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1 Introduction

Compact Hausdorff spaces enjoy several algebraic, analytic, and lattice-theoretic representations, which are at

the heart of duality theory for the category KHaus of compact Hausdorff spaces and continuous maps. One of

the oldest such is known under the name of Gelfand duality (see, e.g., [30, Chapter IV.4]), and can be presented

in various signatures, depending on whether we work with real-valued or complex-valued functions (see, e.g.,

[9] and the references therein). Wewill follow the standard practice in topology andwork with continuous real-

valued functions on X ∈ KHaus. This gives rise to the lattice-ordered algebra C(X)which is bounded (because X
is compact) and archimedean (because there are no infinitesimals inℝ). In addition, C(X) is uniformly complete
in the norm topology. As a result, we arrive at the category baℓ of bounded archimedean ℓ-algebras and (unital)ℓ-algebra homomorphisms, and its reflective subcategory ubaℓ consisting of uniformly complete objects in
baℓ. Gelfandduality then yields a dual adjunction betweenKHaus and baℓwhich restricts to a dual equivalence
between KHaus and ubaℓ (see Theorem 2.3).

If instead of real-valued functions, weworkwith regular open subsets of X, we arrive at de Vries duality [22]
between compact Hausdorff spaces and what later became known as de Vries algebras [3]. These are complete

boolean algebras equipped with a binary relation that captures the proximity relation on the complete boolean

algebra RO(X) of regular open subsets of X given by U ≺ V if and only if cl(U) ⊆ V . De Vries duality then yields
a dual equivalence between KHaus and the category DeV of de Vries algebras and de Vries morphisms (see

Theorem 2.5).

Both de Vries and Gelfand dualities were generalized in several directions. In [12, 13], both dualities were

extended to completely regular spaces and their compactifications. In [21], Gelfand duality was generalized to

the setting of compact ordered spaces studied by Nachbin [33]. In [25], a general categorical framework was

developed that yields de Vries duality and its generalizations. However, as far as we know, there is no unifying
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approach to Gelfand and de Vries dualities. Our aim is to develop such an approach, the key ingredients ofwhich

are based on appropriate modifications of classic results of Dieudonné, Dilworth, and Katětov and Tong.

To begin, we can define a functor from baℓ toDeV using the theory of annihilator ideals. We recall (see, e.g.,

[5, Remark 4.2 (1)]) that kernels of baℓ-morphisms are archimedean ℓ-ideals (see Definition 3.1); that is, ℓ-ideals
I of A ∈ baℓ such that A/I ∈ baℓ. If A = C(X), these ideals correspond to open subsets of X. As we will see in
Section 3, regular opens of X correspond to annihilator ideals of C(X), and this gives rise to a covariant functor
baℓ→ DeV which associates to each A ∈ baℓ the de Vries algebra of annihilator ideals of A.

Going from DeV to baℓ is less obvious, and will require several nontrivial steps. As the first step, we find
an ℓ-algebra that contains both C(X) andRO(X). This is closely related to Dilworth’s characterization [24] of the
Dedekind completion of C(X). Let B(X) be the ℓ-algebra of bounded real-valued functions on X. We recall (see,

e.g., [20, Section 2]) that the Baire operators on B(X) are defined by
f∗(x) = sup

U∈Nx

inf
y∈U f(y) and f ∗(x) = inf

U∈Nx
sup

y∈U f(y),
where f ∈ B(X), x ∈ X, and Nx is the family of open neighborhoods of x. A function f ∈ B(X) is called lower-
semicontinuous if f = f∗, and upper-semicontinuous if f = f ∗. We say that a lower-semicontinuous function f is
normal if f = (f ∗)∗. Let N(X) be the set of normal functions on X. Then N(X) is an ℓ-algebra, where the ℓ-algebra
operations on N(X) are normalizations of the ℓ-algebra operations on B(X) (see Remark 4.3). Dilworth [24]

proved that if we view C(X) and N(X) as lattices, then N(X) is isomorphic to the Dedekind completion of C(X).
Later, Dăneț [20] showed that N(X) remains isomorphic to the Dedekind completion of C(X) in the richer signa-
ture of vector lattices, and it follows from [11, Section 8] that this also remains true in the signature of ℓ-algebras.
Thus, we can phrase a strengthened version of Dilworth’s theorem as follows.

Theorem 1.1 (Dilworth’s theorem). If X ∈ KHaus, then N(X) is isomorphic to the Dedekind completion of C(X) in
baℓ.

We can recover C(X) from N(X) by utilizing the celebrated Katětov–Tong theorem in topology.

Theorem 1.2 (Katětov–Tong). Let X be a normal space and let f, g ∈ B(X) satisfy f ∗ ≤ g∗. Then there is h ∈ C(X)
with f ∗ ≤ h ≤ g∗.
Since each compact Hausdorff space X is normal, the Katětov–Tong theorem is available in our context. Thus,

we can define a proximity relation ⊲ on N(X) by setting f ⊲ g if and only if f ∗ ≤ g (note that g = g∗), and use the
Katětov–Tong theorem to recover C(X) as the ℓ-algebra of reflexive elements. Because of this connection, we
call such a proximity relation on N(X) a Katětov–Tong proximity, or a KT-proximity for short (see Definition 4.7).

To connect N(X) to RO(X), we point out that the idempotents of the ring N(X) are exactly the character-
istic functions of the regular open subsets of X. Consequently, both C(X) and RO(X) live inside N(X). Namely,
C(X) is the ℓ-algebra of reflexive elements of the KT-proximity on N(X), while the idempotents of N(X) are the
characteristic functions arising from RO(X).

It is natural to consider the ℓ-subalgebra of N(X) generated by its idempotents. Such algebras are related to
the theory of the Baer–Specker group and its subgroups (see [15] and the references therein). Because of this,

they were named Specker algebras in [9]. It follows from [7] that the Specker subalgebra of N(X) is exactly theℓ-algebra FN(X) of finitely-valued normal functions on X. Moreover, the de Vries proximity on RO(X) lifts to
a proximity on FN(X). Furthermore, N(X) is the Dedekind completion of FN(X), and there is a natural lift of
the proximity on FN(X) to N(X). The last step is to show that this lift coincides with the KT-proximity on N(X).
This requires Dieudonné’s lemma, which is our last ingredient. This lemma is more of a proof-technique which

originates in [23], and was used by various authors in different contexts (see, e.g., [14, 18, 26, 31]). We will prove

it in the following form.

Theorem 1.3 (Dieudonné’s lemma). Let X ∈ KHaus and let ⊲ be a proximity on FN(X). Then the closure of ⊲ is
a KT-proximity on N(X).
It is this lemma that allows us to show that the lift of the proximity on FN(X) to N(X) is the KT-proximity on
N(X). Thus, we can go from RO(X) to N(X) through the Specker algebra FN(X). Since the boolean algebra of
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idempotents of FN(X) is isomorphic to the complete boolean algebra RO(X), we have that FN(X) is a Baer ring
(see Section 5). We first lift the de Vries proximity onRO(X) to a proximity on the Baer–Specker algebra FN(X),
and then use Dieudonné’s lemma to show that the lift of the proximity on FN(X) is the KT-proximity on N(X).
Moreover, C(X) can be recovered as the reflexive elements of the KT-proximity on N(X). As a result, we arrive
at the following diagram, which commutes up to natural isomorphism (see Section 8):

ubaℓ KT

KHaus

DeV PBSp
←

→

←→←→C ← →N

←→

RO

← →FN← → ←
→

Here KT is the category of what we term Katětov–Tong algebras, that is, Dedekind algebras equipped with

a KT-proximity that is closed in the product topology (see Definition 4.12). Also, PBSp is the category of proximity

Baer–Specker algebras of [7] (see Section 6). Each of the four categories ubaℓ,DeV, PBSp, andKT is dually equiv-
alent to KHaus. That KHaus is dually equivalent to ubaℓ is Gelfand duality, and that KHaus is dually equivalent
toDeV is de Vries duality. The dual equivalence ofKHaus and PBSp is established in [7], and the dual equivalence

of KHaus and KT in [11]. Consequently, the four categories ubaℓ, DeV, PBSp, and KT are equivalent. However,
these equivalences are obtained by utilizing duality theory for KHaus, and hence require, among other things,

the use of the axiom of choice. We give a direct and choice-free proof of each of these four equivalences.

In Section 3, we describe the functor Ann : ubaℓ→ DeVwhich associates with each A ∈ ubaℓ the de Vries
algebra of annihilator ideals of A. In Section 4, we prove that ubaℓ is equivalent to KT. This is done by first
establishing an appropriate version of Dieudonné’s lemma, which is our firstmain result. In Section 5, we define

the functor Id : KT→ DeV which associates with each KT-algebra the de Vries algebra of its idempotents. In

Section 6, we describe the functors establishing an equivalence between DeV and PBSp. Finally, in Section 7 we

prove that KT is equivalent to both DeV and PBSp, which is our second main result. This completes our proof

that the four categories in the diagram are equivalent, and thus yields a unified approach to Gelfand and de

Vries dualities.

Establishing these category equivalences requires a number of intricate arguments, many of which are

given in the course of the article, while others are cited from some of our previous articles. One of the lengthier

and most technical arguments is a proof that weak proximity morphisms between proximity Baer–Specker

algebras are in fact proximity morphisms. We have placed this proof in an appendix since although this lemma

is essential for us, the sequence of ideas used in proving it is not needed to follow the main ideas.

2 Gelfand and de Vries dualities

As we saw in the introduction, with each X ∈ KHaus we can associate the ℓ-algebra C(X) of continuous real-
valued functions on X and the de Vries algebra RO(X) of regular open subsets of X. The first approach leads to
Gelfand duality and the second to de Vries duality. In this section, we briefly recall these dualities.

We startwithGelfand duality. All algebraswewill consider are commutative andunital (that is, they have 1).

With respect to pointwise operations, C(X) is a lattice-ordered algebra or an ℓ-algebra for short, where we recall
that A is an ℓ-algebra if A is an ℝ-algebra and a lattice such that for all a, b, c ∈ A and r ∈ ℝ we have∙ a ≤ b implies a + c ≤ b + c;∙ 0 ≤ a and 0 ≤ b imply 0 ≤ ab;∙ 0 ≤ a and 0 ≤ r imply 0 ≤ r ⋅ a.
Moreover, since X is compact, C(X) is bounded, and since ℝ has no infinitesimals, C(X) is archimedean, where
we recall that an ℓ-algebra A is∙ bounded if for each a ∈ A there is an integer n ≥ 1 such that a ≤ n ⋅ 1 (that is, 1 is a strong order unit);∙ it is archimedean if for each a, b ∈ A, whenever n ⋅ a ≤ b for each n ≥ 1, then a ≤ 0.
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This motivates the following definition (see [9, Section 2]).

Definition 2.1. A baℓ-algebra is a bounded archimedean ℓ-algebra and a baℓ-morphism is a unital ℓ-algebra
homomorphism. Let baℓ be the category of baℓ-algebras and baℓ-morphisms.

Let A ∈ baℓ. Since A is a bounded ℓ-algebra, it is an f -ring (see, e.g., [16, Lemma XVII.5.2]), meaning that if
0 ≤ a, b, c ∈ A with a ∧ b = 0, then (ac) ∧ b = 0. For each a ∈ A, we can define the positive and negative parts
of a by

a+ = a ∨ 0 and a− = (−a) ∨ 0 = −(a ∧ 0).
Then a = a+ − a− and a+ ∧ a− = a+a− = 0 (see, e.g., [16, XIII.3 (15), Theorem XIII.4.7, Lemma XVII.5.1]). We define

the absolute value of a by |a| = a ∨ (−a),
and the norm of a by ‖a‖ = inf{r ∈ ℝ : |a| ≤ r}.
(When A ̸= 0, we view ℝ as an ℓ-subalgebra of A by identifying r ∈ ℝ with r ⋅ 1 ∈ A.)
Definition 2.2. We call A ∈ baℓ uniformly complete if the norm is complete. Let ubaℓ be the full subcategory
of baℓ consisting of uniformly complete objects.

It is easy to see that if X ∈ KHaus, then C(X) ∈ ubaℓ, where for f ∈ C(X) we have‖f‖ = sup{|f(x)| : x ∈ X}.
This defines a contravariant functor C : KHaus→ ubaℓ which associates with each X ∈ KHaus the ℓ-algebra
C(X) of (necessarily bounded) continuous real-valued functions on X; andwith each continuousmap φ : X → Y
the ℓ-algebra homomorphism C(φ) : C(Y)→ C(X) given by C(φ)(f) = f ∘ φ for each f ∈ C(Y).

To define the contravariant functor baℓ→ KHaus, we recall the notion of an ℓ-ideal; that is, an ideal I of
A ∈ baℓ such that |a| ≤ |b| and b ∈ I imply a ∈ I. The Yosida space Y(A) of A ∈ baℓ is the set ofmaximal ℓ-ideals
of A whose closed sets are exactly sets of the form

Zℓ(I) = {M ∈ Y(A) : I ⊆ M},
where I is an ℓ-ideal of A. It is well known that Y(A) ∈ KHaus. This defines a contravariant functor

Y : baℓ→ KHaus

that sends A ∈ baℓ to its Yosida space Y(A), and a baℓ-morphism α : A → A to Y(α) = α−1 : Y(A)→ Y(A).
The functors C and Y yield a dual adjunction between KHaus and baℓ. Moreover, for X ∈ KHaus we have

that εX : X → Y(C(X)) is a homeomorphism, where
εX(x) = {f ∈ C(X) : f(x) = 0}.

Furthermore, for A ∈ baℓ and a maximal ℓ-ideal M of A, it is well known (see, e.g., [28, Corollary 2.7]) that

A/M ≅ ℝ. Therefore, we can define ζA : A → C(Y(A)) by ζA(a)(M) = r, where r is the unique real number
satisfying a + M = r + M. Then ζA is a monomorphism in baℓ separating points of Y(A). Thus, by the Stone–
Weierstrass theorem, we have that if A is uniformly complete, then ζA is an isomorphism. Consequently, the

dual adjunction restricts to a dual equivalence between ubaℓ and KHaus, yielding Gelfand duality.

Theorem 2.3 (Gelfand duality [27, 36]). The contravariant functors C and Y yield a dual adjunction between
KHaus and baℓ which restricts to a dual equivalence between KHaus and ubaℓ.

