = 1, . . . , n − 2) from q.
This means that the longer the LCW, the smaller the average influence of the negative
edge on the rest of the nodes of the cycle. Among the several choices giving rise to
specific matrix functions [33], we choose here to penalize every LCW of length k by
1/k!, such that we have the following definition.

Definition 1 Let G be any signed graph with adjacency matrix A. Let |A| be the
entrywise absolute of the adjacency matrix A of the network. The local balance index
of v ∈ V is defined as:

κv(G) :=
∑∞

k=0(A
k)vv/k!

∑∞
k=0(|A|k)vv/k! = (exp A)vv

(exp|A|)vv

, (1)

We now prove some general properties of the local balance index.

Proposition 1 Let G be any signed connected graph and v ∈ V . Then, κv(G) is
bounded as follows:

0 < κv(G) ≤ 1. (2)

Proof Let α1 > α2 > . . . > αn and a1, a2, . . . , an be the eigenvalues and associated
eigenvectors of A, respectively. Similarly, let β1 > β2 > . . . > βn and b1, b2, . . . , bn
be the eigenvalues and eigenvectors of |A|, respectively. Then, we can write Eq. (1)
as:

κv(G) =
∑n

j=1(a j )
2
ve

α j

∑n
l=1(bl)

2
ve

βl
, (3)

where (a j )
2
v denotes the square of the vth entry of the vector a j . From Eq. (3), it is

clear that κv(G) > 0 for any v, since all terms within each sum are nonnegative and
at least one of the (a j )v is different from zero.
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To prove that κv(G) ≤ 1, we use the power-series expansion of the exponential

function: (eA)vv = ∑
k

(Ak )vv

k! . We recall that (Ak)vv counts the difference between
the number of positive and negative closed walks starting and ending at node v. Let us
denote by

(
W+)

k
vv and

(
W−)

k
vv the number of positive and negative walks of length

k starting and ending at the node v, respectively. Then, the local balance index can be
rewritten as:

κv(G) =
∑∞

k=0
1
k! [(W+)kvv − (W−)kvv]

∑∞
k=0

1
k! [(W+)kvv + (W−)kvv]

. (4)

Since (W+)kvv − (W−)kvv ≤ (W+)kvv + (W−)kvv , then κv(G) ≤ 1. ��
Let us now recall two basic concepts of balance theory on signed graphs.

Definition 2 Let G be any signed, connected graph and let C be any cycle in G. The
sign of the cycle C is the product of the signs of all edges in the cycle. C is called
positive if its sign is positive, otherwise it is negative.

Definition 3 Let G be any signed, connected graph. The signed graph G is balanced
if and only if, all of its cycles are positive.

We then have the following property of the local balance index.

Proposition 2 Let G be any signed connected graph. G is balanced if and only if
κv(G) = 1 for any node v.

Proof Recall that the global balance index of G is defined as [10]

κ(G) := tr
(
eA

)

tr
(
e|A|) ,

where tr is the trace of the corresponding matrix. Then, we can write:

κ (G) =
∑n

v=1 (κv (G) SCv)
∑n

v=1 SCv

, (5)

where SCv = (e|A|)vv is the subgraph centrality of a node v [34]. It has been proved
in previous works that κ(G) = 1 if and only if G is balanced (see [10]). By Eq. (5),
this is true if and only if and only if κv (G) = 1 for all v ∈ V . ��
The lower bound of κv(G) can be improved by virtue of the following proposition.

Proposition 3 Let G be any signed connected graph and let kmax = max
v∈V kv . Then,

κv(G) ≥ e−2kmax . (6)
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Proof Let us denote the smallest eigenvalue of A by αmin . Then, using the spectral
decomposition of A, we obtain the following inequality:

(eA)vv =
n∑

j=1

(a j )
2
ve

α j ≥ eαmin

n∑

j=1

(a j )
2
v = eαmin

In the last step, we have used the fact that
∑

j (a j )
2
v = 1, which follows from the

orthonormality of the eigenbasis {a j }. To find a lower bound for αmin , we use Gersh-
gorin’s theorem. According to it, all eigenvalues of A lie on the union of the disks Dv

centered at Avv andwith radius Rv = ∑
w �=v |Avw|. Because A is the adjacencymatrix

of a graph without self-loops, Avv = 0 for all v and Rv = ∑
w �=v |Avw| = kv , i.e.,

the radius of each Gershgorin disk is the absolute degree of the corresponding node.
Consequently, all eigenvalues must lie within a disk centred at the origin and with
radius kmax . As a consequence, αmin ≥ −kmax and (eA)vv ≥ e−kmax . Repeating the
same calculation for e|A|, we find that (e|A|)vv ≤ eβmax ≤ ekmax . Finally, combining

these two inequalities results in κv(G) = (eA)vv

(e|A|)vv
≥ e−2kmax . ��

Corollary 1 Let G be any signed connected graph. Then, κv(G) ≥ e2−2n.

