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ABSTRACT. We introduce a new multi-scale embedding method modifying the local self-

consistent field approach originally proposed for quantum mechanics/molecular mechanics 

techniques. The strategy enables to treat chemically relevant regions of macromolecules through 

usual methods of quantum chemistry, while describing the rest of the systems by means of frozen 

extremely localized molecular orbitals transferred from properly constructed libraries. Test 

calculations showed the correct functioning and the reliability of the approach, thus anticipating 

possible applications to different fields of physical chemistry. 
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The treatment of large biological molecules at a fully quantum mechanical level has been one of 

the most important and difficult challenges of theoretical chemistry for a long time. Over the 

years, different research groups have proposed several techniques that can be generally 

subdivided into two main categories: fragmentation1 and embedding methods2-5.  

The former basically consist in subdividing the large molecules under exam into smaller 

subunits, performing quantum mechanical calculations on the resulting subsystems and finally 

recombining the results to obtain approximate wave functions, electron densities or only energy 

values for the target molecules. In this category, it worth mentioning the divide & conquer 

strategy,6-12 the molecular fractionation with conjugated caps (MFCC) technique,13-17 the 

molecular tailoring approach,18-20 the kernel energy method (KEM),21-24 the ONIOM 

technique,25-28 the well-known fragment molecular orbital (FMO) approach29-33 and all those 

strategies based on the transferability principle, such as the molecular electron density LEGO 

assembler (MEDLA) technique,34,35 the adjustable density matrix assembler (ADMA) method36-

38 and the recently proposed approach based on libraries of extremely localized molecular 

orbitals (ELMOs)39-41.   

Conversely, the latter group of techniques relies on the observation that, in most of the cases, 

only a small part of the system under investigation determines the properties of interest of a very 

large molecule (e.g., active sites of a proteins). For this reason, in the embedding methods only 

the chemically relevant region of the molecule is treated at a fully quantum mechanical level, 

while the rest of the system is seen as a source of slight perturbation and is generally treated at a 

lower level of theory. Of course, in this context, a prominent place is occupied by the quantum 

mechanics/molecular mechanics (QM/MM) strategies,2-4,42,43 which are particularly successful 

for the computational study of biological molecules. Other important embedding techniques are 



 4 

the frozen-density embedding theory (FDET),5,44-46 which can be considered as a modified 

density functional theory (DFT) approach where a frozen electron density describes the 

surrounding and constraints the optimization of the electron density for the crucial region of the 

investigated system, and the effective group potentials  (EGP) method,47,48 which extends the 

successful concept of atomic effective core potentials (ECP) to groups of atoms in order to 

significantly reduce the computational cost of ab initio calculations. 

In this Letter, we propose a new fully quantum mechanical, multi-scale, embedding strategy 

(hereafter indicated as QM/ELMO technique) in which only the chemically/biologically 

important part of very large macromolecules is treated by means of traditional methods of 

quantum chemistry, while the rest of the system is described by means of transferred and frozen 

extremely localized molecular orbitals (ELMOs).49-51 ELMOs are molecular orbitals strictly 

localized on small molecular units and, due to their extreme localization, they can be reliably 

transferred from molecule to molecule and considered as plausible electronic building blocks to 

reconstruct wave functions and electron densities of large systems.39,40 On the basis of these 

features, libraries of ELMOs that cover all the elementary units of the twenty natural amino acids 

in all their possible protonation states have been recently constructed with the final goal of 

instantaneously obtaining approximate wave functions of polypeptides and proteins41 (see also 

Supporting Information for more details).  

Therefore, to develop the novel QM/ELMO method, we have properly modified the local self-

consistent field (LSCF) approach,52-55 which was successfully used in QM/MM methods to 

describe frontier regions by means of strictly localized bond orbitals, and we have combined it 

with the recently constructed databanks of ELMOs.39-41 
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In the new approach we subdivide the system under exam into two quantum subunits, which we 

will hereafter indicate as QM and ELMO regions. As shown in Figure 1, in the general case of 

connected subsystems, the QM and ELMO regions obviously share only the frontier atoms {𝑌𝑖} 

and, consequently, the basis functions centered on the nuclei of those atoms. 

 

Figure 1. Schematic representation of the QM and ELMO regions in QM/ELMO calculations. 

The ELMO subsystem is described through extremely localized molecular orbitals, which are 

transferred from the available ELMO libraries and kept frozen during the computations. It is very 

important to note that, unlike the original LSCF QM/MM approach, where all the frozen strictly 

localized molecular orbitals for the frontier region are expanded on atomic orbitals of the QM 

region, in this case the frozen ELMOs mainly use basis functions belonging to the ELMO 

subsystem and share with the QM part only those atomic orbitals centered on the frontier atoms. 

In other words, for the i-th transferred ELMO, we can write: 

|𝜙𝑖⟩ = ∑ 𝐶𝜈𝑖

𝜈∈𝐸𝐿𝑀𝑂

|𝜒𝜈⟩     (1) 

The previous precaution is fundamental to overcome the linear dependency problem that affects 

the original LSCF QM/MM approach and that would prevent to develop a QM/ELMO method 

applicable to very large systems.  