We next turn to de Vries duality [22]. For a boolean algebra B and a ∈ B, we write a∗ for the complement of a
in B. A de Vries algebra is a pair B = (B, ≺) consisting of a complete boolean algebra B together with a binary

relation ≺ satisfying the following conditions:
(DV1) 1 ≺ 1.
(DV2) a ≺ b implies a ≤ b.
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(DV3) a ≤ b ≺ c ≤ d implies a ≺ d.
(DV4) a ≺ b, c implies a ≺ b ∧ c.
(DV5) a ≺ b implies b∗ ≺ a∗.
(DV6) a ≺ b implies that there is c ∈ A with a ≺ c ≺ b.
(DV7) a ̸= 0 implies that there is b ̸= 0 with b ≺ a.

Given two de Vries algebras B and B, a de Vries morphism is a map σ : B → B satisfying the following
conditions:

(M1) σ(0) = 0.
(M2) σ(a ∧ b) = σ(a) ∧ σ(b).
(M3) a ≺ b implies σ(a∗)∗ ≺ σ(b).
(M4) σ(a) = ⋁{σ(b) : b ≺ a}.
For two de Vries morphisms σ1 : B1 → B2 and σ2 : B2 → B3, the composition is given by(σ2 ⋆ σ1)(a) =⋁{σ2σ1(b) : b ≺ a}.
Definition 2.4. Let DeV be the category of de Vries algebras and de Vries morphisms.

Typical examples of de Vries algebras are the complete boolean algebras RO(X) of regular open subsets of

X ∈ KHaus equipped with the binary relation ≺ given by
U ≺ V if and only if cl(U) ⊆ V.

Also, typical examples of de Vries morphisms are the mapsRO(φ) : RO(Y)→ RO(X)where φ : X → Y is a con-

tinuous map between compact Hausdorff spaces and

RO(φ)(U) = int(cl φ−1(U))
for each U ∈ RO(Y). This defines a contravariant functor RO : KHaus→ DeV.

To define a contravariant functor DeV→ KHaus, we recall the notions of round filters and ends. Let(B, ≺) ∈ DeV. For S ⊆ B, let  S = {a ∈ B : there exists s ∈ S with s ≺ a}.
We call a filter F of B round if F =  F. Maximal round filters of B are called ends. Let E(B) be the set of ends of B
topologized by the basis {ε(a) : a ∈ B}, where

ε(a) = {E ∈ E(B) : a ∈ E}.
Then E(B) is compact Hausdorff. For a de Vries morphism σ : B → B, let E(σ) : E(B)→ E(B) be given by

E(σ)(E) =  σ−1(E)
for each E ∈ E(B). Then E(σ) : E(B)→ E(B) is continuous. This gives rise to a contravariant functor

E : DeV→ KHaus .

The functors RO and E yield de Vries duality.

Theorem 2.5 (De Vries duality [22]). DeV is dually equivalent to KHaus.

3 The annihilator ideal functor

In this section,we show that there is a rather natural covariant functor from baℓ toDeV. This functor is obtained
by working with annihilator ideals of baℓ-algebras. We show that this is a functor by proving that annihilator

ideals are archimedean ℓ-ideals.
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Definition 3.1. Let A ∈ baℓ. An ℓ-ideal I of A is called archimedean if A/I is archimedean (equivalently,

A/I ∈ baℓ). Let Arch(A) be the set of archimedean ℓ-ideals of A, ordered by inclusion.
Remark 3.2. Let A ∈ baℓ. If M is a maximal ℓ-ideal of A, then A/M ≅ ℝ. Thus, every maximal ℓ-ideal is
archimedean. In fact, an ℓ-ideal I of A ∈ baℓ is archimedean if and only if I = ⋂{M ∈ Y(A) : I ⊆ M} (see,
e.g., [9, p. 440]).

Remark 3.3. In [1], Banaschewski studied the ℓ-ideals in bounded archimedean f -rings that are closed in the

norm topology. If A is a baℓ-algebra, then an ℓ-ideal I of A is archimedean if and only if it is closed in the norm

topology.

It is a consequence of amore general result of Banaschewski [1, Appendix 2] thatArch(A) ordered by inclusion is
a frame, where we recall (see, e.g., [35]) that a frame is a complete lattice L satisfying the join infinite distributive
law

a ∧⋁ S =⋁{a ∧ s : s ∈ S}.
Themeet inArch(A) is set-theoretic intersection and the join is the archimedean ℓ-ideal generated by the union.

We further recall that a frame L is compact if ⋁ S = 1 implies ⋁ T = 1 for some finite T ⊆ S. For a ∈ L, let
a∗ = ⋁{b ∈ L : a ∧ b = 0} be the pseudocomplement of a, and for a, b ∈ L define the well-inside relation by

a ≺ b ⇐⇒ a∗ ∨ b = 1.
Then a frame L is regular if for each a ∈ L we have a = ⋁{b ∈ L : b ≺ a}.

Given two frames L and M, a map h : L → M is a frame homomorphism if h preserves finite meets and

arbitrary joins.

Definition 3.4. Let KRFrm be the category of compact regular frames and frame homomorphisms.

It follows from Banaschewski’s result [1, Appendix 2] that Arch(A) ∈ KRFrm. Furthermore, if α : A → A is
a baℓ-morphism, then

Arch(α) : Arch(A)→ Arch(A)
is a frame homomorphism, where Arch(α) sends each I ∈ Arch(A) to the archimedean ℓ-ideal of A generated
by α[I]. Thus, as a consequence of Banaschewski’s results, we obtain the following proposition.
Proposition 3.5. Arch : baℓ→ KRFrm is a covariant functor.

As was observed in [4], KRFrm is equivalent to DeV. We recall that an element a of a frame L is regular if
a∗∗ = a. The booleanizationB(L) of L is the frame of regular elements of L. It is well known thatB(L) is a com-
plete boolean algebra, where the meet and (pseudo)complement inB(L) are calculated as in L and the join is
calculated by the formula⨆ S = (⋁ S)∗∗.

If L ∈ KRFrm, then restricting the well-inside relation ≺ toB(L) yields a de Vries algebra (B(L), ≺). More-
over, if h : L → M is a frame homomorphism between compact regular frames, then B(h) : B(L)→ B(M) is
a de Vriesmorphism, whereB(h)(a) = h(a)∗∗. This defines a covariant functorB : KRFrm→ DeVwhich yields

an equivalence between KRFrm and DeV.

Theorem 3.6 ([4, Theorem 3.9]). KRFrm is equivalent to DeV.

Definition 3.7. Let A ∈ baℓ. For S ⊆ A, let
AnnA(S) = {a ∈ A : as = 0 for all s ∈ S}

be the annihilator of S.

It is a standard fact of commutative ring theory that AnnA(S) is an ideal of A. As usual, we call an ideal I of A an

annihilator ideal if I = AnnA(S) for some S ⊆ A. The next lemma can be proved more quickly using Remark 3.2,
but in keeping with our approach we give a choice-free proof that avoids the use of maximal ideals.

Lemma 3.8. Let A ∈ baℓ. If I is an annihilator ideal of A, then I is an archimedean ℓ-ideal of A.
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Proof. Since I is an annihilator ideal, I = AnnA(S) for some S ⊆ A. We first show that I is an ℓ-ideal. Let a ∈ A
and b ∈ I such that |a| ≤ |b|. Then for each s ∈ S we have 0 ≤ |as| = |a||s| ≤ |b||s| = |bs| = 0. Therefore, |as| = 0,
and so as = 0. Thus, a ∈ I, and hence I is an ℓ-ideal.

We next show that I = AnnA({|s| : s ∈ S}). To see this, observe that
as = 0 ⇐⇒ |as| = 0 ⇐⇒ |a||s| = 0.

Since |a||s| = (a ∨ −a)|s| = a|s| ∨ −a|s| = |(a|s|)|, we have
as = 0 ⇐⇒ |(a|s|)| = 0 ⇐⇒ a|s| = 0.

Consequently, I = AnnA({|s| : s ∈ S}), and hence we can assume that 0 ≤ s for each s ∈ S.
To see that I is archimedean, we utilize the following characterization of archimedean ℓ-ideals [5, Proposi-

tion 4.8]: An ℓ-ideal J is archimedean if and only if (n|a| − 1)+ ∈ J for each n ≥ 1 implies a ∈ J. Let a ∈ A with(n|a| − 1)+ ∈ I for each n ≥ 1. If s ∈ S, then (n|a| − 1)+ ⋅ s = 0. So, since s ≥ 0,
0 = (n|a| − 1)+ ⋅ s = [(n|a| − 1) ∨ 0] ⋅ s = (n|a| − 1)s ∨ 0.

Thus, (n|a| − 1)s ≤ 0, and hence n|a|s ≤ s for each n ≥ 1. Since A is archimedean, |a|s ≤ 0. Because s ≥ 0, this
forces |a|s = 0, so as = 0. Thus, a ∈ I, and so I is an archimedean ℓ-ideal.
Definition 3.9. For A ∈ baℓ, let Ann(A) be the set of annihilator ideals of A, ordered by inclusion.
By Lemma 3.8, Ann(A) is a subposet of Arch(A). We next show that Ann(A) is the booleanization of Arch(A).
Proposition 3.10. For A ∈ baℓ, the booleanization of Arch(A) is Ann(A).
Proof. Wefirst show that I∗ = AnnA(I) for each I ∈ Arch(A). SinceA hasnononzeronilpotent elements [17, p. 63,
Corollary 3], we have I ∩ AnnA(I) = 0, so AnnA(I) ⊆ I∗. Conversely, II∗ ⊆ I ∩ I∗ = 0, so I∗ ⊆ AnnA(I). Therefore,
I∗ = AnnA(I). From this it follows that

I ∈ B(Arch(A)) ⇐⇒ I = I∗∗ ⇐⇒ I = AnnA(AnnA(I)) ⇐⇒ I ∈ Ann(A).
Thus,B(Arch(A)) = Ann(A).
Remark 3.11. The proof that A has no nonzero nilpotent elements given in [17, p. 63] uses the fact that every

f -ring embeds in a product of linearly ordered f -rings, which requires the axiom of choice. In Remark 7.9, we

give an alternative choice-free proof of the fact that A ∈ baℓ has no nonzero nilpotent elements.
By Proposition 3.10, Ann(A) is a complete boolean algebra, and so, as discussed in the paragraph before Theo-
rem 3.6, (Ann(A), ≺) is a de Vries algebra, where ≺ is the restriction of the well-inside relation on Arch(A) given
by I ≺ J if I∗ ∨ J = A. Moreover, combining Propositions 3.5 and 3.10 yields the following theorem.
Theorem 3.12. Ann : baℓ→ DeV is a covariant functor, and the following diagram commutes:

baℓ

KRFrm DeV

←→Arch

←→Ann← →
B

Remark 3.13. LetA ∈ baℓ. It is known (see, e.g., [5, Remark 4.5]) thatArch(A) is isomorphic to the frameO(Y(A))
of opens of the Yosida space Y(A). Since the booleanization of O(Y(A)) is RO(Y(A)), we obtain that Ann(A) is
isomorphic to RO(Y(A)) by Proposition 3.10.
4 Dedekind completions, proximities, and the Dieudonné lemma

As we saw in the previous section, we have a covariant functor Ann : baℓ→ DeV. It is less obvious how to

construct a covariant functor DeV→ baℓ. Using de Vries and Gelfand dualities, if X ∈ KHaus, then the corre-
sponding de Vries and baℓ-algebras are RO(X) and C(X). As we will see shortly, there is an ambient algebra



654  G. Bezhanishvili et al., A unified approach to Gelfand and de Vries dualities

that contains both C(X) andRO(X). We can then define a proximity on this algebra that will allow us to recover

both C(X) and RO(X). This approach is based on Dedekind completions and Dilworth’s theorem discussed in

Section 1.

We recall that A ∈ baℓ is aDedekind algebra if each nonempty subset of A bounded above has a supremum,
and hence each nonempty subset of A bounded below has an infimum. Let dbaℓ be the full subcategory of baℓ
consisting of Dedekind algebras. As was pointed out in [10, Remark 3.5], dbaℓ is in fact a full subcategory of

ubaℓ.
ADedekind completion of A ∈ baℓ is a pair (D(A), δA), whereD(A) is a Dedekind algebra and δA : A → D(A)

is a baℓ-monomorphism such that the image is join-dense (and hence meet-dense) in D(A). It follows from the

works of Nakano [34] and Johnson [29] that Dedekind completions exist in baℓ.

Theorem 4.1 ([10, Theorem 3.1]). For each A ∈ baℓ, there exists a unique up to isomorphism Dedekind algebra
D(A) and a baℓ-monomorphism δA : A → D(A) such that δA[A] is join-dense (and hence meet-dense) in D(A).
By Dilworth’s theorem mentioned in Section 1, D(A) is isomorphic to the algebra N(Y(A)) of normal functions
on the Yosida space of A.

Theorem 4.2 ([11, Proposition 4.7 and Remark 4.9]). If A ∈ baℓ, then, up to isomorphism, the pair (N(Y(A)), ζA) is
the Dedekind completion of A.

Remark 4.3. Let X be a topological space. Recalling from Section 1 the Baire operators (−)∗ and (−)∗ on theℓ-algebra B(X), we have
N(X) = {f ∈ B(X) : f = (f ∗)∗}.

Thus, N(X) is not an ℓ-subalgebra of B(X) since its operations are not pointwise, while those of B(X) are. In fact,
the operations on N(X) are “normalizations” of the pointwise operations on B(X) (see, e.g., [11, 20]). For example,
if + is the pointwise addition, then its normalization is

f ⊕ g = ((f + g)∗)∗ .
The other operations on N(X) are defined similarly using normalization (however, unlike join, meet in N(X) is
pointwise).

Notation 4.4. To simplify notation, we identify A ∈ baℓ with its image δA[A] in D(A) and view δA as an inclu-
sion map.

Let X ∈ KHaus. It is easy to see that C(X) is a baℓ-subalgebra of N(X). Moreover, if U ∈ RO(X), then the char-
acteristic function χU of U is a normal function, and we can identify RO(X) with the idempotents of N(X) (see,
e.g., [5, Lemma 6.5]). Thus, N(X) is our desired ambient algebra containing both C(X) and RO(X).

To recover C(X) from N(X), we utilize the Katětov–Tong theorem discussed in Section 1, which implies

that if f, g ∈ N(X) with f ∗ ≤ g, then there is h ∈ C(X) such that f ≤ h ≤ g. This allows us to define a proximity
relation ⊲ on N(X) by setting f ⊲ g if and only if f ∗ ≤ g. The Katětov–Tong theorem then yields that C(X) is
exactly the algebra {f ∈ N(X) : f ⊲ f}. Because of this, we call ⊲ the Katětov–Tong proximity, or KT-proximity for
short. The pairs (N(X), ⊲), where ⊲ is a KT-proximity, were axiomatized in [11] using the following notion of

proximity.