We now find which graph has the lowest possible κv(G).

Proposition 4 Let K−
n be the complete graph with all-negative edges. Then,

lim
n→∞ κv(K

−
n ) = 0, ∀v ∈ V . (7)

Proof The spectrum of the complete graph is Sp(Kn) = {(−1)[n−1], (n−1)[1]}, while
the spectrum of the complete all-negative graph is Sp(K−

n ) = {(1−n)[1], 1[n−1]} (the
superindices indicate the multiplicity of each eigenvalue). Since K−

n is a complete
all-negative graph, all nodes are equivalent and therefore (eA)vv is independent of v.

Consequently, (eA)vv = tr(eA)
n = e1−n+(n−1)e

n . Similarly, (e|A|)vv = en−1+(n−1)e−1

n .
Substituting in the expression of the local balance index defined in Eq. (1), we finally
get:

κv(K
−
n ) = e1−n + (n − 1)e

en−1 + (n − 1)e−1 ,

which becomes zero in the limit n → ∞. ��

The following result regarding the local balanced of cycle graphs [35] is proved in
the Sect. 1 of the Supplementary Material (SM).
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Proposition 5 Let Ck−
n be a signed cycle of length n and k negative edges. Then, the

local balance index of any node in Ck−
n is

κv

(
Ck−
2l

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑2l−1
j=0 exp

(

2 cos

(
(2 j + 1) π

2l

))

∑2l−1
j=0 exp

(

2 cos

(
jπ

l

)) k odd,

1 k even,

(8)

for even cycles and

κv

(
Ck−
2l+1

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑2l
j=0 exp

(

2 cos

(
2 jπ

2l + 1

))

∑2l
j=0 exp

(

2 cos

(
(2 j + 1) π

2l + 1

)) k odd,

1 k even,

(9)

for odd ones.

Remark 1 The previous result illuminates several important structural aspects of the
local balance in cycles. First, that every node in a signed cycle will have the same
local balance independently of how close it is from the negative edges. Second, that
the parity of the number of negative edges but not their number is what determines
balance in signed cycles. Third, that for sufficiently large n the presence of the negative
edge becomes negligible, fulfilling our intuition that the umbalance is “diluted” in very
large cycles. This statement is expressed in the following corollary.

Corollary 2 Let Ck−
n be a signed cycle of length n and k negative edges. Then

κv

(
Ck−
n→∞

) → 1.

Finally, we give a result, also proved in Sect. 1 of the SM, concerning a type of
graph whose structure is found in several practical applications, such as NIR, as we
will soon show.

Definition 4 Let Kn be a complete graph with n nodes. Let l ≤ n − 1. Then, pick l
nodes in Kn to form the set S and change the sign of their edge (vi , v j ) to negative if
and only if

{
vi , v j

} ⊂ S. Then, the set S forms a negative clique of l nodes in Kn and
we will denote the resulting graph as Kn(K

−
l ).

Proposition 6 Let Kn(K
−
l ) be a graph defined as before. κv

(
Kn(K

−
l )

)
tends to zero

when l → ∞ and m := n − l remains finite.

3.3 Local balance and diffusion of ’information’

We now show how the local balance index can be obtained in an alternative way as
a result of a non-conservative diffusion process. It has been claimed that diffusion
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[36] of information, generally speaking, in social systems can be a non-conservative
process [37–39]. By non-conservative it is meant that the amount of information at
a given time can be smaller/bigger than that at the initial time. Lerman and Ghosh
[40] defined the non-conservative Laplacian of a network as a way to model such kind
of diffusive processes. In the case of a signed network with adjacency matrix A the
Lerman-Ghosh Laplacian could be read as:L := χ I − A and for the unsigned version
of the same network, we should define L̃ := χ I − |A|, where χ is a scalar parameter
and I is the identity matrix.

Then, the non-conservative diffusion on the signed graph is described by

u̇ (t) = −Lu (t) , u (0) = u0, (10)

where u(t) is the state vector at time t and u0 is the initial state. The solution of Eq.
(10) is then

u (t) = e−Lt u0 = e−χ t et Au0.

This solution can be split into two terms:

e−χ t

⎧
⎪⎨

⎪⎩

⎡

⎢
⎣

(
et A

)
11 (u0)1
...(

et A
)
nn (u0)n

⎤

⎥
⎦ +

⎡

⎢
⎣

(
et A

)
12 (u0)2 + · · · + (

et A
)
1n (u0)n

...(
et A

)
n1 (u0)1 + · · · + (

et A
)
nn−1 (u0)n−1

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
,

where the first term accounts for the amount of diffusive information that departs from
a node and returns to (or is retained at) it.

