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ABSTRACT
A discrete version of the continuous half-logistic distribution is introduced, which
is based on the minimization of the Cramér distance between the corresponding
continuous and step-wise cumulative distribution functions. The expression of the
probability mass function is derived in an analytic form, and some properties of the
distribution - mainly related to moments and reliability concepts - are discussed. As
for sample estimation, three different techniques are suggested, whose theoretical
and empirical features are examined also through a Monte Carlo simulation study,
comprising several parameter and sample size combinations. A comparison is also
made between the proposed distribution and a discrete version already proposed in
the literature, based on a different rationale, and a main difference is highlighted. A
count regression model is suggested where the response variable follows the discrete
half-logistic distribution and artificial and real data are used to illustrate its use.
Finally, the performance of the proposed distribution over other classical models is
discussed based on a real data set.

KEYWORDS
count distribution; Cramér distance; cumulative distribution function; logistic
distribution; survival data

1. Introduction

The half-logistic distribution is a continuous random distribution supported on R+

obtained by folding the logistic distribution, which is defined on R, about the ori-
gin (Balakrishnan, 1985). Thus, if Y is a random variable (rv) that follows the lo-
gistic distribution with parameter θ > 0, with cumulative distribution function (cdf)

FY (y) = 1
1+e−θy and probability density function (pdf) fY (y) = θe−θy

(1+e−θy)2 , the rv

X = |Y | follows the the half-logistic distribution with the same parameter θ; the
expression of its pdf is

f(x) =
2θe−θx

(1 + e−θx)2
, x ∈ R+, θ ∈ R+; (1)
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whereas for its cdf it is

F (x) =
2

1 + e−θx
− 1 =

2eθx

1 + eθx
− 1 =

eθx − 1

eθx + 1
, x ∈ R+. (2)

The expectation is µ = log 4/θ.
Barbiero and Hitaj (2020) introduced a discrete analogue of the half-logistic distri-

bution defined through (1) or (2), by imposing the matching of the survival function
P (X ≥ x) at each integer value of the support, i.e., defining the probability mass
function (pmf) as p(i) = pi = F (i+ 1)−F (i), i = 0, 1, 2, . . . . The probabilities of this
discrete analogue of the half-logistic distribution are then:

pi = 2
[
1 + eθi

]−1
−2

[
1 + eθ(i+1)

]−1
= 2e−θi/[1+e−θi]−2e−θ(i+1)/[1+e−θ(i+1)], (3)

for x = 0, 1, 2, . . . . The pi’s are a decreasing sequence for any possible value of θ;
therefore, the mode is always 0.

In this paper, we introduce and discuss an alternative discrete version of the con-
tinuous half-logistic distribution by following a different approach, based on the mini-
mization of a discrepancy measure between the continuous cdf of the parent distribu-
tion and the step-wise cdf of the discrete counterpart (Barbiero & Hitaj, 2021). The
distance chosen is the Cramér distance, defined as

d(F,G) =

∫
R
|F (x)−G(x)|2dx, (4)

where F and G are the continuous and step-wise cdf of the continuous random distri-
bution and of its discrete version, respectively. The paper is structured as follows: In
the next section, we provide the general solution to the problem stated above and then
derive in particular the “optimal” discrete counterpart of the half-logistic distribution,
by providing the analytic expression of its pmf. Some properties of the proposed distri-
bution are discussed. The third section is devoted to sample estimation; the maximum
likelihood method, the method of moment and the method of proportion are dis-
cussed and empirically compared through a Monte Carlo simulation study. The fourth
section suggests a regression model where the response variable follows the discrete
half-logistic distribution. The fifth and final section presents an application to a real
dataset, on which the proposed discrete distribution is fitted.

2. Definition of an alternative discrete version of the half-logistic
distribution

If G is a stepwise cdf, supported on the non-negative integers i ∈ {0, 1, 2, . . . }, which
can be seen as a discrete version of a continuous cdf F , supported on the positive
half-line, letting Qi = G(i), the Cramér distance (4) can be rewritten as

d(F,G) =

∞∑
i=0

∫ i+1

i
|F (x)−Qi|2dx.
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By minimizing the function above with respect to the Qi’s, we obtain the “optimal”
values as (Barbiero & Hitaj, 2021)

Qi =

∫ i+1

i
F (x)dx. (5)

