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ABSTRACT 

Protein Arginine (R) methylation is a post-translational modification involved in various biological 

processes, such as RNA splicing, DNA repair, immune response, signal transduction, and tumour 

development. Although several advancements were made in the study of this modification by mass 

spectrometry, researchers still face the problem of a high false discovery rate. We present a dataset of 

high-quality methylations obtained from several different heavy methyl SILAC (hmSILAC) experiments 

analysed with a machine learning-based tool doublets and show that this model allows for improved high-

confidence identification of real methyl-peptides. Overall, our results are consistent with the notion that 

protein R methylation modulates protein:RNA interactions and suggest a role in rewiring protein:protein 

interactions, for which we provide experimental evidence for a representative case (i.e. NONO:PSPC1). 

Upon intersecting our R-methyl-sites dataset with a phosphosites dataset, we observed that R methylation 

correlates differently with S/T-Y phosphorylation in response to various stimuli. Finally, we explored the 

application of hmSILAC to identify unconventional methylated residues and successfully identified novel 

histone methylation marks on Serine 28 and Threonine 32 of H3. 

Key words: Heavy methyl SILAC / Machine Learning / Mass spectrometry / Protein methylation / PTM 

cross-talk / Protein:protein interactions 
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INTRODUCTION 

Protein methylation is a widespread PTM that consists of the addition of one or more methyl (CH3) 

groups to a residue, most frequently an Arginine (R) or Lysine (K). Arginines can be mono-methylated 

(MMA) or di-methylated, and the di-methylation can be symmetrical (SDMA) if the two methyl groups 

are bound to different nitrogen atoms of the guanidino group or asymmetrical (ADMA), if they are bound 

to the same atom. Overall, methylation does not change the charge state of R, but alters their steric 

hindrance and reduces their ability to form hydrogen bonds with other molecules, thus affecting their 

interactions with other biomolecules, both positively and negatively (Fulton et al, 2019). Along this line, 

the distinction between ADMA and SDMA is crucial, because the two modifications present different 

steric hindrances, hence they are recognized and bound by distinct protein domains (readers) and can lead 

to completely different functional outcomes, as exemplified by asymmetrical and symmetrical di-

methylation on R3 of histone H4 (H4R3) that are associated to transcriptional activation and repression, 

respectively (Wysocka et al, 2006). 

The biological donor of methyl groups in the enzymatic reaction of protein methylation is S-Adenosyl-

Methionine (SAM), which is synthesized by the enzyme methionine adenosyltransferase (MAT, most 

commonly known as SAM synthase) from Methionine (M) and ATP (Murray et al, 2014). Specifically, 

the transfer of methyl-groups to R is carried out by the Protein Arginine Methyltransferases (PRMTs) a 

class of enzymes consisting of nine proteins, classified in three groups: type I PRMTs (including PRMT1, 

PRMT2, PRMT3, PRMT4/CARM1, PRMT6, and PRMT8) catalyse the formation of MMA and ADMA; 

type II PRMTs (PRMT5 and PRMT9) catalyse the formation of MMA and SDMA; PRMT7, which is the 

only type III PRMT, leads to MMA only (Lorton & Shechter, 2019). PRMT1 is the most active enzyme 

among type I PRMTs and PRMTs in general, being overall responsible for ~85% of the methylation 

events in the human cell (Yamaguchi & Kitajo, 2012), whereas PRMT5 is the most active type II PRMT 

(Stopa et al, 2015). 

While methylation of histones and its implication in gene expression regulation has been extensively 

studied in several model systems and functional states (Di Lorenzo & Bedford, 2011), the concept that 

K/R methylation is widespread on various non-histone proteins involved in a variety of important 

biological processes is more recent and has been supported by several studies that have been 

accumulating in the last 10 years (Bremang et al, 2013; Geoghegan et al, 2015; Guccione & Richard, 

2019; Larsen et al, 2016; Wu et al, 2021). In particular, PRMT1 is involved in DNA-Damage Response 

(DDR) by directing its activity towards chromatin proteins (such as RBMX, CHTOP and DDX17 

(Musiani et al, 2020)) and DDR proteins such as MRE11 and 53BP1 (Vadnais et al, 2018). 

PRMT4/CARM1 regulates nonsense-mediated decay and pre-mRNA splicing (Sanchez et al, 2016), and 

PRMT7 is involved in stress responses such as heat and proteasome inhibition (Szewczyk et al, 2020). In 

addition, PRMT1, PRMT4, PRMT5 and PRMT7 have all been reported to catalyse methylation on RNA-

binding proteins (RBPs), affecting their interactions with RNA molecules, with implications in the 

regulation of mRNA splicing, miRNA maturation, translation and RNP granules assembly (Cheng et al, 

2007; Fong et al, 2019; Guccione & Richard, 2019; Maniaci et al, 2021; Schisa & Elaswad, 2021; 

Spadotto et al, 2020; Szewczyk et al, 2020). 

Importantly, PRMTs are often aberrantly expressed in cancer, including both solid tumours (i.e., brain, 

breast, lung, colon, bladder, head and neck cancer) and haematological malignancies (such as leukaemia) 

(Bao et al, 2013; Hwang et al, 2021) and in other diseases like neurodegeneration (Couto et al, 2020) and 

metabolic disorders (vanLieshout & Ljubicic, 2019). Hence, there is a great interest in developing 
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therapies that are based on the pharmacological modulation of these enzymes. In fact, several PRMTs 

inhibitors are under development (Hwang et al, 2021; Smith et al, 2018), with some already undergoing 

clinical trials (trial identifiers NCT03573310, NCT02783300 and NCT03614728). 

Recent studies on protein methylation took advantage of the progress made by Liquid chromatography-

tandem Mass Spectrometry (LC-MS/MS)-based proteomics technology. Several MS-based studies have 

led to the annotation of progressively larger methyl-proteomes; however, it has also been shown that the 

proteome-wide identification of methylation sites through LC-MS/MS is prone to high false discovery 

rates, due to the presence of artefacts isobaric to this PTM (Hart-Smith et al, 2016). For instance, the 

chemical methyl-esterification of an acidic residue (such as Aspartate (D) and Glutamate (E)) can be 

erroneously identified as an in vivo methylation on a nearby R residue by peptide search engines. Also, 

methylations are isobaric to some conservative amino acid substitutions, such as Alanine (A) to Valine 

(V), or D to E. To address these issues, the group of M. Mann proposed the heavy methyl SILAC 

(hmSILAC) metabolic labelling strategy (Ong & Mann, 2006), whereby cells are grown in presence of 

either natural Methionine (M0) or stable isotope-labelled [
13

CD3]-Methionine (M4) to isotopically label 

the methyl groups. Upon mixing the heavy and light samples, methylated peptides can be detected by MS 

as pairs of MS1 peaks separated by a specific mass difference; instead, chemical artefacts appear as single 

light peaks, since the heavy methyl groups can only be derived from an enzymatic reaction. 

Until recently, hmSILAC use had been held back by the lack of computational solutions for the data 

analysis. Common peptide search engines, such as Andromeda or Mascot, can handle isotopic labelling of 

amino acids (as in traditional SILAC) but cannot be used when the label is encoded by a variable 

modification. To address this problem, our and M. Wilkins’s group developed two computation tools, 

tailored to process hmSILAC MS data for the identification of peptides methylated in vivo named 

hmSEEKER and MethylQuant, respectively (Massignani et al, 2019; Tay et al, 2018). Both tools have 

been successfully employed to expand the high-confidence annotation of the methyl-proteome in Homo 

Sapiens and S. cerevisiae, while tightly controlling the number of false-positive identifications 

(Geoghegan et al, 2015; Hamey et al, 2021; Musiani et al, 2019; Musiani et al, 2020).  

Since the first release of hmSEEKER, we have improved our method, by adjusting the protocol for 

searching methyl-sites in MaxQuant and by upgrading hmSEEKER itself. Following a strategy similar to 

that described in (Massignani et al, 2019), we trained a Machine Learning (ML) model to recognize 

hmSILAC doublets generated by M-containing peptides, then we used the model to identify heavy-light 

methyl-peptides pairs. Thus, we were able to re-analyse all the hmSILAC experiments collected in our 

laboratory so far. 

The majority of MS-based methyl-proteomics studies, including this one, have traditionally focused 

mainly on R and, to a lower extent, on K protein methylation, due to multiple reasons: first, from a 

technical point of view, there is a large variety of biochemical methods for the enrichment of peptides or 

proteins bearing these PTMs; second, the enzymes responsible for deposing or removing these PTMs are 

known, hence it is easier to correlate K/R methylation dynamics with the modulation of the respective 

enzyme, or enzyme family; third, a panel of small molecule inhibitors for the modulation of these 

enzymes is available. Despite this bias, there is little but increasing data showing that methylation 

naturally occurs also on other amino acids, such as D, E, Asparagine (N), Glutamine (Q), Serine (S), 

Threonine (T) and Histidine (H)  (Afjehi-Sadat & Garcia, 2013). For instance, methylation of Q104 on 

histone H2A is enriched in the nucleolus compartment, where it is recognized specifically by RNA 

polymerase I (Tessarz et al, 2014). Concerning non-histone proteins, H methylation has been described 
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on actin, myosin, MLCK2 and RPL3 (Kwiatkowski & Drozak, 2020), with suggested its involvement in 

muscle contraction. 

