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A B S T R A C T

We consider a variant of the electric vehicle routing problem: a fleet of identical vehicles of
limited capacity needs to visit a set of customers with given demands. An upper limit is imposed
on the duration of the routes. Vehicles have limited autonomy: they may need to stop en-route
at recharge stations. Recharges can be partial and multiple recharge technologies are available
at stations, providing energy at different costs and different recharge rates.

We present a new a branch-and-price algorithm, that relies on an extended formulation
having one variable for each possible depot-to-depot route of each vehicle, implicitly encoding
also recharge plans. We design ad-hoc pricing algorithms, which exploit a novel encoding of
recharge plans, allowing for efficient bi-directional dynamic programming techniques.

Extensive computational results show our approach to clearly outperform previous ones
from the literature, being able to solve instances with up to 30 customers, 5 stations, 7 vehicles
and 3 technologies to proven optimality within some minutes on a standard PC.

1. Introduction

For the sake of reducing pollution produced by transportation activities, governments and industries are promoting the
replacement of thermal engines with electric ones. In fact, recent evaluations (see for instance Scorrano et al., 2021) have shown
that such a replacement would be both environment-friendly and appealing in terms of operating costs, also in the field of freight
transportation. However, to grasp the environmental and economic advantages of the introduction of Electric Vehicles (EVs), their
use must be suitably optimized. That is why the scientific literature on optimization and management of EVs has rapidly developed in
the last years. Comprehensive surveys on EV routing have been published in Pelletier et al. (2016) and, more recently, in Kucukoglu
et al. (2021) and Xiao et al. (2021). In particular, the Electric Vehicle Routing Problem (EVRP) consists of optimally routing a fleet of
EVs to visit a given set of customers. Unlike traditional vehicles, EVs have limited autonomy, which forces to explicitly plan recharge
stops along routes. This makes the combinatorial structure of EVRPs substantially different to their traditional counterparts. Since
recharging EVs is much more time-consuming than refueling traditional vehicles, and compelling time constraints are likely to be
imposed in freight transportation, realistic models must allow for partial recharges. This introduces a further complexity element,
since the amounts of recharged energy are represented by additional continuous variables, originating mixed-integer programming
models.

Exact optimization algorithms for the EVRP were developed for instance in Desaulniers et al. (2016) and Duman et al. (2021).
A stream of research focuses on refining the modeling of the non-linear charging process (Montoya et al., 2017; Froger et al.,

2019; Lee, 2021). In Lam et al. (2022) the authors consider recharge amounts which are piecewise linear functions of charging time.

∗ Correspondence to: Alberto Ceselli, Via Celoria 18, 20133 Milano, Italy.
E-mail addresses: dario.bezzi@unibg.it (D. Bezzi), alberto.ceselli@unimi.it (A. Ceselli), giovanni.righini@unimi.it (G. Righini).
vailable online 20 October 2023
968-090X/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.trc.2023.104374
Received 14 January 2023; Received in revised form 1 September 2023; Accepted 5 October 2023

https://www.elsevier.com/locate/trc
http://www.elsevier.com/locate/trc
mailto:dario.bezzi@unibg.it
mailto:alberto.ceselli@unimi.it
mailto:giovanni.righini@unimi.it
https://doi.org/10.1016/j.trc.2023.104374
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trc.2023.104374&domain=pdf
https://doi.org/10.1016/j.trc.2023.104374
http://creativecommons.org/licenses/by/4.0/


Transportation Research Part C 157 (2023) 104374D. Bezzi et al.

v
r

They also take into account the limited availability of chargers at stations, thereby integrating charger scheduling in the routing
models. Other researchers focused on finding suitable simplifying assumptions, to limit the combinatorial explosion of the number
of solutions. For instance, in Löffler et al. (2020) a single recharge is allowed in each route.

In all this body of literature a single recharge technology is assumed to be available in each station for partial recharges during
ehicle routes. However, several recharge technologies have been developed so far (Yilmaz and Krein, 2012), each one with different
echarge speed. Multiple recharge technologies are sometimes referred to also as fast or super fast chargers. The availability of multiple

recharge technologies proves beneficial in applications like (Wang and Szeto, 2021), in which a fleet of EVs is used for rebalancing
a commodity in a sharing system (in the specific case, bikes). Being able to charge the EVs faster, even at a higher price, might
allow to make the commodity available to users quicker, and ultimately to meet more demand. The converse is also true: unless
strict time conditions force fast recharges, savings in terms of energy network costs and battery lifetime can be obtained thanks to
slower and cheaper recharges.

The EVRP with multiple recharge technologies has been considered in Felipe et al. (2014), who developed heuristics, and
in Ceselli et al. (2021); both papers showed the significant savings achievable owing to the availability of several recharge
technologies and partial recharges. In Keskin and Çatay (2018) an Adaptive Large Neighborhood Search (ALNS) heuristic was
proposed for the same problem. The authors of Keskin et al. (2019) classified 49 EVRP papers according to fleet composition,
objective function terms, presence of multiple recharge technologies and constraints such as capacities and time windows. Similar
features have been used in more recent surveys like Erdelić and Carić (2019), Schiffer et al. (2019) and Qin et al. (2021).

In this paper we focus on the exact optimization of the EVRP with partial recharges and multiple technologies. The fleet consists
of identical electric vehicles with a given capacity and each customer has an associated demand as in the classical capacitated VRP.
The vehicles are equipped with a battery of given capacity and each arc traversal implies a given energy consumption. To avoid
running out of energy, vehicles can visit recharge stations in given positions.

Partial recharges are allowed, the cost and time of the each recharge being proportional to the amount of recharged energy.
At each station several recharge technologies can be available, with different energy price and recharge speed. A given fixed
cost is also charged for every recharge operation, to represent the amortized cost of the battery, whose life time depends on the
number of recharge cycles it is subject to. A maximum duration is imposed to all routes. A given service time is spent at customer
nodes and when recharge stations are visited. Service times at customers represent pickup/delivery time, while service times at
stations represent the duration of connection/disconnection operations that are independent of the amount of energy recharged.
The objective is to minimize the overall energy consumption cost.

Considering partial recharges and multiple technologies together is of particular interest not only for its practical applications, but
also from a methodological point of view. It is easy to see that each feature independently introduces a further decision level, thus
complicating the problem with respect to the traditional VRP. Furthermore, even the combination of them breaks known properties
of the model. For instance, when only one recharge technology is available, partial recharges have very limited impact in instances
without time windows: as discussed in Desaulniers et al. (2016), at most one recharge for each vehicle is partial in optimal solutions.
This is no longer true if multiple technologies are considered; see Ceselli et al. (2021).

Besides Felipe et al. (2014) a few authors proposed heuristic algorithms for variations of the EVRP with partial recharges and
multiple technologies: among others, the authors of Sassi et al. (2014) proposed a MILP formulation and a local search heuristic
extending later with Large Neighborhood and Tabu Search (Sassi et al., 2015); the authors of Li-ying and Yuan-bin (2015) proposed
an adaptive variable neighborhood search.

The only attempt to develop an exact optimization algorithm for the EVRP with multiple recharge technologies is described
in Ceselli et al. (2021). The algorithm is a branch-and-cut-and-price, built on a formulation where columns correspond to paths
between recharge stations. Such an extended formulation lends itself to a highly parallel implementation of the pricing algorithm.
A similar idea was also explored in Bruglieri et al. (2019) to develop a two-stage approach based on a MILP formulation.

The route-based formulation presented here is characterized by a complex mixed-integer pricing sub-problem and a very simple
master problem, while the path-based formulation of Ceselli et al. (2021) has a pure integer pricing sub-problem and a much
more involved mixed-integer master problem. Both allow for the pricing problem to be solved as a resource constrained shortest
path problem by dynamic programming algorithms. The key difference is the following: while in Ceselli et al. (2021) columns
correspond to paths, in which all resources are monotonically non-increasing, the route-based algorithm presented here requires
to handle recharges along each route; therefore, battery charge is no longer monotone. This changes the structure of the pricing
subproblem. Accordingly, the two formulations are equivalent in the discrete domain, but their linear relaxations are not, because
the linear relaxation of the path-based formulation allows for convex combinations of paths that are not routes.