Obviously, we can write down the same equation for the unsigned version of the
network, such that:

˙̃u (t) = −L̃ũ (t) , ũ (0) = u0,

with the same initial condition as before. Thus, ũ (t) = e−χ t et |A|u0.
If we want to know how much information is "lost" in a non-conservative diffusion

on a given network as a consequence of the existence of signed edges in it, we can
calculate the ratio uv (t) /ũv (t) with initial condition (u0)i = δiv (where δiv denotes
the Kronecker delta), such that

uv (t)

ũv (t)
= e−χ t

(
et A

)
vv

e−χ t
(
et |A|)

vv

=
(
et A

)
vv(

et |A|)
vv

.

Therefore, the local balance index can be interpreted as the ratio of the information
"lost" in a non-conservative diffusion on a signed network when t = 1.

Finally, we remark that the parameter t ∈ R
+ can also be interpreted as an overall

weight that is applied to every edge of the network. Consequently, we can define a
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weighted version of the local balance index:

κv (G, t) :=
(
et A

)
vv(

et |A|)
vv

.

We have the following result:

Proposition 7 Let κv (G, t) be the local balance index of a node v in an unbalanced
graph G, where every edge is weighted by a factor t ∈ R

+. Then,

lim
t→∞ κv (G, t) = 0, (11)

lim
t→0

κv (G, t) = 1. (12)

Proof On the one hand,

lim
t→∞ κv (G, t) = lim

t→∞
(a1)2ve

tα1

(b1)2ve
tβ1

= lim
t→∞

(a1)2v
(b1)2v

et(α1−β1) = 0,

because β1 > α1 (theorem 3.9 in [16]). On the other hand,

lim
t→0

κv (G, t) =
∑n

j=1(a j )
2
v

∑n
j=1(b j )2v

= 1.

��

4 Part II. Application of local balance to global international relations

The main goal of this second part of the paper is to apply the local balance index to
an in-depth analysis of the global international relations (IR) for the period between
1816 and 2014. While previous analysis of the IR for similar periods have focused
on the study of the global balance of signed networks [7, 11], here we concentrate
our analysis on the countries’ role on this global balance. Therefore, by an in-depth
analysis we refer to the fact that we will study the connection between the countries’
local balance index–a purely topological index derived from signed networks of IR–
with major historical events involving these countries in specific periods of time.
For conducting this analysis we base the current study in the general methodological
scheme illustrated in Fig. 2. We detail the methodological aspects of each step of this
scheme in the following separate subsections.
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Fig. 2 Illustration of the general scheme for relating the local balance index of signed networks with major
historic events which have occurred in the World in the period 1816–2014. First, a ground truth matrix of
events is created from databases of historic events for each of the 217 countries analyzed (1). Independently,
the networks of international relations (2a) are created from the information provided at the CoW database
and the time series of country’s local balance are built (2b). Meaningful peaks and valleys in the time series
of local balance are detected (2b). Then, a matching process (3a) allows to pair the peaks/valleys detected
in the time series with the events recorded in the ground truth. The statistical significance (3b) of these
matchings is then analyzed and reported

4.1 Methodology and statistical assessment

4.1.1 Construction of signed networks of IR

For every year in the period 1816–2014 we construct a signed network of IR, which
corresponds to the step 2a in Fig. 2. The nodes of each network correspond to a subset
of the 217 countries studied (see Table 5 in the SM for a list). The connections between
the countries correspond to signed relations reported in databases different from the
sources used for constructing the ground truth matrix. These databases were collected
from [41, 42] for alliances, [43] for enmities, and [44] for strategic rivalries. The
coding of inter-country relations is as follows. Two states are assigned a score of +1
at year t if they had any type of alliance (defense pact, offense pact, nonaggression
pact, neutrality pact) during that year and zero otherwise. Consultation pacts (see
[42]) are excluded. On the other hand, a dyad is assigned a score of −1 at time t if
members hadmilitarized interstate disputes at time t or were considered to be strategic
rivals at this time according to the Colaresi et al. [44] data. Note that alliances may
be asymmetric (see [41] for further explanation), while all enmities are symmetric.
Since the number of asymmetric edges was very small, we converted data for each
year into an undirected, unweighted, signed network where nodes represent countries
and edges their relations in a given year. If two countries happen to be part of both an
alliance and a conflict in the same year, we consider the conflict to be dominant, and
therefore the edge to be negative.
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Data are thus arranged in a temporal network spanning 199 years with a total of 217
nodes. We emphasize that the number of nodes is far from constant over time, as new
states are created and old empires disappear. In fact, the number of nodes typically
increases, from a minimum of 23 nodes in 1816 to a maximum of 195 nodes in 2014.
The average number of nodes per year is 66. The edge statistics follows a similar trend:
it increases from 88 links in 1816 to 8124 in 2014, with an average number of 1213
edges per year. On average, 41.22% of the edges are negative, although this number
also fluctuates over time: a minimum of 1.49% negative interactions is reached in
2007, while the maximum of 97.30% is observed in 1880. It should also be noted that
annual networks are typically not connected and often have many isolated nodes. The
giant component represents on average 69.42% of the entire network, with a rather
exceptional minimum of 33.33% in 1871 and a maximum of 95.38% in 2011 and
2013. Over the last 50years, the giant component always exceeds 90% of the whole
network. Since it selects the main actors on the geopolitical scene, the individual local
balance values have been computed for such a component only.