Overall, our proteomics and computational analysis produced what, at the time of writing, is the largest 

orthogonally validated methyl-proteomics dataset. This dataset has been subsequently integrated with a 

list of R-sites that are significantly regulated in perturbed SILAC experiments, generating the ProMetheus 

database (ProMetheusDB) of high-confidence protein methylation sites. 

We then have carried out an extensive functional analysis of the ProMetheusDB, confirming the role of R 

methylation in different aspects of RNA metabolism, but also suggesting its involvement in novel cellular 

processes, such as antigen processing and presentation, macrophage metabolism and immune response. 

We also investigated the potential cross-talk between R methylation and S/T-Y phosphorylation and 

carried out a structural analysis of methylated Rs at 3D interaction interfaces, which pointed towards a 

role of R methylation in fine-tuning protein:protein interactions. In this context, we focused on NONO 

protein, a target of PRMT1, and its interactor, the paraspeckle component PSPC1, showing that- indeed- 

R methylation of NONO directly impacts on its binding with PSPC1. 

 

RESULTS 

Implementation of machine learning in hmSEEKER v2.0 to improve the detection of methyl-

peptides doublets from hmSILAC data 

During the first implementation of hmSEEKER (Massignani et al, 2019), we defined empirical cut-off 

values to distinguish true hmSILAC doublets from false positives. However, these criteria were 

conservative and resulted in a very low False Discovery Rate (FDR) but also a suboptimal sensitivity. We 

addressed this point by training a machine learning logistic regression model to discriminate between 

putative true and putative false hmSILAC doublets (Fig 1A). This model allowed us to increase the 

number of hmSILAC-validated methyl-peptides in our dataset without compromising the FDR and 

provides more rigorous criteria for the identification of hmSILAC doublets compared to the original ones, 

which were estimated empirically. To obtain a dataset for model training, we followed the same strategy 

employed in (Massignani et al, 2019) to determine optimal cut-offs. Specifically, we analysed MS raw 

files from hmSILAC experiments to identify non-methylated peptides that contained one or more 

Methionine (M) residues: in fact, the labelling with M0 (“light”) or M4 (“heavy”) causes M-containing 

peptides to generate hmSILAC doublets that have the same properties as those generated by methyl-

peptides. Thus, we used M-containing peptides as “mock methyl-peptides”. To model True Negatives, we 

also included in the dataset peptides without M and randomly assigned methylations to them, to mimic an 

erroneous identification by MaxQuant (Fig 1B). The peptides in the dataset were processed with 

hmSEEKER using the following cut-offs: |Mass Error (ME)| < 100 ppm, |Retention time difference 

(dRT)| < 25 and |log2 H/L intensity ratio (LogRatio)| < 25. These cut-offs allowed us to retrieve as many 

putative doublets as possible, to have enough data for the training of the model. Doublets generated by a 

“mock methyl-peptide” were then filtered to only include “Matched” doublets (i.e. those where both the 

heavy and the light peptides are identified, which are the most confident) and labelled “1” (n = 4434); 

doublets generated by a “true negative” peptide were labelled “0” (n = 3618). In total, the dataset used to 

train the predictor consisted of 8052 doublets.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2021. ; https://doi.org/10.1101/2021.09.20.461082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.20.461082
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

5 

 

The independent variables (features) used within the logistic regression model were the ME, dRT and 

LogRatio; the dependent variable was whether the doublet was a true hmSILAC doublet (“1”) or a 

random peak pair (“0”). The model was trained on 6000 doublets (3000 true + 3000 false; Appendix Fig 

S1A) using stratified five-fold cross-validation. During the training process, we also tested 

transformations of the features. For instance, to reduce the impact of potential outliers, we applied a 

quantile transformation to the features, which were then normalized based on their median and IQR 

values. Moreover, we observed that taking the absolute values of the features improved the performance 

of the model, allowing it to reach an area under the ROC curve >0.99 (Fig 1C). Upon validation of the 

model on the remaining 2052 doublets, we found that less than 2% of the doublets were incorrectly 

labelled by the logistic regression (Appendix Fig S1B). Inspection of the logistic regression coefficients 

revealed that ME was the most important feature in distinguishing true and false doublets as it had the 

largest absolute weight (-5.393), followed by LogRatio (weight = -3.067), whereas dRT (weight = -0.927) 

appeared to be the least important (Fig 1D). 

We then tested whether the inclusion of the ML model improved hmSEEKER v1.0 performance by 

comparing it to the default cut-offs defined in (Massignani et al, 2019): the entire set of 8052 doublets 

used for the training of the model was reanalysed twice, first with the default cut-offs (i.e. |ME| < 2 ppm, 

|dRT| < 0.5 min, |LogRatio| < 1) and then by using the model predictions. The logistic regression showed 

an increase in sensitivity and accuracy, with only a very limited reduction in specificity and precision (Fig 

1E); the metrics F1 score and Matthew’s Correlation Coefficient (MCC) were also improved upon 

applying this model. Overall, these results prove our initial feeling that the initial cut-offs were very 

conservative.  

 

Re-annotation of the largest high-quality human methyl-proteome so far 

We first applied hmSEEKER v1.0 as described in (Massignani et al, 2019) to our hmSILAC data. Briefly, 

the data consisted of samples from four different cell lines (HeLa, SK-OV-3, NB4 and U2OS) which 

were subjected to different biochemical pipelines prior to LC-MS/MS, such as immuno-enrichment of 

methyl-peptides with CST PTMScan kits or immuno-enrichment of proteins with antibodies against 

methyl-R, methyl-K or LDC components. These enrichment methods were combined with separation 

techniques such as polyacrylamide gel electrophoresis, isoelectric focusing and HpH-RP liquid 

chromatography to reduce sample complexity and further boost the identification of methyl-peptides (Fig 

1F and Table 1). Samples were then acquired on a Q Exactive orbitrap instrument and the resulting MS 

raw data were processed with MaxQuant to identify R- and K-methyl-sites (as described in the Material 

and Methods section). 

The high-confidence methyl-proteome obtained from hmSEEKER v1.0 contained 2174 methyl-peptides, 

mapping to 490 different proteins, which carried a total of 1324 methyl-sites and 1735 methylation events 

(Fig 1G, left). By re-analysing the hmSILAC dataset with hmSEEKER v2.0, we annotated 2688 methyl-

peptides mapping on 703 proteins and 2191 methylation events distributed on 1750 methyl-sites (Fig 1G, 

right). Overall, we were able to identify 23% more methyl-peptides, 32% more methyl-sites and 26% 

more methylation events. This represents the largest, orthogonally-validated methyl-proteome annotated 

so far from human cancer cell lines.  

Upon the analysis of the methyl-proteome dynamics upon different perturbations through the combination 

of the biochemical workflow for methyl-peptide separation and enrichment with standard SILAC 
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metabolic labelling, we set to expand further this experimental dataset by including the list of methyl-

peptides that resulted as significantly up- or down-regulated in at least one of the SILAC methyl-

proteomic experiments acquired, whereby dynamic changes of methyl-site were profiled quantitatively 

upon different perturbations (e.g. a drug treatment or the modulation of a PRMT enzyme) (Fig 2A). The 

inclusion of these methyl-peptides in the hmSILAC repository was performed under the assumption that 

methyl-peptides displaying significant changes upon a specific biological stimulus are likely to be 

enzymatic, whereas amino acid substitutions and chemical artefacts introduced by sample preparation 

should remain unaffected by any type of perturbation. Specifically, the SILAC experiments from which 

the significantly regulated methyl-peptides were extrapolated from a set of experiments carried out by our 

group in previous studies, where R methylation changes were profiled in response to: 1) PRMT1 over-

expression or knock-down (Spadotto et al, 2020); 2) treatment of cells with the PRMT5 inhibitor 

GSK591, or with the PRMTs type I inhibitor MS023 (Fong et al, 2019; Musiani et al, 2019); 3) treatment 

of cells with cisplatin (CDDP), a chemotherapy drug that induces PRMT1 accumulation in chromatin, 

thus inducing reduced R-methylation level of cytoplasmic proteins (Musiani et al, 2020). We thus 

obtained a final dataset consisting of 2865 methyl-peptides, 723 methyl-proteins, 1814 methyl-sites and 

2271 methylation events (Fig 2B, left), which we named ProMetheusDB, a repository of high-quality 

MS-based identified K/R-methyl-peptides from human cancer cell lines. 

To characterise its features, we first checked its composition in terms of K and R methylation events. We 

identified proteins bearing K-methyl-sites or combinations of K- and R-methyl-sites (Appendix Fig S2A), 

although peptides on which K and R methylation coexist were overall quite rare (only 88, Appendix Fig 

S2B), thus suggesting that K- and R-methyl-sites are not necessarily neighbouring, but rather in different 

protein regions. It is worth noting that, while K methylation was included in the MS data analysis to avoid 

erroneous assignment of R methylation events to K and vice versa, we expected the coverage of the R-

methyl-peptides in ProMetheusDB to be much larger than that of K-methyl-peptides, due to the 

employment of anti-pan-methyl-R antibodies in most of our experiments. Hence, we focused on the R-

methyl-proteome, which comprises 2482 R-methyl-peptides, 590 proteins, 1472 R-sites and 1874 R-

modifications (Figure 2B, right).  

