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Background: This study aimed at clarifying the role of bulbar involvement (BI) as

a risk factor for cognitive impairment (CI) in non-demented amyotrophic lateral

sclerosis (ALS) patients.

Methods: Data on N = 347 patients were retrospectively collected. Cognition

was assessed via the Edinburgh Cognitive and Behavioral ALS Screen (ECAS). On

the basis of clinical records and ALS Functional Rating Scale-Revised (ALSFRS-

R) scores, BI was characterized as follows: (1) BI at onset—from medical history;

(2) BI at testing (an ALSFRS-R-Bulbar score ≤11); (3) dysarthria (a score ≤3 on

item 1 of the ALSFRS-R); (4) severity of BI (the total score on the ALSFRS-R-

Bulbar); and (5) progression rate of BI (computed as 12-ALSFRS-R-Bulbar/disease

duration in months). Logistic regressions were run to predict a below- vs. above-

cutoff performance on each ECAS measure based on BI-related features while

accounting for sex, disease duration, severity and progression rate of respiratory

and spinal involvement and ECAS response modality.

Results: No predictors yielded significance either on the ECAS-Total and -

ALS-non-specific or on ECAS-Language/-Fluency or -Visuospatial subscales. BI

at testing predicted a higher probability of an abnormal performance on the

ECAS-ALS-specific (p = 0.035) and ECAS-Executive Functioning (p = 0.018).

Lower ALSFRS-R-Bulbar scores were associated with a defective performance

on the ECAS-Memory (p = 0.025). No other BI-related features affected other

ECAS performances.

Discussion: In ALS, the occurrence of BI itself, while neither its specific features

nor its presence at onset, might selectively represent a risk factor for executive

impairment, whilst its severity might be associated with memory deficits.
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1. Background

Bulbar involvement (BI) has been historically linked to
cognitive impairment (CI) in amyotrophic lateral sclerosis (ALS)
(Zago et al., 2022). However, bulbar onset and dysarthria have been
only recently acknowledged, at a meta-analytic level, as actual risk
factors for frontotemporal-spectrum disorders in this population
(Yang et al., 2021). Relatedly, recent neuropathological evidence
has supported such a phenotypic association within a network-
based framework, according to which medullary pathology would
readily spread to bulbar sensory-motor cortices and, in turn, to
the frontal and temporal areas connected to them (Shellikeri et al.,
2020).

However, among the studies included in the abovementioned
meta-analysis by Yang et al. (2021) for the specific aim of testing
whether bulbar onset and dysarthria could represent risk factors
for CI in ALS, only a minority (i.e., 3 out of 14) performed
some sort of adjustment for bulbar confounders during task
execution (Kasper et al., 2016; Trojsi et al., 2017; Watanabe et al.,
2020). Moreover, none of these reports employed an ALS-specific
measure that could control for BI as much as possible—such
as the Edinburgh Cognitive and Behavioral ALS Screen (ECAS)
(Abrahams et al., 2014). At most, among such studies (Yang
et al., 2021), the confounding effect of BI was accounted for
via mere attempts, performed either a priori—e.g., by selecting
untimed cognitive tests that minimally relied on verbal responses
(Massman et al., 1996) or by excluding patients unable to execute
a minimum number of cognitive tests (Oh et al., 2014)—or
a posteriori—e.g., by analytically comparing the rates of CI
between dysarthric and non-dysarthric patients (Massman et al.,
1996; Rippon et al., 2006). Hence, given that accommodating
for BI when assessing cognition in ALS patients is essential
(Woolley and Rush, 2017), the conclusions drawn by Yang et al.
(2021) appear to be based, to a non-negligible extent, on biased
studies.

