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Abstract  

Obstructive sleep apnea (OSA) is a very common sleep-related breathing disorder. The onset and 

progression of OSA are often linked with severe cardiovascular and metabolic comorbidities. At the 

same time, given the increasing prevalence of OSA, novel methods to screen OSA and its follow-up 

are needed. Untargeted metabolic profiling of OSA patients and healthy controls was planned to 

capture a snapshot of urinary metabolites and potential biomarkers using the gas chromatography-mass 

spectrometry (GC-MS) method. Polysomnography (PSG) confirmed severe OSA patients with AHI 

index ≥30 were considered for urine sample collection. The sample size was constituted of OSA (n=36) 

and healthy controls (n=36). Metabolite extraction and derivatization were performed and analysed by 

using GC-MS. The obtained data set was statistically analysed using univariate and multivariate 

analysis. The Orthogonal partial least-squares discriminant analysis (OPLS-DA) was performed to 

screen differential metabolites between OSA patients and healthy controls. The metabolomic analysis 

revealed a total of 143 significantly altered metabolites of interest. Biomarker analysis allows for the 

creation a list of putative urinary biomarkers, including GABA, malic acid, glutamic acid, epichoric 

acid etc., with an accuracy of 99.8% to 100% for OSA screening. Subsequently, pathway analysis 

revealed that related biochemical pathways like the tricarboxylic acid cycle (TCA), 

glutamate/glutamine, amino acid and fatty acid metabolism, that are significantly interlinked with these 

metabolic biomarkers, can play a crucial role in the pathogenesis of OSA. This study paves the way to 

undertake mass screening in a larger population to identify specific and reliable biomarkers. 

Keywords: Sleep Disorder, Urinary Biomarkers, Metabolomics, Gas Chromatography-Mass 

Spectrometry. 
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Introduction  

Obstructive Sleep Apnea (OSA) is a widespread sleep-related disorder which involves recurrent 

reduction or complete cessation of breathing activity during sleep due to intermittent collapse of the 

upper airway. The overall prevalence in the population ranges from 9-38%, affecting significantly more 

men than women [1]. There is an increased recognition that the prevalence of OSA is increasing 

globally [2]. OSA is well-recognized as an independent and confounding risk factor for several clinical 

disorders, including cardiovascular diseases, systemic hypertension, stroke and metabolic disorders 

[3,4,5,6]. A new study reported that OSA coexists in 30% of patients with insomnia [7,8]. Therefore, 

the rising OSA also contributes to the growing number of patients with various disorders. However, at 

the same time, OSA largely remains undiagnosed in many patients [9].  

The diagnosis of OSA is based on the apnea-hypopnea index (AHI) i.e., basically a combined average 

number of apnea (cessation of breathing) and hypopnea (reduction of breathing) episodes occurring per 

hour of sleep. In general, the threshold value of AHI is categorized as mild (5–15), moderate (15–30), 

or severe (30 or higher) events/hr [10]. Keeping in view of the increasing global burden of OSA, a 

reliable and convenient method that can faithfully detect OSA expansively and could indicate the 

disease progression towards a particular metabolic syndrome would be very useful. The gold standard 

of OSA diagnosis is polysomnography (PSG) which dictates that the diagnosis and management of 

OSA require overnight hospital stay, complex data analysis and interpretations [11,12]. Despite its 

utility in the clinic there is an incessant need for newer methods which could be used to screen a larger 

population to estimate the precise prevalence of the disease so that the data could be utilized to provide 

the health care solution to the larger patient’s cohort.  

The OSA is a characteristic feature of metabolic syndrome and a risk factor for the number of associated 

metabolic complications. However, the contributory and causative factors leading to metabolic 

syndromes in OSA remained largely uncertain. Although, OSA has been known to be associated with 



obesity and excess accumulation of triglycerides, the exact relationship between obesity with OSA is 

obscure. OSA is a secondary cause of hypertension and is independently associated with target-organ 

damage in hypertensive patients. However, OSA remains largely underdiagnosed and undertreated 

[13].  

Performing metabolomics to find biomarkers for diseases is an upcoming field which has been utilised 

to profile metabolites in OSA earlier [14,15]. Innovative approaches like metabolomics are a new 

discipline, and there is a need to unearth metabolite-based biomarkers. In that way, We are the first of 

compare the urinary metabolome of severe OSA patients and control subjects to revealed the urinary 

based non-invasive biomarkers.   