We first compared the R-methyl-sites in ProMetheusDB to the hmSILAC-validated R-methyl-sites in 

PhosphositePlus (Fig 2C). We found that 752 (51%) of the sites present in ProMetheusDB were already 

annotated, while the remaining 720 (49%) are novel. So, our repository significantly expands the 

knowledge on the extent of this PTM in human cells.  

We compared mono-methyl-sites and di-methyl-sites to uncover a possible cross-talk between the two 

degrees of modification and observed that, of the total 1478 R sites, 783 are only mono-methylated, 290 

are only di-methylated and 405 are identified in both forms (Fig 2D). To verify if these counts of mono- 

and di-methylated R residues reflect a bias in sample preparation procedure, we grouped our experiments 

based on whether they were based on the use of anti-pan-R-methyl antibodies from CST PTMScan kits 

for methyl-peptides enrichment or not. Indeed, the observation that mono- and di-methyl-R-sites were 

equally represented in the datasets deriving from experiments where no affinity-enrichment of R 

methylations was performed (Appendix Fig S2C) confirmed our hypothesis of a possible bias in the 

antibody specificity. 

 

Functional analysis of the R-methyl-proteome  
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To explore the potential impact of protein R methylation on cellular processes, we generated a network of 

functional protein:protein interactions (PPIs), starting from the full list of R-methyl-proteins included in 

ProMetheusDB. This analysis highlighted the presence of 8 sub-networks enriched for distinct biological 

pathways (Fig 3A and Appendix Fig S3A): the largest cluster consists of over 100 proteins and includes 

components of the spliceosome and other proteins involved in mRNA processing, confirming the well-

known role of R methylation in RNA metabolism (Fong et al, 2019; Spadotto et al, 2020). The remaining 

7 clusters included around 20-30 proteins each and were enriched for terms such as “DNA-binding 

transcription factor activity”, “Lipid metabolism”, “Cytoskeleton” and “Mitotic Anaphase and 

Metaphase”, “Fc Gamma receptor (FCGR)-dependent phagocytosis”, “Translation”, “Antigen 

processing” and “Chromatin organization” (Fig 3B). 

Since we previously observed a strong trend of methylated proteins to be subunit of complexes (Bremang 

et al, 2013), we asked whether this observation still held true in this expanded dataset: we found that 

hyper-methylated proteins (bearing five or more R methyl-sites) presented significantly higher node 

degree and network centrality, not only compared to non-methylated proteins (detected in the Input 

samples; p = 1.77e-11 and p = 2.66e-12) but also to hypo-methylated ones (presenting one or two R-

methyl-sites; p = 0.01 and p = 0.03, respectively; Fig 3C). A similar analysis considering only physical 

PPIs confirmed this result (Appendix Fig S3B). Several of the high-centrality, hyper-methylated proteins 

are known RBPs, such as RBMX, NONO, various ribosomal proteins, nucleolin and HNRNPs (Geuens et 

al, 2016). However, the presence of R-methyl-proteins in cellular pathways related to lipid metabolism, 

cytoskeleton organization and phagocytosis was particularly interesting. Among these proteins we found 

G3BP1, which is on the one hand linked to stress granule formation and on the other hand has been 

shown to participate in DNA/RNA-sensing pathways implicated in the regulation of innate immunity (Liu 

et al, 2019; Reineke & Lloyd, 2015); the cytoskeletal protein actin (ACTB); the nuclear receptors 

NCOA2 and NCOA3, which are involved in metabolism, inflammation and adipocytes differentiation 

(Rollins et al, 2015); CUL1, a component of several E3 ubiquitin-protein ligase complexes (Michel & 

Xiong, 1998); SMARCA5, a helicase with nucleosome-remodelling activity that has a role in 

transcription, phosphorylation of H2AX, and maintenance of chromatin structures during DNA 

replication (Oppikofer et al, 2017). Taken together, these proteins and pathways suggest a role of R 

methylation in innate and adaptive immunity, in line with published evidence linking PRMT1 to 

macrophage differentiation and apoptosis, inflammation and cytokine production (Cho et al, 2018; 

Tikhanovich et al, 2017; Zhao et al, 2019). Moreover, although all the aforementioned proteins were 

already annotated as methylated, our analysis revealed several novel R-methyl-sites on RBMX (R383, 

R388), NONO (R142), SMARCA5 (R616), HSP90B1 (R51, R557) and ACTB (R206, R312). 

As a further investigation, we integrated the network of protein interactions with the quantitative data on 

methylation dynamics obtained from the SILAC experiments, to identify which proteins present at least 

one R-methyl-site that is significantly regulated in at least one SILAC experiment (i.e., regulated in the 

same way in one pair of Forward and Reverse replicates). Proteins featuring one or more regulated R-

sites (circled in red in Fig 3A) showed higher node degree and centrality in the network (p = 0.04 and p = 

0.03, respectively; Fig 4A); we confirmed this result when we repeated the analysis on a network of 

physical interactions only (Appendix Fig S3C). Moreover, we observed that this protein group was also 

enriched for the GO terms “RNA binding”, “RNA splicing” and “nucleic acid transport”, while proteins 

not bearing regulated methylations were not enriched for any specific GO term (Fig 4B). This suggests 

that two categories of R-methyl-sites may exist: “dynamic” methyl-sites whose changes serve to 

modulate protein:RNA interactions, and “structural” or “constitutive” methyl-sites, which occur on a 
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wider range of protein types, remain stable upon different stimuli and are likely linked to the life-cycle of 

the proteins they decorate. 

Since RNA binding proteins are frequently R-methylated and often involved in the process of Liquid-

Liquid Phase Separation (LLPS), we asked whether a link could exist between R methylation and LLPS 

and intersected the ProMetheusDB with PhaSepDB, a database of proteins involved in LLPS: we found 

that >50% of the proteins in our dataset were also annotated as part of at least one membrane-less 

organelle (MLO) within PhaSepDB (Fig 4C). This observation, together with a very recent study 

published by our group (Maniaci et al, 2021), confirms that R methylation is involved in the assembly of 

MLOs. 

Finally, because the major type I and II PRMTs (PRMT1 and PRMT5) preferentially target Rs within 

glycine/arginine-rich (GAR) motifs, we carried out a logo analysis on regulated R-methyl-sites versus the 

non-changing ones and found that regulated sites are surrounded by Glycines (Fig 4D, top). Instead, R-

methyl-sites that emerged as unchanging in different functional states did not produce a significant 

enrichment for any consensus motif (Fig 4D, bottom): this result may suggest that unchanging 

methylations are deposed by methyltransferases other than the best-known ones that may recognize 

different sequence motifs, yet to be characterised. 

 

Structural survey of R-methylations hints at novel biological mechanisms 

In the last two decades, intrinsically disordered regions (IDRs) of proteins have been reported to play a 

role in different processes (such as protein:protein and protein:nucleic acid interactions and protein phase 

separation) and often be modified by PTMs, including R methylation (Bremang et al, 2013; Darling & 

Uversky, 2018; Musselman & Kutateladze, 2021). In addition, methylated Rs can serve as docking sites 

for the recruitment of other proteins and the formation of multi-protein complexes; two examples of R 

methylation “readers” are represented by the Tudor domain, found in several proteins linked to 

transcriptional regulation, mRNA splicing and formation of RNP granules (Ying & Chen, 2012), and the 

WD40 repeat domain, located on a wide range of scaffolding proteins whose role is to bring together 

interactions partners into stable complexes (Jain & Pandey, 2018). 

To study the link between protein structure and R methylation, we intersected the R-methyl-sites in the 

ProMetheusDB with disordered regions and domains annotated in MobiDB (Piovesan et al, 2021) and 

confirmed that the vast majority (77%) of the R-methyl-sites are indeed located in disordered regions (Fig 

5A). When we carried out the same analysis on a subset of 1500 non-methylated R-sites randomly 

extracted from the human proteome, we observed a more even distribution between structured domains 

and disordered regions. As a matter of fact, when performing a Fisher exact test on the counts of 

methylated or unmodified R located in structured or disordered regions, we found that the distribution 

was not random (p = 5.15e-71; Fig 5A), which corroborates previous evidence that R-methyl-sites tend to 

occur much more frequently within low complexity and disordered regions. 

Despite being a minority, we focused on the 308 methyl-Rs located in structured regions and mapped 

them onto InterPro (Blum et al, 2021) domains to investigate their possible association to specific protein 

domains: most R-methyl-sites were found to localize within “RNA Binding Domain”, “K Homology 

domain” and on the “Fragile X mental retardation syndrome-related” family of proteins (Fig 5B). Aside 

from the “RNA Binding Domain”, whose enrichment is expected, the K Homology domain is also mainly 
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located in RBPs (specifically heterogeneous nuclear ribonucleoproteins (Valverde et al, 2008)) and the 

Fragile X mental retardation syndrome-related proteins also belong to the RBP family; hence, these 

results are consistent with the notion that RNA binding and processing are highly dependent on this PTM. 