Definition 4.5. Let A ∈ baℓ. We call a binary relation ⊲ on A a proximity if the following axioms are satisfied:
(P1) 0 ⊲ 0 and 1 ⊲ 1.
(P2) a ⊲ b implies a ≤ b.
(P3) a ≤ b ⊲ c ≤ d implies a ⊲ d.
(P4) a ⊲ b, c implies a ⊲ b ∧ c.
(P5) a ⊲ b implies −b ⊲ −a.
(P6) a ⊲ b and c ⊲ d imply a + c ⊲ b + d.
(P7) a ⊲ b and 0 < r ∈ ℝ imply ra ⊲ rb.
(P8) a, b, c, d ≥ 0 with a ⊲ b and c ⊲ d imply ac ⊲ bd.
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(P9) a ⊲ b implies that there is c ∈ A with a ⊲ c ⊲ b.
(P10) a > 0 implies that there is 0 < b ∈ A with b ⊲ a.
We call the pair (A, ⊲) a proximity baℓ-algebra.
Remark 4.6. Since −(a ∨ b) = (−a) ∧ (−b), it follows from (P4) and (P5) that a, b ⊲ c implies a ∨ b ⊲ c. This will
be used in the proof of Theorem 4.14.

Let (A, ⊲) be a proximity baℓ-algebra. We call a ∈ A reflexive if a ⊲ a. Let R(A, ⊲) be the set of reflexive

elements of (A, ⊲). It is an easy consequence of the proximity axioms that R(A, ⊲) is an ℓ-subalgebra of A (see

[11, Lemma 8.10 (1)]).

Clearly, each r ∈ ℝ is a reflexive element of (A, ⊲), but in general these might be the only reflexive elements
of (A, ⊲). Therefore, to make sure that we have lots of reflexive elements, we need to strengthen (P9).
Definition 4.7. Let D be a Dedekind algebra. A proximity ⊲ on D is called a Katětov–Tong proximity, or
KT-proximity for short, if (P9) is strengthened to the following axiom:
(KT) a ⊲ b implies that there is c ∈ R(D, ⊲) with a ⊲ c ⊲ b.
We call the pair (D, ⊲) a proximity Dedekind algebra.
Remark 4.8. Our terminology is slightly different from that in [11], where proximities on baℓ-algebras were
first introduced.

Remark 4.9. (i) Typical examples of proximity Dedekind algebras can be constructed as follows. LetD ∈ dbaℓ
and let A be an ℓ-subalgebra of D. Define ⊲A on D by

f ⊲A g if and only if there exists a ∈ A such that f ≤ a ≤ g.
It is elementary to check that ⊲A satisfies all the proximity axioms save (P10), for whichwe need to recall the
notion of an essential subalgebra. An ℓ-subalgebra A of D ∈ dbaℓ is essential if A ∩ I ̸= 0 for each nonzeroℓ-ideal I of D. By [11, Proposition 2.12], A is essential in D if and only if for each 0 < d ∈ D there is 0 < a ∈ A
with a ≤ d. Thus, essentiality of A in D is equivalent to (P10) for ⊲A .

(ii) More generally, [11, Proposition 2.12] implies that if A is an ℓ-subalgebra of a Dedekind algebra D, then A
is essential in D if and only if D is (isomorphic to) the Dedekind completion of A. In particular, if ⊲ is
a KT-proximity onD and A = R(D, ⊲), then (P10) implies that A is essential inD, and henceD is theDedekind
completion of A.

Definition 4.10. Let (D, ⊲) and (D , ⊲) be proximity baℓ-algebras. We call a map α : D → D a proximity mor-
phism provided, for all a, b, c ∈ D with c ⊲ c and 0 < r ∈ ℝ, we have the following conditions:
(PM1) α(0) = 0 and α(1) = 1.
(PM2) α(a ∧ b) = α(a) ∧ α(b).
(PM3) a ⊲ b implies −α(−a) ⊲ α(b).
(PM4) α(b) = ⋁{α(a) : a ⊲ b}.
(PM5) α(ra) = rα(a).
(PM6) α(a ∨ c) = α(a) ∨ α(c).
(PM7) α(a + c) = α(a) + α(c).
(PM8) c ≥ 0 implies α(ca) = α(c)α(a).
As was shown in [11, Theorem 8.12], proximity Dedekind algebras with proximity morphisms form a category

PDA, where the composition α2 ⋆ α1 of proximity morphisms
α1 : (D1 , ⊲1)→ (D2 , ⊲2) and α2 : (D2 , ⊲2)→ (D3 , ⊲3)

is defined by (α2 ⋆ α1)(a) =⋁{α2(α1(x)) : x ⊲1 a}.
For the next definition, we recall that each baℓ-algebra is a topological spacewith the norm topology, which

we also call the uniform topology. Note that all the operations are continuous with respect to this topology.
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Definition 4.11. Let D be a Dedekind algebra. We call a KT-proximity ⊲ on D closed if ⊲ is a closed subset in the
product topology on D × D.
Typical examples of closed proximities are obtained by taking the pairs (N(X), ⊲)where X ∈ KHaus and ⊲ is the
KT-proximity on N(X). This motivates the following definition.
Definition 4.12. A Katětov–Tong algebra, or a KT-algebra for short, is a proximity Dedekind algebra (D, ⊲) such
that ⊲ is a closed proximity. Let KT be the full subcategory of PDA consisting of KT-algebras.

One of the main results of [11] yields a dual adjunction between PDA and KHaus which restricts to a dual

equivalence between KT and KHaus. This is achieved through the contravariant functors N : KHaus→ KT and

End : PDA→ KHaus:

KT PDA

KHaus

← →←→

End

←→ N∘End
←→N

The functor N sends X ∈ KHaus to (N(X), ⊲), where ⊲ is the KT-proximity on N(X). On morphisms, N sends

a continuous map φ : X → Y to the proximity morphism N(φ) : N(Y)→ N(X) given by N(φ)(f) = ((f ∘ φ)∗)∗
for each f ∈ N(Y). To describe the functor End, we recall from [11, Section 5] that an ℓ-ideal I of a proxim-
ity Dedekind algebra is round if a ∈ I implies there is b ∈ I with |a| ⊲ b, and an end is a maximal roundℓ-ideal. The functor End then sends (D, ⊲) to the space of ends of (D, ⊲), where the definition of the topol-

ogy on the set of ends is similar to the definition of the Zariski topology on the space of maximal ℓ-ideals of
a baℓ-algebra. On morphisms, End sends a proximity morphism α : (D, ⊲)→ (D , ⊲) to the continuous map
End(α) : End(D , ⊲)→ End(D, ⊲) given by

End(α)(x) = {d ∈ D : |d| ⊲ c for some c ∈ α−1(x)}
for each x ∈ End(D , ⊲).

The obtained duality is reminiscent of Gelfand duality, albeit in the language of proximity Dedekind

algebras. Indeed, the categories baℓ and PDA are equivalent (see [11, Corollary 8.16]). The covariant functor

R : PDA→ baℓ associates with each proximity Dedekind algebra (D, ⊲) the baℓ-algebra R(D, ⊲) of reflexive
elements of (D, ⊲), and with each proximity morphism α : D → E its restriction toR(D, ⊲). The covariant func-
torD : baℓ→ PDA associates with each A ∈ baℓ the proximity Dedekind algebra (D(A), ⊲A) (see Remark 4.9),
and with each baℓ-morphism α : A → B the proximity morphismD(α) : D(A)→ D(B) given by

D(α)(f) =⋁{α(a) : a ∈ A and a ≤ f }.
The equivalence of baℓ andPDA restricts to an equivalence of ubaℓ andKT. Thus,we arrive at the following

commutative diagram [11, p. 1130]:

baℓ PDA

ubaℓ KT

→ →←→ ←→←→ → → ←→

Remark 4.13. The equivalence of baℓ and PDA is proved in [11] directly, without a passage to KHaus. However,
the proof of the equivalence of ubaℓ and KT is done by representing each A ∈ ubaℓ as C(X) and D(A) as N(X)
for some X ∈ KHaus, and then utilizing the Katětov–Tong theorem. Thus, the proof of the equivalence of ubaℓ
and KT given in [11] is not choice-free.

We conclude this section by giving a direct choice-free proof of the equivalence between ubaℓ and KT. For this
we require the Dieudonné lemma in the form given below.

The Dieudonné technique originates in [23]. It was utilized by several authors in different contexts; see, for

example, [14, 18, 26, 31]. The version below is formulated in the language of proximity baℓ-algebras and is one
of our main results.
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Theorem 4.14 (Dieudonné’s lemma). Let (S, ⊲) be a proximity baℓ-algebra and let D be the Dedekind completion
of S such that S is uniformly dense in D. Then the closure ⊲ of ⊲ in D × D is a KT-proximity, and hence (D, ⊲) is
a KT-algebra.

Proof. Let A = {a ∈ D : a ⊲ a} be the set of reflexive elements of (D, ⊲). We first show that for any f, g ∈ D we

have f ⊲ g if and only if there is c ∈ A with f ≤ c ≤ g.
Suppose that there is c ∈ A with f ≤ c ≤ g. Since c ⊲ c and ⊲ is the closure of ⊲, there are sequences{cn}, {dn} in S, both converging (uniformly) to c, such that cn ⊲ dn for each n. Because S is uniformly dense

in D, there is a sequence {an} in S converging to f . Since f ≤ c, the sequence {an ∧ cn} converges to f ∧ c = f .
Therefore, if we replace an by an ∧ cn , wemay assume that an ≤ cn for each n. Similarly, there is a sequence {bn}
in S converging to g with dn ≤ bn for each n. Thus, an ≤ cn ⊲ dn ≤ bn , so an ⊲ bn for each n, and hence f ⊲ g.

Conversely, suppose that f ⊲ g. Then there are sequences {an}, {bn} in S such that {an} converges to f ,{bn} converges to g, and an ⊲ bn for each n. Because the two sequences are bounded, there are r, s ∈ ℝ such that
r ≤ an , bm , f, g ≤ s for each n,m. By replacing each term t by (t − r)/(s − r), we may assume 0 ≤ an , bm , f, g ≤ 1
for each n,m. By a standard analysis argument, there are subsequences {ank } and {bnk } such that‖ank − ank+1‖, ‖bnk − bnk+1‖ ≤ 1

2k
for each k.

Since ank ⊲ bnk for each k, and because ank → f and bnk → g, we may replace the original sequences by these
subsequences to assume that ‖an − an+1‖, ‖bn − bn+1‖ ≤ 1/2n for each n. From this, we see that an+1 ≤ an + 1/2n
and bn − 1/2n ≤ bn+1 for each n.

We produce a Cauchy sequence {cn} in S satisfying an ⊲ cn ⊲ bn and cn − 1/2n ⊲ cn+1 ⊲ cn + 1/2n for each n.
To start, since a1 ⊲ b1, there is c1 ∈ S with a1 ⊲ c1 ⊲ b1. Because b1 ≤ 1, we have c1 ⊲ 1, and so c1 ⊲ 1 ≤ c1 + 1.
Thus, c1 ⊲ c1 + 1, and hence c1 − 1/2 ⊲ c1 + 1/2. Since a2 ≤ a1 + 1/2 ⊲ c1 + 1/2 and c1 − 1/2 ⊲ b1 − 1/2 ≤ b2, we
have a2 ∨ (c1 − 1/2) ⊲ b2 ∧ (c1 + 1/2). Therefore, there is c2 with

a2 ∨ (c1 − 1
2
) ⊲ c2 ⊲ b2 ∧ (c1 + 1

2
).

Now suppose that n ≥ 2 and there are c1 , . . . , cn ∈ S such that the following hold:
(in) am ⊲ cm ⊲ bm for each m ≤ n.
(iin) cm − 1/2m ⊲ cm+1 ⊲ cm + 1/2m for each m < n.
(iiin) cm − 1/2m ⊲ cm + 1/2m for each m < n.
We have an+1 ≤ an + 1/2n ⊲ cn + 1/2n and cn − 1/2n ⊲ bn − 1/2n ≤ bn+1. Consequently,

an+1 ∨ (cn − 1

2n
) ⊲ bn+1 ∧ (cn + 1

2n
).

Therefore, there is cn+1 ∈ S with
an+1 ∨ (cn − 1

2n
) ⊲ cn+1 ⊲ bn+1 ∧ (cn + 1

2n
).

From this we see that

an+1 ⊲ cn+1 ⊲ bn+1 and cn − 1

2n
⊲ cn+1 ⊲ cn + 1

2n
.

Thus, (in+1), (iin+1) and (iiin+1) are verified. By induction, we have produced the desired sequence, and (iin+1)
shows that

cn − 1

2n
≤ cn+1 ≤ cn + 1

2n
,

so ‖cn+1 − cn‖ ≤ 1/2n . This yields that {cn} is Cauchy. If c = lim cn , then cn − 1/2n ⊲ cn+1 for each n implies that
c ⊲ c, and so c ∈ A. Moreover, f = lim an ≤ lim cn ≤ lim bn = g. Therefore, we have proved that f ⊲ g if and
only if there is c ∈ A with f ≤ c ≤ g.

We next show that D is isomorphic to D(A). For this it is enough to observe that A is essential in D (see

Remark 4.9). Let 0 < h ∈ D. Since D is the Dedekind completion of S, there is b ∈ S with 0 < b ≤ h. Because(S, ⊲) is a proximity baℓ-algebra, there is a ̸= 0 in S with a ⊲ b. From a ⊲ b it follows that a ⊲ b. Therefore,
by the argument above, there is c ∈ A with a ≤ c ≤ b, and hence a ≤ c ≤ h. Since a ̸= 0, we have c ̸= 0. Thus,
A is essential in D. Consequently, D is the Dedekind completion of A and ⊲ = ⊲A , which implies that ⊲ is
a KT-proximity.
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We next utilize Dieudonné’s lemma to give a choice-free proof of the equivalence of ubaℓ and KT.

Theorem 4.15. The functorsD andR yield an equivalence between ubaℓ and KT.

Proof. As mentioned above, the functors D : ubaℓ→ KT and R : KT→ ubaℓ act on objects by sending A to(D(A), ⊲A), and (D, ⊲) toR(D, ⊲), respectively. As we pointed out in Remark 4.13, the proof in [11, Theorem 6.6]

that D is well-defined on objects passes through KHaus and uses the Katětov–Tong theorem. We give a direct

choice-free proof of this result, using Dieudonné’s lemma instead.