Here we report the usage of GC-MS for comprehensive analysis of urinary metabolites in OSA. We 

report different classes of metabolites, such as fatty acids, carbohydrates, amino acids and steroids. By 

performing univariate and multivariate analysis, we prepared a catalogue of metabolites that differ 

significantly in OSA with respect to healthy volunteers. We further delve into an analysis of potential 

biomarkers and significantly altered metabolic pathways, which could be potentially useful in 

understanding the underlying pathophysiology of OSA. 

Materials and Methods 

Reagents:  Alkane standard contains C10 , and all even n-alkanes from C20 to C40, 50 mg/l in n-heptane 

was procured from Supelco (Supelco inc., Bellefonte, PA, USA). Methoxamine and Pyridine were 

acquired from Sigma (Sigma Aldrich, St. Louis, MO, USA). N-Methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA)+ 1% TMCS was purchased from Thermo (Thermo Fischer 

Scientific, MA, USA). Acetonitrile used as extraction solvent was obtained from Merck (Fairfield, OH, 

USA). Urease was purchased from Sigma (Sigma Aldrich, St. Louis, MO, USA).  

Samples: The Case-control study was performed by collecting urine samples from OPD visiting 

patients at King Georges Medical University and Midland hospital, Lucknow, from February 2021 to 



March 2022. The institutional ethical committee approved the study (ref. code:104th ECM II B-FS/P1) 

and consent forms are obtained from all the study subjects. After polysomnography and questionnaires 

based assessments, mid-stream urine was collected in the morning from all the subjects. After settling 

for approximately 10 min, the supernatant was collected in a 2 mL tube and placed at -80ºC until use. 

For the sample collection, there were no nutritional or any other limitations. The selection criteria are 

based on questionnaires (for both groups) and clinical diagnosis (polysomnography of OSA group 

only). A total of 36 cases of OSA patients with a mean age of 49.5±12.7 years were enrolled before 

starting any treatment. In addition, 36 Control were included with a mean age of 38.6±3.6 years in this 

study as volunteers for comparison of metabolomics profiling (Table 1).  

Metabolite extraction: Before extraction, samples were stored at room temperature for thawing and 

50µL of urine sample was mixed with 100µL of urease solution (10 mg/mL). After adding urease to 

urine samples, samples were incubated at 37ºC in a water bath for 30 minutes. After that samples were 

stored on ice for cooling then 500µL ACN was added. Each sample was vortexed for 30 seconds, the 

mixture was allowed to settle for 10 min and centrifuged at 8000×g at 4ºC for 10 min to allow proteins 

precipitation. Labconco CentriVap system (Labconco, Kansas City, MO, USA) was used to 

concentrate and dry the metabolite extracts. Then the supernatant was collected and lyophilized under 

vacuum using Labconco CentriVap system. Subsequently, dried samples were methoxymated in 30µL 

of metoxyamine solution (20mg/mL in pyridine) and then stored at 40ºC for 30 min. After that 70µL 

of MSTFA+1%TMCS was added and stored at 60ºC for 1 hour. Then derivatized samples were 

transferred to a vial for GC-MS analysis. 

Gas chromatography Mass Spectrometry: Trace 1300/TSQ 3000 Gas Chromatography-Mass 

Spectrometer (Thermo Fischer Scientific, MA, USA) was used for metabolomic data acquisition. For 

GC-MS/MS analysis, 1µL of derivatized samples were injected into a Thermo TRACE 1300 series gas 

chromatography system coupled with TSQ 8000 series mass analyzer equipped with a TriPLUS 100 

auto sampler. The separation was achieved using a Trace GOLD TG-5MS column (Thermo Scientific) 



with diameter of 0.25 mm, stationary phase film thickness of 0.25 µm and length of 30 m. The initial 

temperature of the oven was 50 °C for 1 min; temperature was increased to 100°C at rate of 6 °C per 

min, then to 200 °C with the ramp of 4 °C/min and finally to 280 °C at the rate of 20 °C which was 

held constant for 3 min. The transfer line, ion source and injection port temperature were 250, 250, and 

200 °C, respectively. Helium was used as carrier gas and Argon was used as collision    gas. Samples 

were injected in splitless mode and carrier flow rate was set to 1 mL/min. All the samples were run on 

full scan mode (50-650 amu) and raw data obtained were collected for further analysis. The alkane 

standard was run at the beginning of the batch run, and at the end of the batch run as a retention index 

standard for RI calibration in GC MS analysis (Mohit et. al. frontiers).  