Main contributions. In this paper we present a new exact algorithm. It is a branch-and-price algorithm, based on a formulation where
columns correspond to complete routes from the depot to the depot (Section 3). With respect to the path-based extended formulation
used in Ceselli et al. (2021), the route-based extended formulation has the advantage of providing tighter lower bounds. As a
drawback, the structure of pricing problem is much more involved. Therefore, we have designed specific exact pricing algorithms
(Section 4). They rely on a novel encoding of partial recharge plans, besides partial routes, which allows us to devise dynamic
programming techniques.

In order to assess the effectiveness of these techniques, and that of a full branch-and-price when specific branching rules are
included (Section 5), we report on experiments using data-sets from the literature (Section 6). We finally summarize our findings
2
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2. Problem definition

The EVRP problem with partial recharges and multiple technologies can be formulated as follows.
Let 𝐺 = ( ∪, ) be a weighted undirected graph, where  is a set of 𝑛 customers and  is a set of 𝑚 recharge stations. A

istinguished station, 𝑅0 ∈ , is located at the depot where all vehicle routes start and end. A set  = {0,… ,𝐻} includes 𝐻 + 1
recharge technologies. Each technology ℎ ∈  is characterized by a unit recharge time 𝜌ℎ and a unit recharge cost 𝛾ℎ. Without loss
of generality, we assume that faster technologies are more expensive, and we number them so that ℎ′ < ℎ′′ ⇔ 𝜌ℎ′ > 𝜌ℎ′′ ⇔ 𝛾ℎ′ <
𝛾ℎ′′ ∀ℎ′, ℎ′′ ∈ ∖{0}. We also assume that a single technology is available at each station; this is again without loss of generality,
since such a condition can be enforced by simple station node replication. With an abuse of notation, for each 𝑗 ∈ , we indicate
by 𝜌𝑗 and 𝛾𝑗 the unit recharge time and cost of the (single) technology available at 𝑗. Finally, we assume that a dummy technology
ℎ = 0 is available only at the depot, with 𝜌0 = 0 and 0 < 𝛾0 ≤ 𝛾ℎ∀ℎ ∈ . This allows modeling cheap overnight recharge.

A demand 𝑞𝑖 and a service time 𝑠𝑖 are associated with each customer 𝑖 ∈  ; all customers must be visited exactly once: split
delivery is not allowed.

The available fleet consists of 𝐾 identical vehicles with given capacity 𝑄 and equipped with batteries of given capacity 𝐵.
We make the assumption that each vehicle has initially empty battery. From a practical point of view, all optimal solutions imply

that the vehicles return to the depot with no residual energy, thus leaving the battery empty for all subsequent routing plans. In fact,
any amount of residual energy at the end of the route could have been avoided, improving the route in both cost and time. Formally,
such an assumption is without loss of generality. Any instance with non-zero initial charge 𝐸 for all vehicles can be reformulated
into an equivalent instance with zero initial charge by introducing a dummy depot with no recharge cost and no recharge time, and
to connect it only to the true depot by an arc with energy consumption 𝐵 − 𝐸 and traveling time 0. Symmetrically, any instance
requiring all vehicles to end with non-zero charge 𝑅, can be handled by introducing a dummy depot, that is reachable only from the
true depot with an arc with energy consumption 𝑅 and traveling time 0. Given the availability of technology ℎ = 0, the best option
is often to leave the depot with full charge. However, our models and algorithms do not rely on this assumption. In particular,
if a route requires less than 𝐵 units of energy to be traversed, then its cost is correctly computed according to the actual energy
consumption (see next section) and it is represented by an initial recharge of less than 𝐵 units of energy with technology 0.

Each edge 𝑒 ∈  requires 𝑑𝑒 units of energy and 𝑡𝑒 units of time to be traversed. No assumption is required on the triangle
inequality.

While every customer must be visited once, stations can be visited at any time by vehicles, even more than once along the same
route. During each recharge operation at station 𝑗 ∈ , a vehicle can recharge any amount 𝛿 of energy up to its residual battery
capacity. The time consumption for a recharge of an amount 𝛿 at a station 𝑗 ∈  is computed as 𝑠𝑗 + 𝜌𝑗𝛿, where 𝑠𝑗 is the service
time at station 𝑗; the recharge cost is given by 𝛾𝑗𝛿. The duration of each route, which is the sum of its traveling and recharge time,
is required to be within a given limit 𝑇 . The objective is to minimize the total recharge cost.

Routes. We define a route as an ordered sequence of vertices. The depot 𝑅0 is the initial and final vertex of every route, and it never
appears as an intermediate vertex. Customer vertices cannot appear more than once in feasible routes, whereas station vertices can.

For every route 𝑟, a corresponding recharge plan 𝛿𝑟 must be computed, specifying the total amount of energy 𝛿𝑟ℎ recharged with
each technology ℎ ∈  along route 𝑟, potentially at different recharge stations. For every route 𝑟, let us denote by 𝐸𝑟 ⊆  the
multiset of edges traversed along it. Then we can define the following indicators for each route 𝑟 and recharge plan 𝛿𝑟:

• total capacity consumption: 𝜙𝑟 =
∑

𝑖∈𝑟∩ 𝑞𝑖;
• total time consumption: 𝜏𝑟 =

∑

𝑒∈𝐸𝑟
𝑡𝑒 +

∑

𝑘∈𝑟 𝑠𝑘 +
∑

ℎ∈ 𝜌ℎ𝛿𝑟ℎ, where each term 𝑡𝑒 occurs as many times as 𝑒 occurs in 𝐸𝑟;
• total cost 𝑐𝑟 =

∑

ℎ∈ (𝛾ℎ𝛿𝑟ℎ).

We define a route 𝑟 to be feasible (with respect to a recharge plan 𝛿𝑟) if and only if these three properties hold:

• Capacity constraint is respected: 𝜙𝑟 ≤ 𝑄;
• Time constraint is respected: 𝜏𝑟 ≤ 𝑇 ;
• Battery constraint is respected: 𝛿𝑟 keeps the battery charge between 0 and 𝐵 at any time.

Before stating the mathematical model used for branch-and-price, we outline a useful property of the EVRP.

Proposition 1. Being the graph 𝐺 undirected, every feasible route can be traversed in both directions at the same cost using the same
recharge plan.

Proof. The battery charge level along a feasible route can be represented by a piecewise linear function made by alternating
ascending and descending segments. All ascending segments correspond to recharge operations, while all descending segments
correspond to edge traversals (when energy is consumed). Their slopes correspond to the recharge speed and the consumption
rate, respectively. An example is shown in the top part of Fig. 1. Consider now the piecewise linear function that is obtained by
a 180 degrees rotation. This corresponds to a reversal of both axes. Therefore, according to the orientation of the time axis, the
sequence of recharges and edge traversals is now reversed. The slope of all segments remains the same. Interpreting it as the battery
charge profile of a route, it is made by the same ascending and descending segments, representing the same amounts of energy
recharged at the same stations with the same recharge speeds and consumed along the same edges with the same consumption rates.
3
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Fig. 1. Top: a feasible route and its battery charge profile. Bottom: the reversed route and the corresponding battery charge profile (traveling time on the
horizontal axis, level of charge on the vertical axis). Every feasible route remains feasible when reversed. The battery charge profile of the reversed route
is obtained by rotating the charge profile of the original route by 180 degrees. Dark square: depot; light squares: stations. Numerical labels indicate energy
onsumption along paths and energy recharge at stations.

herefore, the rotated charge profile corresponds to the battery charge profile along the reversed route, with the same recharge plan
i.e. recharging the same amounts of energy at the same stations). An example is shown in the bottom part of Fig. 1.

In the original feasible route the battery charge level is guaranteed to be between 0 and 𝐵 at any point and the residual battery
capacity is given by the difference between 𝐵 and the battery charge level. By construction, when the charge profile is rotated,
the values 0 and 𝐵 are swapped, so that the battery charge level along a route is equivalent to the residual battery capacity along
the reversed route. Therefore, the battery charge level is guaranteed to be between 0 and 𝐵 at any point along the reversed route.

ence, traveling along a feasible route in the opposite direction keeping the same recharge plan is feasible. □

. Mathematical formulation

The branch-and-price algorithm illustrated in the remainder is based on an extended formulation where each column represents
feasible route.