In fact, the first-order derivative of d(F,G) with respect to Qi is

dd(F,G)

dQi
= −2

∫ i+1

i
F (x)dx+ 2Qi,

and setting it equal to zero leads to the expression for Qi showed above. The second-

order derivative of d(F,G) with respect to Qi is
d2d(F,G)

dQ2
i

= 2 > 0, which confirms that

the Qi’s in (5) constitute an absolute minimum. Lingering over their expression, it can
be deduced that the optimal Qi’s represent a series of non-decreasing values bounded
between 0 and 1, tending to 1 as i tends to ∞. The corresponding probabilities pi are
obtained by difference as pi = Qi−Qi−1, if i ≥ 1, whereas p0 = Q0. Automatically, the
pi constitute a valid series of probabilities, since pi ≥ 0 for any i ≥ 0 and

∑∞
i=0 pi =

Q0 +
∑∞

i=1(Qi −Qi−1) = limi→∞Qi = 1.
The optimal discrete analogue of the half-logistic distribution has then cumulative

probabilities given by (Barbiero & Hitaj, 2023)

Qi =

∫ i+1

i

(
1− 2

1 + eθx

)
dx = 1− 2

∫ i+1

i
1− eθx

1 + eθx
dx = 1− 2

[
x− log(1 + eθx)

θ

]i+1

i

= 1− 2 +

[
2 log(1 + eθx)

θ

]i+1

i

=
2

θ
log

1 + eθ(i+1)

1 + eθi
− 1, (6)

for i = 0, 1, 2, . . . , so that the probabilities are
p0 = Q0 =

2

θ
log

1 + eθ

2
− 1

pi = Qi −Qi−1 =
2

θ
log

(1 + eθ(i+1))(1 + eθ(i−1))

(1 + eθi)2
, i = 1, 2, . . . .

(7)

It can be proved that p0 < p1 if and only if θ is smaller than a certain value θ∗.

In fact, p0 < p1 if and only if 2
θ log

1+eθ

2 − 1 < 2
θ log

2(1+e2θ)
(1+eθ)2 , which is equivalent to

(1 + eθ)3 < 4eθ/2(1 + e2θ) or, by setting ω = eθ, (1 + ω)3 < 4w0.5(1 + ω2), which is
satisfied for any ω < ω∗ = 8.35241, i.e., for any θ < θ∗ = 2.12255. Conversely, for any
θ > θ∗, p0 > p1, whereas if θ = θ∗, it follows p0 = p1.

It can be also proved that pi > pi+1 for any i ≥ 1. In fact, pi −
pi+1 = 2

θ log
(1+eθ(i+1))3(1+eθ(i−1))
(1+eθi)3(1+eθ(i+2)) , or pi − pi+1 = 2

logω log (1+ωi+1)3(1+ωi−1)
(1+ωi)3(1+ωi+2) . But

(1+ωi+1)3(1+ωi−1)
(1+ωi)3(1+ωi+2) > 1 for any positive integer i and for any ω > 1; in fact, both

the numerator and the denominator of the above expression are positive and, after
some algebraic steps, one derives that (1 + ωi+1)3(1 + ωi−1) − (1 + ωi)3(1 + ωi+2) =
(ω − 1)3ωi−1(ω2i+1 − 1), which is clearly greater than 0 for any ω > 1 and i ≥ 1. So
we have proved the assertion.

As a direct consequence of the two results above, we conclude that the proposed
alternative discrete counterpart of the half-logistic distribution is unimodal with mode
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equal to 1 if θ < θ∗, with mode equal to 0 if θ > θ∗; it is bimodal with modes at 0 and
1 if θ = θ∗. This is a very relevant difference with respect to the model (3). Figure 1
displays, for the integers 0 to 10, the probabilities for the two models when θ = 1/2.
Figure 2 displays for different values of θ the probabilities of the proposed distribution,
from which one can note the different value(s) of the mode.
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Figure 1. Pmf of the proposed discrete counterpart, based on (7) and derived by minimizing the Cramér
distance between cdf, and of the discrete counterpart proposed by Barbiero and Hitaj (2020), (3), based on the

preservation of the survival function; θ = 1/2.
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Figure 2. Pmf of the proposed discrete counterpart for different values of θ. Note that when θ = 3 (> θ∗ =
2.12255) the distribution has a unique mode at 0; for all the other values of θ (which are < θ∗) the mode is 1.