Data Processing and metabolite identification   MS Dial version 4.80 was employed for peaks 

analysis, intensities extraction and annotation as previously reported by Misra et al. [16]. Peaks 

annotation was achieved through MS-DIAL using an in-house library. In analysis parameters, we have 

used MS-Dial parameters such as Mass range scan (50-650 Da), peak detection (mass peak height 1000 

amplitude), deconvolution parameters (sigma window value 0.5 and EI spectra cut off 10 amplitude). 

Identification used retention time setting (used retention index file present in supplementary data and 

alkane index type) and in identification setting use Fiehn library and retention index tolerance 20 and 

retention time tolerance of 0.5 min. The m/z tolerance 0.5 Da and the EI similarity and identification 

score cut off was 70%. The metabolite annotation and assignment of the EI-MS spectra followed the 

metabolomics standards initiative guidelines (Sansone et al., 2007) [17]. Metabolites were annotated 

at Level 2, and the identification was based on the spectral database using a match factor > 70%. 

Furthermore, the identified metabolites were also referred to the Human Metabolome Database 

(HMDB) (http://www.Hmdb.ca) and previous references published. All annotated data were 

normalized through sum, cube root transformed and pareto scaled to get best normal distribution.  After 

that statistically analyzed through multivariate and univariate approaches using the open-source 

software Metaboanalyst 5.0 (Pang et al., 2021) [18]. 



In particular, the Volcano plot was used for univariate analysis using a fold change of 1.5 and a P value 

≤ 0.05, whereas the Principal component analysis (PCA) and the Orthogonal Partial Least Square 

Discriminant Analysis (OPLS-DA) were used for multivariate analysis. The OPLS-DA model was 

validated through the permutation test setting 20 as permutation.  

Results: 

Differentially accumulated metabolites in the urine of OSA patients reflect changes in host 

metabolism: A case-control untargeted metabolomics study was carried out in an equal number of 

OSA patients and healthy controls. All the patients included in this study were classified as severe OSA 

patients based on PSG report (AHI≥30 events/hour) combined with standard questionnaire-based 

assessment (Table 1). 

Untargeted Metabolomics using MS-Dial revealed a total of 198 common annotated metabolites in the 

urine samples, mainly belonging to the classes of the carbohydrates, amino acids, organic acids and 

nucleosides.  

Univariate analysis, we performed T-test and volcano plot between control and OSA patients. Total 

142 significantly altered metabolites were identified (p-value <0.05), and the top 75 metabolites were 

represented as a Heat map (Figure 1 A). The t-stat value revealed 79 out of 142 were significantly up-

accumulated (negative t-stat), whereas the remaining 63 metabolites were down-accumulated (positive 

t stat value) in OSA patients (Table 2). Further, we performed volcano plot analysis to identify most 

altered metabolites in OSA patients (p-value <0.05 and Fold change 2.0). Results of volcano plot 

analysis identified total 71 metabolites have significantly higher whereas 61 metabolites have lower 

accumulation in OSA patients (Figure 1B) (Supplementary data). 

Urinary metabolic signature in severe OSA patients: The PCA analysis carried out on control and 

OSA patients pointed out a clear separation between the two groups. The separation, achieved by virtue 

of the first two PCs (PC1 vs PC2) highlighted that PC-1 explained the 29.6% of the total variance, 



whereas PC2 has 13.4% (Fig. 2A). In addition, the loadings plot highlighted that PC1 was mainly 

dominated by 2-deoxy D-glucose, ribonic acid, GABA, D-malic acid whereas PC2 by putrescine, 

uracil, itaconic acid and glycine (Supplementary data). 

Further, we used OPLS-DA analysis to determine the metabolites contributing to the discrimination 

between control and OSA groups. The OPLS-DA analysis also showed discriminatory clustering 

among controls and OSA. (Figure 2B). The OPLS-DA derived loadings variable importance in the 

projection (VIP) scores revealed that more than 75 metabolites with a VIP score higher than 1 that 

contributed to group separation. We identified representative top 30 metabolites with highest VIP 

scores contributing in discriminating between control and OSA groups (Figure 2C). Further, we 

performed OPLS-DA model overview and permutation test to check the predictive accuracy of study 

model. The value of R2Y is 0.991, and Q2 is 0.981 showing the goodness of fit and prediction (p-value 

<0.01). Additionally, R2Y and Q2 scores indicate significant urinary metabolite level alteration 

between control and OSA groups (Figure 2D). 