Unfortunately, the same methodological issues also affect other
relevant reports on the topic that were not included in Yang
et al. (2021) meta-analysis (Portet et al., 2001; Schreiber et al.,
2005; Röttig et al., 2006; Sterling et al., 2010; Morimoto et al.,
2012; Zalonis et al., 2012; Mannarelli et al., 2014; Burke et al.,
2016). Therein, the attempts to control for the confounding effect
of BI on cognition in ALS, which were mostly performed a
posteriori, led to indeterminate conclusions (Portet et al., 2001;
Schreiber et al., 2005; Röttig et al., 2006; Sterling et al., 2010;
Morimoto et al., 2012; Zalonis et al., 2012; Mannarelli et al.,
2014; Burke et al., 2016). Most importantly, the vast majority
of these works (Massman et al., 1996; Portet et al., 2001;
Schreiber et al., 2005; Rippon et al., 2006; Röttig et al., 2006;
Sterling et al., 2010; Morimoto et al., 2012; Zalonis et al., 2012;
Mannarelli et al., 2014; Oh et al., 2014; Burke et al., 2016; Woolley
and Rush, 2017; Yang et al., 2021) approached the association
between BI and CI in ALS via simple correlational/predictive
statistics. Indeed, most of these studies (1) did not disentangle
the contribution of BI at onset from that at the time of
cognitive testing, (2) did not focus on the severity and progression
rate of BI itself, and (3) did not covary for other motor-
functional features that possibly increase the risk of CI this
population—i.e., respiratory dysfunctions (Huynh et al., 2020b;

Shah et al., 2021) and an advanced disease (Crockford et al., 2018;
Chiò et al., 2019).

Hence, by addressing a large cohort of non-demented ALS
patients, the present study aimed at assessing, via multiple
regression models, the association between a comprehensive set of
BI-related features and a disease-specific cognitive measure (i.e., the
ECAS) net of other motor-functional variables.

2. Methods

2.1. Participants

The current retrospective cohort included N = 347 ALS patients
(Brooks et al., 2000) consecutively referred to IRCCS Istituto
Auxologico Italiano, Milano, Italy between 2016 and 2023 who
were administered the ECAS (Poletti et al., 2016) and for whom
onset data and ALS Functional Rating Scale-Revised (ALSFRS-
R) (Cedarbaum et al., 1999) scores were available. Patients did
not present with (1) a co-morbid diagnosis of frontotemporal
dementia (FTD) (Gorno-Tempini et al., 2011; Rascovsky et al.,
2011), (2) ALS-unrelated neurological/psychiatric disorders, (3)
severe/unstable general-medical conditions, and (4) uncorrected
sensory deficits.

2.2. Materials

The cognitive section of the Italian ECAS (Poletti et al.,
2016) (range = 0–136) includes 5 subscales assessing Language
(ECAS-L; range = 0–28), Fluency (ECAS-F; range = 0–24),
Executive Functioning (ECAS-EF; range = 0–48), Memory (ECAS-
M; range = 0–24), and Visuospatial abilities (ECAS-VS; range = 0–
12). ECAS-ALS-specific (i.e., ECAS-L + ECAS-F + ECAS-EF;
range = 0–100) and -non-specific subscores (i.e., ECAS-M + ECAS-
VS; range = 0–36) were also computed. ALSFRS-R items
(Cedarbaum et al., 1999) were grouped as follows: (1) ALSFRS-
R-Bulbar (items 1–3; range = 0–12); (2) ALSFRS-R-Spinal (items
4–9; range = 0–24); and (3) ALSFRS-R-Respiratory (items 10–12;
range = 0–12). Progression rate (1FS) was computed according
to Kimura et al. (2006) formula for each ALSFRS-R subscale—
i.e., by weighting on disease duration (in months) the difference
between the maximum and the actual ALSFRS-R subscore. Disease
staging was retrieved according to both King’s college (Roche
et al., 2012) and Milano-Torino (MiToS) (Chiò et al., 2015)
systems.

2.3. Statistics

Logistic regressions were run separately for each ECAS
measure by addressing, as the outcome, a below- vs. above-
cutoff performance [based on age- and education-stratified
Italian normality thresholds (Poletti et al., 2016)], and, as
predictors, (1) bulbar onset—retrieved from patients’ medical
history—(2) presence of BI at testing—defined as an ALSFRS-
R-Bulbar score ≤11—(3) presence of dysarthria—defined as a
score ≤3 on item 1 of the ALSFRS-R—(4) severity of BI—i.e.,
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TABLE 1 Patients’ demographic, clinical, and cognitive measures.