4.1.2 Construction of ground truth matrix

First we create an empty matrix 	 with Nc = 217 rows, each one corresponding to
one of the 217 countries analyzed in this work. Every one of the Nt = 199 columns
corresponds to one of the years in the period 1816–2014 which are covered by this
study. Then, we populate this matrix by using information from different sources
about historic events involving a given country for specific years (see step 1 in Fig. 2).
Notice that these sources of historic data are independent of those used before to
create the NIR. Historical events are classified into two groups: ’peaceful’ events and
’conflicting’ events. Peaceful events are assigned a (+1) sign while conflicting events
are assigned a (−1) sign. Assigning (+1) to peaceful events and (−1) to conflicting
events is a conventional agreement. Reverting such assignment would not affect the
obtained results. Peaceful events include:

1. The establishment of treaties, accords or agreements after wars;
2. The implementation of democratic procedures, like elections, change of regime or

adoption of constitutions;
3. Countries becoming independent from their colonial domination.

On the other hand, conflicting events include:

1. The outbreak of an armed or trade conflict between two or more countries, or the
entry of a country into an existing conflict, and in some cases clearly identified
battles, invasions, or expeditions;

2. Revolutions, insurrections, or civil wars within a single nation, but with outside
nations involved in support of certain warring factions. In this context, wars of
independence from foreign domination, such as those in 19th-century Europe or
20th-century Africa, deserve special mention;

3. The effects of coups d’etat, which alter geopolitical arrangements and relations
with foreign nations;

4. Crises in the broad sense, that is, the institutional, military, or economic collapse
of a given nation brought about by international political conditions.
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For example, given that Germany (GMY) is one of the participants in the Triple
Alliance of 1882, we assign a (+1) sign to the entry corresponding to the pair (GMY,
1882) in the ground truth matrix. Similarly, due to the French involvement in the
Sino-French War (1884–1885), we assign a (−1) sign to the pair (FRN, 1884).

To be consistent with the IR database (see next section), we only include events
if the involved country appears in the IR database in the year of the event and in the
previous one. For example, the Indian Rebellion of 1857 does not translate to a (−1)
in (IND, 1857), because India is not considered an autonomous entity in the IR dataset
until 1947 [notice, however, that this event does translate into a (−1) in the entry
(UKG, 1857)].

In total, we have considered 1533 major historic events. The countries participating
in the largest number of historic events are: UK (76), Russia (61), USA (61), France
(52), Italy (45), Germany (44), Turkey (43) and China (42). They coincide with the
major actors of history during the centuries XIX-XXI. There are 47 countries, mainly
small ones, for which there are no recorded major historical event. The years with the
largest number of events are: 1999 (44), 1992 (34), 1979 (34), 1989 (33), 1975 (28),
1991 (27), 1990 (26), 2011 (24), and 1967 (23). There are only 11years for which
there is no major historic event recorded, all of them in the XIX century.

4.1.3 Detection of peaks and valleys

Here we construct a local balance matrix T of dimensions Nc × Nt based on the
detection of peaks and valleys, that is positive and negative changes, in the temporal
series of the local balance index of every country in its signed network (see step
2b in Fig. 2). That is, for each year t , we extracted the signed adjacency matrix of
the network and calculated the local balance κv(t) for each country v. Afterwards,
we aggregated the data from every year, obtaining a time series of the local balance
values for each country (see, for instance, Fig. 1c). Then, we computed the difference
in local balance for consecutive years, 
κv(t) = κv(t) − κv(t − 1), and identified
the largest decreases or increases. We assign a (−1) sign to a country-year pair if

κv(t) ≤ −0.1 and κv(t) ≤ +0.5, and a (+1) sign if
κv(t) ≥ 0.1 and κv(t) ≥ +0.5.
The conditions included for κv(t), e.g. κv(t) ≥ +0.5 and κv(t) ≤ +0.5 respectively,
guarantee that the system at the analyzed time has a significant degree of (un)balance.
Since the method relies on differences in κv , events occurring in the year in which a
country enters the dataset cannot be detected, as the balance for the year t − 1 cannot
be calculated.