Let A ∈ ubaℓ. Then (D(A), ⊲A) is a proximity Dedekind algebra by Remark 4.9. Let ⊲ be the closure of ⊲A
in D(A). Applying Theorem 4.14 to (D(A), ⊲A) yields that ⊲ is a KT-proximity, and hence is equal to ⊲B , where
B = R(D, ⊲). We show that A = B. If a ∈ A, then a ⊲A a, so a ⊲ a. This implies that A ⊆ B. To see the reverse
inclusion, let b ∈ B. Then (b, b) is an element of ⊲, so there is a sequence {(bn , bn)} in ⊲A converging to (b, b).
Since bn ⊲A bn , there is an ∈ Awith bn ≤ an ≤ bn . Therefore, {an} converges to b. Since A is uniformly complete,
b ∈ A. This yields B = A, so ⊲ and ⊲A are equal. Thus, ⊲A is a closed proximity, and henceD is well-defined on

objects. That it is alsowell-defined onmorphisms and thatD andR yield an equivalence of ubaℓ andKT follows
from [11, Corollary 6.8].

Consequently, we obtain the following diagram that commutes up to natural isomorphism (see [11, Lemma 7.3]):

ubaℓ KT

KHaus

← →D← →Y ←→

R ←→End←→C ← →
N

Remark 4.16. Dieudonné’s lemma can also be used to give a simple description of the functor

N ∘ End : PDA→ KT .

Namely, for each (D, ⊲) ∈ PDA, we have that N(End(D, ⊲)) is naturally isomorphic to (D, ⊲), where ⊲ is the
closure of ⊲ in D × D. This gives a choice-free description of the reflector N ∘ End : PDA→ KT.

5 Proximity Dedekind algebras and de Vries algebras

As we saw in the previous section, if X ∈ KHaus, then N(X) is the Dedekind completion of C(X), and C(X) can
be recovered from the Katětov–Tong algebra (N(X), ⊲) as the algebra of reflexive elements. This led to a direct
choice-free proof that ubaℓ is equivalent to KT.

We next concentrate on the connection between RO(X) and N(X). As we already pointed out, RO(X) can
be identified with the boolean algebra Id(N(X)) of idempotents of N(X). As we will see in this section, the de

Vries proximity on RO(X) is the restriction of the KT-proximity on N(X). For this it is convenient to recall from
Section 3 that (RO(X), ≺) is isomorphic to the de Vries algebra (Ann(C(X)), ≺). Thus, it is sufficient to prove that

there is a boolean isomorphism σ : Id(N(X))→ Ann(C(X)) such that e ⊲ f if and only if σ(e) ≺ σ(f) for each
e, f ∈ Id(N(X)), where ⊲ on Id(N(X)) is the restriction of the KT-proximity on N(X). From this it will follow that(Id(N(X)), ⊲) is a de Vries algebra.

We will give a purely algebraic proof of this result by showing that if (D, ⊲) is a proximity Dedekind algebra
and A is the baℓ-algebra of its reflexive elements, then (Id(D), ⊲) is isomorphic to (Ann(A), ≺). This yields
that (Id(D), ⊲) is a de Vries algebra. We conclude the section by showing that associating with each proximity

Dedekind algebra (D, ⊲) the de Vries algebra (Id(D), ⊲) defines a covariant functor Id from PDA to DeV.

Let D be a Dedekind algebra. Then D is a Baer ring, where we recall that a commutative ring (with 1) is

a Baer ring if each annihilator ideal is generated by a single idempotent. In fact, as was shown in [10], A ∈ baℓ
is a Dedekind algebra if and only if A ∈ ubaℓ and A is Baer. However, the proof utilized Gelfand duality. For

our purposes, it is convenient to give a choice-free proof of this result. In this section, we prove the left-to-right

implication. The right-to-left implication will be proved in Corollary 7.7.
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Lemma 5.1. If D is a Dedekind algebra, then D ∈ ubaℓ and D is a Baer ring.

Proof. As we pointed out in Section 4, D ∈ ubaℓ. To show that D is Baer, let S ⊆ D and set I = AnnD(S). Because
D is Dedekind, e := ⋁{a ∈ I : a ≤ 1} exists in D. We show that e ∈ Id(D) and that e generates I. Let s ∈ S. As we
saw in the proof of Lemma 3.8, AnnD(S) = AnnD({|s| : s ∈ S}). Therefore, we may assume that 0 ≤ s. Thus, by
[29, Lemma 1],

se = s⋁{a : a ∈ I, a ≤ 1} =⋁{sa : a ∈ I, a ≤ 1} = 0,
so e ∈ I. To see that e is an idempotent, by [6, Lemma 6.3], it is sufficient to observe that e = 2e ∧ 1. We have

e ≤ 2e ∧ 1 since 0 ≤ e ≤ 1. Also, 2e ∧ 1 ≤ 2e and 2e ∈ I since e ∈ I. Therefore, 2e ∧ 1 ∈ I because I is an annihi-
lator ideal, and hence an ℓ-ideal by Lemma 3.8. But then 2e ∧ 1 ≤ e by the definition of e. Thus, e = 2e ∧ 1, and
so e ∈ Id(D). It is left to show that eD = I. The inclusion eD ⊆ I is clear since e ∈ I. For the reverse inclusion, let
a ∈ I. As D is bounded, there is n with |a| ≤ n. Therefore, |a|/n ≤ 1. Since |a|/n ∈ I, by the definition of e, we
have |a|/n ≤ e, so |a| ≤ ne. Since eD = AnnD((1 − e)D), it is an ℓ-ideal by Lemma 3.8. Thus, a ∈ eD, so I = eD,
and hence D is Baer.

Remark 5.2. (i) Let D be a Dedekind algebra. As we just saw, D is a Baer ring, and hence Id(D) is a complete
boolean algebra (see, e.g., [2, Proposition 1.4.1]).

(ii) Arguing as in the proof of Lemma 5.1 gives that if D ∈ baℓ is Baer and S ⊆ Id(D), then the join of S in D is

the join of S in Id(D).
For A ∈ baℓ, we recall from Section 3 that (Ann(A), ≺) is a de Vries algebra, where I ≺ J if AnnA(I) ∨ J = A. By
[5, Lemma A.2 (4)], this is equivalent to AnnA(I) + J = A.
Theorem 5.3. Let (D, ⊲) ∈ PDA and A = R(D, ⊲). The map σD : Id(D)→ Ann(A) given by σD(e) = eD ∩ A is
a well-defined boolean isomorphism such that e ⊲ f if and only if σD(e) ≺ σD(f) for all e, f ∈ Id(D).
Proof. We first show that for each ℓ-ideal I of D we have AnnA(I ∩ A) = AnnD(I) ∩ A. The inclusion ⊇ is clear.
For the reverse inclusion, let a ∈ AnnA(I ∩ A) and x ∈ I. By Remark 4.9 (ii), D is the Dedekind completion of A,
so A is join-dense in D, and hence |x| =⋁{b ∈ A : 0 ≤ b ≤ |x|}.
Therefore, |a||x| =⋁{|a|b : 0 ≤ b ≤ |x|}.
If b ∈ A with 0 ≤ b ≤ |x|, then b ∈ I ∩ A, so ab = 0 as a ∈ AnnA(I ∩ A). Thus, |a|b = 0, so |a||x| = 0, and hence
ax = 0. Consequently, a ∈ AnnD(I) ∩ A.

Let e ∈ Id(D). By the previous paragraph,
eD ∩ A = AnnD((1 − e)D) ∩ A = AnnA((1 − e)D ∩ A),

so eD ∩ A ∈ Ann(A), and hence σD is well-defined.
We next show that σD is an order isomorphism. Let e, f ∈ Id(D)with e ≤ f . Then e = ef . Suppose a ∈ eD ∩ A.

We have a = ea, so a = efa = fea, and thus eD ∩ A ⊆ fD ∩ A. Conversely, suppose eD ∩ A ⊆ fD ∩ A. We first

observe that if g ∈ Id(D) and a ∈ gD, then 0 ≤ a ≤ g if and only if 0 ≤ a ≤ 1. One direction is clear. For the other,
if 0 ≤ a ≤ 1, then 0 ≤ a = ag ≤ g. Since A is join-dense in D, and eD ∩ A, fD ∩ A are ℓ-ideals in A, we obtain

e =⋁{a ∈ A : 0 ≤ a ≤ e} =⋁{a ∈ eD ∩ A : 0 ≤ a ≤ e} =⋁{a ∈ eD ∩ A : 0 ≤ a ≤ 1},
f =⋁{a ∈ A : 0 ≤ a ≤ f } =⋁{a ∈ fD ∩ A : 0 ≤ a ≤ f } =⋁{a ∈ fD ∩ A : 0 ≤ a ≤ 1}.

Therefore, e ≤ f . To see that σD is onto, let I ∈ Ann(A). Then I = AnnA(S) = AnnD(S) ∩ A for some S ⊆ A. By
Lemma 5.1, D is a Baer ring, so there is e ∈ Id(D) with AnnD(S) = eD. Thus, I = eD ∩ A. Consequently, σD is an
order isomorphism, and hence a boolean isomorphism.

Finally, to see that e ⊲ f if and only if σD(e) ≺ σD(f), first suppose that e ⊲ f . By (KT), there is a ∈ A with

e ≤ a ≤ f . Therefore, a ∈ fD ∩ A. Also, 0 ≤ 1 − a ≤ 1 − e, so 1 − a ∈ (1 − e)D ∩ A. This implies((1 − e)D ∩ A) + (fD ∩ A) = A.
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By the first paragraph,

AnnA(eD ∩ A) = AnnD(eD) ∩ A = (1 − e)D ∩ A.
Thus, AnnA(eD ∩ A) + (fD ∩ A) = A, and so eD ∩ A ≺ fD ∩ A.

For the converse, suppose that eD ∩ A ≺ fD ∩ A. Then((1 − e)D ∩ A) + (fD ∩ A) = A.
By [5, Lemma A.2 (1)], if I, J are ℓ-ideals of A with I + J = A, then there is a ∈ I with 0 ≤ a ≤ 1 and 1 − a ∈ J.
Therefore, there is a ∈ fD ∩ A with 0 ≤ a ≤ 1 and 1 − a ∈ (1 − e)D ∩ A. Since a ∈ fD, we have a = fa. Hence,
a = fa ≤ f ⋅ 1 = f because a ≤ 1. A similar argument shows 1 − a ≤ 1 − e, so e ≤ a. Consequently, e ≤ a ≤ f , and
so e ⊲ f .
Remark 5.4. Let (D, ⊲) and A be as in Theorem 5.3. Since D is a Baer ring, we have Ann(D) = {eD : e ∈ Id(D)}.
Consequently, Ann(D) and Ann(A) are isomorphic boolean algebras via the map that sends eD to eD ∩ A.
Let (D, ⊲) ∈ PDA. To prove that the restriction of ⊲ to Id(D) is a de Vries proximity, we need the following lemma.
Lemma 5.5. Let A ∈ baℓ.
(i) Let I be an ℓ-ideal of A. If 0 ≤ a ∈ I and 0 < ε ∈ ℝ, then AnnA((a − ε)+) + I = A.
(ii) Let D be the Dedekind completion of A. If f ∈ Id(D) and a ∈ A with 0 ≤ a ≤ f , then for each ε > 0 there is

e ∈ Id(D) with e ⊲ f and a ≤ e + ε.
Proof. (i) To show that AnnA((a − ε)+) + I = A, it is sufficient to find b ∈ AnnA((a − ε)+) such that 1 − b ∈ I.
Therefore, we need b such that b(a − ε)+ = 0 and 1 − b ∈ I. We show that b = ε−1(a − ε)− is the desired element.
We have (a − ε)+(a − ε)− = 0, so (a − ε)+[ε−1(a − ε)−] = 0. Thus, b ∈ AnnA((a − ε)+). To see that 1 − b ∈ I, using
standard vector lattice identities, we have

b = ε−1(a − ε)− = ε−1((ε − a) ∨ 0) = (1 − ε−1a) ∨ 0 = 1 + (−ε−1a ∨ −1) = 1 − (ε−1a ∧ 1).
Since a ∈ I, we have ε−1a ∈ I. From a ≥ 0 it follows that 0 ≤ ε−1a ∧ 1 ≤ ε−1a, so ε−1a ∧ 1 ∈ I. Consequently,
1 − b = ε−1a ∧ 1 ∈ I.

(ii) Set I = fD ∩ A, an ℓ-ideal of A. If 0 ≤ a ≤ f , then a ∈ I. By (i), AnnA((a − ε)+) + I = A. By Lemma 5.1, D is

a Baer ring, so there is e ∈ Id(D) with
AnnA(AnnA((a − ε)+)) = AnnD(AnnA((a − ε)+)) ∩ A = eD ∩ A.

Thus, AnnA(eD ∩ A) = AnnA((a − ε)+), and hence AnnA(eD ∩ A) + I = A. This means that eD ∩ A ≺ fD ∩ A, so
e ⊲ f by Theorem 5.3. Moreover, (a − ε)+ ∈ AnnA(AnnA((a − ε)+)) = eD ∩ A,
and thus (a − ε)+e = (a − ε)+. Because 0 ≤ a ≤ f ≤ 1 and ε > 0, we have (a − ε)+ ≤ a ≤ 1, which together with(a − ε)+e = (a − ε)+ yields (a − ε)+ ≤ e. Thus, a − ε ≤ (a − ε)+ ≤ e, so a ≤ e + ε.
We are ready to prove the main result of this section.

Theorem 5.6. (i) Let (D, ⊲) ∈ PDA and A = R(D, ⊲). Then the restriction of ⊲ to Id(D) is a de Vries proximity on
Id(D), and σD : Id(D)→ Ann(A) is a de Vries isomorphism.

(ii) There is a covariant functor Id : PDA→ DeV which sends (D, ⊲) to (Id(D), ⊲), and a proximity morphism
α : (D, ⊲)→ (D , ⊲) to its restriction α|Id(D).

Proof. (i) By Theorem 5.3, σD : Id(D)→ Ann(A) is a boolean isomorphism and e ⊲ f if and only if σD(e) ≺ σD(f).
Since (Ann(A), ≺) is a de Vries algebra, it follows that (Id(D), ⊲) is a de Vries algebra and σD is a de Vries

isomorphism.