We then set out to investigate the possible role of R methylation in regulating the interaction of proteins 

with other types of biomolecules. To do so, we analysed ProMetheusDB using Mechismo, a web 

application that maps alterations of amino acid residues (induced by mutations or PTMs) onto protein 

crystal structures, to identify modified sites that are putatively involved in physical interactions with 

different kinds of biomolecules (Betts et al, 2015; Fic et al, 2021). We found that 26 methylated Rs were 

involved in a total of 65 interactions with nucleic acid (n = 11), chemical compounds (n = 7), other copies 

of the same protein (n = 5) and other proteins (n = 42) (Fig 5C). The presence of more interactions with 

proteins rather than with nucleic acids for these modifications located in structured domains is somewhat 

unexpected, but it can be explained by the fact that many RBPs bind RNA through low complexity 

regions, for which crystal structures (on which Mechismo relies on) are currently not available. Still, 

these data support the hypothesis that R methylation can also modulate interactions with biomolecules 

other than RNAs, such as protein:protein and protein:chemical.  

We followed up the R-methyl-sites indicated by Mechismo analysis as putatively involved in 

protein:protein interactions: based on reports that methylation of the guanidino-group of arginines can 

exert distinct effects on protein:protein interactions by reducing the number of hydrogen bond donors on 

this amino acid, while -at the same time- increasing its hydrophobicity (Fulton et al, 2019), we 

hypothesized that methylation could on the one hand enhance interactions between Rs and hydrophobic 

residues and on the other hand inhibit the interactions between Rs and negatively charged amino acids.  

An interesting case-study highlighted by the structural analysis was represented by the protein-pair 

NONO:PSPC1, where R256 of NONO is located at the interface of interaction with PSPC1 (Fig 5D). We 

hypothesized that methylation of R256 would increase its hydrophobicity, thus stabilizing the 

NONO:PSPC1 interaction interface, which also entails a-polar residues, such as L222 of PSPC1. To 

verify this prediction, we set up the NONO immuno-precipitation (IP) in HeLa cells and profiled PSCP1 

co-immunoprecipitation efficiency, both in basal conditions and upon treatment with the PRMT type I 

inhibitor MS023 (Eram et al, 2016), which typically leads to ADMA reduction and MMA/SDMA 

increase, depending on the enzyme processivity on a specific site and/or the scavenging effects by other 

PRMTs, as reported in (Dhar et al, 2013; Hartel et al, 2019; Musiani et al, 2020). When we profiled both 

NONO R methylation state and interaction with PSPC1, we observed that MS023 induced the decrease of 

ADMA on NONO, with a parallel increase of MMA and, to a minor extent, of SDMA; in parallel, a mild 

increase of the amount of PSPC1 co-immunoprecipitated was also observed, which confirms our 

prediction (Fig 5E).  

 

Cross-talk between R methylation and S/T-Y phosphorylation  

The cross-talk between R methylation and S/T-Y phosphorylation has already been described in the 

literature and linked to subcellular localization of proteins (Smith et al, 2020) and the promotion of stem-

like properties in cancer (Liu et al, 2020). Interestingly, phosphorylation and methylation share some 

features like the preferential localisation in IDRs, the role in modulating protein:RNA interactions and 

LLPS (Hamey et al, 2021; Owen & Shewmaker, 2019; Schisa & Elaswad, 2021). To study this aspect 

more in-depth, we determined 15-amino acid windows centred on each R-methy-site annotated in our 
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ProMetheusDB and assessed if phosphorylated residues (see Methods) are preferentially enriched within 

these sequence windows. We found that 706 (47.8%) of the 1478 R-methyl-sites in our dataset present an 

S, T or Y phosphorylation site within their 15-amino acid window; by repeating this analysis on 1500 R 

residues randomly selected from the human proteome, we observed that the percentage of sites featuring a 

phosphorylation site in the same 15-amino acid window was halved (356 sites, corresponding to 23.7%; 

Fig 6A), which indicates a statistically significant overrepresentation of phosphosites in the proximity of 

methyl-Rs (p = 4.62e-43), thus supporting the hypothesis of the co-occurrence of these PTMs.  

We then asked whether the co-occurrence of methylation and phosphorylation was linked to a specific 

biological process by performing GO analysis on the protein displaying a statistically significant co-

occurrence of R-methyl-sites and phospho-STY sites: we found that these proteins are even more strongly 

linked to RNA binding and splicing compared to other proteins in ProMetheusDB (Fig 6B). To assess 

whether R-methyl-sites co-occurring with phosphosites are more likely subject to regulation in response 

to external cues, we intersected the results of the PTM cross-talk analysis with the dynamic information 

derived from the SILAC experiments, where methylation changes have been profiled in response to 

PRMTs type I inhibition by MS023, cisplatin (CDDP) treatment and PRMT1 knock-down (KD) or 

overexpression (OE). Despite being very different stimuli, we expected to observe an effect on PRMT1 

methylation targets in all cases, as it is the most active type I enzyme (and thus more affected by MS023 

than other PRMTs) and CDDP treatment causes re-localization of PRMT1 to chromatin (therefore 

inducing a decrease in the methylation levels of cytosolic proteins). Interestingly, we found that phospho-

S and phospho-Y sites seem to occur more frequently in the proximity of the MS023-regulated methyl-

sites than the non-regulated ones (p = 1.76e-03 and p = 7.85e-03; Figure 6C-D). Moreover, the R-methyl-

sites unchanging upon either CDDP treatment or PRMT1 KD tend to present a phospho-T site in their 

surrounding 15-amino acid sequence window (p = 6.95e-03 and p = 1.66e-02; Figure 6E-F). The different 

responses to these stimuli suggest that there are multiple ways through which these PTMs can influence 

each other, which hints towards the widespread existence of a molecular barcode of PTMs, similar to that 

extensively described on histones  

We then expanded the analysis of possible cross-talk of R methylation with other PTMs, such as K 

acetylation, ubiquitination and sumoylation and found that R-methyl-sites seem to significantly anti-

correlate with nearby K ubiquitination sites, when compared to the dataset of randomly selected R-sites 

(Appendix Fig S4A). Instead, the associations between R methylation and K acetylation or sumoylation 

are not statistically significant (Appendix Fig S4B-C). Because the numbers of acetylation, ubiquitination 

and sumoylation sites annotated in Phosphosite Plus are at least one order of magnitude lower than that of 

phosphosites and this difference might introduce a bias in the analysis, these results should be taken with 

caution; nevertheless, they seem to corroborate the specificity of cross-talk between R methylation and 

S/T-Y phosphorylation, which is not generically applicable any annotated PTM. 

 

Methylation beyond Arginine: hmSILAC-based detection of non-canonical methylation sites 

Protein methylation has been observed not only on Ks and Rs but also on residues such as Aspartate (D), 

Glutamate (E), Asparagine (N), Glutamine (Q), Serine (S) threonine (T) and Histidine (H). However, the 

systematic study on these non-canonical methylated residues by MS is hindered not only by the high FDR 

that already plagues R methylation studies but also by the difficulty in pinpointing the PTM to its exact 

residue when multiple putative methyl-sites are present on the same peptide. In this context, we set to 

assess to what extent the hmSILAC strategy could help filling this gap in knowledge. With the aim of 
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exploiting at their maximum potential the hmSILAC strategy and the large set of MS data available, we 

re-analysed all the raw data from hmSILAC-labelled, non-affinity enriched samples with the Andromeda 

search engine of MaxQuant, allowing mono-methylation (either light or heavy) to occur not only on R 

and K but also on D, E, N, Q, S, T and H. Our rationale was that all enzymatically-driven methylations of 

both standard and non-conventional residues should use SAM as the universal methyl-group donor.  

MaxQuant output data were then processed with hmSEEKER v2.0 using the same criteria employed for 

the assignment of the high-quality R-methyl-sites (i.e. peptide score > 25; PTM localization probability > 

0.75; use of ML model to identify true doublets) to produce a list of orthogonally validated, methylation 

sites which included 111 methylation sites in total, 42 of which occurring on non-canonical residues 

located on 30 different proteins (Fig 7A). These novel modifications are mainly found on proteins 

functionally linked to mRNA splicing and RNPs (Fig 7B). Although most proteins only present one type 

of methylated residue, combinations of up to 5 different methyl-residues appeared on a few proteins (Fig 

7C), such as TAF15 (experimentally found to be methylated on R, K, S, D and Q), HSPA8 (methylated 

on K, D, E and N) and EEF1A1 (methylated on K, S, D, Q). The methylated residues that co-occur most 

frequently seem to be R and S, which coexisted in five proteins (HNRNPD, HNRNPK, SFPQ, TAF15 

and VIRMA). All the 46 R-methyl-sites and 20 K-methyl-sites that had been previously identified in the 

search for R/K methylations were re-identified in this search; 3 K-methyl-sites unique for this second 

search were identified in combination with other non-canonical methyl-sites, therefore Andromeda could 

not identify them during the first search, that was constrained to K an R methylation only. 