The quantile of level u, xu, 0 < u < 1, can be obtained by computing the gener-

alized inverse of the cumulative probabilities (6). From u = 2
θ log

1+eθ(i+1)

1+eθi we obtain

eθ(1+u)/2 = 1+eθeθi

1+eθi and eθi(eθ − eθ(1+u)/2) = eθ(1+u)/2 − 1, so that

xu =

⌈
1

θ
log

eθ(1+u)/2 − 1

eθ − eθ(1+u)/2

⌉
, (8)

where ⌈·⌉ denotes the ceiling function.
The näıve failure rate function, which for a discrete rv is defined as ri = pi/P (X̃ ≥
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i) = pi/(1−Qi−1), for the discrete half-logistic distribution is thus equal to

ri =
log (1+eθ(i+1))(1+eθ(i−1))

(1+eθi)2(
θ − log 1+eθi

1+eθ(i−1)

) ,

for i = 1, 2, . . . (with the assumption that Q−1 = 0 so that r0 = p0). It is always
bounded between 0 and 1. It can be numerically proved that the failure rate function
is strictly increasing with i and that it tends asymptotically to the value r∞ = eθ−1

eθ .
It can be easily shown that the expectation of the alternative discrete half-logistic

coincides with that of the parent continuous distribution. This is a general property
holding for the discrete counterparts of positive rvs obtained by minimizing the Cramér
distance (4) (Chakraborti, Jardim, & Epprecht, 2019). In fact, denoting the continuous
rv and its optimal counterpart by X and X̃, respectively, and recalling an alternative
formulation of the expected value for positive rvs, one shows that

E(X̃) =

∞∑
i=0

(1−Qi) =

∞∑
i=0

(
1−

∫ i+1

i
F (x)dx

)
=

∫ ∞

0
(1− F (x))dx = E(X).

The second raw moment can be computed as (Chakraborti et al., 2019)

E(X̃2) = 2

∞∑
i=0

i(1−Qi) + E(X̃) = 2

∞∑
i=0

i

(
1− 2

θ
log

1 + eθ(i+1)

1 + eθi
+ 1

)
+ log 4/θ

= 4

∞∑
i=0

i

(
1− 1

θ
log

1 + eθ(i+1)

1 + eθi

)
+ log 4/θ

and then

Var(X̃) = 4

∞∑
i=0

i

(
1− 1

θ
log

1 + eθ(i+1)

1 + eθi

)
+ log 4/θ − (log 4/θ)2.

The values of the variance as a function of the parameter θ can be recovered numeri-
cally, as well as these of the dispersion index DI(X̃) = Var(X̃)/E(X̃). Figure 3 graphs
the dispersion index as a function of the parameter θ. The function is first decreasing,
attaining the value 1 (corresponding to equi-dispersion) at θ1 = 1.14426 and then
reaching its minimum value DImin at θmin = 2.970796; then it is strictly increasing
and asymptotically tends to 1. It should be noted that for θ → ∞ the proposed dis-
crete half-logistic distribution converges to a degenerate rv taking the value 0 with
probability 1.

In a similar manner, one can numerically reconstruct the values of the customary
indexes of skewness (normalized third central moment: E(X̃−E(X̃))3/Var1.5(X̃)), and
kurtosis (normalized fourth central moment: E(X̃ − E(X̃))4/Var2(X̃)) as functions of
θ; the corresponding graphs are depicted in Figure 4. We can notice that the proposed
distribution is always positively skewed; it is leptokurtic (kurtosis greater than 3) for
values of θ external to the interval (θa, θb) = (2.966018, 6.352766); it is platykurtic
for values of θ internal to the same interval. For θ tending to +∞ both skewness
and kurtosis diverge to +∞ (but this is not an interesting case; the rv converges
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Figure 3. Plot of the Dispersion Index as a function of θ.

to a degenerate rv, as mentioned before). For θ tending to 0+, the skewness of the
distribution tends to about 1.540, whereas the kurtosis tends to about 6.584.
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Figure 4. Skewness and kurtosis for the proposed discrete half-logistic model.

The Zero-Modification (ZM) index is defined as ZM = 1 + log(P (X̃) = 0)/E(X̃).
A positive value of ZM indicates zero-inflation, conversely, a negative value of ZM
indicates zero-deflation; a zero value for ZM denotes neither inflation nor deflation
for the zero probability. For the proposed model, it takes the expression ZM = 1 +
θ

log 4 log
[
2
θ log

1+eθ

2 − 1
]
. Figure 5 displays the values of the ZM index as a function

of θ. The function, starting from the limiting value 1 for θ → 0+ is first decreasing,
attaining the value 0 at θ0 = 0.9251821 and then the minimum value −0.2195279 at
θmin = 2.59023. Then, it becomes strictly increasing and tends asymptotically to zero
for θ → ∞. The shape of the ZM index function is very similar to that of the DI
presented in Figure 3.

2.0.1. Infinite divisibility

It can be shown that the proposed parametric distribution is not infinitely divisible.
In fact, it is well-known that a necessary condition for a discrete distribution to be
infinitely divisible is that p21 ≤ 2p0p2 (Steutel & Van Harn, 2003). However, if we let
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Figure 5. Plot of the Zero-Modified index as a function of θ.