Given their intrinsic non-orthogonality, the ELMOs are then mutually orthonormalized using the 

Löwdin procedure: 



 6 

|𝜙𝑖
⊥⟩ = ∑ [𝒔−1 2⁄ ]

𝑗𝑖

𝑁𝐸𝐿𝑀𝑂

𝑗=1

|𝜙𝑗⟩ = ∑ 𝐶𝜈𝑖
⊥

𝜈∈𝐸𝐿𝑀𝑂

|𝜒𝜈⟩    (2) 

with 𝒔 as the overlap matrix of the transferred ELMOs {|𝜙𝑖⟩}
𝑖=1
𝑁𝐸𝐿𝑀𝑂 . As well known, the Löwdin 

orthogonalization does not significantly change the starting orbitals and, therefore, it preserves 

the localized nature of the ELMOs to a large extent. Therefore, after the orthogonalization 

procedure, the transferred and frozen molecular orbitals will only slightly delocalize over the 

frontier atoms {𝑌𝑖}, thus further helping in avoiding the linear dependency problems of the 

original LSCF QM/MM method. 

Afterwards, the 𝑀𝑄𝑀 basis functions of the QM region are orthogonalized against the previously 

orthonormalized ELMOs, by removing the projections of the former on the latter. This is 

equivalent to the following transformation: 

�̃� = 𝛘 𝐆     (3) 

where �̃� is the 1 × 𝑀𝑄𝑀 array of the basis functions belonging to the QM region after the 

orthogonalization (i.e., �̃� = [|�̃�1⟩, |�̃�2⟩, … , |�̃�𝑀𝑄𝑀
⟩]), 𝛘 is the 1 × 𝑀 array of the original and 

complete set of basis functions for the system under exam (i.e., 𝛘 = [|𝜒1⟩, |𝜒2⟩, … , |𝜒𝑀⟩]) and 𝐆 

is the 𝑀 × 𝑀𝑄𝑀transformation matrix having elements 

𝐺𝜈𝜇 = [1 − ∑ (𝑆𝜇𝑖)
2

𝑁𝐸𝐿𝑀𝑂

𝑖=1

]

−1/2

 [𝛿𝜈𝜇 − 𝑡𝜈𝜇]      (4) 

with 𝑆𝜇𝑖 as the overlap integral between the original basis function |𝜒𝜇⟩ and the orthogonalized 

ELMO |𝜙𝑖
⊥⟩, 𝛿𝜈𝜇 as the usual Kronecker delta and 𝑡𝜈𝜇 given by the following expression: 
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𝑡𝜈𝜇 = ∑ 𝐶𝜈𝑖
⊥  𝑆𝜇𝑖

𝑁𝐸𝐿𝑀𝑂

𝑖=1

     (5) 

At this point it is worth noting that, by considering only those original basis functions that belong 

to the ELMO region and that are characterized by non-negligible 𝑡𝜈𝜇 values, the size of the 

matrix 𝑮 and of the array 𝝌 might significantly decrease (𝑀′ × 𝑀𝑄𝑀  and 1 × 𝑀′, respectively, 

with 𝑀′ ≪ 𝑀), thus significantly reducing also the computational cost of the preliminary 

orthogonalization step. Actually, for all the QM/ELMO computations discussed in the present 

Letter, the complete set of basis functions were taken into account, but the determination of a 

suitable criterion to select a reduced subset of atomic orbitals will be certainly defined in future 

investigations. The introduction of this criterion will be also beneficial to reduce the CPU time 

associated with the computation of the Fock matrix, which is the current rate-limiting step of the 

QM/ELMO strategy (see discussion below). 

Since the obtained basis functions �̃� are not orthogonal among each other, they are afterwards 

subject to a canonical orthogonalization, namely we have that 

𝛘′ =  �̃� 𝐐    (6) 

where 𝛘′ is the 1 × 𝑀𝑄𝑀  array of the final orthonormal basis functions belonging to the QM 

region (i.e., 𝛘′ = [|𝜒1
′ ⟩, |𝜒1

′ ⟩, … , |𝜒𝑀𝑄𝑀

′ ⟩]) and 𝐐 is the transformation matrix of elements 

𝑄𝑖𝑗 =
�̃�𝑖𝑗

�̃�𝑗
1 2⁄    (7) 

with �̃�𝑖𝑗 as the i-th component of the j-th eigenvector and �̃�𝑗 as the j-th eigenvalue of the matrix 

�̃� of the overlap integrals between the transformed basis functions contained in the array  �̃�. It is 
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worth noting that, unlike the LSCF QM/MM approach, due to the suitable definition of the QM 

and ELMO regions described above, in our case all the eigenvalues of the matrix �̃� are always 

significantly different from zero (i.e., always greater than 10−4). Therefore, as already 

anticipated, linear dependency problems do not exist in the novel QM/ELMO technique and the 

total number of basis functions associated with the QM region remains unchanged.  