.1. Master problem

Let us define 𝛺 as the set of all feasible routes. A binary variable 𝑥𝑟 is associated with each feasible route 𝑟 ∈ 𝛺 and 𝑐𝑟 indicates
the route cost. Binary coefficients 𝑦𝑖𝑟 indicate whether each customer 𝑖 ∈  is visited or not along each route 𝑟 ∈ 𝛺.

With this notation the following master problem (𝑀𝑃 ) is obtained:

minimize
∑

𝑟∈𝛺
𝑐𝑟𝑥𝑟 (1)

s.t.
∑

𝑟∈𝛺
𝑦𝑖𝑟𝑥𝑟 ≥ 1 ∀𝑖 ∈  (2)

−
∑

𝑟∈𝛺
𝑥𝑟 ≥ −𝐾 (3)

𝑥𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝛺 (4)

The objective function (1) asks for the minimization of the total cost of the selected routes. Covering constraints (2) impose that all
customers be visited; constraint (3) allows to select at most 𝐾 columns in the solution.

We indicate by 𝐿𝑀𝑃 the linear relaxation of the master problem. We indicate by 𝛽 ≥ 0 the dual variables vector corresponding
to the covering constraints (2) and by 𝜇 ≥ 0 the dual variable corresponding to constraint (3). With this notation, the expression of
the reduced cost of a generic column 𝑟 in the 𝐿𝑀𝑃 is:

𝑐𝑟 = 𝑐𝑟 −
∑

𝑖∈
𝛽𝑖𝑦𝑖𝑟 + 𝜇.

At each node of a branch-and-bound tree the linear relaxation of the master problem is solved by column generation, where a
restricted linear master problem (𝑅𝐿𝑀𝑃 ) with a subset 𝛺′ ⊂ 𝛺 of columns is iteratively solved.
4
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To guarantee its feasibility, the 𝑅𝐿𝑀𝑃 is initially populated with a dummy column corresponding to a route visiting all customers
t a very large cost. For this purpose we use a greedy heuristic algorithm to compute a route visiting all customers with no constraints
n duration and capacity. Its cost 𝑐𝑑𝑢𝑚𝑚𝑦, its time consumption 𝜏𝑑𝑢𝑚𝑚𝑦 and its capacity consumption 𝜙𝑑𝑢𝑚𝑚𝑦 (set equal to ∑

𝑖∈ 𝑞𝑖) are
uaranteed to be larger than or equal to the cost, time consumption and capacity consumption of any route in an optimal solution.
herefore 𝐾 ⋅ 𝑐𝑑𝑢𝑚𝑚𝑦 is used as the cost of the dummy column, while the input data 𝑇 and 𝑄 are updated to min{𝑇 , 𝜏𝑑𝑢𝑚𝑚𝑦} and
in{𝑄,𝜙𝑑𝑢𝑚𝑚𝑦}, respectively.

.2. Pricing sub-problem

The pricing sub-problem requires to find a minimum cost closed walk from the depot to the depot, not visiting any customer
ertex more than once and not consuming more than a given amount of capacity and time. The vehicle can visit recharge stations
o comply with battery constraints. A reward 𝛽𝑖 ≥ 0 is obtained from visiting each customer 𝑖 ∈  and a fixed cost 𝜇 ≥ 0 is paid at
he depot.

This problem is a variation of the Resource Constrained Elementary Shortest Path Problem (which is known to be 𝑁𝑃 -hard, as
tated in Dror 1994), in which the elementary path constraints are imposed only on a subset of vertices, the resources are partly
iscrete (capacity) and partly continuous (time) and one of the resources (energy) is renewable.

. Pricing algorithm

We solve the pricing sub-problem with a bi-directional dynamic programming (DP) algorithm, where states correspond to paths
ith an endpoint at the depot. In DP algorithms developed for similar purposes, encoding paths in DP labels is usually enough to

ully define pricing solutions. In our case, instead, it is necessary to encode both the path and the recharge plan along it. Such a
eed is mainly motivated by the presence of multiple technologies. For instance, the resource extension functions modeling proposed
n Desaulniers et al. (2016) does not translate in our setting. Intuitively, when a single technology exists, many recharge plans are
quivalent, as recharging in one station or another among the visited ones does not affect the overall time and cost of the route.
his is no longer true in the case of multiple technologies.

.1. Solution encoding

As discussed above, for each path infinite feasible recharge plans may exist. They should be recorded in the piece of information
ssociated with each DP label. Accordingly, we introduce the notion of feasible recharge polyhedron, to encode all feasible recharge
lans associated with a partial path.

efinition 1. A Feasible Recharge Polyhedron (FRP)  = (𝛥, 𝛥, 𝛿, 𝛿) is defined in as many dimensions as the number of technologies
𝐻 and it has the following special structure:

• the two scalars 𝛥 and 𝛥 represent the minimum and maximum total amount of recharged energy along the path;
• the two vectors 𝛿 = {𝛿0,… 𝛿𝐻} and 𝛿 = {𝛿0,… 𝛿𝐻} represent the minimum and maximum amounts of energy 𝛿ℎ recharged for

each ℎ ∈ .

The reference point of  is the vertex of  with minimum cost. We indicate the coordinates of the reference point with a vector
̂ = {𝛿0,… , 𝛿} for any given  . The value of the coordinates 𝛿 of the reference point are computed as illustrated in Algorithm 1.
ig. 2 shows an example of a FRP for the case  = {1, 2}.

In the DP algorithm, the states corresponding to a generic path from the depot to a vertex 𝑢 are represented by labels
 = (𝑢, 𝑆, 𝜙, , 𝜏, 𝑐), where

• 𝑢 ∈  ∪ is the last vertex reached by the path, that starts from the depot;
• 𝑆 ⊆  is the set of customers visited by the path;
• 𝜙 is the amount of capacity consumed along the path: 𝜙 =

∑

𝑖∈𝑆 𝑞𝑖;
•  is the FRP representing the set of feasible recharge plans associated with the path;
• 𝜏 is the time needed to reach the reference point of  along the path;
• 𝑐 is the reduced cost corresponding to the reference point of  .

Every DP label represents an infinite set of states and each state corresponds to a point of the FRP.
The initial state is 0 = (𝑅0, ∅, 0,0, 0, 0), corresponding to a degenerate path including only the depot 𝑅0. The initial polyhedron

0 is defined as follows:

0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛥 = 0

𝛥 = 𝐵

𝛿ℎ = 0 ∀ℎ ∈ 

𝛿ℎ = 0 ∀ℎ ∈ ∖{0}

𝛿0 = 𝐵

herefore, the initial reference point has coordinates 𝛿 = 0 ∀ℎ ∈ .
5
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Fig. 2. The reference point of a feasible recharge polyhedron  is the vertex of  with minimum cost (point 𝐀, assuming 𝛾1 < 𝛾2).

4.2. Label extension

When a label ′ = (𝑖, 𝑆′, 𝜙′, ′, 𝜏′, 𝑐′) of vertex 𝑖 is tentatively extended along an edge 𝑒 = [𝑖, 𝑗] to generate a new label for vertex
, the following conditions are tested:

• Elementarity: 𝑗 ∉ 𝑆′;
• Capacity: 𝜙′ + 𝑞𝑖∕2 + 𝑞𝑗∕2 ≤ 𝑄 (assuming 𝑞𝑗 = 0 ∀𝑗 ∈ );
• Duration: 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 ≤ 𝑇 ;
• Energy: 𝛥

′
− 𝛥′ ≥ 𝑑𝑒.

A valid but stronger version of the last two feasibility conditions is

• Duration: 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 + 𝑡[0,𝑗] ≤ 𝑇 ,
• Energy: 𝛥

′
− 𝛥′ ≥ 𝑑𝑒 + 𝑚𝑗 ,

here 𝑡[0,𝑗] is the traveling time along the edge from 𝑗 to the depot, while 𝑚𝑗 is the amount of energy needed to reach the nearest
recharge station from vertex 𝑗 (it can be pre-computed in linear time for each vertex: 𝑚𝑗 = min𝑘∈ 𝑑[𝑗,𝑘]).