N 347

Sex (male/female) 218/129

Age (years) 63.2 ± 11.5 (20–88)

Education (years) 11.6 ± 4.3 (5–24)

Disease duration (months) 18.7 ± 21.2 (1–264)

ALSFRS-R

Total 38.2 ± 6.7 (12–48)

Bulbar 10.2 ± 2.3 (1–12)

Spinal 16.8 ± 5.8 (0–24)

Respiratory 11.2 ± 1.6 (0–12)

1 FS

Total 0.8 ± 0.9 (0–6.3)

Bulbar 0.2 ± 0.3 (0–2.8)

Spinal 0.6 ± 0.7 (0–4.5)

Respiratory 0.1 ± 0.2 (0–1.3)

NIV (%) 4.9%

PEG (%) 0.3%

Bulbar involvement (%)

At onset 24.8%

At testing 55.3%

Dysarthria (%) 45.8%

Genetics (N)

C9orf72 22

TARDBP 12

SOD1 9

King’s (%)

Stage 1 36.6%

Stage 2 32.3%

Stage 3 25.9%

Stage 4 5.2%

MiToS (%)

Stage 0 66.6%

Stage 1 21.6%

Stage 2 10.7%

Stage 3 1.2

ECAS

Total 99.5 ± 19.3 (31–129)

Impaired (%) 33.4%

ALS-specific 73.4 ± 15.5 (21–97)

Impaired (%) 32.0%

ALS-non-specific 26.1 ± 5.2 (9–34)

Impaired (%) 23.3%

Language 23.5 ± 4 (9–28)

Impaired (%) 22.5%

Fluency 16.3 ± 5.7 (0–24)

(Continued)

TABLE 1 (Continued)

N 347

Impaired (%) 21.3%

Executive functioning 33.7 ± 8.1 (7–48)

Impaired (%) 22.2%

Memory 14.7 ± 4.7 (1–22)

Impaired (%) 21.0%

Visuo-spatial 11.3 ± 1.1 (5–12)

Impaired (%) 8.6%

ALS, amyotrophic laterals sclerosis; ALSFRS-R, amyotrophic lateral sclerosis functional
rating scale-revised; 1FS, progression rate; ECAS, Edinburgh cognitive and behavioral ALS
screen; MiToS, Milano-Torino staging; NIV, non-invasive ventilation; PEG, percutaneous
endoscopic gastrostomy.

the total score on the ALSFRS-R-Bulbar—and (5) progression
rate of BI—i.e., 1FS-Bulbar scores. Within these models, sex,
disease duration (in months), severity and progression rate
of respiratory and spinal involvement (i.e., ALSFRS-R-Spinal,
ALSFRS-R-Respiratory, 1FS-Spinal and 1FS-Respiratory scores)
and ECAS response modality (i.e., oral vs. written) were covaried.
Collinearity was diagnosed in the presence of a Variance
Inflation Factor (VIF) >10 and of a Tolerance Index (TI)
< 0.1.

Analyses were run via IBM R© SPSS
R©

Statistic (IBM Corp., 2021)
and jamovi 2.3 (the jamovi project, 2022).

3. Results

Table 1 summarizes patients’ background and clinical features,
and Table 2 reports the complete results of the logistic regression
models.