We identified 1829 valleys and 834 peaks. However, the events are not homoge-
neously distributed over the time range. For instance, the countries with the largest
number of valleys across the period studied are: Iran (34), Turkey (34), UK (32),
USA (30), France (29), Yugoslavia (28), Italy (27), Greece (27), Japan (27), Spain
(26), Romania (24) and Germany (24). There are 17 countries without any valley. On
the other hand, the countries with the largest number of peaks are: USA (27), Italy
(23), Romania (21), Greece (20), UK (19), Portugal (19) and Spain (18). There are 52
countries for which no peaks were detected based on the criterion used here.
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4.1.4 Analysis of the matching of peaks/valleys with historic events

We are now in the position to test the similarities between the ground truth matrix
	 and the local balance matrix T . We employ two similarity criteria: the Pearson
correlation coefficient between matrices 	 and T :

sP (	, T ) = Cov(	̃, T̃ )
√

Var(	̃)Var(T̃ )

(13)

(where 	̃ and T̃ are one-dimensional vectors obtained by concatenating the rows of 	

and T in a standard matrix flattening procedure), and the Frobenius similarity of the
pairs of matrices:

sF (	, T ) = tr(	T T )
√
tr(	T	)tr(T T T )

. (14)

The Frobenius similarity is the equivalent for matrices to the cosine similarity index
between two vectors. In Sect. 2 of the SM, we give a more detailed description of these
two similarity indices.

We need now to check whether the similarities found between the ground truth
and local balance matrices are statistically significant. For this test we create the null
model matrix T ′ as follows. For each country we randomize the corresponding time
series 500 times, and then we construct the matrix T ′ by applying the methodology
that was previously described for the matrix T . Given that through the time range
analyzed, many countries have been created or have disappeared, the balance time
series for many countries contains missing data, corresponding to the years in which
those countries did not exist. Consequently, we exclude the missing values from the
shuffling; that is, we keep the periods of missing data fixed and only randomize the
time periods where the given country exists.

Using sP and sF as similarity indices, we find that the matrix of peaks and valleys
and the ground truth matrix have a statistically significant similarity, ten times bigger
than that of the randomized truth model (0.306 vs. 0.039 for Pearson and 0.313 vs.
0.052 for Frobenius). Both quantitative similarity measures indicate that the matrix
of peaks and valleys based on the real time series of local balance is significantly
more similar to the ground truth of historic events than its randomization. To test
whether these similarity indices are significantly different or not we use the statistical
tests included in [45]. All of them confirmed that the similarity with the real matrix
is significantly larger than that with the randomized one. We have also tested the
similarity between the absolute values of thematrices; i.e., indicatingonly the existence
of a major event and not its nature, and we also obtain that the correlations with the
real local balance matrix are statistically more significant than the correlations with
the randomized matrix.
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4.1.5 Correlations with GeoPolitical risk indices

As a further test of the statistical significance of the method developed here, we check
for several individual countries the connection between the local balance and the
perceived geopolitical risk. This analysis is based on the GeoPolitical Risk (GPR)
index [46], which measures the frequency of newspaper articles that discuss adverse
geopolitical events. We employ the historic variant, that aggregates the data of three
differentU.S. newspapers to providemonthlymeasures of the risk of 44 different coun-
tries between the years 1900 and 2023. Then, we calculate the Spearman’s correlation
coefficient [47] between GPR and local balance time series for the nine countries
whose time overlap includes 100 or more years: China, France, United Kingdom,
Italy, Japan, Portugal, Russia/USSR, Turkey and the USA. We also compare the cor-
relation between the GPR time series and 500 randomizations of each local balance
time series, following the procedure outlined in Sect. 3.1.4. The resulting rank cor-
relation coefficients are provided in Table 2 in the SM, where we observe significant
correlations for most of the countries. For instance, Spearman rank correlation for
the USA, France and Portugal are −0.548, −0.414 and −0.367, respectively, while
for the same countries in the analogous random networks the rank correlations are
0.000486, −0.001147 and 0.006732, respectively. Interestingly, the weakest correla-
tions are found in non-European countries, a fact that suggests a possibleWestern bias
in the U.S. newspapers used to compute the GPR index.

Based on the similarity criteria between the ground truth matrix and the matrix of
peaks and valleys, and the confidence provided by the correlation of the local balance
index with GPR we proceed to match the peaks and valleys with the corresponding
historic events that match them in terms of countries and exact year of occurrence.

4.2 Linking local balance with historical narrative

Now that the statistical significance of the currentmethod is confirmed,we can perform
an a posteriori analysis of the matching between peaks and valleys in terms of the
nature of the historic events. In Table 3 in the SM, we provide 12 examples of sharp
drops in local balance, which include for instance a drop of 0.138 in 1848 for France
due to the European revolutions taking place this year or a big drop of 0.422 in 1916
for Mexico due to the Mexican revolution. It is clear that the drop in balance happens
exactly at the time when a conflicting historical event is taking place in the analyzed
country. Similarly, inTable 4 in the SM,wegive 12 instances of local balance increases,
which include for instance a big peak of 0.417 for Nigeria in 1963 due to the creation
of the first Nigerian republic or a peak of 0.407 for Austria–Hungary in 1866 due to the
Armistice of Nikolsburg and the Peace of Prague reached this year. Again, we observe
a match between the sharp increase in balance and the involvement of the country in
treaties, protocols or independence events. In Fig. 3 we illustrate a timeline containing
the main events corresponding to valleys detected by the current methodology in the
XIX, XX and XXI century, while in Fig. 4 we gather the main events that correspond
to peaks. In Sect. 3 of the SM, we include more detailed figures illustrating timelines
for each of the centuries analyzed here (Figs4, 5 and 6 in the SM.).
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Fig. 3 Timeline of the major events corresponding to valleys detected in the XIX, XX and XXI centuries.
A table relating each country to its corresponding code is provided in the SM