The following rule is used to avoid some useless extensions and to save computing time. If 𝑗 ∈  and no customer vertex has
been visited after the last visit to 𝑗, then the extension towards 𝑗 is forbidden. Keeping a boolean flag for each station is enough
for this test. In general, a significant imbalance between recharge technologies could make a station-to-station loop necessary to
achieve optimality or feasibility (see Appendix B), but this is quite unrealistic and never happens in our instances; we can safely
assume every station-to-station loop to be suboptimal.

When the extension of a label ′ = (𝑖, 𝑆′, 𝜙′, ′, 𝜏′, 𝑐′) to a vertex 𝑗 along edge 𝑒 = [𝑖, 𝑗] is feasible, a new label ′′ =
𝑗, 𝑆′′, 𝜙′′, ′′, 𝜏′′, 𝑐′′) is generated according to the following rules.

First, the new FRP  ′′ and its reference point 𝛿′′ are computed as indicated in Algorithm 1. Traveling along an edge 𝑒 of length
𝑑𝑒 increases 𝛥 by 𝑑𝑒. The first loop checks for possible updates to the minimum recharge needed in each station ℎ, triggered by the
increase to 𝛥, when recharge in all other stations are assumed to be performed at their upper bounds. The second loop is the update
to the FRP in each coordinate, implied by the energy consumption along edge 𝑒. The final check allows to update to the FRP when
a station is visited. Fig. 3 shows a graphical example of the effect of these FRP updates: when the vehicle consumes energy traveling
along an edge 𝑒, 𝛥 (and possibly 𝛿ℎ for some ℎ) increases, restricting the FRP (left). When the vehicle visits a station equipped with
technology ℎ, then 𝛥 and 𝛿ℎ increase, enlarging the FRP (right).

Finally, the following extension rules are applied to generate the new label:

• 𝑆′′ =

{

𝑆′ ∪ {𝑗} if 𝑗 ∈ 

𝑆′ if 𝑗 ∈ 
,

• 𝜙′′ = 𝜙′ + 𝑞𝑖∕2 + 𝑞𝑗∕2,
• 𝜏′′ = 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 +

∑

ℎ∈ 𝜌ℎ(𝛿′′ℎ − 𝛿′ℎ),
• 𝑐′′ = 𝑐′ − 𝛽 ∕2 − 𝛽 ∕2 +

∑

𝛾 (𝛿′′ − 𝛿′ ).
6
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Algorithm 1 Extension from  ′ to  ′′ along edge 𝑒 towards vertex 𝑗

1: // Bounds update //
2: 𝛥

′′
← 𝛥

′

3: 𝛥′′ ← 𝛥′ + 𝑑𝑒
4: for ℎ ∈  do
5: 𝛿

′′
ℎ ← 𝛿

′
ℎ

6: 𝛿′′ℎ ← max{𝛿′ℎ, 𝛥
′′ −

∑

𝑘∈∶𝑘≠ℎ 𝛿
′
𝑘}

7: // Reference point update //
8: 𝑍 = 𝑑𝑒
9: for ℎ ∈  do

10: 𝜖 ← min{𝑍, 𝛿
′′
ℎ − 𝛿′ℎ}

11: 𝛿′′ℎ ← 𝛿′ℎ + 𝜖
12: 𝑍 ← 𝑍 − 𝜖
13: // Recharge (if 𝑗 is a station vertex) //
14: if 𝑗 ∈ ℎ then
15: 𝛥

′′
← 𝛥′′ + 𝐵

16: 𝛿
′′
ℎ ← 𝛥

′′
−
∑

𝑘≠ℎ 𝛿
′′
𝑘

Fig. 3. Effect of the extensions of a label on the FPR. The FRP is restricted when extension traverses an edge (left), it is enlarged when extension results in
visiting a station (right).

4.3. Dominance

The exponential number of labels to be generated is a primary source of inefficiency of the DP algorithm. For this reason, a
dominance test is performed to fathom labels that cannot lead to an optimal solution, thus limiting the combinatorial explosion in
the number of labels.

Efficient dominance rules for the RCESPP have been described in Irnich and Desaulniers (2005). We use the following dominance
criteria: a label ′ = (𝑖, 𝑆′, 𝜙′, ′, 𝜏′, 𝑐′) dominates a label ′′ = (𝑖, 𝑆′′, 𝜙′′, ′′, 𝜏′′, 𝑐′′) if and only if the following inequalities hold
nd at least one of them is strict:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑆′ ⊆ 𝑆′′

𝜙′ ≤ 𝜙′′

𝜏′ ≤ 𝜏′′

𝑐′ ≤ 𝑐′′

𝛥
′
− 𝛥′ ≥ 𝛥

′′
− 𝛥′′

𝛿
′
ℎ − 𝛿′ℎ ≥ 𝛿

′′
ℎ − 𝛿′′ℎ ∀ℎ ∈ 

̂′ ′ ̂′′ ′′
7

⎩
𝛿ℎ − 𝛿ℎ ≥ 𝛿ℎ − 𝛿ℎ ∀ℎ ∈ 
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Proposition 2. For any feasible completion of a state of ′′, there exists a feasible completion of a state of ′ whose cost is not larger.

Proof. First we prove Proposition 2 for the reference points, disregarding the energy constraints. Let 𝑆̃ be the set of customers
visited along a feasible completion of the state of ′′ corresponding to its reference point; this implies 𝑆̃ ∩ 𝑆′′ = ∅; hence 𝑆′ ⊆ 𝑆′′

implies 𝑆̃ ∩ 𝑆′ = ∅. Let 𝜙̃ be the capacity consumption along a feasible completion of the state of ′′ corresponding to its reference
point; this implies 𝜙̃+ 𝜙′′ ≤ 𝑄; hence 𝜙′ ≤ 𝜙′′ implies 𝜙̃+ 𝜙′ ≤ 𝑄. Let 𝜏 be the time consumption along a feasible completion of the
state of ′′ corresponding to its reference point; this implies 𝜏 + 𝜏′′ ≤ 𝑇 ; hence 𝜏′ ≤ 𝜏′′ implies 𝜏 + 𝜏′ ≤ 𝑇 . Let 𝑐 be the cost of a
feasible completion of the state of ′′ corresponding to its reference point; this implies that the final cost of the solution is 𝑐 + 𝑐′′;
hence 𝑐′ ≤ 𝑐′′ implies that the final cost of the solution obtained from the reference point of ′ with the same completion is 𝑐 + 𝑐′,
which is not larger. Concerning the energy constraints, no comparison is needed between the two reference points, since both of
them correspond to states with zero residual energy, by construction.

Now, we extend the dominance proof to the feasible recharge polyhedra that represent the energy constraints. The last three
conditions are equivalent to  ′ ⊇  ′′ when the reference points of the two polyhedra are made coincident. In turn, this implies that
for each state in  ′′ there exists a corresponding state in  ′ such that their difference in time, energy and cost is the same as for
the two reference points: this is because the two corresponding states coincide when the reference points of the two polyhedra are
made coincident. In turn, this guarantees that for every feasible solution that can be obtained from any state in ′′, another feasible
and non-worse solution can be obtained with the same completion from a state in ′. □

With this dominance test we can compare labels instead of states, where each label is a polyhedron containing an infinite number
of states. This allows discarding dominated labels from further consideration without losing the optimality guarantee.

Observation 1. The test 𝑆′ ⊆ 𝑆′′ takes 𝑂(| |) time. However, memory word parallelism can be triggered very efficiently, if implemented
by bitwise operations.

By memory word parallelism we mean the simultaneous computation of bit values in a single memory cell performed by bitwise
machine instructions. Although its worst case complexity remains linear, the algorithm consistently achieves a substantial speedup.

Labels are kept in buckets, one for each vertex of the graph. This allows to test for dominance only labels associated with the
same vertex. The labels are extended following their generation order, as indicated in Algorithm 2.