θ = 1, we obtain p1 = 0.3871036, p0 = 0.240229, and p2 = 0.215986 and the above
inequality is not satisfied; this implies that the discrete half-logistic is not an infinitely
divisible parametric family.

3. Parameter estimation

Given an iid sample (x1, x2, . . . , xn), which we assume coming from the alternative
discrete half-logistic distribution (7), the unknown parameter θ can be estimated by
resorting to one of the following methods.

3.1. Maximum likelihood method

The maximum likelihood estimate θ̂ML of θ is the value maximizing the log-likelihood
function ℓ(θ;x1, . . . , xn) =

∑n
j=1 log pxj

(θ). The expression of the log-likelihood func-
tion is

ℓ(θ;x1, . . . , xn) = n0 log

(
2

θ
log

1 + eθ

2
− 1

)
+

x(n)∑
i=1

ni log

[
2

θ
log

(1 + eθ(i+1))(1 + eθ(i−1))

(1 + eθi)2

]
where ni, i = 0, 1, . . . , x(n), is the sample absolute frequency of the value i; x(n) =
max {xj ; j = 1, 2, . . . , n}. Due to the complicated expression of ℓ, it is not possible to

derive a closed-form expression of θ̂ML, but any standard optimization routine, such
Newton-Raphson based methods, can be used in order to recover it numerically.

In order to obtain interval estimates for θ, one can consider constructing 100 ×
(1− α)% log-likelihood based confidence intervals (CIs) (see, e.g., Bolker & R Devel-
opment Core Team, 2022) or, more easily, use large-sample approximations for the

100 × (1 − α) two-sided symmetric CIs: θ̂ ∓ z1−α/2

√
Ĵn(θ̂ML)−1/2, where Ĵn(θ̂ML) =

−
[
d2ℓ(θ;x1, . . . , xn)

dθ2

]
θ=θ̂ML

is the Fisher observed information computed at the MLE

of θ.
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3.2. Moment method

We have already seen that the expectation of the proposed discrete model is E(X̃) =
log 4/θ. Then, by equating this expectation to the sample mean x̄ =

∑n
i=1 xi/n, we

derive the moment estimate as θ̂M = log 4/x̄.

3.3. Method of proportion

The method of proportion, suitable for discrete distributions, was probably first con-
ceived in Khan, Khalique, and Abouammoh (1989), where it was applied to the
type I discrete Weibull distribution. We have already seen that the mode of the
proposed discrete model is 1 for any θ < θ∗ = 2.12255 and its probability, accord-

ing to (7), is p1 = 2
θ log

2(1+e2θ)
(1+eθ)2 . By equating this probability to the sample relative

frequency of 1s, which we denote by p̂1, we obtain the following non-linear equa-
tion in θ: 2(1 + e2θ) = eθp̂1/2(1 + eθ)2, which, by setting ω = eθ (ω > 1), becomes
ω2+p̂1/2 − 2ω2 +2ω1+p̂1/2 + ωp̂1/2 − 2 = 0, which can be solved numerically, and possi-

bly provides a (unique?) feasible root ω
(1)
P and a corresponding estimate θ̂

(1)
P = logω

(1)
P .

If we consider the function g1(ω) = ω2+p̂1/2− 2ω2+2ω1+p̂1/2+ωp̂1/2− 2, we have that
g1(1) = 0 and limω→∞ g1(ω) = ∞. Moreover, g′1(ω) = (2 + p̂1/2)ω

1+p̂1/2 − 4ω + 2(1 +
p̂1/2)ω

p̂1/2 + p̂1/2ω
p̂1/2−1, so that g′1(1) = 2p̂1 > 0 (g is strictly increasing at 1). Now,

g1, for ω greater than 1, can have no real roots (in this case, g1 is strictly increasing
over the whole interval (1,+∞)), can have two real roots, or (this is a limit case) a
unique root, which occurs for p̂1 ≈ 0.4602: in this case the unique solution is ω = 1.803
(θ = 0.5895). The former two situations are depicted in Figure 6, which correspond to
the cases p̂1 = 0.5 and p̂1 = 0.45. In the first case, there are no feasible real roots ω
larger than 1, and thus the method of proportion fails in recovering a valid estimate
for θ. In the second case, there are two roots for ω both larger than 1, leading to two
possible valid estimates for θ, namely 1.469882 and 2.203663.