Fig. 4 Timeline of the major events corresponding to peaks detected in the XIX-XXI centuries. A table
relating each country to its corresponding code is provided in the SM
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However, we still need to connect the quantitative analysis with a qualitative narra-
tive of the historic events happening in those countries. To do so, we use here a “mixed
method” based on the principles described in [31, 32]. Specifically, we retrospectively
analyze the historical situation in which the individual countries were involved that
year to create a narrative. This analysis reveals some well-knownmajor historic events
and their main players, but also some more subtle historic situations.

4.2.1 Historic events associated with valleys

As a first example that allows to bridge these quantitative findings with a historic
narrative,wewill focus on the period 1848–1850,whichwitnessed the largest andmost
widespread revolutionary wave in the history of Europe. Historians agree in attributing
the February 1848 Revolution in France, which led to the collapse of Monarchy, as
the spark that triggered the fire across Europe [48]. The node of France in the IR
network is characterized by low values of κv in its whole recent history, but in the
years preceding the revolution of 1848, the value of κv was around 0.40. In 1848 it
drops to 0.25 and in 1850 to 0.13. In the meanwhile, the uprisings spread throughout
Europe, in particular in the Italian and German states. In the early months of 1848,
the Sicilian Revolution took place and the value of κv associated with the no longer
existing Kingdom of the Two Sicilies plunges from a value of 0.96 in 1847 to a value
of 0.22 in 1848.

In 1849 there is a general increase in the κv values for all states then in existence,
but again in 1850 we see a new crash. In fact, the German revolutions of 1848–1849
attempted to transform the Confederation into a unified German Federal State; but
in 1850 the Diet was re-established after the revolution was crushed by Austria and
Prussia [49]. This is observed by the sharp drops in the values κv of many German
States: the Kingdoms of Saxony and of Hanover both drop from 0.97 in 1849 to 0.41
in 1850, the Kingdoms of Bavaria and ofWurttenberg from 0.70 to 0.38 and the Grand
Duchy of Baden from 0.70 to 0.38. Surprisingly, the links of Hanover, Saxony and the
Grand Duchy of Baden in 1850, are all positive! And other German countries involved
in such revolutions have at most one negative edge only. Therefore, the local balance
index manages to capture the situation of local instability much better than other local
network indicators, such as the number of negative edges incident to every country.

We now pick an example connecting our approach with historic narrative from the
XX century. A dramatic drop in the value of the local balance index is witnessed by
Mexico in 1913 and 1917. The κv values for Mexico in the early years of the XX
century averaged around 0.96. However, in 1913 this value suddenly collapsed to 0.44
and to 0.37 in 1917. In 1912 Mexico’s only link to the global network is through the
U.S., which is a negative edge. In 1913 the IR ofMexico are described by the subgraph
illustrated in Fig. 5a. The majority of the edges in Fig. 5a are negative. The imbalance
observed here is predominantly produced by the two negative triangles Mexico-USA-
Germany andMexico-UK-Germany. Therefore, there is a key role played by Germany
in unbalancing the IR concerning Mexico in 1913. If the Germany-Mexico link were
positive, the balance of this subgraph would significantly increase. The connection
between Germany and Mexico during this period has been “relatively unnoticed by
historians until recently” [50]. The narrative of events is detailed in Sect. 3 of the SM
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Fig. 5 Illustration of the IR involving (a Mexico in 1913 and b Venezuela in 2010. In this map and all the
following ones, green edges represent alliances and red edges depict conflicts or tensions

and mainly refers to the efforts of Germany to draw Mexico into war with the United
States with main goal of distract the last from an eventual European war.

Finally, we consider a historic scenario taking place in the XXI century. It refers
to the Venezuelan economic crisis and how this destabilized its IR by dropping dra-
matically its local balance. Venezuela exhibits a very low local balance for the entire
period, from the end of World War II to the present, with an average of 0.25. Nev-
ertheless, in 2009 its value was 0.40, followed by a dramatic drop the year after to
a value of 0.008, one of the lowest values ever recorded for all countries and for
all years analyzed. In 2009, Venezuela was well established in the South American
cluster with only two negative edges, one with Colombia and another with Guyana,
and, very importantly, with a positive edge with the U.S. In 2009 the link with the
U.S. represented for Venezuela a bottleneck through which it connected to the rest
of the world, outside South America. Now, in 2010 it happens that this link suddenly
becomes negative as can be seen in Fig. 5b, and this is the only difference with the pre-
vious years. All the edges within the South American cluster preserve their sign from
2009 to 2010. The events that sparked this situation are described in Sect. 3 of the SM
and basically account for the economic crisis occurring in Venezuela in 2009–2010
and the subsequent deterioration of internal social situation which triggered sanctions
from the European Union and United States.