Algorithm 2 Label extension

1: Create an empty bucket 𝐵𝑛 for every node 𝑛 ∈  ∪
2: 𝑄𝑢𝑒𝑢𝑒 ← {0}
3: 𝐵0 ← {0}
4: 𝑖 = 0
5: while 𝑖 < size of 𝑄𝑢𝑒𝑢𝑒 do
6: 𝑖 ← 𝑖𝑡ℎ label in 𝑄𝑢𝑒𝑢𝑒
7: if 𝑖 is not marked closed then
8: for All nodes 𝑘 reachable from 𝑖 do
9: Generate label 𝑘 (extend 𝑖 towards 𝑘)

10: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒
11: for All labels 𝓁 in 𝐵𝑘 do
12: if 𝓁 dominates 𝑘 then
13: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒
14: break ⊳ switch to the next 𝑘
15: if 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒 then
16: for All labels 𝓁 in 𝐵𝑘 do
17: if 𝑘 dominates 𝓁 then
18: Mark 𝓁 as closed in 𝑄𝑢𝑒𝑢𝑒
19: Remove 𝓁 from 𝐵𝑘

20: Append {𝑘} to 𝑄𝑢𝑒𝑢𝑒
21: Insert {𝑘} into 𝐵𝑘

22: 𝑖 = 𝑖 + 1

Following (Feillet et al., 2004), unreachable customers are included in the subset 𝑆 for each given path. These are customers
that cannot be visited in any feasible extension of the path. We perform two simple checks for marking a customer as unreachable:
either its demand does not fit into the remaining vehicle capacity, or the time to reach and service it does not fit into the remaining
route time. One further condition is introduced by branching decisions, as explained in Section 5.

4.4. Bi-directional DP

In general, bi-directional DP requires backward extension rules for labels. However, here we consider symmetric graphs and
hence the same paths can be traversed in either direction at the same (reduced) cost in the same time. In bi-directional DP, labels
are never extended to the depot.
8
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The extension stop criterion must guarantee that every feasible route can be generated by a pair of paths. For this purpose
xtensions are stopped as soon as half of the available amount of a suitably chosen critical resource has been consumed. The selection

of the critical resource can heavily affect the overall algorithm performance.
In the EVRP, vehicle capacity and time can be chosen as critical resources, whereas energy cannot because it can be recharged.

If capacity is selected as critical, then the stop condition 𝜙′ + 𝑞𝑖∕2+ 𝑞𝑗∕2 ≤ 𝑄∕2 replaces the feasibility test 𝜙′ + 𝑞𝑖∕2+ 𝑞𝑗 ≤ 𝑄; if time
is selected as critical, then the stop condition 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 ≤ 𝑇 ∕2 replaces the feasibility test 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗 ≤ 𝑇 . For the
un-time selection of the critical resource we devised and tested some strategies, described hereafter.

.4.1. Critical resource selection
Since we have precomputed a dummy route with capacity consumption 𝜙𝑑𝑢𝑚𝑚𝑦 and time consumption 𝜏𝑑𝑢𝑚𝑚𝑦, as described in

ection 3.1, the critical resource is guessed from it. Three different heuristic criteria were considered:

• Criterion (1) is simply based on total resource consumptions: time is selected as critical when it is tight along the dummy
route (i.e. 𝜏𝑑𝑢𝑚𝑚𝑦 ≥ 𝑇 ), capacity otherwise.

• Criterion (2) compares the relative consumption of resources defined as follows:

𝑄 = 𝑄∕𝜙𝑑𝑢𝑚𝑚𝑦

𝑇 = 𝑇 ∕𝜏𝑑𝑢𝑚𝑚𝑦

Time is selected as critical if (𝜙𝑑𝑢𝑚𝑚𝑦 < 𝑄) ∨ (𝑄 > 𝑇 ), capacity otherwise.
• Criterion (3) is similar to (2), but the definition of 𝑇 is

𝑇 = 𝐾𝑇 ∕𝜏𝑑𝑢𝑚𝑚𝑦.

In Section 6.2, some computational results on the effectiveness of these criteria are presented.

4.4.2. Joining paths
A numerical example of the join procedure is illustrated in Appendix A. Given the use of the FRP, it requires specific design

choices. When two paths with labels ′ = (𝑖, 𝑆′, 𝜙′, ′, 𝜏′, 𝑐′) and ′′ = (𝑗, 𝑆′′, 𝜙′′, ′′, 𝜏′′, 𝑐′′) are joined along the edge 𝑒 = [𝑖, 𝑗], they
roduce a route whose energy consumption is given by 𝛥′ + 𝛥′′ + 𝑑𝑒.

Additionally, we must take into account that one of the two joined paths must be traversed to the depot, instead of from the
depot. The energy consumption along a reversed path is the same (see Proposition 1), but the recharge technology cannot be the
same, because the initial (possibly cheap and instantaneous) recharge at the depot is not possible when traveling to the depot.

Therefore, a feasible route can be produced only if at least 𝑑𝑒 units of additional energy can be recharged in the resulting route
and a complete recharge of 𝐵 units of energy at the depot can be cancelled. For each partial route the additional energy that can
be recharged is given by 𝛥 − 𝛥. Hence a necessary condition to produce a feasible route is (𝛥

′
− 𝛥′) + (𝛥

′′
− 𝛥′′) ≥ 𝐵 + 𝑑𝑒.

The energy needed to traverse edge 𝑒, implies also an increase in time and in (reduced) cost. These amounts can be quickly
ower bounded by 𝑑𝑒𝜌∗ (time) and 𝑑𝑒𝛾∗ (reduced cost), where 𝜌∗ is the unit recharge time of the fastest technology along the route,
.e. 𝜌∗ = min𝑗∈∶𝛿𝑗<𝛿𝑗

𝜌𝑗 and 𝛾∗ is the unit recharge cost of the cheapest technology along the route, i.e. 𝛾∗ = min𝑗∈∶𝛿𝑗<𝛿𝑗
𝛾𝑗 .

Therefore some units of energy recharged with technology 0 (available at the depot only) must be replaced using a different
technology. In the worst case (routes whose overall consumption is larger than or equal to 𝐵) this implies the replacement of 𝐵
units of energy. We call this amount join energy :

𝐸𝑗𝑜𝑖𝑛 = max(0, 𝛿′0 + 𝛿′′0 − 𝐵).

The additional time and reduced cost due to the join energy can be lower bounded by 𝐸𝑗𝑜𝑖𝑛𝜌∗ (time) and 𝐸𝑗𝑜𝑖𝑛(𝛾∗ − 𝛾0) (cost), as
before.

This lower bounding technique can be used to possibly discard a route immediately. Consider two labels ′ = (𝑖, 𝑆′, 𝜙′, ′, 𝜏′, 𝑐′)
nd ′′ = (𝑗, 𝑆′′, 𝜙′′, ′′, 𝜏′′, 𝑐′′) and the edge 𝑒 = [𝑖, 𝑗]. The following (necessary but not sufficient) conditions are tested to check

whether the two corresponding paths can be joined to produce a feasible route:

• Elementarity: 𝑆′ ∩ 𝑆′′ = ∅;
• Capacity: 𝜙′ + 𝜙′′ ≤ 𝑄 − (𝑞𝑖∕2 + 𝑞𝑗∕2);
• Energy: (𝛥

′
− 𝛥′) + (𝛥

′′
− 𝛥′′) ≥ 𝐵 + 𝑑𝑒;

• Duration: 𝜏′ + (𝐸𝑗𝑜𝑖𝑛 + 𝑑𝑒)𝜌∗ + 𝜏′′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 ≤ 𝑇 ;
• Cost: 𝑐′ + 𝑑𝑒𝛾∗ + 𝐸𝑗𝑜𝑖𝑛(𝛾∗ − 𝛾0) + 𝑐′′ − 𝛽𝑖∕2 − 𝛽𝑗∕2 < 0.

When the route is not discarded by these tests based on lower bounds on duration and cost, its corresponding duration and cost
must be computed exactly. For this purpose, we need to examine the FRP ∗ = (𝛥∗, 𝛥

∗
, 𝛿∗, 𝛿

∗
) produced when two paths with FRP

 ′ = (𝛥′, 𝛥
′
, 𝛿′, 𝛿

′
) and  ′′ = (𝛥′′, 𝛥

′′
, 𝛿′′, 𝛿

′′
) are joined. It represents the set of all feasible recharge plans of the resulting route.