Alternatively, one can consider matching the probability of 0 and the corresponding
sample relative frequency, p̂0. After simple algebraic steps, one obtains the following

equation in ω, 2ω(1+p̂0)/2 − ω − 1 = 0, which yields a root ω
(0)
P and the corresponding

estimate θ̂
(0)
P = logω

(0)
P . Does the solution ω

(0)
P (and then θ̂

(0)
P ) always exist? Being

0 ≤ p̂0 ≤ 1, we can state that the function g0(ω) = 2ω(1+p̂0)/2 −ω− 1 is continuous, it
is equal to 0 at 1 for any feasible value of p̂0, it tends to −∞ when ω tends to ∞ and
its derivative g′0(ω) = (1 + p̂0)ω

(p̂0−1)/2 − 1 is positive for 1 < ω < ω∗ and is equal to

0 at ω∗ =
(

1
p̂0+1

) 2

p̂0−1

> 1, with g0(ω
∗) > 0. Thus ω∗ is an absolute maximum point

and the function takes the value 0 at some point ωP > ω∗; ωP and θP are unique. Due
to this result, it is preferable to base the method of proportion on the matching of the
zero probability with the sample relative frequency of zeros.

3.4. Monte Carlo simulation study

In this section, we have estimated, using B = 50000 Monte Carlo simulations, the
average bias and the root mean squared error of the three estimators (ML, MM, MP -
the latter based on the sample proportion of zeros) of the parameter θ of the discrete
half-logistic distribution; as well as the coverage probability and the coverage length
of ML-based confidence intervals. To run the simulation plan, we have considered θ =
0.05; 0.1; 0.2; 0.5; 1; 2 and sample sizes n = 25; 50; 100. The inverse-transform method
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for discrete distributions (Rubinstein & Kroese, 2016) was implemented to generate
the pseudo-random samples, based on the expression for the quantile function given
in (8). The quantities of interest were estimated by the following expression:

bias(θ̂) =
1

B

B∑
i=1

(θ̂i − θ)

rmse(θ̂) =

√√√√ 1

B

B∑
i=1

(θ̂i − θ)2

CLθ(n) =
1

B

B∑
i=1

θU,i − θL,i

CPθ(n) =
1

B

B∑
i=1

1{θL,i ≤ θ ≤ θU,i}

where θ̂i is the estimate computed on the i-th sample; θU,i and θL,i are the upper and
lower bounds, respectively, of the 95% log-likelihood-based confidence interval for θ
built upon the i-th sample, and 1(·) denotes the indicator function.

The values of the average bias and average root mean squared error along with
those of the coverage probabilities and the coverage lengths are reported in Table 1.

Focusing on the ML, we note that its average bias is always positive. For a fixed
value of θ, it decreases with n and for a fixed n it increases with θ (actually, also the
relative bias increases with θ). The rmse is, as expected, a decreasing function of n,
for an assigned value of θ. For a fixed n, the rmse increases with θ (the relative rmse
is just slightly increasing with θ).

As for the MM, we easily note that, if compared to the ML, for any scenario it is
characterized by a positive but (slightly) smaller bias but also shows a (slightly) larger
rmse.

The MP estimator shows much larger values of rmse than the other two estimators,
especially when θ is smaller: in those cases, in fact, the number of zeros contained in
the sample is closer to zero and then the MP turns out to be inefficient, since it exploits
less sample information. For large values of θ (when the sample typically contains a
significant quote of zeros), the bias of the MP estimator can be smaller than that of
the two competing estimators, but the rmse is still larger.

As for the coverage probabilities, CPθ(n) is always very close to the nominal 95%,
even for the smallest sample size here examined (n = 25); some discrepancies (with
either over or under-coverage) can be detected for θ = 2. The average length CLθ(n),
as expected, decreases with n for a fixed value of θ; it increases with θ for a fixed value
of n.

4. Regression

The fact that the expectation of the discrete half-logistic distribution is given by
µ = log 4/θ prompts its use for count regression models. A reparameterization is
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Table 1. Monte Carlo simulation results

n θ
ML MM MP ML MM MP log-likelihood CIs

bias rmse CP CL

25

0.05 0.0015 0.0014 0.1355 0.0091 0.0091 0.1500 0.9495 0.0338
0.1 0.0031 0.0029 0.1137 0.0182 0.0183 0.1494 0.9491 0.0677
0.2 0.0061 0.0058 0.0794 0.0364 0.0367 0.1670 0.9493 0.1356
0.5 0.0159 0.0150 0.0247 0.0925 0.0933 0.2652 0.9489 0.3434
1 0.0358 0.0333 0.0222 0.1949 0.1981 0.4001 0.9495 0.7195
2 0.1055 0.0915 0.0744 0.4763 0.4875 0.6689 0.9447 1.7375