Analysis of potential biomarkers: We further performed automated multivariate ROC curve based 

exploratory analysis for important feature identification and performance evaluation. Support vector 

machines (SVMs) with 2 latent variables of PLSDA were utilized in ROC curves analysis. In this 

analysis, as the number of metabolites were increased AUROC also reached near perfect. SVM with 5 

metabolites has good AUROC (0.996, 95% CI= 0.938-1) and increasing number of metabolites up to 

10 increased AUROC (0.999, 95%CI=0.988-1). Further increasing the number of metabolites from 15 

to 100 AUROC achieved on their perfect value (1, 95% CI=1-1) (Figure 3A). In predictive accuracy 

analysis, increasing number of metabolites correlates with predictive accuracy of the model. In SVM 

model, predictive accuracy reaches at its perfect on selecting 50 features (Figure 3B). By performing 

these analyses, we were able to mark top 25 predictive biomarker in OSA with their selected frequency. 

All 25 predictive biomarker of OSA were reported identified as significantly altered in T-test and log 

2-fold change analysis (p-value <0.05) (Figure 3C).  



Metabolite enrichment and Pathway analysis: Metabolic pathway analysis (MetPA) was used to 

understand the significantly activated metabolic pathways. In pathway analysis, we identified 10 most 

impacted metabolic pathways in OSA patients (Impact >0.3 and p-value <0.05). The results of pathway 

analysis were presented through bubble plot, where each bubble corresponds to one metabolic pathway, 

whereas the bubble size and colour are representative of enrichment and more significant alterations, 

respectively (Figure 4). Five out of the 10 most impacted pathways were upregulated, whereas 5 were 

downregulated. In particular, in OSA patients the  tyrosine metabolism, histidine metabolism, pentose 

and glucuronate interconversion, cysteine and methionine metabolism, starch and sucrose metabolism 

were up accumulated. On the contrary; TCA cycle, amino acid (glycine, serine, threonine, Alanine, 

aspartate glutamine and glutamate) metabolism, aromatic amino acid biosynthesis were 

downregulated. 

Discussion  

Questionnaire-based assessment combined with PSG remains the gold standard as a diagnostic tool for 

diagnosing OSA. There has been a steady rise in the incidence of OSA, resulting in the need for a 

robust biochemical assay that could be utilized for its mass screening (R). There is also an unmet need 

for a biochemical and non-invasive marker that can indicate the severity of OSA. In recent times, the 

advent of metabolomics is becoming a method of choice that can potentially provide the underlying 

metabolite status in patients compared to controls [15,19]. The approach to unearthing diagnostic 

biomarkers using Metabolomics is fast becoming a promising strategy to identify specific metabolites 

as sensitive, specific and predictive biomarkers [20,21].   

Healthy controls and severe OSA patients exhibit marked physiological differences [22]. In an early 

study from our group has also shown significant changes in plasma samples of OSA patients that are 

validated statistically [23]. The present study offers a comparative snapshot of healthy controls' 



metabolic profiles compared to severe OSA patients. Analysing the host's urinary metabolites, which 

reflect the metabolic alteration, can be used as a surrogate for pathophysiological changes.  

Targeted Metabolomics has been employed to investigate urinary metabolic signatures in OSA. 

However, the present study allows us to fully scan urine samples and develop a novel biomarker panel. 

Multivariate PCA and OPLS-DA are used to identify the discriminant metabolites between the case 

and control groups. As we screened severe OSA patients in this study, we identified several metabolites 

linked to metabolic comorbidity and mental health. Another pathway revealed by analysis for top 

enriched and impacted metabolic mechanisms was glutamine and glutamate metabolism. Collectively, 

it is well established that glutamate and γ-aminobutyric acid (GABA) is a major excitatory and 

inhibitory neurotransmitter that acts as crucial intermediate in the brain's cellular metabolism, 

influencing the circadian rhythm cycle in sleep-wake pattern [24]. Glutamate is the metabolic precursor 

of GABA; alteration in glutamate and GABA metabolism may play important roles in controlling 

cortical excitability [25]. Low GABA and high glutamate in the insular cortex have been correlated 

with cardiovascular regulation in patients with OSA [26]. In the present study, the glutamate metabolic 

pathway was positively associated with the severity of OSA subjects, validating the role of glutamate 

and GABA metabolism in OSA. Alterations in GABA and glutamate levels trigger the regulation of 

one another and brain activity, further significantly associated with depression and anxiety in OSA 

patients. 