Its computation is illustrated in Algorithm 3. In the first step the energy consumptions along the two paths are summed up. Then,
the FRP is updated according to the additional consumption of energy 𝑑𝑒 along the edge between the two path endpoints, as in
Algorithm 1; the reference point coordinates are updated accordingly. Finally, the join energy is taken into account: the amount
9
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Algorithm 3 Computing the FRP of a route. IN:  ′,  ′′. OUT: ∗.
1: // Sum of the energy consumptions along the paths //
2: 𝛥∗ = 𝛥′ + 𝛥′′

3: 𝛥
∗
= 𝛥

′
+ 𝛥

′′

4: 𝛿
∗
= 𝛿

′
+ 𝛿

′′

5: 𝛿∗ = 𝛿′ + 𝛿′′

6: 𝛿∗ = 𝛿′ + 𝛿′′

7: 𝜏∗ ← 𝜏′ + 𝑠𝑖∕2 + 𝑡𝑒 + 𝑠𝑗∕2 + 𝜏′′

8: 𝑐∗ ← 𝑐′ + 𝛽𝑖∕2 + 𝛽𝑗∕2 + 𝑐′′

9: // Energy and time consumption along edge 𝑒 //
10: 𝛥∗ ← 𝛥∗ + 𝑑𝑒
11: for ℎ ∈  do
12: 𝛿∗ℎ ← max{𝛿∗ℎ, 𝛥

∗ −
∑

𝑘∈∖{ℎ} 𝛿
∗
𝑘}

13: // Reference point update //
14: 𝑍 = 𝑑𝑒
15: for ℎ ∈  do
16: 𝜖 ← min{𝑍, 𝛿

∗
ℎ − 𝛿∗ℎ}

17: 𝛿∗ℎ ← 𝛿∗ℎ + 𝜖
18: 𝑍 ← 𝑍 − 𝜖
19: 𝜏∗ ← 𝜏∗ + 𝜌ℎ𝜖
20: 𝑐∗ ← 𝑐∗ + 𝛾ℎ𝜖
21: // Join energy replacement //
22: ℎ ← 0
23: while (𝛿∗0 > 𝐵) ∧ (𝑐∗ < 0) ∧ (ℎ ≤ 𝐻) do
24: ℎ ← ℎ + 1
25: 𝜖 ← min{𝛿∗0 − 𝐵, 𝛿

∗
ℎ − 𝛿∗ℎ}

26: 𝛿∗ℎ ← 𝛿∗ℎ + 𝜖
27: 𝛿∗0 ← 𝛿∗0 − 𝜖
28: 𝜏∗ ← 𝜏∗ + 𝜌ℎ𝜖
29: 𝑐∗ ← 𝑐∗ + (𝛾ℎ − 𝛾0)𝜖

of energy coming from technology 0, i.e. 𝛿
∗
0, is decreased to 𝐵 if needed. For this purpose the technologies are scanned from the

heapest to the costliest and the maximum amount of replacement is done and the duration 𝜏∗ and the reduced cost 𝑐∗ of the route
are increased accordingly.

If Algorithm 3 exits the loop on line 23 with 𝛿∗0 ≤ 𝐵 and 𝑐∗ < 0, then a feasible recharge plan with negative reduced cost may
xist; on the contrary, if the algorithm exits the loop with 𝑐∗ ≥ 0, then no feasible recharge plan has a negative reduced cost.

.4.3. Repairing infeasible recharge plans
It may happen that the updated reference point of the FRP ∗ is not feasible, because the duration of the route exceeds the

rescribed limit 𝑇 . In this case another point in the FRP must be found, trading time for cost, i.e. replacing slower and cheaper
echarges with faster and more expensive ones.

Finding the minimum cost point in the FRP ∗ satisfying the time constraint is a linear programming problem. The candidate
ptimal points in the FRP are those for which the total amount of recharged energy equals the total consumption along the route.
ll these points lie on the same facet, say  , of the FRP (for a graphical illustration, see facet 𝐴𝐸𝐶𝐺 in Figure 9 in Appendix A).

The projection of facet  in the cost/time space is still a polyhedron, since cost and time linearly depend on the 𝛿ℎ variables (see
igure 10 in Appendix A). In particular, the projection of  is a polyhedron, say , whose vertices correspond to vertices of  . The
oint corresponding to an optimal recharge plan must be sought along the piece-wise linear function made of Pareto-optimal points
f , i.e. solutions such that no other point exists in  with smaller values of both time consumption and cost. After the join step,
he reference point is the bottom-most point of , since it corresponds to the minimum cost recharge plan. If the reference point
iolates the maximum duration constraint but another feasible and optimal recharge plan exists, it is at the intersection between the
areto frontier along the contour of  and the maximum duration constraint (see, for instance, point 𝑋 in Figure 10). Finding such
point is the problem of finding a minimum cost point in a polyhedron with an additional linear constraint on time: this is a linear
rogramming problem in two dimensions. Owing to its special structure (only two dimensions) and since  is a projection of  ,

that is a facet of the FRP, that has a special structure, then the linear programming problem can be efficiently solved to optimality
with an ad hoc algorithm, shown in Algorithm 4. The algorithm simply follows the Pareto-optimal frontier from vertex to vertex,
until either the time constraint is satisfied or infeasibility is detected.

For this purpose, the algorithm uses two subsets 𝐷 and 𝐼 containing the technologies ℎ for which the recharged amounts 𝛿∗ℎ can
be decreased or increased, respectively. The most profitable replacement between two technologies 𝑘− ∈ 𝐷 and 𝑘+ ∈ 𝐼 is selected
10
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according to the minimum value of the ratio 𝛾𝑘+−𝛾𝑘−
𝜌𝑘−−𝜌𝑘+

, i.e. the ratio between the cost increase and the duration decrease. Referring
to Figure 10, this means that the point corresponding to the recharge plan 𝛿∗ is moved upward and to the left along the most
profitable segment on the frontier of . All vertices of  correspond to vertices of  , where the values of the recharged amounts
are equal either to their maximum 𝛿ℎ or to their minimum 𝛿ℎ, for each recharge technology ℎ ∈ . This is why the next vertex of
 is identified either by 𝛿𝑘− reaching its minimum or by 𝛿𝑘+ reaching its maximum. When 𝛿∗ is modified, the values of duration 𝜏∗

and reduced cost 𝑐∗ are updated accordingly. We remark that order matters: in the loop on line 15 of Algorithm 3, technologies are
xamined from the slowest and cheapest one (ℎ = 1) to the fastest and most expensive one (ℎ = 𝐻).

Algorithm 4 Technology replacement to make the route duration feasible

1: 𝐷 ← {ℎ ∈  ∶ 𝛿ℎ > 𝛿ℎ}
2: 𝐼 ← {ℎ ∈  ∶ 𝛿ℎ < 𝛿ℎ}
3: for ℎ ∈  do
4: 𝛿∗ℎ ← 𝛿ℎ
5: while (𝜏∗ > 𝑇 ) and (𝑐∗ < 0) do
6: (𝑘−, 𝑘+) ← argmin𝑘−∈𝐷,𝑘+∈𝐼,𝑘−≠𝑘+{

𝛾𝑘+−𝛾𝑘−
𝜌𝑘−−𝜌𝑘+

}

7: 𝜖 ← min{𝛿∗𝑘− − 𝛿𝑘− , 𝛿𝑘+ − 𝛿∗𝑘+ ,
𝜏∗−𝑇

𝜌𝑘−−𝜌𝑘+
}

8: 𝛿∗𝑘− ← 𝛿∗𝑘− − 𝜖
9: 𝛿∗𝑘+ ← 𝛿∗𝑘+ + 𝜖

10: 𝜏∗ ← 𝜏∗ − (𝜌𝑘− − 𝜌𝑘+ )𝜖
11: 𝑐∗ ← 𝑐∗ + (𝛾𝑘+ − 𝛾𝑘− )𝜖
12: 𝐷 ← 𝐷 ∪ {𝑘+}
13: if 𝛿∗𝑘− = 𝛿𝑘− then
14: 𝐷 ← 𝐷∖{𝑘−}
15: 𝐼 ← 𝐼 ∪ {𝑘−}
16: if 𝛿𝑘+ ∗= 𝛿𝑘+ then
17: 𝐼 ← 𝐼∖{𝑘+}

When the algorithm terminates with 𝜏∗ ≤ 𝑇 and 𝑐∗ < 0, a feasible recharge plan with negative reduced cost has been found; on
he contrary, when it terminates with 𝑐∗ ≥ 0, no feasible recharge plan with negative reduced cost exists.

Remark. Although this feasibility repair step is needed to ensure the correctness of the pricing algorithm, in practice it is very
unlikely to be necessary. In our computational tests we could never observe any occurrence.