(ii) By (i), (Id(D), ⊲) ∈ DeV. We first show that α sends idempotents to idempotents. Let e ∈ Id(D). Then
e = 1 ∧ 2e, so

α(e) = α(1 ∧ 2e) = α(1) ∧ α(2e) = 1 ∧ 2α(e).
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Therefore, α(e) ∈ Id(D), so α|Id(D) is a well-defined map from Id(D) to Id(D). We next show that γ := α|Id(D) is
a de Vries morphism. The first two axioms of a de Vries morphism hold for γ since they hold for α. For (M3),
suppose that e ⊲ f . Then −α(−e) ⊲ α(f). But −α(−e) = α(e∗)∗ because

α(e∗)∗ = 1 − α(1 − e) = 1 − (1 + α(−e)) = −α(−e). (5.1)

Therefore, γ(e∗)∗ ⊲ γ(f). Finally, to show (M4), let f ∈ Id(D). Then
γ(f) = α(f) =⋁{α(g) : g ∈ D, g ⊲ f }.

By (KT), we have

α(f) =⋁{α(a) : a ∈ R(D, ⊲), a ≤ f }.
Let 0 < ε ∈ ℝ. Since D is the Dedekind completion of R(D, ⊲) by Remark 4.9 (ii), it follows from Lemma 5.5 (ii)

that for each a ∈ R(D, ⊲)with a ≤ f there is e ∈ Id(D)with e ⊲ f and a ≤ e + ε. Thus, α(a) ≤ α(e) + ε = γ(e) + ε,
and so

γ(f) =⋁{α(a) : a ∈ R(D, ⊲), a ≤ f }≤⋁{γ(e) + ε : e ∈ Id(D), e ⊲ f }=⋁{γ(e) : e ∈ Id(D), e ⊲ f } + ε≤ γ(f) + ε.
Since this is true for all ε, we get γ(f) = ⋁{γ(e) : e ∈ Id(D), e ⊲ f}, and so (M4) holds. Consequently, γ is a de Vries
morphism, and we set Id(α) = α|Id(D).

It is clear that if α is an identity proximity morphism, then Id(α) is an identity de Vries morphism. It is left
to show that Id preserves composition. Let

α1 : (D1 , ⊲1)→ (D2 , ⊲2) and α2 : (D2 , ⊲2)→ (D3 , ⊲3)
be proximity morphisms, and let γi = αi|Id(Di). If f ∈ Id(D1), then(γ2 ⋆ γ1)(f) =⋁{γ2γ1(e) : e ∈ Id(D1), e ⊲1 f }
and (α2 ⋆ α1)(f) =⋁{α2α1(a) : a ∈ R(D1 , ⊲1), a ≤ f }.
Since e ⊲1 f implies that there is a ∈ R(D1 , ⊲1) with e ≤ a ≤ f , it follows that (γ2 ⋆ γ1)(f) ≤ (α2 ⋆ α1)(f). For
the reverse inequality, if a ≤ f and ε > 0, then, as above, there is e ∈ Id(D1) with e ⊲1 f and a ≤ e + ε. There-
fore, α2α1(a) ≤ α2α1(e) + ε, and since this holds for all ε, we conclude that (α2 ⋆ α1)(f) ≤ (γ2 ⋆ γ1)(f). Hence,(γ2 ⋆ γ1)(f) = (α2 ⋆ α1)(f) for each f ∈ Id(D1). Thus,(α2 ⋆ α1)|Id(D1)= α2|Id(D2)⋆α1|Id(D1) ,
and so Id is a covariant functor.

6 De Vries algebras and proximity Baer–Specker algebras

To define a functor from DeV to KT, we need to introduce the concept of Baer–Specker algebras. The same way

we can think of de Vries algebras as the algebrasRO(X), where X is compactHausdorff, and of KT-algebras as the
algebras N(X), we can think of Baer–Specker algebras as the algebras FN(X) of finitely-valued normal functions.
These algebras have a long history, for which we refer to [15] and the references therein. In our context, they

arise as follows.

Definition 6.1 ([9, Definition 5.1]). We call a commutative unital ℝ-algebra A a Specker algebra if it is generated
as an ℝ-algebra by its idempotents.
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For A ∈ baℓ, let S(A) be the ℝ-subalgebra of A generated by Id(A). We call S(A) the Specker subalgebra of A.
Theorem 6.2 ([9, Proposition 5.5]). Each Specker algebra is a baℓ-algebra. Thus, A ∈ baℓ is a Specker algebra if
and only if A = S(A).
Definition 6.3. A Specker algebra is a Baer–Specker algebra if it is a Baer ring.

Remark 6.4. By [8, Corollary 4.4], a Specker algebra A is Baer–Specker if and only if Id(A) is a complete boolean
algebra. We will use this fact frequently.

It is proved in [9, Theorem 6.2] that A ∈ baℓ is a Specker algebra if and only if A is isomorphic to the ℓ-algebra
FC(X) of finitely-valued continuous functions on a Stone space X, and that the category of Specker algebras

is dually equivalent to the category of Stone spaces. Moreover, A is a Baer–Specker algebra if and only if A is

isomorphic to FC(X) where X is in addition extremally disconnected (ED), and the category of Baer–Specker

algebras is dually equivalent to the category of compact Hausdorff ED-spaces.

Proximities on Specker algebras and Baer–Specker algebras were introduced in [7], where it was shown

that the category of proximity Baer–Specker algebras is equivalent to DeV and dually equivalent to KHaus.

Definition 6.5. We call a proximity baℓ-algebra (A, ⊲) a proximity Specker algebra if A is a Specker algebra. If A
is a Baer–Specker algebra, then we call (A, ⊲) a proximity Baer–Specker algebra.
Remark 6.6. In [7, Definition 4.2], the base ring is an arbitrary totally ordered integral domain R rather thanℝ.
Because of this, axiom (P7) takes on the following more complicated form:

a ⊲ b implies ra ⊲ rb for each 0 < r ∈ R, and ra ⊲ rb for some 0 < r ∈ R implies a ⊲ b.
If R is a totally ordered field, this axiom simplifies to (P7) of Definition 4.5.

To distinguish between proximity baℓ-algebras and proximity Specker algebras, we introduce the following

notation.

Notation 6.7. We will write S for a Specker algebra and≪ for a proximity on S.
Definition 6.8. Let (S,≪) and (S ,≪) be two proximity Baer–Specker algebras. A map α : S → S is a weak
proximity morphism if α satisfies axioms (PM1)–(PM5) of Definition 4.10, as well as the following weakening of
axioms (PM6) and (PM7), where r ∈ ℝ:
(PM6’) α(a ∨ r) = α(a) ∨ r.
(PM7’) α(a + r) = α(a) + r.
Remark 6.9. (i) The weakening of (PM8) is (PM5), and hence it is redundant.

(ii) Definition 6.8 originates in [7, Definition 6.4], where morphisms between proximity Baer–Specker algebras

were called proximity morphisms. Here we call them weak proximity morphisms because this notion is

weaker than that of a proximity morphism given in Definition 4.10. However, as wewill see in Theorem A.8,

the two notions of morphism between proximity Baer–Specker algebras are equivalent. This requires sev-

eral technical lemmas, which are proved in the appendix.

(iii) If α is a proximity morphism between proximity Dedekind algebras, then it is obvious that in Axiom (PM4)

the least upper bound of {α(a) : a ⊲ b} exists. If α is a weak proximity morphism between proximity Baer–

Specker algebras, (PM4) should be interpreted that the join of {α(a) : a ⊲ b} exists and is equal to α(b).
Theorem 6.10 ([6, Theorem 6.8]). Proximity Baer–Specker algebras and weak proximity morphisms between
them form a category PBSp, where the composition α2 ⋆ α1 of two proximity morphisms α1 : S1 → S2 and
α2 : S2 → S3 is given by (α2 ⋆ α1)(s) =⋁{α2α1(t) : t ≪1 s}.
That PBSp is equivalent toDeVwas first observed in [7, Corollary 8.7], but the proof used duality theory for these

categories. A purely algebraic and choice-free proof of this result is given in [6, Theorem 6.10].

Theorem 6.11. The categories PBSp and DeV are equivalent.
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We recall that this equivalence is obtained as follows. The covariant functor Id : PBSp→ DeV sends a proximity

Baer–Specker algebra (S,≪) to the de Vries algebra (Id(S), ≺), where ≺ is the restriction of ≪ to Id(S), and
a proximity morphism α : (S,≪)→ (S ,≪) to its restriction α|Id(S). The covariant functor from DeV to PBSp is

defined by generalizing the notion of a boolean power of ℝ to that of a de Vries power.
Definition 6.12 ([6, Definition 4.7]). For a boolean algebra B, defineℝ[B]♭ to be the set of all decreasing functions
a : ℝ→ B for which there exist 1 = e0 > e1 > ⋅ ⋅ ⋅ > en > 0 in B and r0 < r1 < ⋅ ⋅ ⋅ < rn in ℝ such that

a(r) = {{{{{{{
1 if r ≤ r0 ,
ei if ri−1 < r ≤ ri ,
0 if rn < r.

By [6, Theorem 4.9], ℝ[B]♭ is a Specker algebra with pointwise order and algebra operations given as follows:∙ (a + b)(r) = ⋁{a(s) ∧ b(t) : s + t ≥ r}.∙ If s > 0, then (sa)(r) = ⋁{a(t) : st ≥ r}.∙ If a, b ≥ 0, then (ab)(r) = ⋁{a(s) ∧ b(t) : s, t ≥ 0, st ≥ r}.
Moreover, there is an isomorphism τB : B → Id(ℝ[B]♭) which sends each e ∈ B to e♭ ∈ ℝ[B]♭ defined by

e♭(r) = {{{{{{{
1 if r ≤ 0,
e if 0 < r ≤ 1,
0 if 1 < r.

Furthermore, each de Vries proximity ≺ on B lifts to a proximity ≺♭ on ℝ[B]♭ given by
a ≺♭ b ⇐⇒ a(r) ≺ b(r) for all r ∈ ℝ.

Then, for e, f ∈ B, we have
e ≺ f ⇐⇒ e♭ ≺♭ f ♭ . (6.1)

Thus, if (B, ≺) is a de Vries algebra, then (ℝ[B]♭ , ≺♭) is a proximity Baer–Specker algebra and (B, ≺) is isomorphic
to (Id(ℝ[B]♭), ≺♭).

In addition, each de Vries morphism σ : (B, ≺)→ (B , ≺) extends to the map
σ♭ : ℝ[B]♭ → ℝ[B]♭

given by σ♭(a) = σ ∘ a. By [6, Theorem 6.5], σ♭ is a weak proximity morphism. The correspondence B → B♭ and
σ → σ♭ defines a covariant functor Sp : DeV→ PBSp. We thus have that Id : PBSp→ DeV and Sp : DeV→ PBSp

are well-defined covariant functors that establish an equivalence of PBSp and DeV. Combining this with de

Vries duality and the dual equivalence between PBSp and KHaus (see [7, Theorem 8.6]), we obtain the follow-

ing commutative diagram, where the horizontal arrow is an equivalence, while the slanted arrows are dual

equivalences:

PBSp DeV

KHaus

→ →→→ →→

Remark 6.13. Let X ∈ KHaus. By de Vries duality, we have (RO(X), ≺) ∈ DeV. Also, by [7, Theorem 4.10], we have(FN(X),≪) ∈ PBSp, where we recall from [7, Definition 3.3] that

f ≪ g if cl(f −1[r,∞)) ⊆ g−1[r,∞) for each r ∈ ℝ.
By [7, Lemma4.8], sendingU to its characteristic function χU is a boolean isomorphism fromRO(X) to Id(FN(X)).
It easily follows from the definitions of ≺ and≪ that U ≺ V if and only if χU ≪ χV . Thus,(FN(X),≪) ≅ Sp(RO(X), ≺)
by Theorem 6.11. In Remark 7.16, we will see that ≪ is the restriction to FN(X) of the KT-proximity ⊲ on N(X)
defined in Section 3.
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7 Proximity Baer–Specker algebras and Katětov–Tong algebras

In this section, we prove that the category PBSp of proximity Baer–Specker algebras is equivalent to the category

KT of Katětov–Tong algebras, thus completing the series of equivalences and dual equivalences discussed in this

paper.

We can compose the functors Id : PDA→ DeV and Sp : DeV→ PBSp to obtain a covariant functor from PDA

to PBSp.

Proposition 7.1. There is a covariant functor Sp ∘ Id : PDA→ PBSp.

Remark 7.2. As we will see in Remark 7.16, the composition Sp ∘ Id is naturally isomorphic to the functor that
associates to each proximity Dedekind algebra (D, ⊲) the pair (S(D), ⊲|S(D)), where we recall that S(D) is the
Specker subalgebra of D.

To define a covariant functor PBSp→ PDA requires some preparation. Let S be a Specker algebra and let

B = Id(S). We recall (see [8, Lemma 2.1]) that each s ∈ S has an orthogonal decomposition s = ∑ni=0 riei with
ri ∈ ℝ (not necessarily distinct) and ei ∈ B pairwise orthogonal (that is, ei ∧ ej = 0 for each i ̸= j). If, in addition,
e0 ∨ ⋅ ⋅ ⋅ ∨ en = 1, we call this a full orthogonal decomposition.
Lemma 7.3. Let S be a Baer–Specker algebra and D its Dedekind completion. Then S = S(D).
Proof. It is sufficient to show that Id(S) = Id(D). Since Id(S) ⊆ Id(D), it then suffices to show the other inclusion.

Let e ∈ Id(D). Since S is join-dense in D, we may write e = ⋁{a ∈ S : a ≤ e}. Moreover, since 0 ≤ e, we have
e =⋁{a ∈ S : 0 ≤ a ≤ e}.