50

0.05 0.0007 0.0007 0.0570 0.0061 0.0062 0.0746 0.9498 0.0235
0.1 0.0015 0.0014 0.0398 0.0123 0.0124 0.0839 0.9499 0.0471
0.2 0.0029 0.0028 0.0174 0.0246 0.0248 0.1156 0.9503 0.0943
0.5 0.0075 0.0071 0.0032 0.0623 0.0630 0.1926 0.9492 0.2384
1 0.0170 0.0160 0.0103 0.1298 0.1327 0.2789 0.9507 0.4956
2 0.0483 0.0427 0.0350 0.3024 0.3145 0.4477 0.9486 1.1445

100

0.05 0.0004 0.0003 0.0198 0.0043 0.0043 0.0421 0.9497 0.0165
0.1 0.0007 0.0007 0.0092 0.0086 0.0086 0.0586 0.9500 0.0330
0.2 0.0015 0.0014 0.0015 0.0171 0.0173 0.0865 0.9500 0.0662
0.5 0.0038 0.0036 0.0016 0.0433 0.0439 0.1368 0.9498 0.1671
1 0.0085 0.0081 0.0056 0.0899 0.0922 0.1958 0.9500 0.3463
2 0.0235 0.0210 0.0171 0.2049 0.2144 0.3093 0.9507 0.7869

suggested, according to which the pmf can be defined as
p0 = Q0 = 2σ log

1 + e1/σ

2
− 1

pi = Qi −Qi−1 = 2σ log
(1 + e(i+1)/σ)(1 + e(i−1)/σ)

(1 + ei/σ)2
,

(9)

where the new parameter σ > 0 corresponds to 1/θ, and then µ = σ log 4. Then σ, by
using a logarithmic link function, can be modelled as

log σ = β0 + β1x1 + β2x2 + · · ·+ βkxk,

or, equivalently,

σ = exp(β0 + β1x1 + β2x2 + · · ·+ βkxk), (10)

where x1, . . . , xk are the k regressors with coefficients β1, . . . , βk and β0 is the intercept.
We recall that the appropriate choice of the link function is based on the domain of
the parameter: here, since σ can take on only positive values, the log-link function is
suitable for this regression model.

Using the re-parameterized pmf of the discrete half-logistic, given in (9), the log-
likelihood function of the discrete half-logistic regression model, based on a sample
yyy = (y1, . . . , yn), is

ℓ(σ) =

n∑
i=1

log pyi
(σi)

with σi = exp(xxxTi βββ), being βββ = (β0, β1, . . . , βk)
T the vector of parameters and

xxxi = (1, xi1, . . . , xik)
T the vector of covariates for the i-th observation. The param-

eter vector βββ can be estimated by maximizing ℓ(σ) with respect to βββ, a task which can
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be performed numerically resorting to some appropriate optimization routine (Bolker
& R Development Core Team, 2022).

After fitting a count regression model, it is essential to consider a diagnostics anal-
ysis to investigate its appropriateness (see, e.g., Feng, Li, & Sadeghpour, 2020, for
a review of diagnostic tools for count regression). Given that the response is dis-
crete, it is advised performing a residual analysis on the basis of the randomised
quantile residuals, as developed by Dunn and Smyth (1996) and used in many other
studies (e.g., Klakattawi, Vinciotti, and Yu 2018). In particular, we let ei = Φ−1(ui),
i = 1, . . . , n, where Φ(·) is the quantile function of the standard normal distribution and
ui is a uniform random variable on the interval (ai, bi] = (limy→y−

i
F (y; σ̂i), F (yi; σ̂i)] ≈

[F (yi−1; σ̂i), F (yi; σ̂i)]. These residuals follow the standard normal distribution, apart
from the sampling variability in σ̂i. Hence, the validity of a discrete half-logistic re-
gression model can be assessed using goodness-of-fit investigations of the normality of
the residuals, such as Q-Q plots and normality tests.

4.1. A simulation study

We illustrate the count regression model above by a simple simulation study. We
considered two independent covariates, X1 ∼ N(0, 1) and X2 ∼ Uniform(0, 10). We
assumed the regression parameters to take values βββ = (β0, β1, β2) = (0.5, 0.75,−0.25).
Then, we sampled n values (x1i, x2i), i = 1, . . . , n, of the covariates and drew the
corresponding responses yi from a discrete half-logistic distribution whose parameter
σi is calculated as in Equation (10).