No collinearity was detected among predictors (VIF ≤5.41;
TI ≥ 0.19). No target predictors yielded significance on the
ECAS-Total (ps ≥ 0.065), ECAS-ALS-non-specific (ps ≥ 0.092),
ECAS-L (ps ≥ 0.095), ECAS-F (ps ≥ 0.138), and ECAS-VS
(ps ≥ 0.291). At variance, BI at testing was associated with a
higher probability of an impaired performance on the ECAS-
ALS-Specific (b = 0.92; z = 2.11; OR = 2.5, CI 95% [1.06,
5.9]). Indeed, patients with BI at testing were more likely to
perform defectively on this subscale (M = 0.39; SE = 0.08)
when compared to those without (M = 0.20; SE = 0.06). Such
a finding happened to be carried by the ECAS-EF: indeed, the
probability of an abnormal performance on the ECAS-EF was
found to be significantly higher in patients with BI (M = 0.26;
SE = 0.07) when compared to those without BI (M = 0.10;
SE = 0.04) at testing (b = 1.11; z = 2.37; OR = 3.03, CI 95%
[1.2, 7.57]). Finally, patients with lower ALSFRS-R-Bulbar scores
were found to be more likely to perform defectively on the
ECAS-M (b = −0.28; z = −2.24; OR = 0.75, CI 95% [0.59,
0.96]). Indeed, the probability of an abnormal performance on
the ECAS-M was lower (M = 0.08; SE = 0.04) in patients
with higher (M + 1∗SD) ALSFRS-R-Bulbar scores, and higher
(M = 0.24; SE = 0.06) in patients with lower (M-1∗SD) scores
on this measure. No other BI-related variables yielded significance
(ps > 0.05).
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TABLE 2 Effects of bulbar features on ECAS performances as yielded by the logistic regression models.

Outcome Predictor b OR [CI 95%] z p

ECAS-Total

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.03 0.97 [0.77, 1.22] −0.28 0.780

1FS-bulbar −0.24 0.79 [0.16, 3.44] −0.32 0.752

BI at onset (present vs. absent) 0.39 1.47 [0.65, 3.32] 0.94 0.347

BI at testing (present vs. absent) 0.81 2.24 [0.94, 5.29] 1.84 0.065

Dysarthria (present vs. absent) −0.51 0.60 [0.24, 1.51] −1.08 0.279

ECAS-ALS-specific

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.09 0.92 [0.73, 1.15] −0.74 0.459

1FS-bulbar 0.00 1.00 [0.22, 4.32] 0.00 0.999

BI at onset (present vs. absent) 0.35 1.42 [0.63, 3.21] 0.85 0.398

BI at testing (present vs. absent) 0.92 2.50 [1.06, 5.90] 2.11 0.035*

Dysarthria (present vs. absent) −0.80 0.45 [0.18, 1.12] −1.71 0.087

ECAS-ALS-non-specific

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.21 0.82 [0.64, 1.03] −1.69 0.092

1FS-bulbar −0.88 0.42 [0.07, 2.06] −1.04 0.298

BI at onset (present vs. absent) −0.64 0.53 [0.21, 1.28] −1.40 0.163

BI at testing (present vs. absent) −0.72 0.49 [0.13, 1.45] −1.20 0.231

Dysarthria (present vs. absent) 0.92 2.50 [0.80, 9.64] 1.47 0.141

ECAS-Language

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.03 0.97 [0.76, 1.26] −0.20 0.838

1FS-bulbar 0.84 2.33 [0.44, 11.78] 1.02 0.306

BI at onset (present vs. absent) 0.05 1.06 [0.42, 2.59] 0.12 0.907

BI at testing (present vs. absent) 0.76 2.15 [0.86, 5.25] 1.66 0.097

Dysarthria (present vs. absent) −0.84 0.43 [0.16, 1.7] −1.67 0.095

ECAS-Fluency

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.21 0.81 [0.61, 1.07] −1.48 0.138

1FS-bulbar −1.16 0.31 [0.02, 2.55] −0.97 0.330

BI at onset (present vs. absent) −0.09 0.91 [0.34, 2.37] −0.19 0.851

BI at testing (present vs. absent) 0.64 1.89 [0.70, 4.91] 1.30 0.195

Dysarthria (present vs. absent) −0.71 0.49 [0.18, 1.43] −1.32 0.186

ECAS-Executive Functioning

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.11 0.90 [0.71, 1.14] −0.88 0.377

1FS-bulbar 0.87 2.39 [0.50, 11.17] 1.12 0.265

BI at onset (present vs. absent) 0.20 1.22 [0.50, 2.97] 0.44 0.658

BI at testing (present vs. absent) 1.11 3.03 [1.20, 7.57] 2.37 0.018*

Dysarthria (present vs. absent) −0.86 0.42 [0.16, 1.11] −1.76 0.078

ECAS-Memory

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.28 0.75 [0.59, 0.96] −2.24 0.025*