Let a ∈ S with 0 ≤ a. Then a = ∑i riei for some ri ∈ ℝ and pairwise orthogonal nonzero idempotents ei ∈ Id(S).
Therefore, aei = riei because eiej = ei ∧ ej = 0 when i ̸= j. If ri < 0, then riei ≤ 0, which implies that riei = 0
since aei ≥ 0. This forces ri = 0, a contradiction. Thus, each ri ≥ 0. Then a = ⋁i riei by [16, XIII.3 (14)]. Conse-
quently, a is a finite join of elements of the form rf with 0 ≤ r ∈ ℝ and f ∈ Id(S). Therefore,

e =⋁{rf : 0 ≤ r, f ∈ Id(S), rf ≤ e}.
From rf ≤ e it follows that r ≤ 1 and f ≤ e by [7, Lemma 4.9 (6)]. Thus, e = ⋁{f ∈ Id(S) : f ≤ e}. Since S is Baer,
Id(S) is a complete boolean algebra by Remark 6.4, so this join exists in Id(S), and is equal to the join in S
by Remark 5.2 (ii). Finally, because D is the Dedekind completion of S, an existing join in S is the same as the
corresponding join in D, and hence e ∈ Id(S).
Proposition 7.4. Let A ∈ baℓ be Baer. Then S(A) is uniformly dense in A.
Proof. Let a ∈ A. We claim that it is enough to show that whenever 0 ≤ a ∈ A, there is b ∈ S := S(A) with
b ≤ a ≤ b + 1. Suppose this happens. We show that S is uniformly dense in A. Let a ∈ A be arbitrary. There is

r ∈ ℝ with a + r ≥ 0. Given ε > 0, there is n ∈ ℕ with 1/n < ε. By assumption, there is b ∈ S with
b ≤ n(a + r) ≤ b + 1.

Therefore,

b
n − r ≤ a ≤ bn + 1n − r.

Set c = b/n − r. Then c ∈ S and c ≤ a ≤ c + 1/n. This implies that ‖a − c‖ ≤ 1/n < ε. Thus, S is uniformly dense
in A.

We now show that if 0 ≤ a ∈ A, there is b ∈ S with b ≤ a ≤ b + 1. For each n ≥ 1, set
an = (a ∧ n) − (a ∧ (n − 1)).

Then an = [(a − (n − 1)) ∧ 1] ∨ 0 by [6, Lemma 5.4 (1)].¹ There is a positive integer N with a ≤ N . This implies
1 In [6, Lemma 5.4], A is assumed to be a Specker algebra, but the proof of (1) of that lemma does not use this assumption.
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that an = 0 if n > N , and so
a = (a ∧ 1) + [(a ∧ 2) − (a ∧ 1)] + ⋅ ⋅ ⋅ + [(a ∧ N) − (a ∧ (N − 1))]= a1 + ⋅ ⋅ ⋅ + aN .

We will show that there are idempotents en ∈ S satisfying an+1 ≤ en ≤ an for each n with 1 ≤ n ≤ N . From this,

setting b = e1 + ⋅ ⋅ ⋅ + eN , we obtain b ≤ a1 + ⋅ ⋅ ⋅ + aN = a. Also, since a1 ≤ 1, we have
a ≤ 1 + e1 + ⋅ ⋅ ⋅ + eN−1 ≤ 1 + b.

To produce the idempotents, since A is Baer, there is en ∈ Id(A) = Id(S) with enA = AnnA((a − n)−). Since(a − n)+(a − n)− = 0, we have (a − n)+ ∈ enA, and
an+1 = [(a − n) ∧ 1] ∨ 0 = [(a − n) ∨ 0] ∧ 1 = (a − n)+ ∧ 1

by [16, Theorem XIII.4.4]. Therefore, an+1 ∈ enA because enA is an ℓ-ideal of A by Lemma 3.8. Thus, we have

an+1en = an+1. This yields an+1 = an+1en ≤ en because an+1 ≤ 1. For the other inequality, since en(a − n)− = 0,
we have

en(a − n) = en(a − n)+ − en(a − n)− = en(a − n)+ ≥ 0.
Therefore, by [16, Corollary XVII.5.1],

enan = en([(a − (n − 1)) ∧ 1] ∨ 0)= [en(a − (n − 1)) ∧ en] ∨ 0= [(en(a − n) + en) ∧ en] ∨ 0= en
because en(a − n) + en ≥ en (as en(a − n) ≥ 0) and 0 ≤ en . Since en ≤ 1, we get en = enan ≤ an , which gives the
other inequality. We have thus produced idempotents en with an+1 ≤ en ≤ an for each n. This completes the
proof.

Corollary 7.5. A Baer–Specker algebra is uniformly dense in its Dedekind completion.

Proof. Let S be Baer–Specker and let D be its Dedekind completion. By Lemma 7.3, S = S(D). Since D is Baer by

Lemma 5.1, S is uniformly dense in D by Proposition 7.4.

Corollary 7.6. Let D be a Dedekind algebra. Then D is the Dedekind completion of its Specker subalgebra S(D).
Proof. By Proposition 7.4, S := S(D) is uniformly dense in D. Therefore, if 0 < d ∈ D, then there is a sequence {sn}
in S converging to d such that 0 ≤ sn ≤ d (see, e.g., [14, Lemma 3.16 (1)]). Thus, S is essential in D, and hence D is

the Dedekind completion of S by [11, Proposition 2.12].

The following corollary is a converse to Lemma 5.1.

Corollary 7.7. If A ∈ ubaℓ is Baer, then A is a Dedekind algebra.

Proof. Let S be the Specker subalgebra of A and let D be the Dedekind completion of A. By Proposition 7.4, S is
uniformly dense in A, so S is essential in A by the same argument as in the proof of Corollary 7.6. Since D is the

Dedekind completion of A, we have that A is essential in D by [11, Proposition 2.12]. Thus, S is also essential in D,
and so D is the Dedekind completion of S. Because A is Baer, Id(A) is complete, as pointed out in Remark 5.2 (i).
Then S is Baer by [8, Theorem 4.3 (2)]. Therefore, S is uniformly dense in D by Corollary 7.5. Since S ⊆ A ⊆ D and

S is uniformly dense in D, we also have that A is uniformly dense in D. Because A ∈ ubaℓ, we conclude that
A = D. Thus, A is a Dedekind algebra.

Putting Lemma 5.1 and Corollary 7.7 together, we obtain a direct choice-free proof of the following result

in [10].

Theorem 7.8. Let A ∈ baℓ. Then A is a Dedekind algebra if and only if A ∈ ubaℓ and A is a Baer ring.
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Remark 7.9. As promised in Remark 3.11, we give a choice-free proof that each A ∈ baℓ has no nonzero nilpo-
tent elements. If a ∈ Awith an = 0, then |a|n = 0, sowemay assume that 0 ≤ awith an = 0. LetD be theDedekind
completion of A and S = S(D). Then S is join-dense in D by Corollary 7.6. Therefore, if a ̸= 0, there is 0 < b ∈ S
with b ≤ a. Thus, 0 ≤ bn ≤ an = 0, so bn = 0. Write b = ∑mi=1 riei in orthogonal form. Then

0 = bn = m∑
i=1 rni ei .

Multiplying by ei gives rni ei = 0, so ri = 0 or ei = 0 for each i. This implies b = 0, a contradiction. Consequently,
a = 0, and hence A has no nonzero nilpotents.

Our next goal is to show that if (S,≪) ∈ PBSp, then ≪ extends to a KT-proximity on the Dedekind completion

of S. For this we will utilize the Dieudonné lemma again.

Proposition 7.10. Let (S,≪) be a proximity Baer–Specker algebra and let D be the Dedekind completion of S. If ⊲
is the closure of≪ in D × D, then ⊲ is a KT-proximity on D, and hence (D, ⊲) is a KT-algebra.
Proof. By Corollary 7.5, S is uniformly dense in D. Therefore, by Theorem 4.14, ⊲ is a KT-proximity on D, and
hence (D, ⊲) ∈ KT.
We next show how to lift weak proximity morphisms. For this we need the following well-known facts:

(i) If φ : V → V  is a function between normed vector spaces such that‖φ(x) − φ(y)‖ ≤ ‖x − y‖
for each x, y ∈ V , then φ is uniformly continuous.

(ii) If X is a complete metric space and Y a dense subspace of X, then X is (isometric to) the completion of Y .
(iii) Let X, X be complete metric spaces, let Y be a dense subspace of X, and let Y  be a dense subspace of X.

If φ : Y → Y  is a uniformly continuous map, then there is a unique extension of φ to a continuous map

X → X.
The proof of (i) is straightforward, the proof of (ii) is given in [19, Proposition II.3.7.13], and the proof of (iii) is

given in [19, Theorem II.3.6.2].

Lemma 7.11. Let A, A ∈ baℓ. If α : A → A is order preserving and α(a + r) = α(a) + r for each a ∈ A and r ∈ ℝ,
then α is uniformly continuous. In particular, a weak proximity morphism is uniformly continuous.

Proof. Let a, b ∈ A and set ‖a − b‖ = ε. Then b − ε ≤ a ≤ b + ε. By the hypotheses on α, we have
α(b) − ε = α(b − ε) ≤ α(a) ≤ α(b + ε) = α(b) + ε.

Therefore, ‖α(a) − α(b)‖ ≤ ε = ‖a − b‖. Consequently, α is uniformly continuous.
In the proof of the following proposition, we will use several results from the appendix.

Proposition 7.12. Let α : (S,≪)→ (S ,≪) be aweak proximitymorphismbetween proximity Baer–Specker alge-
bras, let ⊲ be the closure of ≪ in D(S) × D(S), and let ⊲ be the closure of ≪ in D(S) × D(S). Then the unique
uniformly continuous extension β : (D(S), ⊲)→ (D(S), ⊲) of α is a proximity morphism.
Proof. We note that β is well-defined since α is uniformly continuous by Lemma 7.11 and S is uniformly dense
in D(S) by Corollary 7.5. We then have β(d) = lim α(an) for any sequence {an} in S converging to d. By Propo-
sition 7.10, the closure ⊲ of ≪ is a KT-proximity, and so is the closure ⊲ of ≪. We show that β is a proximity
morphism.

(PM1) Since β extends α, we have β(0) = α(0) = 0 and β(1) = α(1) = 1.
(PM2) Let c, d ∈ D(S). Say c = lim an and d = lim bn , where {an}, {bn} ⊆ S. Then c ∧ d = lim(an ∧ bn). There-

fore, since α satisfies (PM2),

β(c ∧ d) = lim α(an ∧ bn) = lim(α(an) ∧ α(bn)) = lim(α(an)) ∧ lim(α(bn)) = β(c) ∧ β(d).
(PM3) Suppose that c ⊲ d. Then there are sequences {an}, {bn} in S with c = lim an , d = lim bn , and an ≪ bn

for each n. We have −α(−an) ≪ α(bn). Taking limits yields −β(−c) ⊲ β(d).
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(PM4) We first show that β(d) = ⋁{α(a) : a ∈ S, a ≤ d}. The inequality ≥ holds since β is order preserving
by (PM2) and extends α. For the reverse inequality, we may write d = lim an with an ≤ d for each n (see, e.g.,
[14, Lemma 3.16(1)]). Then α(an) is below the join for each n, and so the limit is below the join. This yields the

equality. Therefore, by (PM4) applied to α in the second and third equalities below,

β(d) =⋁{α(a) : a ∈ S, a ≤ d}=⋁{⋁{α(b) : b ∈ S, b ≪ a} : a ∈ S, a ≤ d}=⋁{α(b) : b ∈ S, b ⊲ d}.
From this, it follows that β(d) = ⋁{β(c) : c ⊲ d}.

(PM5) Let 0 < r ∈ ℝ and write d = lim an . Since α satisfies (PM5), we have

β(rd) = lim α(ran) = lim rα(an) = rβ(d).
(PM6) Let c, d ∈ D(S)with c ⊲ c. There are sequences {an}, {bn}, {bn} in S with bn ≪ bn for each n such that

d = lim an and c = lim bn = lim bn . By Lemma A.6 (i),
α(an ∨ bn) ≤ α(an) ∨ α(bn).

Therefore,

β(d ∨ c) = lim α(an ∨ bn) ≤ lim(α(an) ∨ α(bn))= lim α(an) ∨ lim α(bn) = β(d) ∨ β(c)≤ β(d ∨ c),
where the final inequality holds since β is order preserving. Thus, β(d ∨ c) = β(d) ∨ β(c).

(PM7) Let c, d ∈ D(S)with c ⊲ c. There are sequences {an}, {bn}, {bn} in S with bn ≪ bn for each n such that
d = lim an and c = lim bn = lim bn . By Lemma A.6 (ii),

α(an + bn) ≤ α(an) + α(bn).
Therefore,

β(d + c) = lim α(an + bn) ≤ lim(α(an) + α(bn))= lim α(an) + lim α(bn) = β(d) + β(c)≤ β(d + c).
where the final inequality holds by Lemma A.1 (i). Thus, β(d + c) = β(d) + β(c).

(PM8) Let c, d ∈ D(S)with 0 ≤ c ⊲ c. We show β(cd) = β(c)β(d). By [11, Remark 8.9], it suffices to prove this

for d ≥ 0. There are sequences {an}, {bn}, {bn} of nonnegative elements in S with bn ≪ bn for each n such that
d = lim an and c = lim bn = lim bn . By Lemma A.6 (iii),

α(anbn) ≤ α(an)α(bn).
Therefore,

β(dc) = lim α(anbn) ≤ lim(α(an)α(bn)) = lim α(an) lim α(bn) = β(d)β(c) ≤ β(dc),
where the final inequality holds by Lemma A.1 (ii). Thus, β(dc) = β(d)β(c).
Proposition 7.13. There is a functor D : PBSp→ KT that sends (S,≪) to (D(S), ⊲) where ⊲ is the closure of≪ in
D(S) × D(S), and a proximity morphism α : (S,≪)→ (S ,≪) to its unique continuous extension

D(α) : (D(S), ⊲)→ (D(S), ⊲).
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Proof. By Propositions 7.10 and 7.12, D is well-defined on objects and on morphisms. It is clear that D sends

identity morphisms to identity morphisms. To show that it preserves composition, let

α1 : (S1 ,≪)→ (S2 ,≪) and α2 : (S2 ,≪)→ (S3 ,≪)
be proximity morphisms between objects of PBSp. Let βi be the unique continuous extension of αi for i = 1, 2.
We need to show that β2 ⋆ β1 is the unique continuous extension of α2 ⋆ α1. For this it suffices to show that

β2 ⋆ β1 and D(α2 ⋆ α1) agree on Id(D(S1)), which is equal to Id(S1) by Lemma 7.3. For, if they agree on Id(S1),
then [6, Lemma 6.4 (2)] shows that they agree on S1. Finally, as S1 is uniformly dense in D(S1) by Corollary 7.5
and both β2 ⋆ β1 and D(α2 ⋆ α1) are continuous by Lemma 7.11, they must agree on D(S1).