Estimation of β0, β1 and β2 is carried out by resorting to ML estimation, imple-
mented by the function mle2 within the R package bbmle, using the Nelder-Mead
optimization routine. Table 2 reports the estimates of the parameters, averaged over
1, 000 Monte Carlo runs, together with the average bias and the root mean squared
error (rmse); the average length of the 95% log-likelihood based confidence intervals
for σ is also reported.

When the results given in Table 2 are examined, one concludes that the estimated
biases are near the zero for all sample sizes and decreasing with n in absolute value at
least for β0 (for the other two parameters, it doesn’t occur, but this is plausibly due
to the sampling error); the rmse’s decrease with n, as one should have expected; anal-
ogously for the average lengths of the confidence intervals. These results empirically
show that the MLEs of the parameters of the discrete half-logistic regression model
are asymptotically unbiased and consistent.

4.2. Data set 1: badhealth

We consider a dataset coming from the German Health Survey and available in the
COUNT package (Hilbe, 2016), with the name of badhealth, under the R programming
language (R Core Team, 2023). The response variable is the number of visits to doctors
during 1998. Two predictors are considered: an indicator variable representing patients
claiming to be in bad health (1) or not (0), and the age of the patient. The response
variable ranges from 0 to 40 visits and has a sample mean of 2.3532 and variance of
11.9818, suggesting overdispersion relative to Poisson regression.

The summary results of the discrete half-logistic regression (reported in Table 3)
if compared to the findings in Klakattawi et al. (2018), related to Poisson, discrete
Weibull and negative binomial regressions, highlight how the proposed regression
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Table 2. Monte Carlo simulation results for a discrete half-
logistic regression model

n parameter mle bias rmse length

25
β0 0.4329 -0.0671 0.4517 1.7364
β1 0.7668 0.0168 0.3034 1.111
β2 -0.2590 -0.0090 0.0981 0.3690

50
β0 0.4832 -0.0168 0.2843 1.1282
β1 0.7483 -0.0017 0.1842 0.7155
β2 -0.2558 -0.0058 0.0616 0.2437

100
β0 0.4849 -0.0151 0.1964 0.7748
β1 0.7468 -0.0032 0.1190 0.4828
β2 -0.2502 -0.0002 0.0411 0.1649

200
β0 0.4962 -0.0038 0.1422 0.5372
β1 0.7472 -0.0028 0.0910 0.3341
β2 -0.2509 -0.0009 0.0306 0.1144

β
^

0
β
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1
β
^
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−
0
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0

.5
1
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Figure 8. Monte Carlo distribution of the MLEs of the coefficients for the simulated regression model with

the response variable following the discrete half-logistic distribution; n = 100.
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Table 3. Summary results from the re-

gression model fitted to the the bad health

data (n = 1127, p = 3)

Parameter Estimate (s.e.)

intercept (β0) 0.1002 (0.0920)
sex (β1) 1.0576 (0.0864)
age (β1) 0.0083 (0.0024)

Deviance = −2ℓmax 4727.62

AIC = 2p− 2ℓmax 4733.62

BIC = p lnn− 2ℓmax 4748.70

Table 4. Summary statistics for the variables of

strikes data set (n = 108)

Variables Min Median Max

strikes (response) 0 5 18
output (explanatory) −0.140 0.000 0.086

model, though far superior to Poisson regression, provides worse results than the latter
two, which are, however, two-parameter distributions and thus more flexible. The AIC
statistic for the discrete-half logistic model equals 4733.62, whereas for the Poisson
regression model it is 5638.552, for the Negative Binomial regression model 4475.285
and for the discrete Weibull regression model 4474.973.

4.3. Data set 2: StrikeNb

The data set is available in the Ecdat package under the name StrikeNb and is
originally reported in Croissant and Graves (2022). The data set StrikeNb reports the
contract strikes in the U.S. manufacturing industries from 1968 to 1976 (n = 108). The
number of strikes (strikes) and lockouts by economic activity (output) are defined
as the response and explanatory variable, respectively. Table 4 shows the descriptive
summary of these variables. The percentage of zeros in observed response variable
is 4.63. Also, this data set indicates an over-dispersion problem with the index of
dispersion 2.685.

The regression model which relates the number of strikes to the unique covariate is
based on the equation σi = exp(β0 + β1output). We show the estimated parameters
and summarize the fitted model in Table 5. We note that fitting the response values
without taking into account of the covariate, would lead to an estimate of σ equal
to σ̂ = 3.720414, which, by the way, is very close to the mean of the predicted σ̂i
by the regression model (ˆ̄σi = 3.715634); the deviance is 569.5 for the null model
and 564.4545 for the model with the covariate, whose AIC is 568.4545. The Poisson
regression model provides a deviance equal to 626.565 and anAIC equal to 630.565; the
negative binomial model a deviance equal to 563.682 and an AIC equal to 569.682 (see,
for example, Jornsatian & Bodhisuwan, 2022).