4.5. Implementation and speed-up techniques

Pricing is the most time consuming step of the whole branch-and-price algorithm and in particular the join operation turns out
to be the bottleneck. Hence, we devised and tested some rules to avoid as many tentative join operations as possible.

Duplicates avoidance. In general each route can be generated by joining several different pairs of paths. To avoid useless duplicates,
we introduced an additional test, that depends on the selected critical resource: the unbalance in the resource consumption between
the two paths must be minimum along the resulting route.

For instance, assume capacity has been selected as critical and let 𝜙′ and 𝜙′′ be the capacity consumptions in vertices 𝑖 and 𝑗,
respectively. Then ′ and ′′ are joined through edge 𝑒 = [𝑖, 𝑗] only if

|𝜙′ − 𝜙′′
| ≤ (𝑞𝑖 + 𝑞𝑗 )∕2.

Alternatively, assume time has been selected as critical and let 𝜏′ and 𝜏′′ be the time consumptions in vertices 𝑖 and 𝑗, respectively.
Then ′ and ′′ are joined through edge 𝑒 = [𝑖, 𝑗] only if

|𝜏′ − 𝜏′′| ≤ 𝑠𝑖∕2 + 𝑡𝑒 + 𝜌∗𝑑𝑒 + 𝑠𝑗∕2,

where 𝜌∗ is the unit recharge time of the fastest technology along the route.

Label extension in stages. Instead of generating all labels first and then trying to combine them in pairs, it is possible and profitable
to have these two phases interleaved. A threshold 𝑙𝑚𝑎𝑥 is set for the number of labels to be generated at each stage. When the number
of labels reaches 𝑙𝑚𝑎𝑥, the label extension phase freezes and the algorithm starts tentatively joining the labels obtained so far. If no
route are found in this way, the value of 𝑙𝑚𝑎𝑥 is raised and another stage is executed.

In our implementation we heuristically set 𝑙𝑚𝑎𝑥 = 200𝑘3 for the 𝑘th stage.

Maximum number of routes. Another threshold 𝑠𝑚𝑎𝑥 has been set for the number of routes corresponding to columns of negative
reduced cost to be returned by the pricer. When the number of generated feasible routes reaches 𝑠𝑚𝑎𝑥, the pricer stops This is
especially effective if the most promising path pairs are examined first, as explained below.
11

In our implementation we heuristically set 𝑠𝑚𝑎𝑥 = 1000.
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Labels sorting. The labels of each vertex are sorted by non-decreasing reduced cost. The most promising path pairs correspond to
nearby vertices and to the first labels of the vertices. Hence, tentative join operations are done according to the following order:
first, the edge set is sorted and edges are examined by non-decreasing distance. Then, for each edge 𝑒 = [𝑖, 𝑗] the label lists of 𝑖 and

are scanned according to their order.

. Branching

When the optimal solution of the 𝐿𝑀𝑃 is fractional, two branching policies are used.

ranching on the number of routes. The total number of routes in the solution is upper bounded by 𝑚 in one branch and lower
ounded by 𝑚 + 1 in the other, where 𝑚 is the integer part of the number of routes occurring in the fractional solution.

This branching rule is applied first.

ranching on customer pairs. Following the commonly used binary branching technique introduced by Ryan and Foster (1981), a
air of customer vertices 𝑢, 𝑣 ∈  is selected such that the sum ∑

𝑟∈𝛺∶𝑦𝑢𝑟=𝑦𝑣𝑟=1 𝑥𝑟 is closest to 1∕2. Then, 𝑢 and 𝑣 are forced to be
isited in the same route in one branch and they are forced to be visited by different routes in the other.

It is worth noting that such a rule is not in general robust with respect to the structure of the pricing problem. That is the pricing
roblem changes after branching decisions are taken, which then requires to either map branching decisions in weak form as master
onstraints, or to consider more complex pricing problems.

We decided for the second option, adapting the DP algorithm to get bounds which are as strong as possible. In particular,
ranching decisions imposing 𝑢 and 𝑣 to be visited in different routes are easy to embed in our setting: when 𝑢 (resp. 𝑣) is visited, 𝑣
resp. 𝑢) is marked as unreachable. No additional change is required. Instead, when 𝑢 and 𝑣 are imposed to be visited in the same
oute, the DP labels need to be enriched by additional resources. In details, we keep in each label a set of open nodes which are
orced to be visited before completing the route; when 𝑢 (resp. 𝑣) is visited, 𝑣 (resp. 𝑢) is inserted in such a set. Dominance can
ccur only if the set of open nodes of the dominating label is a subset (possibly equal) of those of the dominated.

Finally, branching decisions are checked during join: those pairs of semi-routes violating them are simply discarded.
The Ryan-Foster rule is applied only to customer vertices: station vertices do not appear in the constraints of the 𝐿𝑀𝑃 and they

o not play any role concerning the integrality of the solution. As described in Ryan and Foster (1981), such a rule is applicable
henever the MP has set partitioning form, and the optimal solution of the 𝐿𝑀𝑃 is fractional. The branching tree exploration

trategy we have used mixes best bound estimates and depth first, according to policies which are embedded in the framework
CIP (Gamrath et al., 2020), that was used in our implementation. In our computational tests, the number of branchings needed to
each optimality never reached 20.

. Computational results

.1. Dataset

We did our experiments on three datasets. The full repository is available at Bezzi (2021) in xml format, compliant with the
RP-rep (Mendoza et al., 2014) specifications.

emark. Input files include also two constants 𝜋 and 𝑣, since energy and time consumption are assumed to be proportional to the
istance along each edge through coefficients 𝜋 and 1∕𝑣, respectively. In other words, being 𝑙𝑒 the length of an edge 𝑒 ∈  , in our

experiments we have 𝑑𝑒 = 𝜋𝑙𝑒 and 𝑡𝑒 = 𝑙𝑒∕𝑣, although our algorithms do not rely on such a regularity.

Dataset A. This dataset was derived in Schneider et al. (2014) from the Solomon dataset, by relaxing the time windows constraints.
It is composed by 36 instances with up to 15 customers and 5 stations with a single technology. Some of these instances are
very small and not challenging: we solved them mainly to use them as benchmarks and for the sake of comparison between
instances with single technology and multiple technologies.

Instances in dataset A are split in three classes: C (clustered), R (random) and RC (random-clustered), according to the distances
between customers. The details of these instances are reported also in the first seven columns of Table 5 in Appendix C.

For some instances in this dataset we modified the number of vehicles with respect to the original value used in Schneider
et al. (2014). In one case this was done to make the instance feasible, because the original one was not (Schneider, 2014).
In some other cases we decreased the number of vehicles to the minimum value for which the instance was known to be
feasible (Felipe et al., 2014).

Dataset B. It is composed by 20 instances with 10 customers, up to 5 vehicles, up to 9 stations and 3 technologies (see also the
first four columns of Table 7 in Appendix C). Full details are given in Bezzi (2021).

Dataset C. It is composed by 10 instances directly adapted from the Solomon dataset (clustered instances): all instances have 30
customers, 7 vehicles, 5 stations and 3 technologies (see also the first four columns of Table 8 in Appendix C). Full details
are given in Bezzi (2021).
12
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Table 1
Comparison between critical resource selection criteria.

Criterion Accuracy Precision Q Precision T Recall Q Recall T

A 0.19 0.10 0.31 0.15 0.22
B 0.69 1.00 0.31 0.64 1.00
C 0.81 1.00 0.56 0.74 1.00

We implemented the branch-and-price algorithm in C++, using the SCIP framework (Gamrath et al., 2020) version 7.0.1 (linking
PLEX 20.1 for the LP subproblems). SCIP was set to use Simplex algorithms for LPs. Preliminary tests with barrier algorithms for
educing potential stability issues did not lead to improvements. Upper bounds for the master problem were generated by general-
urpose rounding heuristics embedded in SCIP. The algorithm was executed on a PC equipped with an AMD Ryzen 1950X 16-Core
rocessor and 32 GB of RAM, running Linux Ubuntu 18.