Let f ∈ Id(D(S1)). Then (β2 ⋆ β1)(f) =⋁{β2β1(d) : d ∈ D(S1), d ⊲ f }.
Since ⊲ is a KT-proximity, we have(β2 ⋆ β1)(f) =⋁{β2β1(a) : a ∈ R(D(S1)), a ≤ f }.
Fix 0 < ε ∈ ℝ. If 0 ≤ a ≤ f , then there is e ∈ Id(D(S1)) with e ≪ f and a ≤ e + ε by Lemma 5.5 (ii). Therefore,
β2β1(a) ≤ β2β1(e) + ε. Since this is true for each such a and ε, it follows that⋁{β2β1(a) : a ∈ R(D(S1)), a ≤ f } ≤⋁{β2β1(e) : e ∈ Id(D(S1)), e ≪ f }.
On the other hand, if e ≪ f , there is a ∈ R(D(S1)) with e ≤ a ≤ f . Therefore,⋁{β2β1(e) : e ∈ Id(D(S1)), e ≪ f } ≤⋁{β2β1(a) : a ∈ R(D(S1)), a ≤ f }.
Thus, (β2 ⋆ β1)(f) =⋁{β2β1(a) : a ∈ R(D(S1)), a ≤ f } =⋁{β2β1(e) : e ∈ Id(D(S1)), e ≪ f }=⋁{α2α1(e) : e ∈ Id(D(S1)), e ≪ f } = (α2 ⋆ α1)(f)= D(α2 ⋆ α1)(f).
Consequently, β2 ⋆ β1 and D(α2 ⋆ α1) agree on Id(D(S1)), and the result follows.
We now prove one of themain results of the article. For this we recall that each element s of a Specker algebra S
has a decreasing decomposition s = r0 +∑ni=1 riei where ri ∈ ℝ, 1 ≥ e1 ≥ ⋅ ⋅ ⋅ ≥ en are idempotents of S, and ri > 0
for i ≥ 1 (see the appendix).
Theorem 7.14. The functors Id : KT→ DeV andD : PBSp→ KT are equivalences, and the following diagram com-
mutes up to natural isomorphism:

KT

DeV

PBSp

←→Id←→Sp

←

→

D

Proof. To see that Id and D are equivalences, by [32, Theorem IV.4.1], it is enough to show that Id and D are

full, faithful, and essentially surjective. We first consider Id. Let (B, ≺) ∈ DeV. Set D = D(ℝ[B]♭) and let ⊲ be the
closure of ≺♭ in D. Since (ℝ[B]♭ , ≺♭) ∈ PBSp by [6, Theorem 5.11 (1)], we have (D, ⊲) ∈ KT by Proposition 7.10. By
Theorem 5.6 (i), ⊲ restricts to a proximity ≺ on Id(D) such that if e, f ∈ B, then e♭ ⊲ f ♭ if and only if e ≺ f (see the
equivalence (6.1)). Therefore, (B, ≺) is isomorphic to Id(D, ⊲). Thus, Id is essentially surjective.

To show that Id is full, let σ : Id(D, ⊲)→ Id(D , ⊲) be a de Vries morphism. The proximity ⊲ restricts to
a proximity≺ on Id(D) by Theorem 5.6 (i), and the same is true for⊲ and Id(D). Also,≺ extends to a proximity≪
on S(D) by [6, Corollary 5.8], and the same is true for ≺ and S(D). Then σ extends (uniquely) to a proximity
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morphism α : (S(D),≪)→ (S(D),≪) by [6, Corollary 6.7]. Proposition 7.12 shows that α extends to a proximity
morphism β : (D, ⊲)→ (D , ⊲) since S(D) is uniformly dense in D by Corollary 7.5, and the same is true for

S(D). Therefore, Id(β) = β|Id(D)= σ. Thus, Id is a full functor.
To see that Id is faithful, let β, β : (D, ⊲)→ (D , ⊲) be proximity morphisms which agree on Id(D). Using

decreasing decompositions, it follows from Lemma A.3 (vi) that β, β agree on the Specker subalgebra S of D.
Since β, β are continuous and S is uniformly dense in D by Corollary 7.5, we see that β = β. Therefore, Id is
faithful, and hence Id is an equivalence.

Next, we consider D. To see it is essentially surjective, let (D, ⊲) ∈ KT. Set B = Id(D) and let S be the Specker
subalgebra of D. Then Id(S) = B. We have that D is Baer by Lemma 5.1, and so B is complete by Remark 5.2.

Moreover, ⊲ restricts to a de Vries proximity ≺ on B by Theorem 5.6 (i). In addition, ≺ lifts to a proximity≪ on S
by [6, Corollary 5.8]. We claim that ⊲ is the closure of ≪. Since D = D(S) by Corollary 7.6, this will yield that(D, ⊲) = D(S,≪). To see this, let s, t ∈ S. Write

s = r0 + n∑
i=1 riei and t = r0 + n∑

i=1 ri fi
in compatible decreasing form, and set pi = r0 + ⋅ ⋅ ⋅ + ri for 1 ≤ i ≤ n as in Lemma A.3 (v).
Claim 7.15. s ⊲ t if and only if s ≪ t if and only if ei ≺ fi for each i.
Proof of the claim. Let s ⊲ t. Then[(s − pi−1) ∧ ri] ∨ 0 ⊲ [(t − pi−1) ∧ ri] ∨ 0
for each i. Therefore, riei ⊲ ri fi by Lemma A.3 (iv). Since ri > 0, we conclude that ei ⊲ fi for i ≥ 1. Because ≺ is
the restriction of ⊲ to Id(D), we have ei ≺ fi . A similar argument yields that s ≪ t implies ei ≺ fi for each i. The
converse implications are easy to see by applying (P1), (P6), and (P7). Thus, the claim is proved.

It follows from Claim 7.15 that ⊲ restricts to ≪ on S. Since ⊲ is a closed proximity, the closure ⊲ of ≪ is

contained in ⊲. Let d, e ∈ D with d ⊲ e. Since S is uniformly dense in D, we may write d = lim an and e = lim bn
for some sequences {an}, {bn} in S. By [14, Lemma 3.16 (1)], we may assume that an ≤ d and e ≤ bn for each n.
This yields an ≤ d ⊲ e ≤ bn , so an ⊲ bn . Therefore, an ≪ bn for each n, and so d ⊲ e. Consequently, ⊲ is equal
to the closure of≪. Thus, D is essentially surjective.

To see that D is full, let β : D(S,≪)→ D(S ,≪) be a proximity morphism. Let α = β|S . By Theorem 5.6 (ii),

β|Id(D(S)): Id(D(S))→ Id(D(S))
is a de Vries morphism. Let s ∈ S and write s = a0 +∑i biei in decreasing form. Then β(s) = a0 +∑i biβ(ei) by
Lemma A.3 (vi), so β(s) ∈ S since each β(ei) ∈ Id(D(S)) = Id(S). Therefore, α is a well-defined function. To

show that α is a proximity morphism, by Theorem A.8 it suffices to show that α is a weak proximity morphism.
All the axioms except (PM4) are straightforward to see. To verify (PM4), let b ∈ S. Then

α(b) =⋁{β(c) : c ∈ D(S), c ⊲ b}.
Let c ∈ D(S) with c ⊲ b. There is a sequence {an} in S with an ≤ c such that lim an = c. Since β is continuous,
lim α(an) = β(c), and therefore⋁ α(an) = β(c) by [14, Lemma 3.16]. Consequently,

α(b) =⋁{α(a) : a ∈ S, a ≪ b},
which verifies (PM4).

To see that D is faithful, let α, α : (S,≪)→ (S ,≪) be proximity morphisms with D(α) = D(α). Since D(α)
extends α and D(α) extends α, we have that α = α. Therefore, D is faithful. Thus, D is an equivalence.

Finally, to see that the diagram commutes up to natural isomorphism, we show that Id ∘D ∘ Sp is naturally
equivalent to the identity functor on DeV. Let (B, ≺) ∈ DeV. Then

D(Sp(B, ≺)) = D(ℝ[B]♭ , ≺♭) = (D(ℝ[B]♭), ⊲),
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where ⊲ is the closure of ≺♭. The functor Id then sends this to (Id(D(ℝ[B]♭)), ≺), where ≺ is the restriction of⊲ to Id(D(ℝ[B]♭)). We saw after Definition 6.12 that the boolean isomorphism τB : B → Id(D(ℝ[B]♭)) satisfies
e ≺ f if and only if e♭ ≺♭ f ♭, which happens if and only if e ⊲ f . The proof of [6, Theorem 6.10] shows that τ is
then a natural isomorphism between the identity functor and Id ∘D ∘ Sp.
As mentioned in Remark 7.2, we finish the section by showing that S : PDA→ PBSp is a functor naturally iso-

morphic to Sp ∘ Id.
Remark 7.16. We define S : PDA→ PBSp by sending (D, ⊲) ∈ PDA to (S(D), ⊲|S(D)) and a proximity morphism
α : (D, ⊲)→ (D , ⊲) to α|S(D). Set ≺ = ⊲|Id(D) and let≪ be the lift of ≺ to S(D). By Claim 7.15,≪ is the restriction
of ⊲ to S(D), and hence (S(D), ⊲|S(D)) ∈ PBSp.

Let α : (D, ⊲)→ (D , ⊲) be a proximity morphism. By Theorem 5.6 (ii), α sends idempotents to idempo-

tents. If s ∈ S(D), then we can write s = r0 +∑i riei in decreasing form. It then follows from the proof of

[6, Lemma 6.4 (ii)] that α(s) = r0 +∑i riα(ei). Thus, α|S(D) is a well-defined function. Axioms (PM1)–(PM3) are
straightforward, and the argument to show that D is full in the proof of Theorem 7.14 yields that α|S(D) satisfies
(PM4). The same argument can be used to show that S preserves composition. Consequently, S is a covariant

functor.

By [6, Proposition 4.11], there is an ℓ-algebra isomorphism (−)♭ : S(D)→ ℝ[Id(D)]♭. Furthermore, by
[6, Theorem 5.11], if s, t ∈ S(D), then s ≪ t if and only if s♭ ≺♭ t♭. Therefore, from [7, Lemma 8.3] we have

that (−)♭ : (S(D),≪)→ (Sp Id(D), ≺♭) is a proximity isomorphism. If we define ρ : S→ Sp ∘ Id by setting ρ(D,⊲)
to be the ℓ-algebra isomorphism (−)♭ : S(D)→ ℝ[Id(D)]♭ for each (D, ⊲) ∈ PDA, then a straightforward argu-

ment shows that ρ is a natural transformation, and hence it is a natural isomorphism since each ρ(D,⊲) is an
isomorphism.

8 Putting everything together

In this final section, we summarize our main results. We have given direct choice-free proofs of the following

equivalences:

(i) ubaℓ is equivalent to KT (Theorem 4.15).

(ii) KT is equivalent to DeV (Theorem 7.14).

(iii) KT is equivalent to PBSp (Theorem 7.14).

We have the following diagram:

ubaℓ KT

KHaus

DeV PBSp

←
→Ann

←→ R←→C ← →N

←→

RO

← →FN← →
Sp

←

→

D

We conclude by showing that the diagram commutes (up to natural isomorphism).

To see that the outside diagram commutes, let (D, ⊲) ∈ KT and A = R(D, ⊲). Then (Ann(A), ≺) ≅ (Id(D), ≺)
by Theorem 5.6 (i). Therefore, Sp(Ann(A)) is isomorphic to the Specker subalgebra S(D) of D by Remark 7.16, and
hence D(Sp(Ann(A)) ≅ D by Corollary 7.6. Moreover, the unique lift of the proximity ≺ on Id(D) to a proximity≪
on S(D) is equal to ⊲|S(D) again using Remark 7.16. The closure of≪ is a KT-proximity on D by Proposition 7.10.

Since ⊲ and the closure of≪ restrict to ≺ on Id(D), they are equal by the paragraph after Claim 7.15. Thus, the

outside diagram commutes.

To see that the inside of the diagram commutes, let X ∈ KHaus. Then the corresponding de Vries algebra is(RO(X), ≺), where ≺ is given by U ≺ V if and only if cl(U) ⊆ V for each U, V ∈ RO(X). The corresponding Baer–
Specker algebra is (FN(X),≪) ∈ PBSp, where≪ is the unique lift of ≺ when we identify RO(X) with Id(FN(X)).
The corresponding ubaℓ-algebra is C(X), and the corresponding proximity Dedekind algebra is (N(X), ⊲) ∈ KT,
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where⊲ onN(X) is given by f ⊲ g if and only if there is c ∈ C(X)with f ≤ c ≤ g. Furthermore,≪ is the restriction
of ⊲ to FN(X). Remark 3.13 shows that Ann ∘ C ≅ RO. The Katětov–Tong theorem shows that R ∘ N = C. Since
FN(X) is the Specker subalgebra of N(X), we have D ∘ FN ≅ N by Corollary 7.6 and Claim 7.15. That Sp ∘RO ≅ FN
follows from Remark 6.13.

A Appendix: Weak proximity morphisms

As promised in Remark 6.9 (ii), we prove that a weak proximity morphism between proximity Baer–Specker

algebras is always a proximity morphism. This is utilized in Theorem 7.14, which is one of our main results. Our

proof that each weak proximity morphism is a proximity morphism requires a series of technical lemmas.