Figure 9 displays the observed and theoretical frequencies for the strikes’ counts. Fig-
ure 10 displays the QQ-plot of the randomised quantile residuals versus the standard
normal quantiles, from which one can conclude that the distribution of the randomised
residuals matches the normal distribution.
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Table 5. Summary results from the regression model

fitted to the the strikes data

Parameter Mean (s.e.) 95% CI

intercept (β0) 1.308(0.079) (1.157, 1.469)
output (β1) 3.430(1.503) (0.446, 6.349)

Deviance = −2ℓmax 564.45

AIC = 2p− 2ℓmax 568.45

BIC = p lnn− 2ℓmax 573.82
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Figure 9. Observed and fitted frequencies for the strikes data set under the regression model with the discrete

half-logistic distribution.
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Figure 10. QQ-plot of the randomised quantile residuals versus the standard normal quantiles (strikes data

set).
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Table 6. Distribution of number of outbreaks of

strikes, from Ridout and Besbeas (2004)

count observed frequency theoretical frequency

0 46 51.39
1 76 69.69
2 24 25.61
3 9 7.01

≥ 4 1 2.30

total 156 156

5. Real data illustration

We consider the dataset presented in Ridout and Besbeas (2004) and reported here in
Table 6. For these data, the sample mean is x̄ = 0.9936 and the sample variance s2X =
0.7419 (so the data result under-dispersed). Fitting the data through the alternative
half-logistic might be plausible, since there is a mode at 1. The MLE of θ results equal
to 1.424 (which, by the way, is a parameter value inducing under-dispersion, recall
Figure 3) and using this estimate we reconstructed the theoretical frequencies, which
are displayed in the last column of Table 6. Pooling the last two counts (3 and 4), we
calculated the usual chi-squared statistics, X2 =

∑3
i=0(ni − n̂i)

2/n̂i, where ni and n̂i

are the observed and theoretical frequencies of the count i; its value is 1.2896. Under the
null hypothesis that the data come from the proposed distribution, the X2 statistic
asymptotically tends to be distributed as a chi-squared with 2 degrees of freedom;
the approximate p-value of the chi-squared test is therefore 0.5247 and indicates a
more than satisfactory fit of the model. The maximum value of the log-likelihood
function is −188.104; the AIC value is 378.208. All these results, if compared to those
of the statistical models analyzed in Chakraborty and Gupta (2015), highlight that the
proposed alternative discrete half-logistic distribution has a superior goodness-of-fit.

For the sake of completeness, let us also consider the two other estimation methods
discussed in the third section. The moment method provides θ̂M = 1.3952. The method
of proportion, if based on the the matching between sample frequency and probability
of 1, is not able to provide a feasible estimate of θ; in fact, the value p̂1 = n1/n =
0.4872 cannot be attained by p1, which is bounded from above by 0.4602. If we base
the method of proportion on the matching of frequency and probability of 0, being

p̂0 = 0.2949, we obtain θ̂
(0)
P = 1.2539, which is slightly smaller than the estimates

derived through the moment and maximum likelihood methods.

6. Final remarks

We introduced and discussed the main properties and inferential issues of a discrete
analogue of the continuous half-logistic distribution, focusing in particular on the shape
of its pmf, on its moments, and on sample estimation, also suggesting a count regression
model where the response variable follows this new distribution. The discussion on
these theoretical features is supported by applications on real data sets. A possible
extension or generalization of this discrete distribution can be conceived, in order to
make it more flexible and apt to catch the features present in real data, by introducing
an additional parameter. The cdf of this extension can be then defined by resorting to
the exponentiation of the one-parameter cdf (Lee, Famoye, & Alzaatreh, 2013), letting
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the cumulative probabilities be equal to

Qi =

[
2

θ
log

(1 + eθ(i+1))

(1 + eθi)
− 1

]α
, (11)

with α > 0 being the additional parameter. Introducing α allows the pmf correspond-
ing to (11) to exhibit different shapes and in particular allows the mode to take on val-
ues different from 0 and 1 as occurs with the simple discrete half-logistic distribution;
see Figure 11, where all the 12 combinations (θ, α) originated from θ ∈ {1, 1/2, 1/4}
and α ∈ {1/2, 1, 2, 3} are considered. A deeper analysis of the count distribution in (11)
can be the object of future research.
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Figure 11. Pmf of a possible generalized discrete half-logistic rv, based on Eq. (11).
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