This exploratory analysis also revealed the presence of two unconventional novel methyl-sites on H3, on 

S28 (H3S28me) and T32 (H3T32me). We were thus prompted to focus on non-canonical methylation on 

histones by this initial evidence, together with two remarks: first, histone methylation is widely regarded 

as a core component of the histone code, hence the detection of novel methyl-sites may help dissecting 

this molecular language affecting gene expression; second, since standard database search engines 

produce suboptimal results when multiple (>5) PTMs are searched in a large protein database (Verheggen 

et al, 2020), limiting the analysis to histones could be a reasonable trade-off to expand our methylation 

search to non-canonical methyl-residues while circumventing the explosion of false positives and 

negatives linked to the expansion of search space. 

We thus applied an optimized biochemical and analytical pipeline to a set of hmSILAC-labelled histone 

samples for the in-depth identification of methylation sites on these proteins; from a biochemical point of 

view, we took advantage of multiple proteases (i.e. Trypsin, LysC, ArgC and LysargiNase) digestion of 

histones to generate overlapping peptides and maximise protein coverage. From the computational point 

of view, the MS raw data were searched with MaxQuant using a filtered version of the UniProt Human 

protein database that included only histone proteins, using the same search parameters selected for the 

global methylation search. The subsequent analysis with hmSEEKER v2.0 for methyl-peptides pair 

matching and orthogonal validation of novel methyl-sites allowed us to unambiguously re-identify mono-

methylation on H3S28 and H3T32 (Fig 7D; Appendix Fig S5). 

Follow up studies relying on the production and use of ChIP-seq grade antibodies as well as synthetic 

biotinylated peptides for screening of putative interactors will be the gateway to retrieve experimental 

data to hypothesize the functional role of these novel histone PTMs and their cross-talk with already 

known ones. 
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DISCUSSION 

In this work, we describe ProMetheusDB, our current hmSILAC-validated repository of protein 

methylation sites, annotated upon the re-analysis of previous hmSILAC experiments with an updated 

version of the hmSEEKER bioinformatics tool. Doublets of light and heavy methyl-peptides were 

evaluated by a ML model that was trained on doublets generated by M-containing peptides, which, unlike 

proper methyl-peptides, can be easily identified by database search engines and therefore provide a 

reliable positive control to our tool. After training the model, we observed that the dRT parameter of the 

doublets was the least important for discriminating true and false peptide pairs; this is in contrast with the 

first iteration of hmSEEKER, where dRT and ME were the main predictors of methyl-peptide doublets 

and the H/L ratio parameter was introduced later. This choice of features also differentiates our ML 

model from the one adopted by MethylQuant (Tay et al, 2018), which scores methyl-peptide pairs based 

on the isotope distribution and elution profile correlation of the two peaks. 

This study focused on R methylation, which over the last decade has been found to be a key player in a 

variety of biological processes. The functional analysis performed on R-methyl-sites revealed that 

proteins carrying either multiple R-methyl-sites and/or dynamically regulated ones are more strongly 

interconnected with other proteins in our Reactome-derived network, thus representing potential hubs of 

protein:protein interactions.  

Interestingly, the protein clusters emerging from the network analysis suggest a potential role of R 

methylation in the immune response, as exemplified by the “FCGR-dependent phagocytosis” cluster. 

While it is known that PRMT1-mediated H4R3me2a promotes the expression of PPARgamma, a 

transcription factor regulating monocyte differentiation into anti-inflammatory macrophages 

(Tikhanovich et al, 2017), our results expand the role of R methylation in immunity beyond mere 

transcriptional regulation, showing that several methyl-proteins are involved in antigen processing and 

exogenous DNA/RNA sensing pathways (such as CUL1 and G3BP1, respectively). Other clusters that 

might be connected to this biological process are the ones related to cytoskeleton dynamics and lipid 

metabolism. Anti-inflammatory macrophages metabolize lipids as a source of energy, while inflammatory 

ones use fatty acids to produce prostaglandins and leukotrienes, which act as hormone-like signal 

molecules to regulate the inflammatory response (Batista-Gonzalez et al, 2019; Yan & Horng, 2020). The 

impact of R methylation on proteins of the cytoskeleton (such as actin) has been already described in 

neuronal development, where PRMTs regulate the formation of both the axon and the dendrites; it is 

possible PRMTs control cytoskeleton dynamics also in macrophages and potentially other cell types. 

By mapping the R-methyl-sites annotated in ProMetheusDB onto protein structures, we confirmed that 

this PTM mostly occurs in unstructured, low-complexity regions, which are involved in mediating 

protein:RNA interactions. Intrinsically disordered regions are characterized by short linear motifs well-

established as important  mediators of protein:protein interactions (PPIs) (Tompa et al, 2014). Our 

observation that R methylation most frequently occurs in IDRs, together with the notion that heavily R 

methylated proteins are also central nodes within functional PPI network, is indicative of a functional link 

between R methylation and PPI modulation. Indeed, by inspecting available 3D complexes, we also 

found a small number of sites where R methylation could modulate protein:protein interactions by 
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increasing or reducing the hydrophobicity and hydrogen-bonding capability of R situated at protein 

interfaces.  

Our data and a recent study by Xiang-Bo Wan and co-workers (Yin et al, 2021) identify NONO R256 and 

R251, respectively, as methylation sites. Both residues are predicted by Mechismo to interact with a-polar 

residues of PSPC1 (L171 and L222, respectively). Moreover, the amino acid substitution of NONO R256 

with an Isoleucine (I) is a mutation associated with colorectal cancer in the ActiveDriverDB database 

(Krassowski et al, 2018) and is also predicted by Mechismo to enhance the NONO:PSPC1 interaction; 

similarly, a hypothetical R251I substitution is also predicted to strengthen the binding. Overall, these 

observations suggest that PRMT1 may elicit an oncogenic effect (at least in colorectal cancer) by 

modulating the interaction between NONO and PSPC1 through the methylation of NONO R251 and/or 

R256.   

By contrast, we hypothesize that methylation of SRSF1 on R154 might inhibit the interaction between 

SRSF1 and SRPK1. SRPK1-mediated phosphorylation of SRSF1 regulates alternative splicing and 

promotes the expression of protein variants that have anti-apoptotic and pro-angiogenic properties 

(Nowak et al, 2008). In this context, Jacky Chi Ki Ngo and collaborators showed that blocking the 

interaction of SRPK1 and SRSF1 with a PPI inhibitor could reduce SRSF1 phosphorylation and thus 

suppress angiogenesis (Li et al, 2021). Our data suggest that a similar result could be achieved by 

regulating SRSF1 methylation levels, although more in-depth mechanistic studies are needed to confirm 

this hypothesis. 

An additional interesting interaction suggested by Mechismo involves the R264 of SAM Synthase 

(MAT2A), which is located at the interface between the subunits that form the active dimer of the 

enzyme, where it contacts E57, A281 and K285 of the other MAT2A monomer. This residue also 

interacts with the substrate ATP and the metal ions serving as cofactors for the reaction. The observation 

that the enzyme that synthesizes SAM, the methyl-group donor, can also be methylated in this relevant 

pocket for its catalytic activity is particularly intriguing, because it may suggest the existence of a 

feedback loop controlling SAM levels in the cell. It has already been reported that the RNA 

methyltransferase METTL16 binds and methylates the 3'-UTR region of MAT2A mRNA to prevent its 

translation. When SAM levels are low, the mRNA of MAT2A cannot be methylated due to lack of the 

methyl donor and the protein is translated (Pendleton et al, 2017). MAT2A protein methylation at R264 

could represent an additional layer of post-translational regulation of the enzyme. 

Our structural analysis, however, suffers from two limitations: first, methylation often occurs in 

disordered regions which cannot be studied through classical crystallography approaches; second, not all 

the structures of proteins that can be crystallized have necessarily been solved. However, thanks to the 

advancements in the field of AI, the scientific community now has access to AlphaFold, which can 

predict a protein structure from its primary sequence with unprecedented speed and accuracy 

(Tunyasuvunakool et al., 2021). Therefore, as a future perspective, it could be interesting to expand our 

analysis using AI-predicted protein structures. 

Phosphorylation and methylation sites co-localize on disordered SRGG motifs of some proteins, where 

the two PTMs are mutually exclusive because the presence of negative charges inhibits the binding of 

PRMTs to their recognition motifs (Smith et al, 2020). By overlapping ProMetheusDB with the 

Phosphosite Plus phosphoproteomics dataset, we confirmed that methylated Rs are significantly more 

likely to occur in the proximity of a phospho-S but also expand this observation to phospho-T and -Y 

residues. Furthermore, the analysis of co-occurrence of these two PTMs in the context of dynamic 
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regulation suggests the existence of a link between the regulation of an R-methyl-site and its proximity to 

a phosphosite. Acute stimuli such as treatment with MS023 (which inhibits type I PRMTs, with a 

preference for PRMT1 at the experimental condition used in our studies) cause a change in the 

methylation of Rs that are close to phosphosites; instead, modulation of PRMT1 expression and the 

treatment with the chemotherapeutic drug cisplatin affect methyl-Rs that are distant from phosphorylation 

sites. This result highlights the importance, in the future, of developing experimental pipelines enabling 

the simultaneous profiling of these two (or even more) PTMs, something that is currently still at a 

pioneering stage (Hamey et al, 2021). Our analysis, for instance, focused exclusively on methyl-sites, 

whereas the datasets of phosphorylation, acetylation, ubiquitination and sumoylation sites were mostly 

derived from other studies focused on one individual PTM at a time. Profiling differently modified 

isoforms of a peptide (e.g. unmodified, methylated, phosphorylated, co-modified) within a single 

experiment would be very informative to experimentally assess which PTMs can truly co-exist and which 

are mutually exclusive, both a basal state but also during transition or in response to external cues. 