Lemma A.1. Let α : (S,≪)→ (S ,≪) be a weak proximity morphism between proximity Baer–Specker algebras
and a, b ∈ S.
(i) α(a) + α(b) ≤ α(a + b).
(ii) If 0 ≤ a, b, then α(a)α(b) ≤ α(ab).
Proof. The proofs of (i) and (ii) are similar, and we only prove (i). By [7, Proposition 5.1], the restrictions of ≪
and≪ to idempotents are de Vries proximities,

σ = α|Id(S): (Id(S), ≺)→ (Id(S), ≺)
is a de Vriesmorphism, andwe have the following commutative diagramby [6, Corollary 6.7], where the vertical

maps are baℓ-isomorphisms:
S S

ℝ[Id(S)]♭ ℝ[Id(S)]♭
← →α←→(−)♭ ←→ (−)♭← →

σ♭

It then suffices to show that the inequality in (i) holds for σ♭. For this, let a, b ∈ ℝ[Id(S)]♭. Recalling the operations
on ℝ[Id(S)]♭ given after Definition 6.12, if r ∈ ℝ, then(σ♭(a) + σ♭(b))(r) =⋁{σ♭(a)(s) ∧ σ♭(b)(t) : s + t ≥ r}=⋁{σ(a(s)) ∧ σ(b(t)) : s + t ≥ r}
and (σ♭(a + b))(r) = σ((a + b)(r))= σ(⋁{a(s) ∧ b(t) : s + t ≥ r})≥⋁{σ(a(s) ∧ b(t)) : s + t ≥ r}=⋁{σ(a(s)) ∧ σ(b(t)) : s + t ≥ r}.
Thus, (σ♭(a) + σ♭(b))(r) ≤ σ♭(a + b)(r)
for each r ∈ ℝ, and so we have that σ♭(a) + σ♭(b) ≤ σ♭(a + b).
Lemma A.2. Let σ : (B, ≺)→ (B , ≺) be a de Vries morphism between de Vries algebras. If e, f, g ∈ B with f ≺ g,
then σ(e ∨ f) ≤ σ(e) ∨ σ(g).
Proof. Since f ≺ g, we have σ(f ∗)∗ ≺ σ(g), so σ(f ∗)∗ ≤ σ(g). This yields σ(g)∗ ≤ σ(f ∗). Therefore,

σ(e ∨ f) ∧ σ(g)∗ ≤ σ(e ∨ f) ∧ σ(f ∗) = σ((e ∨ f) ∧ f ∗) = σ(e ∧ f ∗) ≤ σ(e).
From this it follows that σ(e ∨ f) ≤ σ(e) ∨ σ(g).
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By [7, Section 5], from an orthogonal decomposition a = ∑ni=0 riei we can obtain a decreasing decomposition as
follows. Without loss of generality, we may assume that r0 ≤ ⋅ ⋅ ⋅ ≤ rn . Then we can write

a = r0(e0 + ⋅ ⋅ ⋅ + en) + (r1 − r0)(e1 + ⋅ ⋅ ⋅ + en) + ⋅ ⋅ ⋅ + (rn − rn−1)en .
Therefore, a = ∑ni=0 pi fi , where p0 = r0, pi = ri − ri−1 for i ≥ 1, and fi = ∑nj=i ej = ⋁nj=i ej (the latter equality fol-
lows from [16, XIII.3 (14)]). This exhibits a as a linear combination of a sequence of decreasing idempotents.

Moreover, by eliminating coefficients that are 0, we may assume that all the coefficients are nonzero and all of

them except possibly p0 are positive. Furthermore, if a = ∑ni=0 riei is a full orthogonal decomposition of a, then
f0 = 1. In this case, we will write the corresponding decreasing decomposition as a = p0 +∑ni=1 pi fi .

In order to prove Lemmas A.4 and A.5, we require the following result.

Lemma A.3. Let S be a Specker algebra.
(i) ([7, Lemma 4.9 (5)]) If 0 ̸= e ∈ Id(S) and r ∈ ℝ with re ≥ 0, then r ≥ 0.
(ii) ([7, Lemma 4.9 (6)]) Let 0 ̸= e, f ∈ Id(S) and 0 < r, p ∈ ℝ. Then re ≤ pf if and only if r ≤ p and e ≤ f .
(iii) ([6, Lemma 5.4 (1)]) Let a ∈ S. If r, p ∈ ℝ with r ≤ p, then(a ∧ p) − (a ∧ r) = [(a − r) ∧ (p − r)] ∨ 0.
(iv) ([6, Lemma 5.4 (1)]) Let a ∈ S with a = r0 +∑ni=1 riei in decreasing form. Set pi = r0 + ⋅ ⋅ ⋅ + ri for 1 ≤ i ≤ n.

Then [(a − pi−1) ∧ ri] ∨ 0 = riei .
(v) ([6, Lemma 5.4 (2)]) Let a, b ∈ S. Then there exist p0 < ⋅ ⋅ ⋅ < pn inℝwith p0 ≤ a, b ≤ pn such that a and b have

decreasing decompositions

a = p0 + n∑
i=1(pi − pi−1)ei and b = p0 + n∑

i=1(pi − pi−1)fi .
Moreover, if a, b ≥ 0, then we may assume p0 = 0.

(vi) ([6, Lemma 6.4 (2)]) Suppose α : (S,≪)→ (S ,≪) is a weak proximity morphism between proximity Baer–
Specker algebras. If a = r0 +∑i riei is in decreasing form, then α(a) = r0 +∑i riα(ei).

Lemma A.4. Suppose α : (S,≪)→ (S ,≪) is a weak proximity morphism between proximity Baer–Specker alge-
bras. Let 0 ≤ c ∈ S.
(i) c is invertible if and only if there is 0 < r ∈ ℝ with r ≤ c.
(ii) If 0 ≤ b ≪ c and b is invertible, then α(c) is invertible and α(c)−1 ≤ α(b−1).
Proof. (i) Suppose 0 < r ≤ c for some r ∈ ℝ. Write

c = r0e0 + ⋅ ⋅ ⋅ + rnen
in full orthogonal form. Then rei ≤ cei = riei , which implies that r ≤ ri by Lemma A.3 (ii). Consequently, each
ri ̸= 0, and hence r−10 e0 + ⋅ ⋅ ⋅ + r−1n en is the multiplicative inverse of c.

Conversely, let c be invertible, and write c = r0e0 + ⋅ ⋅ ⋅ + rnen as above. Without loss of generality, sup-

pose that r0 ≤ ri for each i. Since 0 ≤ c, ei , we have 0 ≤ cei = riei . So, ri ≥ 0 by Lemma A.3 (i). If r0 = 0, then
ce0 = r0e0 = 0, which is false since c is invertible and e0 ̸= 0. Therefore,

c ≥ r0e0 + ⋅ ⋅ ⋅ + r0en = r0(e0 + ⋅ ⋅ ⋅ + en) = r0(e0 ∨ ⋅ ⋅ ⋅ ∨ en) = r0 .
(ii) Write

b = r0 + n∑
i=1 riei and c = r0 + n∑

i=1 ri fi
in compatible decreasing form by Lemma A.3 (v). Wemay assume that 1 > e1 , f1. Since e1 ≥ ei , we have e∗1 ei = 0
for each i. Therefore, if r0 = 0, then be∗

1
= 0. So, e∗

1
= 0 as b is invertible. This forces e1 = 1, which is false

by assumption. So, r0 ̸= 0. In addition, since b ≥ 0, we have r0e∗1 = be∗1 ≥ 0, which implies that r0 > 0 by
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Lemma A.3 (i). Set p0 = r0 and pi = r0 + r1 + ⋅ ⋅ ⋅ + ri for i ≥ 1. As each ri ≥ 0 for i ≥ 1, we obtain that all pi > 0.
Therefore,

b = (r0 + r1 + ⋅ ⋅ ⋅ + rn)en + (r0 + r1 + ⋅ ⋅ ⋅ + rn−1)(en−1 − en) + ⋅ ⋅ ⋅ + (r0 + r1)(e1 − e2) + r0(1 − e1)= pnen + pn−1(en−1 − en) + ⋅ ⋅ ⋅ + p1(e1 − e2) + p0(1 − e1)
is in full orthogonal form. Consequently, since b is invertible and all pi ̸= 0,

b−1 = p−1n en + p−1n−1(en−1 − en) + ⋅ ⋅ ⋅ + p−11 (e1 − e2) + p−10 (1 − e1).
Because 0 < p0 ≤ ⋅ ⋅ ⋅ ≤ pn , we have p−1n ≤ ⋅ ⋅ ⋅ ≤ p−10 . From this we may write b−1 in decreasing form as

b−1 = p−1n (en + en−1 − en + ⋅ ⋅ ⋅ + 1 − e1) + (p−1n−1 − p−1n )(en−1 − en + ⋅ ⋅ ⋅ + 1 − e1) + ⋅ ⋅ ⋅ + p−10 (1 − e1)= p−1n + (p−1n−1 − p−1n )e∗n + ⋅ ⋅ ⋅ + p−10 e∗
1
.

Thus, by Lemma A.3 (vi),

α(b−1) = p−1n + (p−1n−1 − p−1n )α(e∗n) + ⋅ ⋅ ⋅ + p−10 α(e∗
1
).

Since b is invertible, there is 0 < r ∈ ℝ with r ≤ b by (i). Because b ≪ c, (P2) implies that r ≤ c. Therefore,
r ≤ α(c), and so α(c) is invertible by (i). Since α(c) = r0 +∑ni=1 riα(fi) by Lemma A.3 (vi), a similar calculation
applied to α(c) yields

α(c)−1 = p−1n + (p−1n−1 − p−1n )α(fn)∗ + ⋅ ⋅ ⋅ + p−10 α(f1)∗ .
From b ≪ c, we get ei ≪ fi for each i by Claim 7.15. Therefore, −α(−ei) ≪ α(fi), and so α(e∗i )∗ ≪ α(fi) by equa-
tion (5.1). Taking complements gives α(fi)∗ ≪ α(e∗i ), and so α(fi)∗ ≤ α(e∗i ) for each i. Thus, α(c)−1 ≤ α(b−1).
Lemma A.5. Let (S,≪) be a proximity Baer–Specker algebra and let a, b ∈ S. If

a = r0 +∑
i
riei and b = r0 +∑

i
ri fi

are in compatible decreasing form, then the following hold:
(i) a ∨ b = r0 +∑i ri(ei ∨ fi).
(ii) a ∧ b = r0 +∑i ri(ei ∧ fi).
Proof. We prove (i); the proof of (ii) is similar. For 0 ≤ i ≤ n, set pi = r0 + ⋅ ⋅ ⋅ + ri . By Lemma A.3 (iv), we have[(a − pi−1) ∧ ri] ∨ 0 = riei and [(b − pi−1) ∧ ri] ∨ 0 = ri fi .
Therefore, by standard vector lattice identities, for i ≥ 1 we have[((a ∨ b) − pi−1) ∧ ri] ∨ 0 = [((a − pi−1) ∨ (b − pi−1)) ∧ ri] ∨ 0= ([(a − pi−1) ∧ ri] ∨ [(b − pi−1) ∧ ri]) ∨ 0= ([(a − pi−1) ∧ ri] ∨ 0) ∨ ([(b − pi−1) ∧ ri] ∨ 0)= riei ∨ ri fi= ri(ei ∨ fi),
where the last equality holds since ri ≥ 0. Because p0 ≤ a, b ≤ pn , we have p0 ≤ a ∨ b ≤ pn . Therefore,(a ∨ b) ∧ p0 = p0 and (a ∨ b) ∧ pn = a ∨ b.
By the calculation above and Lemma A.3 (iii) and (iv),(a ∨ b) − p0 = (a ∨ b) ∧ pn − (a ∨ b) ∧ p0= n∑

i=1[(a ∨ b) ∧ pi − (a ∨ b) ∧ pi−1]= n∑
i=1([((a ∨ b) − pi−1) ∧ ri] ∨ 0)= n∑
i=1 ri(ei ∨ fi).

Since r0 = p0, it follows that a ∨ b = r0 +∑i ri(ei ∨ fi).
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Lemma A.6. Let α : (S,≪)→ (S ,≪) be a weak proximity morphism between proximity Baer–Specker algebras.
Suppose that a, b, c ∈ S with b ≪ c.
(i) α(a ∨ b) ≤ α(a) ∨ α(c).
(ii) α(a + b) ≤ α(a) + α(c).
(iii) If 0 ≤ a, b, then α(ab) ≤ α(a)α(c).
Proof. (i) By Lemma A.3 (v), we may write

a = r0 + n∑
i=1 riei , b = r0 + n∑

i=1 ri fi , c = r0 + n∑
i=1 rigi

in compatible decreasing form. Then a ∨ b = r0 +∑ni=1 ri(ei ∨ fi) by Lemma A.5 (i). Therefore,
α(a ∨ b) = r0 + n∑

i=1 riα(ei ∨ fi)
by Lemma A.3 (vi). We have fi ≺ gi for each i by Claim 7.15. Thus, since the restriction of α to Id(S) is a de Vries
morphism,

α(ei ∨ fi) ≤ α(ei) ∨ α(gi)
by Lemma A.2. Consequently,

α(a ∨ b) = r0 + n∑
i=1 riα(ei ∨ fi)≤ r0 + n∑
i=1(riα(ei) ∨ riα(gi))= α(a) ∨ α(c),

where the last equality follows from Lemma A.5 (i).

(ii) Since b ≪ c, we have −α(−b) ≤ α(c) by (PM3) and (P2), so −α(c) ≤ α(−b). Therefore, by Lemma A.1 (i),
α(a + b) − α(c) ≤ α(a + b) + α(−b) ≤ α((a + b) + (−b)) = α(a).

This yields α(a + b) ≤ α(a) + α(c).
(iii) First, suppose that b is invertible. Since 0 ≤ b, Lemma A.4 (i) shows that 0 < r ≤ b for some r ∈ ℝ.

Because b ≪ c, by Lemma A.4 (ii) we have α(c)−1 ≤ α(b−1). Consequently,
α(ab)α(c)−1 ≤ α(ab)α(b−1) ≤ α((ab)b−1) = α(a)

by Lemma A.1 (ii). Multiplying by α(c) yields α(ab) ≤ α(a)α(c).
For an arbitrary b ≥ 0, by Lemma A.4 (i), 1 + b is invertible, and 1 + b ≪ 1 + c. Therefore, by the previous

case, α(a(1 + b)) ≤ α(a)α(1 + c). Since α is a weak proximity morphism,
α(a + ab) = α(a(1 + b)) ≤ α(a)α(1 + c) = α(a)(1 + α(c)) = α(a) + α(a)α(c).

By Lemma A.1 (i),

α(a) + α(ab) ≤ α(a + ab) ≤ α(a) + α(a)α(c).
Subtracting α(a) yields (iii).
Remark A.7. Lemma A.6 (ii) follows from [7, Lemma 7.1 (2)], the proof of which is not choice-free.

We are ready to prove the main result of the appendix.

Theorem A.8. Let (S,≪) and (S ,≪) be proximity Baer–Specker algebras. A map α : S → S is a proximity mor-
phism if and only if it is a weak proximity morphism.

Proof. Clearly, if α is a proximity morphism, then it is a weak proximity morphism. For the converse, we only
need to show that axioms (PM6)–(PM8) hold. Let a, c ∈ S with c ≪ c.
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(PM6) The inequality α(a ∨ c) ≥ α(a) ∨ α(c) holds since α is order preserving, and the reverse inequality

holds by Lemma A.6 (i).

(PM7) The inequality α(a + c) ≥ α(a) + α(c) holds by Lemma A.1 (i), and the reverse inequality holds by

Lemma A.6 (ii).

(PM8) Let 0 ≤ c. First suppose that 0 ≤ a. The inequality α(ac) ≥ α(a)α(c) holds by Lemma A.1 (ii), and the
reverse inequality by Lemma A.6 (iii). Now apply the argument of [11, Remark 8.9] to conclude that the equality

holds for all a.
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