4.2.2 Historic events associated with peaks

Let us now perform an analysis for peaks similar to the one done before for valleys.
We observe that events corresponding to peaks are more frequent in the XIX and XX
centuries, with practically no one in the XXI century. Some of the detected events
corresponding to peaks are illustrated in Fig. 4.
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One of the historic periods showing significant incremental peaks in the local bal-
ance is the XIX century in South America. This was a very convulse period, which
started with the independence of several of these regions from the Spanish and Por-
tuguese empires, forming new states. It continues with the fights to balance power
in the region, which also involves some global powers like Great Britain, France and
Portugal. The local balance of Brazil increased from 0.58 in the previous year to 0.96,
due to the removal of the negative edge of Brazil with Great Britain (maps in Fig.
1 in the SM). Prior to 1843, Brazil had a clear confrontation towards Great Britain
due to the British efforts to suppress the slave traffic [51, 52]. In 1843 Argentina and
Chile enter in conflict over Patagonia and the Strait of Magellan [53] adding volatility
to the region. Argentina drops again its local balance in 1845-46, possibly due to its
conflict with France and Great Britain. Only after 1847 the local balance of Argentina
is recovered to κi ≈ 1 due to negotiations to end the hostilities. Both Argentina and
Brazil had territorial ambitions over Paraguay and Uruguay. Thus, a strategic alliance
of Paraguay with Brazil against Argentina helped to increase the former’s balance
index in the South American network in the transition from 1850 to 1851. A similar
strategic alliance with Peru allowed Venezuela to increase its balance from 0.42 in
1858 to 0.88 a year later [54].

Another dramatic increase of κv observed in this work occurred for Mozambique
in 1977 and Angola in 1979. Mozambique had κv ≈ 0.008 in 1976 and Angola
had κv ≈ 0.005 in 1978. They become 0.602 and 0.616, respectively, in 1977 and
1979, respectively. The events most likely associated with this increase in the local
balance are the Angolan and the Mozambican civil wars. In Sect. 3 of the SM, we
describe the narrative of these wars which were developed in a Cold War scenario in
which a perfectly balanced situation of two-blocs occurs in southern Africa with the
participation of many countries around the world.

4.3 Analysis of local balance time series

This section is dedicated to extracting empirical probability distributions from the time
series of local balances for all countries. Specifically, we analyze two magnitudes
that encapsulate key properties of the balance time series: the size of the balance
drops and increases (i.e., the probability that the local balance experiences a drop
or increase of size x , represented as P(x) := P[κv(t) − κv(t − 1) = x]); and the
inter-event time (IET) distribution for drops and increases (i.e., the probability that
two consecutive drops/increases are separated by a time interval t). The analysis is
based on the extraction of histograms that describe each distribution, followed by
the identification of the most plausible probability distribution and an estimation of
its parameters. To estimate the exponent of power-law distributions, we have used
the maximum likelihood estimation algorithm implemented in the powerlaw python
package [55]. We have limited the range of the power law distribution to the heavy-
tail region; in other words, we have imposed that x > xmin , where xmin is another
estimated parameter. To compare the goodness of fit of the exponential and power-law
distributions, we have employed the Kolmogorov-Smirnov (KS) statistical test. Since
we are interested in capturing the statistics of historically relevant events, we have
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Fig. 6 Probability distribution of the size of the local balance peaks (a) and valleys (b) and of the inter-event
times (IET) between two consecutive peaks (c) and between two consecutive valleys (d). We also plot the
best fit to each empirical distribution (dashed lines).The dotted vertical line indicates the xmin after which
we fit to a power-law distribution. (Color figure online)

filtered out of the size distribution any event for which |κv(t) − κv(t − 1)| < 0.1. The
results of this analysis are presented in Fig. 6.

In Fig. 6a, b, we illustrate the frequency of balance drops and increases as a function
of their size. Both histograms represent an exponential distribution: the distribution of
balance increases follows an exponential decay of the form P(x) = exp[−7.16(x −
0.1)] (p-value: p < 10−6); while the distribution of balance drops decays as P(x) =
exp[−9.43(x − 0.1)] (p < 10−4). One possible mechanism that could generate such
distributions is a scaled Poisson random process in which random events happen at a
constant rate α. Indeed, it is well-known that the inter-event time distribution of any
scaled Poisson process is given by P(x) = αe−αx . This suggests that the mechanisms
that determine the size of a given historical drop or increase event are not very different
from a scaled Poisson random process.