It has been known that alterations in the levels of certain metabolites related to fatty acid, carbohydrate 

and amino acid metabolism were associated with the incidence of OSA [27]. Again, the alterations in 

several amino acid metabolism in our study reflect the expected pathophysiology of severe OSA and 

other OSA-induced metabolic disorders. Several conditions are associated with OSA, such as insulin 

resistance, visceral fat deposition, and dyslipidaemia, and other conditions closely related to OSA, such 

as obesity and reduced sleep duration [28]. Excessive lipid storage is usually linked to obesity, and fatty 

acids become an alternative energy substrate in place of glucose, resulting in reduced synthesis action. 



In this study, levels of several fatty acids were found to be changed palmitic acid, and epicholic acid 

were highly increased in the urine sample of severe OSA patients, indicating that these fatty acids were 

the primary source of energy and may be associated with fat deposition in OSA induced obese 

condition.   

Indeed, low levels of physical activity are known to be associated with an increased occurrence of OSA 

and cardiometabolic risk [29]. The physical idleness leads to obesity which is a common factor in the 

pathogenesis of metabolic syndrome and OSA. There is a profound significance of metabolic 

alterations and perturbations in obese subjects making them more prone to develop OSA [30]. 

Although, advanced LC-MS techniques were used to identify lipid biomarkers, the characterization of 

other metabolites remained under exploration. Our study revealed the metabolic changes resulting in 

the modulation of pathways such as galactose metabolism, amino acid metabolism, pentose and 

gluconate interconversions and TCA cycles. 

The involvement of integrated metabolomics with TCA cycle in OSA's pathogenesis has not been 

studied much. The intermittent hypoxia condition in OSA leads to the impairment in TCA cycle, and 

oxidative phosphorylation flowed by the overproduction of reactive oxygen species (ROS) leads to 

dysfunctional immunometabolism [31]. Hypoxia-induced activation of a reverse tricarboxylic acid 

cycle (rTCA) with reductive glutamine metabolism provides precursor molecules for de 

novo lipogenesis [32]. It is hypothesized that OSA causes the feeding of electrons into an inefficient 

respiratory chain, making the physiology susceptible to increase ROS by providing mitochondria-

derived substrate for gluconeogenesis [33].  

The biomarker analysis results identified metabolites potentially involved in the altered metabolic 

pathways. Hence, key metabolites of these altered pathways could be exploited as a biomarker for OSA. 

Our study also revealed the use of GC-MS/MS-based untargeted metabolomic profiling as an effective 

analytical tool to illustrate metabolomic profiles in OSA. Biomarker identification and ROC curve 

analysis showed that the combination of amino acid and glycerophospholipids could effectively 



discriminate OSA patients from healthy controls. These metabolites showed promising sensitivity 

and/or specificity, which indicates that these metabolites might be useful biomarkers in monitoring and 

detecting OSA.  
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Figure Legends: 

Figure 1: (A) Heat Map of top 75 differential features identified through metabolomics analysis on 

comparision of OSA and Healthy volunteers. Red colour is representative of higher accumulation of 

metabolites in respective group whereas blue colour shows the trend of lower accumulation. (B) 

Volcano plot reveals substantial differences between the metabolomic profiles of OSA patients and 

non-OSA patients. Coloured area of volcano plot emphasizes metabolites with p-value of less than 0.05 

and Fold Change of greater than 2.0. Red colour indicates up accumulation while blue colour indicates 

lower accumulation. 

Figure 2: Figure 5.7: Multivariate exploratory analysis of urine samples. (A) Score plot of PCA 

model for OSA samples. (B) Two-dimensional OPLS-DA score plots further increase discrimination 

between the OSA (green) and Healthy individual (Red) groups. (C) Model overview of the OPLS-DA 

model for the provided dataset. It shows the R2X, R2Y, and Q2 coefficients for the groups; (D) 

Permutation test representing the observed and cross-validated R2Y=0.991 and Q2=0.981 coefficients. 