(Continued)
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TABLE 2 (Continued)

Outcome Predictor b OR [CI 95%] z p

1FS-bulbar −0.44 0.64 [0.11, 3.31] −0.51 0.607

BI at onset (present vs. absent) −0.63 0.53 [0.20, 1.34] −1.32 0.187

BI at testing (present vs. absent) −0.52 0.59 [0.18, 1.68] −0.93 0.354

Dysarthria (present vs. absent) 0.25 1.28 [0.42, 4.48] 0.42 0.673

ECAS-Visuospatial

(Impaired vs. unimpaired)

ALSFRS-R-bulbar −0.18 0.84 [0.59, 1.16] −1.06 0.291

1FS-bulbar −0.21 0.81 [04, 9.48] −0.15 0.877

BI at onset (present vs. absent) 0.05 1.06 [0.27, 3.98] 0.08 0.937

BI at testing (present vs. absent) −0.39 0.68 [0.03, 4.30] −0.35 0.729

Dysarthria (present vs. absent) 0.79 2.20 [0.33, 44.02] 0.70 0.486

ALSFRS-R, amyotrophic lateral sclerosis functional rating scale-revised; BI, bulbar involvements; 1FS, progression rate; ECAS, Edinburgh cognitive and behavioral ALS screen. Model
coefficients are computed net of sex, disease duration (in months), ALSFRS-R-spinal and -respiratory scores, 1FS-spinal and -respiratory scores and response modality (i.e., oral vs. written).
*Significant statistic.

4. Discussion

The present report clarifies the role of BI as a risk factor
for CI in ALS by simultaneously encompassing, within a large
patient cohort, an extensive range of both BI-related predictors
and other motor-functional covariates, as well as by addressing a
disease-specific measures of cognition that compensates for motor
disabilities (i.e., the ECAS).

This study suggests that, net of overall motor-functional status,
BI itself, and neither its presence at onset, severity, progression
rate or phenotype (i.e., the occurrence of dysarthria), increases
the probability of executive deficits non-demented ALS patients.
Indeed, ALS patients with BI at testing were more likely to
perform defectively on the ECAS-EF than those without BI
at testing. Additionally, the current investigation suggests that
patients with a more severe BI (i.e., lower ALSFRS-R-Bulbar scores)
are more likely to present with memory deficits (i.e., an impaired
performance on the ECAS-M).

The fact that neither BI at onset nor dysarthria herewith
represented risk factors for CI in this ALS cohort is in contrast with
Yang et al. (2021) meta-analysis: however the statistical approach
chosen for this study, as well as the extensive range of BI-related
features and motor-functional confounders taken into account,
grant a larger extent of generalizability to the present results.
At the same time, in respect to BI at onset, this report aligns
with two previous meta-analyses on the cognitive phenotype of
ALS (Raaphorst et al., 2010; Beeldman et al., 2016)—wherein no
association was detected between BI at onset and an increased risk
for CI. Relatedly, a report by Zalonis et al. (2012), which selectively
aimed to test whether executive measures could discriminate
bulbar- from spinal-onset ALS patients, failed to corroborate this
hypothesis. As to the present lack of association between dysarthria
and an increased risk for CI, such a finding is likely due to the fact
that the cognitive measure herewith employed—i.e., the ECAS—
aprioristically accommodates for this motor confounder.

Overall, the present report supports the view that, from
a network-based perspective (Shellikeri et al., 2017, 2020),
ALS patients with BI may present with a greater involvement

of extra-motor cortices when compared to those without BI
(Steinbach et al., 2021). This stance is also supported by the
neuroradiological report by Cistaro et al. (2012), who showed that,
when compared to patients without BI, bulbar ALS patients show
distinct functional brain features that correlate with the degree of
CI.