In contrast, the distribution of inter-event times, shown in Fig. 6c, d, does not follow
an exponential distribution. Instead, we find that power-law distributions fit the data
more precisely: for the IET of balance increases, the data is best fit to P(t) ∼ t−2.9

(p-value: p = 0.004, xmin = 10); while for the balance drops IET we fit the histogram
to P(t) ∼ t−2.1 (p < 10−4, xmin = 5), where t is expressed in years. The estimated
exponents for both fits are smaller than three, meaning that the estimated probability
distributions have infinite variance. This suggests the existence of a "scale-free" IET
distribution, similar to those found in several other socio-technical systems [56, 57].
Significant events are not observable in the XXI century, possibly because the “noise”
level of the local balance (continuous increments and drops) makes them statistically
not relevant.

4.3.1 Correlations in local balance time series

We now examine the correlations between the behavior of different countries in terms
of local balance over time. The results are graphically illustrated in Fig. 7 in Sect. 3 of
the SM. In panel (a), we show the Pearson correlation plot for the ’spatial distribution’
of the κv(t), i.e. for pairs of different years, computed on the subset of countries actually
existing in both the years examined. In panel (b) we show the Pearson correlation plot
for the time series κv(t) for pairs of countries, computed on the intersection of their
corresponding existence time intervals.
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The correlogram in panel (a) reveals a clear historical caesura corresponding to
the year 1949, after the Second World War: the years before 1949 are predominantly
positively correlated with each other, as are the years after 1949; but the years in
the two blocs are typically negatively correlated. This implies a noticeably different
distribution of the local balance among countries before and after that year.

On the other hand, the correlogram in panel (b) shows a positive correlation in
the time evolution of the individual balance of most countries. In fact, throughout the
whole set of nations only 14.38%of the pairs of nations are negative correlated.Among
the nations with the highest number of negative correlations we find many African
countries. For example, Kenya is anticorrelated with 83 countries, Mauritania with 82,
and Mali and Nigeria with 76. On the other hand, among the nations with the highest
number of positive correlations we find Ukraine, Belarus, Armenia, Azerbaijan and
Kazakhstan with only one anticorrelated country.

If we instead ask ourselves which pair of countries shows the largest correlation
throughout their time series, we find that this pair is comprised of Spain and Portugal,
with a value of the correlation coefficient ρ = 0.899. Another highly correlated pair
of countries is France and the United Kingdom (ρ = 0.765). It is worth noting that the
last major conflict between United Kingdom and France was that of the Napoleonic
Wars (1793–1815), which finished one year before the starting year of the data set.
Other pairs of maximally correlated countries are Russia with France (ρ = 0.746),
Germany with Italy (ρ = 0.759), Italy with Turkey (ρ = 0.799), and Yugoslavia with
Romania (ρ = 0.806).

One important global trend that can be acknowledged is the growth of correlation
within specific clusters of nations in the second half of theXX century, afterWorldWar
II. For instance, let us consider the founding member countries of NATO, on the one
hand, and the Warsaw Pact, on the other. The mean internal correlation between the
values of the local κv(t) in the period 1945–2014 is ρ = 0.890 for the NATO cluster
and ρ = 0.899 for the Warsaw Pact cluster. If we consider the whole interval 1816–
2014, the mean correlations within the two clusters are ρ = 0.635 and ρ = 0.835,
respectively. Thus, we conclude that NATO has contributed much more to changing
the status quo than the Warsaw Pact, which just confirmed a pre-existing system of
consistent behaviors. Let us remark that the role of supranational coalitions, such
as NATO and the former Warsaw Pact, in stabilizing cooperation, reducing instabil-
ity, and creating homogeneous behavior among coalition members has recently been
highlighted, for example, in [58].

5 Conclusion

With this work we have been aimed at demonstrating how mathematics can help to
reveal that “not everything in history is contingent and particular” [28]. We do so
by using algebraic graph theory techniques, which combined with appropriate data
analysis tools reveal patterns in history from the individual participation of countries
in the global web of IR. For instance, the current work informs that the probability
that two events are separated by a time t is best fit to the power law p (t) ∼ t−2.9.
This means that while the probability that such events are separated by only 1–2
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years is about 70%, it drops to nearly 10% for intervals of 2–3 years and it is almost
negligible for separations longer than 5years.We have found that the main reason why
such events occur so frequently is because they are populated by different countries.
Indeed, if p (N ) is the probability that a given country is involved in N major events
dropping the balance in the whole period of 199 years, then p (N ) ∼ N−1.405. This
means that the probability that a given country is involved in only one of such events
is about 42%, but it drops to 16% for being involved in two events in the whole period.
The probability that one single country is involved in 10 events in 199 years is only
2%. But history makes exceptions! Chile and Argentina were involved in 15 events,
Peru in 16, Brazil in 19 and Spain in 20, mainly due to the convulsive situation existing
in South America in the XIX century analyzed before. To sum up, the local balance
index captures information about how an individual country reacts to the change of
balance of the rest of states in the world at a given time. Therefore, the local balance
index can be thought of as a quantitative candidate for translatingmathematically what
historians and political scientists call the “balance of power”.
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