(E) Variable importance in projection (VIP) scores indicating the top 30 metabolites contributing to 

the separation of OSA patients metabolic profile with Non-OSA.   

Figure 3: Biomarker Identification. (A) Model performance evaluation for each of the six SVM 

classifiers with a growing number of metabolites. ROC curve of each SVM using the average cross-

validation efficiency with the confidence interval of 95%. (B) Predictive accuracy of study model with 

number of different metabolite features. (C) Identified top 25 variables for classification of OSA 

patients to healthy volunteers. 

Figure 4: The bubble plot representing significantly altered metabolic pathways in OSA patients. 
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Table-1: Intergroup Comparison of Study Characteristics between Case & Control group. The 

significant differences were found between case and control groups for the characteristics age (older in 

case group, p<0.001), weight (heavier in case group, p<0.001), neck size (thicker in case group, 

p<0.001), BMI (all the cases of BMI>35 kg/m2 belong to the case group, p<0.001), hypertension (all 

the hypertensive cases belong to the case group, p<0.001), High risk of OSA (all the higher risk belong 

to case group, p<0.001), EPWORTH STOP BANG (case group contained all the high change of dosing, 

p<0.001) and BERLINE STOP BANG (All the cases at higher risk, p<0.001) 

Variable Case group Control group p-value 

Age years 49.5 ± 12.7 38.6±3.6 <0.001* 

Height cm 170.2 ± 7.7 169.3 ± 6.5 0.605 

Weight kg 93.5 ± 15.3 73.6±11.2 <0.001* 

Neck Size cm 43.3 ± 1.6 33.5±1.7 <0.001* 

Gender 
Male 36 (100%) 36 (100%) 

NA 
Female 0 (0.0%) 0 (0.0%) 

BMI (>= 35 kg/m2) N (%) 14 (38.9%) 0 (0.0%) <0.001* 

Hypertension N (%) 7 (19.4%) 0 (0.0%) 0.006 

High Risk of OSA N (%) 36 (100%) 0 (0.0%) 
<0.001* 

EPWORTH 

would never dose 0 (0.0%) 29 (82.9%) 

<0.001* 

slight change of 

dosing 
0 (0.0%) 6 (17.1%) 

moderate change 

of dosing 
0 (0.0%) 0 (0.0%) 

high change of 

dosing 
36 (100%) 0 (0.0%) 

BERLINE (High Risk) N (%) 36 (100%) 0 (0.0%) <0.001* 

 

 

 

 

 

 

 

 



Table 2. List of metabolites have more then 2 fold up and down accumulation in OSA. 

Metabolites Up accumulated in OSA  

Metabolite Name FC log2(FC) p.ajusted -log10(p) 