Remarkably, BI at testing herewith represented a risk factor
only for executive dysfunction, as it did not affect either
overall cognitive efficiency or other cognitive domains/functions.
While this finding is consistent with previous reports on
the topic, which commonly link BI to executive deficits in
ALS (Schreiber et al., 2005; Sterling et al., 2010; Morimoto
et al., 2012; Mannarelli et al., 2014; Burke et al., 2016), it
does not align with the literature concerning the association
between BI and language impairment in this population (Pinto-
Grau et al., 2018; Aiello et al., 2022a,b; Sbrollini et al.,
2022). This inconsistency might be due to a measure-related
issue—since, as previously suggested (Aiello et al., 2022c;
McMillan et al., 2022; Solca et al., 2023), the ECAS-L does
not represent a comprehensive language measure in ALS. Thus,
it is advised that future studies address the link between BI
and language impairment in this population by employing an
extensive set of language tests. Similarly, no bulbar feature
was herewith found to be associated with verbal fluency
deficits, despite this link being frequently reported in previous
investigations (Kew et al., 1993; Abrahams et al., 1996, 1997,
2000, 2005). This result is surprising—given that phonemic
fluency tasks included within the ECAS-F have systemically
proven sensitive to executive dysfunctions in this population
(Kew et al., 1993; Abrahams et al., 1996, 1997, 2000, 2005). At
the same time, it might be hypothesized that, since these tasks
aprioristically accommodate for bulbar confounders (Abrahams
et al., 2014; Canu et al., 2023), the further, a posteriori
analytical expedient aimed at controlling for other BI-related
features might have resulted in the lack of detection of the
abovementioned association. However, an association between
the severity of BI and memory deficits has herewith yielded.
Such a finding—which is consistent with previous reports
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(Schreiber et al., 2005)—might be linked to the one regarding
the ECAS-EF, and thus accounted for by the fact that memory
deficits in this population are, at least to an extent, secondary
to executive dysfunctions (Consonni et al., 2017; Barulli et al.,
2019).

This study have several limitations. First, the evaluation of
bulbar features herewith relied either on patients’ medical history
or on the dedicated ALSFRS-R subscale. Hence, future studies are
necessary that employ specific clinical scales aimed at assessing BI
in ALS (Yunusova et al., 2019)—e.g., the Center for Neurologic
Study Bulbar Function Scale (CNS-BFS) (Smith et al., 2018).
Relatedly, the present study relied solely on clinical measures,
but not on instrumental examinations, which would have better
characterized the nature and extent of BI of the present cohort
(Yunusova et al., 2019). Third, it must be borne in mind that
the ECAS subscale yields a first-level measure of cognition within
each target domain or function. Hence, further investigations that
embrace the present experimental design by addressing a battery of
second-level, domain-/function-specific cognitive tests are needed.
Fourth, this report solely addressed patients without a co-morbid
diagnosis of FTD, thus not being informative of the role of BI as
a risk factor for full-blown dementing states in this population.
However, in this respect, it is worth noting that a recent report by
the present research group (Colombo et al., 2023) suggested that BI,
along with genetic risk factors (i.e., C9orf72 hexanucleotide repeat
expansion), are associated with concurrent behavioral variant-FTD.
Finally, the retrospective nature of the current study does not
allow to draw inferences on how the association between BI and
CI in this population might change over time. Future studies
that delve into such matter should be undertaken that involve a
longitudinal design (Colombo et al., 2023) addressing technology-
aided cognitive assessment procedures fully overcoming patients’
motor disabilities across all disease stages (Cipresso et al., 2011;
Poletti et al., 2017a,b, 2018a,b).

In conclusions, this study suggests that the occurrence of
BI itself, whilst neither its specific clinical characteristics nor its
presence at disease onset, selectively represents a risk factor for
executive impairment in non-demented ALS patients, as well as
that the severity of BI might be associated with memory deficits
in this population. Overall, the present findings suggest that non-
demented ALS patients presenting with BI should be carefully
assessed for their executive—and possibly mnestic—status, given
that deficits within such a set of cognitive functions are known to
detrimentally impact on patients’ prognosis (Poletti et al., 2018a;
Huynh et al., 2020a).
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