The application of the hmSILAC biochemical and analytical pipeline led to the annotation of methyl-sites 

also on amino acids that are traditionally excluded from proteome with MS-based analysis, such as D, E, 

N, Q, S, T and H, which also included the identification of a few putative novel methyl-marks on histones 

(i.e., H3S28, H3T32). The two PTMs occurring on the peptide 27-40 of histone H3 are particularly 

interesting for their potential cross-talk with functionally relevant modifications on K27 and K36. For 

instance, methylation of H3K27 is a repressive mark (Wiles & Selker, 2017), whereas methylation of 

H3K36 plays a role in transcriptional regulation, whereby H3K36me2 counteracts gene silencing by 

blocking the recruitment of PRC2 complexes; however, when genes are transcribed, this mark is replaced 

by H3K36me3 to prevent transcription initiation from intragenic regions (Huang & Zhu, 2018).  Our 

experimental data showed that the S28me mark could coexist with K27me and T32me, while peptides 

carrying simultaneously K27me and T32me, or bearing S28me/T32me in combination with K36me were 

not detected (Appendix Fig S5). A more in-depth analysis of this peptide and its numerous differentially 

modified isoforms is needed to corroborate this observation: measuring the relative abundance of the 

K27me/S28me and S28me/T32me peptide isoforms could allow developing some hypotheses on their 

biological role and cross-talk with other epigenetic marks. Similarly, it would be interesting to confirm 

whether S28me/T32me are mutually exclusive with K36 methylation or to find how these novel methyl 

marks are associated with neighbouring acetylation and phosphorylation.  

We argue that our analysis of non-canonical methylation sites could be linked to our previous analysis on 

PTMs cross-talk. A recent paper from the Eyers’ group (Hardman & Eyers, 2020) explored the field of 

non-canonical phosphorylations and identified several phosphosites on R, K, D, E, H and C residues. 

Interestingly, these residues overlap with the putative non-canonical methyl-residues we have 

investigated here: it is, therefore, possible to envisage that the cross-talk of methylation and 

phosphorylation is not limited to proximal sites, but that may also occur through the physical competition 

for the same substrates/residues. Two possible case-studies emerging here are H3S28 and R55 of Keratin 

type I cytoskeletal 18 (KRT18R55). H3S28 is a known phosphorylation site that we identify as 

methylated in our hmSILAC histone dataset. Phosphorylation of H3S28 can occur in response to 

extracellular stress and is proposed to override repressive epigenetic marks to temporarily express genes 

that would normally be silenced (Sawicka & Seiser, 2012). A reasonable hypothesis is that methylation of 

H3S28 may cooperate with methylation of H3K27 in silencing genes (Wiles & Selker, 2017), which 

would explain why we did not detect H3S28 in combination with the aforementioned active transcription 

marks H3K36me2/me3 and H3K27ac (Zhang et al, 2020). As a future perspective, since H3S28ph is also 
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necessary for chromatin condensation (Sawicka et al, 2014), we could investigate how this residue is 

modified specifically during mitosis. 

KRT18R55 is a methyl-site that was first identified in (Guo et al, 2014) and orthogonally validated in our 

hmSILAC experiments. The site is also present in the list of non-canonical phosphosites published by 

Eyers and co-workers, thus could be another example of competition between PTMs. Unfortunately, there 

is not enough data in the literature to make a hypothesis on the function of this modification site. 

Some major points remain to be addressed in the methyl-proteomics field. First, there is a need for more 

efficient workflows that allow to annotate R-methyl-proteomes through sensibly smaller scale 

experiments, as the prerequisite for the investigation of this PTM in more relevant model systems, such as 

primary cells, tissues, organoid, similarly to what was made possible in the phospho-proteomics field 

(Lindhorst & Hummon, 2020). The implementation of Data-Independent Acquisition (DIA) methods 

could also prove beneficial by reducing the identification bias towards the most abundant proteins and 

thus increase the depth of coverage of the methyl-proteome (Bekker-Jensen et al, 2020). 

Better strategies for the enrichment of di-methyl-R-peptides are also needed to address the bias 

introduced by the use of the CST anti-MMA kit. Although quantification of intracellular methyl-Rs 

derived from degradation of methylated proteins showed that ADMA is the most abundant of the three 

(Davids & Teerlink, 2013), most MS-based methyl-proteomics studies have so far reported a significantly 

larger number of MMA sites than ADMA/SDMA sites. We already discussed this issue, suggesting that 

the anti-pan-MMA antibodies traditionally used to enrich methyl-peptides outperform anti-pan-ADMA 

and SDMA ones thus generating a bias in methyl-proteomics studies (Spadotto et al, 2020). 

ProMetheusDB also suffers from this limitation, as highlighted by the fact that mono- and di-methylated 

R-sites are more evenly represented in the datasets deriving from experiments when no affinity-

enrichment steps through the CST kits were performed (e.g. fractionated whole-cell extract, protein IPs; 

Appendix Fig S2C). Along the same line, there is a strong need for efficient antibodies for the enrichment 

of K-methyl-peptides to map the non-histone K-methyl-proteome. The availability of such reagents 

would allow researchers to finally address the question whether K methylation is widespread beyond 

histone, similarly to K acetylation and R methylation, regulating cellular processes beyond chromatin-

based transcriptional regulation. 

Besides the annotation of the steady-state methyl-proteome, we recognize a need to accelerate the 

acquisition of dynamic data. The triple SILAC strategy we adopted for some experiments is overall 

laborious and limited in its multiplexing capabilities. In the near future it would be useful to assess the 

feasibility of applying isobaric mass tags (TMT) to MS-based methyl-proteomics profiling, to overcome 

this limitation and perform multiplexed experiments where methylation changes can be profiled across 

multiple experimental conditions. 

From the analytical point of view, some future developments can also be conceived: first, spectral library 

searching (Lam, 2011) is faster than conventional database searching (which can take several weeks when 

non-canonical methyl-sites are considered), however its application to methyl-proteomics was limited by 

the low number of high-confidence methyl-peptides spectra available. Within this context, the MS/MS 

spectra of methyl-peptides that were orthogonally validated by hmSILAC could be used to build a 

spectral library to be used as reference, thus speeding up the analysis of new data. Second, it is crucial to 

separately analyse ADMA and SDMA, which can be distinguished by searching for their diagnostic 

neutral loss ions within the MS/MS spectra (Brame et al, 2004; Musiani et al, 2019). However, at the 

moment, a systematic method for the automatic annotation of these characteristic neutral losses is still 
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lacking; while general purpose tools can be adapted to perform this task (Kelstrup et al, 2014), the 

aforementioned lack of high-confidence spectra makes this task difficult. For these reasons, it is still 

recommended to visually inspect the MS/MS spectra of di-methyl-R-peptides, which is impractical in the 

case of large datasets such as ProMetheusDB. 

 

Materials & Methods 

Preparation of samples for global R methylation analysis 

The annotation of ProMetheusDB was obtained by combining datasets derived from two distinct 

proteomics strategies. The majority of the methylations were annotated from hmSILAC experiments that 

allow this PTM to be orthogonally validated, as described in (Ong & Mann, 2006). This initial list was 

then integrated with a second list of regulated methyl-peptides derived from MS-proteomics experiments 

where the biochemical protocol to separate and affinity-enrich methyl-peptides was coupled to metabolic 

labelling with standard SILAC amino acids (i.e., K and R) and stimulation of cells with different 

perturbations (e.g. from pharmacological inhibition of genetic modulation of PRMTs, to treatment with 

genotoxic drugs). Each SILAC experiment was done in duplicates (forward and reverse) and only 

peptides whose regulation was reproducible in at least one pair of experiments was considered 

significantly regulated. As such, the experiments we analysed to build the methyl-proteome presented in 

this study are described in Table EV1. 

Extraction and protease digestion of hmSILAC-labelled histones before LC-MS analysis  

hmSILAC labelled HeLa S3 cells (L and H channels mixed in 1:1 ratio) were resuspended in lysis buffer 

(10% sucrose, 0.5mM EGTA, 60mM KCl, 15mM NaCl, 15mM HEPES, 0.5mM PMSF, 5μg/ml 

Aprotonin, 5μg/ml Leupeptin, 1mM DTT, 5mM NaButyrate, 5mM NaF, 30μg/ml Spermine, 30μg/ml 

Spermidine and 0.5% Triton X-100) and nuclei were separated from cytoplasm by centrifugation on 

sucrose cushions for 30 minutes at 3,695 g, 4°C. Histones were then extracted through 0.4M hydrochloric 

acid for 5 hours at 4°C and dialyzed overnight in CH3COOH 100 mM Dialysed histones were then 

lyophilized and either kept at -80 until use or directly resuspended in milliQ water before sample 

processing prior to MS analysis. To maximize the protein sequence coverage, four different aliquots of 5 

μg histones each were in-solution digested overnight using different proteases, such as Arg-C, Trypsin, 

LysargiNase and LysC. Proteolytic peptides were then desalted and concentrated by micro-

chromatography onto SCX and C18 Stage Tips micro-column, prior to LC-MS/MS analysis. 