Melibiose 796.25 9.6371 1.80E-20 19.745 

4-Hydroxyphenylacetic acid 231.52 7.855 3.85E-15 14.414 

Orotic acid 111.41 6.7997 5.05E-16 15.297 

Xylose 95.688 6.5803 2.14E-26 25.67 

trisaccharide 92.46 6.5308 4.79E-05 4.3201 

L-Homocarnosine 85.337 6.4151 0.002106 2.6765 

3-Methoxy-4-hydroxymandelate 82.775 6.3711 2.83E-11 10.548 

L-Tryptophan 55.808 5.8024 1.51E-08 7.8209 

coniferin 52.618 5.7175 7.57E-16 15.121 

3-epicholic acid 51.05 5.6738 0.00336 2.4737 

Cystathionine 44.99 5.4915 9.35E-17 16.029 

Sinapic acid 37.151 5.2153 1.55E-08 7.8098 

5-Hydroxy tryptamine 35.138 5.135 9.53E-13 12.021 

D-Galactose 28.557 4.8357 1.75E-25 24.756 

L-Glucose 27.934 4.8039 0.005605 2.2514 

noradrenaline 26.888 4.7489 0.026946 1.5695 

D-Ribose 5-phosphate 25.17 4.6536 1.31E-16 15.882 

N-Acetyl glucosamine 23.694 4.5665 1.82E-07 6.7411 

Fructose 20.531 4.3597 1.95E-15 14.71 

Cysteamine 16.984 4.0861 3.61E-05 4.4424 

N-Acetyl-D-glucosamine 16.154 4.0138 5.38E-14 13.269 

Cytosine 13.787 3.7852 0.000877 3.0571 

palmitic acid 12.464 3.6397 2.44E-15 14.613 

Xylitol 12.39 3.6311 1.38E-10 9.8604 

Xanthine 10.108 3.3374 1.53E-10 9.815 

ferulic acid 9.8097 3.2942 1.97E-05 4.7051 

DOPA 8.3047 3.0539 1.77E-09 8.7514 

5-Dehydroquinic acid 7.8593 2.9744 1.34E-10 9.8736 

4-hydroxyhippuric acid 7.3625 2.8802 0.007349 2.1338 

L-Arginine 7.0466 2.8169 9.48E-09 8.023 

Anthranilic acid 6.8208 2.7699 6.94E-06 5.1584 

DL-Homocystine 6.4895 2.6981 7.56E-10 9.1213 

heptadecanoic acid 6.1081 2.6107 0.000243 3.6135 

glucose-1-phosphate 5.9974 2.5843 1.06E-08 7.9758 

2-Coumaric acid 5.7832 2.5319 0.002351 2.6288 

D-Lyxose 5.4425 2.4443 8.04E-12 11.095 

Tryptamine 5.2003 2.3786 1.34E-10 9.8736 

Adenosine 5.0082 2.3243 0.034102 1.4672 

phytosphingosine 4.8165 2.268 3.55E-07 6.4502 

L-Sorbose 4.5047 2.1714 9.48E-09 8.023 

mucic acid 4.4482 2.1532 0.001171 2.9314 

p-hydroxylphenyllactic acid 4.2222 2.078 3.31E-11 10.481 

Glucarate 4.0666 2.0238 0.00628 2.202 



D-Galactosamine 3.8541 1.9464 1.81E-07 6.7425 

2-Amino isobutyric acid 3.8514 1.9454 1.63E-10 9.7884 

L-Methionine 3.7569 1.9095 0.005826 2.2346 

Sucrose 3.6068 1.8507 2.73E-05 4.5641 

Cadaverine 3.4421 1.7833 6.24E-05 4.2047 

Pantothenic acid 3.3268 1.7341 1.42E-07 6.8483 

D-Xylose 3.2225 1.6882 5.94E-08 7.2265 

Fructose 3.0607 1.6138 6.85E-09 8.1645 

Galactitol 3.0504 1.609 0.000818 3.0874 

L-Serine 3.0219 1.5955 0.021295 1.6717 

α-Lactose 3.0185 1.5938 4.79E-05 4.3201 

Tagatose 2.9871 1.5788 0.000475 3.3235 

Asparagine 2.9179 1.5449 0.000236 3.627 

Dopamine 2.8843 1.5282 2.01E-05 4.6975 

Lysine 2.836 1.5039 1.68E-05 4.7758 

Histamine 2.779 1.4746 7.90E-06 5.1026 

Maltose 2.7151 1.441 0.008608 2.0651 

Myristic acid 2.6333 1.3969 0.000131 3.8811 

1-Methyl Histidine 2.6071 1.3824 0.000106 3.9743 

Hippuric acid 2.5255 1.3366 0.004532 2.3437 

Shikimic acid 2.5056 1.3252 0.010761 1.9682 

Xanthurenic acid 2.3754 1.2482 4.12E-07 6.3852 

Tyramine 2.3435 1.2287 6.15E-05 4.2115 

Homovanillic acid 2.2528 1.1717 0.007148 2.1458 

D-Mannitol 2.1321 1.0923 0.001255 2.9014 

5-Keto-D-Gluconic acid 2.1059 1.0745 0.027984 1.5531 

 

Metabolites Down accumulated in OSA  

Metabolite Name FC log2(FC) p.ajusted -log10(p) 