.2. Selection of the critical resource

The three criteria outlined in Section 4.4.1 were compared. Detailed results for dataset A are given in Table 5 of Appendix C.
e do not report results for datasets B and C, because all algorithms always (correctly) predicted time as critical.
Accuracy, Precision and Recall metrics are reported in Table 1. We denote by CT (resp. WT) the case in which 𝑇 was the correct

hoice, and the criterion correctly predicted 𝑇 (resp. predicted 𝑇 but was instead Q). Symmetrically, we denote by CQ (resp. WQ)
he case in which Q was the correct choice, and the criterion correctly predicted Q (resp. predicted Q but was instead T). Accuracy
s measured as (CT + CQ) / (CT + CQ + WT + WQ); precision on 𝑇 is measured as CT / (CT+WT); recall on 𝑇 is measured as CT

/ (CT+WQ). Precision and recall on Q are measured in the same way, replacing 𝑇 with Q. Criterion C proved best in all metrics,
therefore we decided to use it in all our tests.

6.3. Results

To better appreciate the pros and cons of the branch-and-price algorithm described so far, we present its results in comparison
with those obtained by another branch-and-price algorithm devised for the same problem in Ceselli et al. (2021), where columns
do not correspond to routes but to paths between recharge stations.

We remark that the problem addressed in Ceselli et al. (2021) is slightly different from the one considered here, because the
number of vehicles to be used was fixed, rather than upper bounded. However, this minor difference does not hamper the conclusions
that come from the comparison between the two algorithms.

Table 2 summarizes the results concerning dual bounds at the root node. For each Dataset we report, in turn, the number of
instances solved within a timelimit of two hours, the average gap between the best known primal bound (which is often a proven
optimal solution) and the dual bound (computed as primal–dual, divided by primal), and the average time to obtain it. The table
compares the dual bounds obtained by the algorithm of Ceselli et al. (2021) with and without the use of capacity cuts (first two
blocks, marked as ‘path’), and those obtained by the route based formulation proposed in this paper (third block, marked as ‘route’),
as indicated in the leading row. It is interesting to note that in two instances of 15 nodes in dataset A our algorithm was unable to
complete the column generation process within a time limit of two hours. We also note that average computing times on Dataset
A are higher for the route based formulation, although the bounds are much tighter. The remaining results clearly show that our
algorithm is consistently able to produce better bounds in shorter computing time.

In Tables 6, 7 and 8 of Appendix C we report the results obtained by the two algorithms, in their full branch-and-price process,
with a timeout of two hours. Similarly, in Tables 9, 10 and 11 of Appendix C we report the primal bound, the dual bound and
the gap obtained when solving the problem to proven optimality with two hours timeout. The results of Ceselli et al. (2021) are
obtained by imposing an additional cutoff when optimality gap reaches 0.1%.

Average results are summarized in Table 3, in terms of number of solved instances, calls to the pricing algorithm, number of
nodes explored in the branch-and-bound tree, computing time (excluding instances leading to timeout), gap after two hours of
computation. The algorithm of Ceselli et al. (2021) was unable to find any feasible solution in three instances of dataset B and three
instances of dataset C: these were excluded from the average gap computation on the corresponding column.

The results show that optimal solution is usually found by the route-based branch-and-price algorithm rather early, when only
few nodes have been analyzed. Indeed, for the smallest instances the optimal solution was found at the root node, without branching
at all. This is due to the relative strength of the dual bound (compared with the path-based formulation), that in turn requires few
branching steps to achieve integrality. We also report that branching on number of routes has been applied only at the root node,
because at non-root nodes the number of routes in the optimal fractional solution of the 𝐿𝑀𝑃 was always integer.

It is interesting to note that the most time-consuming instances for the route-based formulation are not the largest ones in
datasets B and C, but some 15 customers instances in dataset A (namely, A-C208-15, A-R209-15 and A-RC204-15). This is due to the
loose bound on time and capacity. Indeed, on two of these three instances (A-R209-15 and A-RC204-15) the algorithm reached the
time-out at the root node: they have redundant duration and capacity constraints, so that their optimal solution requires a single
13

vehicle. These are the only instances for which the route-based algorithm does not outperform the path-based one.
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Table 2
Column generation dual bounds and cutting strategies: average results.

Instances Path, without capacity cuts Path, with capacity cuts Route

D.S. N n.in. Gap Time (s) n.in. Gap Time (s) n.in. Gap Time (s)

A 5 12 17.1% 0.1 12 3.0% 0.1 12 0.0% 0.1
10 12 13.5% 0.1 12 5.4% 0.2 12 0.1% 6.0
15 12 11.8% 1.2 12 5.2% 1.9 10 0.6% 73.6

B 10 20 6.8% 141.5 20 6.5% 115.8 20 3.2% 0.1

C 30 10 15.8% 40.6 10 10.0% 41.9 10 1.5% 0.6

Table 3
Branch and price: average results.

Instances Solved inst. Pricer calls B&B nodes Time (s) Gap

D.S. N Path Route Path Route Path Route Path Route Path Route

A 5 12 12 938.75 3.83 1836.33 1.00 7.85 0.03 0.02% 0.00%
10 12 12 13 949.25 17.08 27 512.17 1.17 1015.56 4.53 0.21% 0.00%
15 8 9 9335.92 66.17 12 134.83 2.25 753.35 62.79 7.95% 0.15%

B 10 12 20 1391.75 19.80 1847.05 3.80 2330.17 0.16 1.71% 0.00%

C 30 6 10 864.40 148.60 918.80 7.60 2448.83 5.90 0.51% 0.00%

For some instances in datasets B and C, such as C-3-N030, it looks inconsistent to have a primal bound (from the route-based
ormulation) smaller than a lower bound (from the path-based formulation). This is due to the mandatory usage of all vehicles in
he path-based formulation: when the number of routes in the optimal solution is smaller than 𝐾, forcing the use of an extra vehicle

worsens the optimal value.

7. Conclusions

In this paper we have described a branch-and-price algorithm for the EVRP problem with partial recharges and multiple
technologies, employing bi-directional labeling algorithms for generating feasible routes.

In order to provide detailed computational insights we have considered data sets from the literature. The advantage of our
method with respect to previous attempts emerges clearly: we have been able to solve all instances but two, with a computing
effort which is a fraction of that of Ceselli et al. (2021). Still, the size of instances which can be solved to proven optimality (up to
30 customers) is small compared to those solvable for other vehicle routing problems. We report that additional techniques, such
as advanced stabilization techniques, and the use of cuts (e.g. subset-row inequalities) might be beneficial, allowing to solve larger
instances. Their actual impact, however, would need to be evaluated by proper algorithmic design and experiments.

Interestingly, the three instances left open by our algorithm are not among the largest ones. This confirms that the presence of
continuous variables and multiple recharge technologies changes the structure of the problem, making it different in nature (and
much more difficult) than the classical VRP, as already reported in the literature. The specific nature of such a difficulty, however,
has still to be fully clarified.

Our computational tests gave other interesting insights. For instance, it appears that a path-based approach like that developed
in Ceselli et al. (2021) could be promising to solve single-vehicle EVRP variants, i.e. the ‘‘electric’’ equivalent of the TSP, whereas
route-based approaches like ours are more powerful when fleets of vehicles need to be optimized.

Many extensions are possible both to make the model more realistic and to develop better algorithms. On the model side, our
framework might incorporate constraints that also appear in classical VRP variants (e.g. heterogeneous fleets, pick-up and delivery,
loading constraints etc.), although some extensions would not be trivial. For instance, time windows associated with customers, as
in Desaulniers et al. (2016), would imply constraints on arrival and departure time that would not correspond to simple upper or
lower bounds on recharged amounts. The corresponding facets of the FRP would destroy the easy-to-manage FRP structure we have
exploited. It is also worth mentioning some extensions that are specific to the Electric VRP:

• synchronization constraints on simultaneous use of capacitated stations by different vehicles;
• asymmetric graphs and negative cost arcs (corresponding to downhill roads, where energy can be accumulated instead of being

consumed);
• variable (e.g. speed-dependent, time-dependent, load-dependent) energy consumption along the edges;
• time-dependent price of energy.

Exploiting parallel computing concepts can speed up pricing (Cabrera et al., 2020). In fact, on the side of possible improvements
to the algorithms, we mention the development of a parallel implementation of the join procedure in the pricing algorithm: once
14

the bi-directional extension phase has been performed, each pair of vertices could be examined independently.
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