LC-MS/MS analysis  

Peptide mixtures were analysed by online nano-flow liquid chromatography-tandem mass spectrometry 

using an EASY-nLC 1000 (Thermo Fisher Scientific) connected to a Q Exactive instrument (Thermo 

Fisher Scientific) through a nano-electrospray ion source. The nano-LC system was operated in one 

column set-up with a 50cm analytical column (75 μm inner diameter) packed with C18 resin (easySpray 

PEPMAP RSLC C18 2M 50cm x 75 M, Fisher Scientific) configuration. Solvent A was 0.1% formic acid 

(FA) and solvent B was 0.1% FA in 80% ACN. Samples were injected in an aqueous 0.1% TFA solution 

at a flow rate of 500 nL/min. Peptides were separated with a gradient of 5–40% solvent B over 90 min 

followed by a gradient of 40–60% for 10 min and 60–80% over 5 min at a flow rate of 250 nL/min in the 

EASY-nLC 1000 system. The Q-Exactive was operated in the data-dependent acquisition (DDA) mode to 

automatically switch between full scan MS and MS/MS acquisition. Survey full scan MS spectra (from 
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m/z 300-1150) were analysed in the Orbitrap detector with resolution R=35,000 at m/z 400. The ten most 

intense peptide ions with charge states ≥2 were sequentially isolated to a target value of 3e6 and 

fragmented by Higher Energy Collision Dissociation (HCD) with a normalized collision energy setting of 

25%. The maximum allowed ion accumulation times were 20 ms for full scans and 50 ms for MS/MS and 

the target value for MS/MS was set to 10
6
. The dynamic exclusion time was set to 20s. 

MS raw data processing with MaxQuant  

MS raw data were analysed using the integrated MaxQuant software v1.3.0.5 or v1.5.2.8 (for SILAC) or 

v1.6.2.10 (for hmSILAC), using the Andromeda search engine (Cox & Mann, 2008; Cox et al, 2011). In 

all MaxQuant searches, the estimated FDR of all peptide identifications was set to a maximum of 1%. 

The main search was performed with a mass tolerance of 4.5 ppm. A maximum of 3 missed cleavages 

was permitted, and the minimum peptide length was fixed at 6 amino acids. The June 2020 version of the 

Uniprot reference proteome (Proteome ID: UP000005640) was used for peptide identification. Other 

parameters were different, according to the experiment and the sample to be analysed. 

● For the hmSILAC experiments, each MS raw data was analysed twice to identify Heavy and Light 

methyl-peptides separately. In the “Light” analysis, mono-methylation of K/R (+14.016 Da), di-

methylation of K/R (+28.031 Da), tri-methylation of K (+42.047 Da) and oxidation of M (+15.995 

Da) were specified as variable modifications; Carbamidomethylation of Cys (+57.021 Da) was 

indicated as fixed modification. In the “Heavy” analysis, heavy mono-methylation of K/R 

(+18.038 Da), heavy di-methylation of K/R (+36.076 Da), heavy tri-methylation of K (+54.114 

Da) and oxidation of M were specified as variable modifications; Carbamydomethylation of 

Cysteine (C) and isotope-labelled Methionine (MS) (+4.022 Da) were indicated as fixed 

modifications. Enzyme specificity was set to either Trypsin/P or LysargiNase. 

● For the standard SILAC methyl-proteomics experiments, we indicated K8+R10 and/or K4+R6 as 

SILAC labels. N-terminal acetylation (+42.010 Da), M oxidation, mono-methyl-K/R and di-

methyl-K/R were set as variable modifications; Carbamidomethylation of C was set as fixed 

modification. Enzyme specificity was set to Trypsin/P. 

● For histone hmSILAC experiments, MS raw data were also analysed twice. Mono-methylation 

(light or heavy) was allowed on K, R, D, E, H, Q, N, S and T and we included K acetylation 

(+42.011 Da) as a variable modification to address the fact that this modification is very abundant 

and likely coexists with methylation on histones. Enzyme specificity was set to Trypsin/P, ArgC, 

LysC or LysargiNase. Finally, to reduce search complexity, a database containing only human 

histone sequences was used. 

 

Validation of methyl-peptides with hmSEEKER 2.0 

Identification of light and heavy methyl-peptides doublets was carried out with hmSEEKER (Massignani 

et al, 2019). Methyl-peptides identified by MaxQuant were filtered to only retain peptides with 

Andromeda Score >25, Delta Score >12 and Localization Probability of the methylation sites >0.75. 

hmSILAC doublets were reconstructed with hmSEEKER. Initially, hmSILAC 1.0 called a methyl-peptide 

doublet when two peaks had the same charge, |ME| < 2 ppm, |dRT| < 0.5 min and |LogRatio| < 1. The 

Machine Learning model developed in this study within hmSEEKER v2.0 was trained using Python 

package Scikit-learn v0.23.1, as described in the Results section. 

Downstream quantitative analysis of SILAC methyl-proteomics data 
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To determine methylation sites that were significantly regulated in the SILAC experiments, MaxQuant 

results were processed as previously described in (Fong et al, 2019; Musiani et al, 2019; Musiani et al, 

2020; Spadotto et al, 2020). Briefly, for each experiment, the mean and standard deviation of the 

unmodified peptides SILAC log2 ratios distribution were calculated; then, mean and standard deviation 

values were used to calculate the z-scores of the methyl-peptides; finally, a peptide was classified as 

significantly regulated in a given experiment if its z-score was > 2 or < -2 in both the FWD and the REV 

replicates of the experiment. 

Functional and structural analysis of the ProMetheusDB 

Motif analysis was done using pLogo (O'Shea et al, 2013). Sequence windows centred on regulated (or 

unchanging) R-methyl-sites were submitted as foreground; sequence windows centred on all identified R-

methyl-sites (including non-quantified ones) were submitted as background; the resulting position weight 

matrices were then downloaded and visualized with the Logomaker Python package (Tareen & Kinney, 

2020). Functional enrichment analysis was performed using the “gprofiler2” R package (Kolberg et al, 

2020); Gene Ontology terms, Reactome and KEGG pathways, and CORUM complexes were used as data 

sources; only the most significant, non-redundant terms are reported in the figures (full lists of enriched 

terms are reported in Table EV2). Overlap of the annotated R-methyl-sites with InterPro domains (Blum 

et al, 2021) was performed with an in-house Python script; the InterPro database was filtered to include 

only regions classified as “Domain” or “Homologous superfamily”. Mapping of modification sites on 

interaction surfaces was performed with the Mechismo web application (Betts et al, 2015), with a 

stringency threshold set to “medium”. The database of currently annotated phosphorylation sites was 

downloaded on 05-28-19 from Phosphosite Plus (Hornbeck et al, 2015). Protein:protein functional 

interaction networks were generated within Cytoscape (Shannon et al, 2003) using the Reactome plugin 

(Croft et al, 2011); protein:protein physical interactions were downloaded from the IMEX database 

(Orchard et al, 2012); network analysis was performed with Cytoscape and the Python package Pyntacle 

(Parca et al, 2020). Fisher’s exact tests were performed with the Scipy package in Python. Bar plots and 

box plots were generated with the Seaborn package in Python, network displays were generated in 

Cytoscape and the UpSets plot representation of methylation sites on proteins was generated with R. 

Protein immunoprecipitation (IP) of NONO and WB analysis of its R methylation state and co-IP 

of PSPC1 

IP of NONO was performed starting from 1mg of HeLa whole-cell extract (WCE). Briefly, 30e6 HeLa 

cells were harvested, washed twice with cold PBS and re-suspended in 2 volumes of RIPA Buffer (10 

mM Tris pH 8, 150 nM NaCl, 0.1 % SDS, 1 % triton, 1mM EDTA, 0.1% Na-Deoxycholate, 1mM PMSF, 

1mM DTT and 1x Protease and Phosphatase Inhibitors cocktail (Roche), supplemented with 10 kU of 

Benzonase (Merck Life Science)). The suspension was rotated on a wheel for 45 min at RT (vortex every 

10 min), centrifuged at 12.000 g for 1h at 4°C and the supernatant was transferred into a new Eppendorf 

tube. Proteins were quantified by BCA colorimetric assay (Pierce BCA Protein assay kit) and 1 mg of 

WCE was used for the IP, 8% of which was saved as Input (80 µg to be divided into 4 SDS-PAGE gels). 