Sebacic acid 0.44505 -1.1679 0.001075 2.9686 

Uridine 5'-diphospho-N-acetylglucosamine 0.42604 -1.2309 0.003283 2.4837 

L-Ascorbic acid 0.41624 -1.2645 0.04152 1.3817 

Glutamine 0.39373 -1.3447 0.000191 3.7194 

Glucosaminic acid 0.39082 -1.3554 0.012816 1.8922 

Suberic acid 0.34361 -1.5412 1.23E-05 4.9097 

Threose 0.32408 -1.6256 0.000713 3.147 

β-Ketoadipic acid 0.31015 -1.6889 2.31E-05 4.6358 

Mannose 0.28347 -1.8188 0.001229 2.9105 

Rhamnose 0.27699 -1.8521 0.00072 3.1428 

5-hydroxymethyl-2-furoic acid 0.27471 -1.864 0.002998 2.5232 

Allose 0.24933 -2.0038 0.000101 3.9946 

Diethanolamine 0.18586 -2.4277 0.005537 2.2567 

2-Hydroxyglutaric acid 0.17046 -2.5525 1.88E-05 4.7265 

Glucosamine 0.15637 -2.677 0.000168 3.7737 

Threonic acid 0.15271 -2.7111 0.001739 2.7598 

Glutamic acid 0.14587 -2.7772 2.12E-10 9.6743 



L-5-Oxoproline 0.14287 -2.8072 0.04278 1.3688 

Adipic acid 0.13816 -2.8556 0.010423 1.982 

2-Aminoethanol 0.12557 -2.9935 0.019788 1.7036 

Lauric acid 0.10888 -3.1992 7.06E-07 6.1511 

Maleic acid 0.099277 -3.3324 1.42E-07 6.8483 

D-Ribose 0.096738 -3.3698 0.003136 2.5036 

D-Arabinose 0.087692 -3.5114 2.05E-09 8.6881 

Aconitic acid 0.083117 -3.5887 6.64E-13 12.178 

Erythritol 0.082806 -3.5941 0.007349 2.1338 

Ribonic acid 0.081425 -3.6184 8.75E-18 17.058 

Itaconic acid 0.073281 -3.7704 9.79E-08 7.0094 

3,4-Dihydroxyphenylacetic acid 0.073282 -3.7704 0.000913 3.0397 

Fumaric acid 0.07192 -3.7975 0.001743 2.7588 

D-Xylulose 0.070873 -3.8186 5.59E-05 4.2529 

2-Oxoglutaric acid 0.065997 -3.9215 5.21E-11 10.283 

6-Aminohexanoic acid 0.063712 -3.9723 4.68E-05 4.3294 

hexaric acid 0.058923 -4.085 0.00809 2.0921 

4-aminophenol 0.050177 -4.3168 0.001477 2.8306 

oxoproline 0.047635 -4.3918 0.008359 2.0778 

D-Malic acid 0.042961 -4.5408 6.64E-13 12.178 

D-Ribulose 0.040557 -4.6239 2.13E-10 9.6711 

2-Deoxy-D-glucose 0.032073 -4.9625 1.49E-22 21.826 

Citramalic acid 0.030889 -5.0168 6.36E-07 6.1965 

L-Norleucine 0.030626 -5.0291 2.78E-14 13.555 

5-Aminopentanoic acid 0.029048 -5.1054 0.000322 3.4916 

4-Hydroxy-3-methoxymandelic acid 0.028502 -5.1328 8.07E-08 7.0933 

Threonic acid 0.028264 -5.1449 3.78E-11 10.422 

Pyroglutamic acid 0.028085 -5.1541 0.000818 3.0874 

erythronic acid 0.021986 -5.5073 7.56E-10 9.1213 

Creatinine 0.020881 -5.5817 1.93E-16 15.714 

Uridine 0.017883 -5.8053 0.010423 1.982 

GABA 0.014812 -6.0771 2.19E-15 14.659 

5-Methylcytosine 0.014783 -6.0799 1.68E-05 4.7758 

Hypotaurine 0.011465 -6.4466 3.44E-15 14.464 

Tyrosine 0.010223 -6.612 0.005102 2.2922 

Pyrogallol 0.007247 -7.1085 0.000295 3.5298 

L-Aspartic acid 0.006131 -7.3497 5.15E-08 7.2883 

Galacturonic acid 0.005524 -7.5 1.76E-06 5.7553 

Glycine 0.004688 -7.7368 1.42E-07 6.8483 

Uric acid 0.004257 -7.8759 0.005863 2.2319 

putrescine 0.002612 -8.5805 1.68E-08 7.775 

Isocitric acid 0.000895 -10.125 9.78E-07 6.0099 

Indoxyl sulfate 0.00042 -11.218 1.21E-05 4.919 

pyrrole-2-carboxylic acid 0.000304 -11.686 2.31E-05 4.6358 

 