The WCE used for the IP was rotated at 4°C overnight with 4µg of anti-NONO/p54 (sc-376865 Santa 

Cruz). G-protein-coupled magnetic beads (Dynabeads, Thermo Fisher Scientific) were saturated with a 

blocking solution (0.5% BSA) and rotated at 4°C overnight on a wheel. The following day, the beads 

were added to the lysate in 1: 100 proportion with the primary antibodies and incubated for 3 hours at 4°C 

on the wheel; the captured complexes were washed 4 times with the RIPA Buffer and then incubated 10 

min at 95° with LSD sample Buffer (2X) supplemented with 100 mM DTT to elute the 
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immunoprecipitated proteins. Equal protein amounts were separated by SDS-PAGE electrophoresis 

(Nupage® Novex® 4-12% Bis-tris Gel 1.5 mm, Thermo Fisher) and transferred on Transfer membrane 

(Immobilon-P, Merck Millipore) by wet-transfer method. Membrane blocking was performed with 10% 

BSA/TBS 0.1% Tween-20 for 1h at RT and followed by overnight incubation with the selected primary 

antibodies and subsequent incubation with the HRP-conjugated secondary antibodies (Cell Signaling 

Technology) for 1h at RT. Proteins were detected by ECL (Bio-Rad). The following primary antibodies 

were used:  

● anti-NONO (SC-376865, 1:500) was purchased from Santa Cruz;  

● anti-ADMA (ASYM24 07-414, 1:1000) and anti-SDMA (SYM10 07-412, 1:2000) were 

purchased from Millipore;  

● anti-MMA (D5A12; 1:1000) was purchased from Cell Signaling Technology 

● anti-PSPC1 (A302-461, 1:5000) were purchased from Bethyl Laboratories 

● anti-GAPDH (Ab9484, 1:3000) was purchased from Abcam. 

 

Quantification of the signal intensity for each band was performed by FiJi software (Schindelin et al, 

2012) and signal intensity was normalized at 4 different levels: 

● quantification of NONO in the Input was normalized on GAPDH (as loading control). 

● quantification of NONO in its IP was normalized on the previous normalized input for each 

condition. 

● R methylation (MMA, ADMA or SDMA) and PSPC1 signals were normalized on the amount of 

normalized NONO in the IP. 

● signal intensity in MS023 condition was normalized on DMSO (untreated). 

 

Data Availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE (Perez-Riverol et al, 2019) partner repository with the dataset identifier PXD027949. 
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Figure legends 

Figure 1. Rationale of hmSEEKER, development of the Machine Learning model and analysis of 

hmSILAC data. A)  Schematic representation of the hmSEEKER workflow upon metabolic labelling 

with stable-isotope encoded Methionine (M). Cells grown in “light” (M0) and “heavy” (M4) media up to 

10 passages are mixed in 1:1 proportion, then proteins are extracted, digested with proteases and analysed 

by LC-MS/MS. MaxQuant detects MS1 peptide peaks in MS raw data. Peaks with an associated MS2 

fragmentation spectrum are processed by the database search engine Andromeda, to obtain peptide and 

PTM identifications. The hmSEEKER software reads MaxQuant peptide identifications and, for each 

methyl-peptide that passes the quality filters, finds its corresponding MS1 peak, then searches the 

corresponding heavy/light counterpart. A peak doublet is defined by the difference in the retention time 

(dRT), the log-transformed intensity ratio (LogRatio) and the deviation between expected and observed 

m/z delta (Mass Error, ME); these 3 parameters are used to predict if the peak pair is a true hmSILAC 

doublet or a false positive. B) Schematic examples of true positive and true negative doublets. Our 

rationale for training the machine learning model was that M-containing peptides produce hmSILAC 

doublets that are indistinguishable from those generated by methyl-peptides. C) Receiving Operator 

Characteristics (ROC) curves obtained by testing the models trained by using either the raw or absolute 

value of the features. D) Representation of the ML model weights with (blue) and without (red) taking the 

absolute values of the features. E) Comparison of the performance of hmSEEKER with (New ML Model) 

and without (Old Cut-offs) the ML predictor (*MCC = Matthews correlation coefficient). F) Summary of 

hmSILAC experiments analysed to produce the orthogonally validated methyl-proteome. A detailed 

description of these experiments is available in Table EV1. G) Composition of the high-confidence 

hmSILAC R-methyl-proteome before (left) and after (right) the implementation of the ML model.  

Figure 2. Integration of the hmSILAC and SILAC data. A) Summary of SILAC experiments used to 

expand the high-confidence methyl-proteome. Only peptides that were significantly regulated at least one 

experiment upon any of the perturbations used were included, based on the assumption that dynamically 

regulated peptides are unlikely to be artefact. A detailed description of these datasets and the linked 

experiments is available in Table EV1. B) Composition of the R-methyl-proteome upon the inclusion of 

the regulated SILAC methyl-peptides, representing the ProMetheusDB. C) Venn diagram comparing R-

methyl-peptides in ProMetheusDB and annotated in Phosphosite Plus. D) Venn diagram comparing R-

methyl-sites identified as mono- or di-methylated. 

Figure 3. Functional analysis of the R-methyl-proteins network. A) Protein clusters identified in the 

Reactome functional interaction network of R-methyl-proteins. Larger nodes represent proteins with 5 or 

more methylation sites (hyper-methylated), while red borders highlight proteins bearing regulated methyl-

sites. B) Top 5 most enriched functional GO terms found for each protein cluster (GO:BP = Gene 

ontology biological processes; GO:CC = gene ontology cellular component; GO:MF = Gene ontology 

molecular function; REAC = Reactome pathways). C) Topology analysis performed on the Reactome 

interaction network reveals an increase in degree and centrality of proteins at increasing numbers of R-

methyl-sites (p-values calculated with Kruskal-Wallis test). 

Figure 4. Functional analysis of dynamically regulated R methylations. A) Topology analysis 

performed on the Reactome network reveals that proteins bearing at least 1 significantly regulated R-

methyl-site have significantly higher degree and network centrality than those without regulated R-

methyl-sites (p-values calculated with Mann–Whitney test). B) Functional enrichment performed on 

proteins bearing at least one regulated R-methyl-site (top) or no regulated R-methyl-sites (bottom). 
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(GO:BP = Gene ontology biological processes; GO:CC = gene ontology cellular component; GO:MF = 

Gene ontology molecular function; REAC = Reactome pathways; CORUM = CORUM protein 

complexes). C) Intersection of PhaSepDB and ProMetheusDB shows that 57% of R-methyl-proteins are 

involved in the process of liquid-liquid phase separation (LLPS). D) Motif analysis performed on 

significantly regulated (top) and unchanging (bottom) R-sites. Logos were generated using the full list of 

identified methyl-sites as background. 

Figure 5. Structural analysis of R-methylated protein regions. A) Counts of R-methyl-sites that occur 

in regions that are annotated as either domains or disordered in the MobiDB database. Counts of Random 

R sites are also included as a comparison. P-value between R-methyl-sites counts and random sites counts 

was calculated with Fisher exact test. B) Counts of R-methyl-sites occurring on specific protein domains, 

as annotated in the InterPro database. Domains linked to RNA-binding proteins such as RNA binding 

domain and K homology domain are the most represented. C) Network obtained from Mechismo, 

showing the methylated proteins in ProMetheusDB and their interaction partners. DNA/RNA and 

chemicals are highlighted in orange and green, respectively. R-methylated proteins are indicated by a blue 

border. D) Crystal structure of NONO (orange) and PSPC1 (green) showing how R256 of NONO, which 

is annotated as methylated in ProMetheusDB, interacts with L222 of PSPC1, suggesting potential role in 

the binding of the two proteins. E) IP of NONO and Western blot (WB) analysis of NONO, its R 

methylation state and PSPC1 co-enrichment, in cells treated with either DMSO (negative control) or with 

the small molecule inhibitor MS023. Increased levels of NONO-MMA and, to a lesser extent, NONO-

SDMA and the PSPC1 co-immunoprecipitated were measured upon MS023 treatment, compared to 

DMSO. Quantification of signal intensity for each band was performed by FiJi software and normalized 

as described in Material & Methods. 

Figure 6. Cross-talk of R methylation and S/T-Y phosphorylation. A) Counts of R-methyl-sites that 

occur in proximity of a phosphorylated site. As a control, counts of randomly sampled R sites from the 

human proteome are shown, and the comparison indicates a significant correlation between methylation 

and phosphorylation (p-values calculated by Fisher’s exact test). B) Functional terms enriched from 

proteins bearing proximal R methylation and S/T-Y phosphorylation sites (GO:BP = Gene ontology 

biological processes; GO:CC = gene ontology cellular component; GO:MF = Gene ontology molecular 

function; REAC = Reactome pathways; KEGG = KEGG pathways; CORUM = CORUM protein 

complexes). C-F) Counts of R-methyl-sites classified based on i) their regulation state upon external 

stimuli and ii) their proximity to S/T-Y phosphorylation sites (p-values calculated by Fisher’s exact test).  

Figure 7. Explorative analysis of non-canonical methylation sites. A) Number of methyl-sites detected 

upon the re-analysis of the Input MS data, grouped by residue. B) Gene Ontology terms, pathways and 

complexes significantly enriched among proteins bearing methylations on non-K/R residues. C) UpSets 

plot representation of the co-occurrence of methylated residues on different proteins. D) MS/MS 

spectrum of the histone H3 27-40 peptide methylated on S28 and T32. 
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