The orthogonalization procedure that leads from the original basis functions 𝛘 to the final 

orthogonal basis functions 𝛘′ can be actually summarized like this: 

𝛘′ =  𝛘 𝐁      (8) 

with B as the global 𝑀 × 𝑀𝑄𝑀 transformation matrix, which can be expressed as 

𝐁 = 𝐆 𝐐     (9) 

Now, the new QM/ELMO technique proposed in this Letter basically consists in performing a 

full Hartree-Fock (HF) calculation on a QM subsystem in presence of a frozen set of transferred 

and orthogonalized extremely localized molecular orbitals describing the ELMO region. 

Therefore, in case of a closed-shell QM subunit consisting of 2N electrons, the generic element 

𝐹𝜇′𝜈′
′  of the Fock matrix for the QM region in the orthogonal basis 𝛘′ can be expressed in this 

way: 

𝐹𝜇′𝜈′
′ = ⟨𝜒𝜇

′ |ℎ̂𝑐𝑜𝑟𝑒|𝜒𝑣
′ ⟩ + ∑[2 (𝜒𝜇

′  𝜒𝑣
′ |𝜑𝑖

′ 𝜑𝑖
′) − (𝜒𝜇

′  𝜑𝑖
′|𝜑𝑖

′ 𝜒𝑣
′ )]

𝑁

𝑖=1

+ ∑ [2 (𝜒𝜇
′  𝜒𝑣

′ |𝜙𝑖
⊥ 𝜙𝑖

⊥) − (𝜒𝜇
′  𝜙𝑖

⊥|𝜙𝑖
⊥𝜒𝑣

′ )]

𝑁𝐸𝐿𝑀𝑂

𝑖=1

     (10)  
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where ℎ̂𝑐𝑜𝑟𝑒 is the usual one-electron core Hamiltonian operator, |𝜙𝑖
⊥⟩ is the i-th orthogonalized 

ELMO defined in equation (2) and  |𝜑𝑖
′⟩ is the i-th occupied molecular orbital for the QM part 

expanded on the orthogonal basis functions 𝛘′: 

|𝜑𝑖
′⟩ = ∑ 𝐶𝜇′𝑖

′  |𝜒𝜇
′ ⟩

𝑀𝑄𝑀

𝜇′=1

    (11). 

Explicitly using equations (2) and (11) in equation (10), the expression for the element of the 

Fock matrix of the QM subsystem can be rewritten like this: 

𝐹𝜇′𝜈′
′ = ⟨𝜒𝜇

′ |ℎ̂𝑐𝑜𝑟𝑒|𝜒𝑣
′ ⟩ + ∑  𝑃

𝜆′𝜎′
𝑄𝑀′

[ (𝜒𝜇
′  𝜒𝑣

′ |𝜒𝜎
′  𝜒𝜆

′ ) −
1

2
(𝜒𝜇

′  𝜒𝜆
′ |𝜒𝜎

′  𝜒𝜈
′ )]

𝑀𝑄𝑀

𝜆′ ,𝜎′=1

+ ∑ 𝑃𝜆𝜎
𝐸𝐿𝑀𝑂 [(𝜒𝜇

′  𝜒𝑣
′ |𝜒𝜎 𝜒𝜆) −

1

2
(𝜒𝜇

′  𝜒𝜆|𝜒𝜎  𝜒𝜈
′ )]

𝜆,𝜎∈𝐸𝐿𝑀𝑂

= ℎ𝜇′𝜈′
𝑐𝑜𝑟𝑒 ′ + 𝐹

𝜇′𝜈′
𝑄𝑀′ + 𝐹𝜇′𝜈′

𝐸𝐿𝑀𝑂′    (12)  

where 𝐏𝑄𝑀′ is the one-electron density matrix for the QM region expressed in the orthogonal 

basis 𝛘′, namely 

𝑃
𝜆′𝜎′
𝑄𝑀′

= 2 ∑ 𝐶𝜎′𝑖
′∗  𝐶𝜆′𝑖

′

𝑁

𝑖=1

       (13), 

while 𝐏𝐸𝐿𝑀𝑂  is the one-electron density matrix for the ELMO region expressed in the original 

basis, namely 

𝑃𝜆𝜎
𝐸𝐿𝑀𝑂 = 2 ∑ 𝐶𝜎𝑖

⊥∗ 𝐶𝜆𝑖
⊥

𝑁𝐸𝐿𝑀𝑂

𝑖=1

       (14). 
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As already indicated in the seminal paper of the original LSCF method, the matrix element 𝐹𝜇′𝜈′
′  

given by equation (12) does not change if the basis functions 𝛘′ are transformed back to the basis 

functions 𝛘, provided that the one-electron density matrix is also transformed accordingly. In the 

original basis-set, the element of the Fock matrix for the QM region naively becomes 

𝐹𝜇𝜈 = ⟨𝜒𝜇|ℎ̂𝑐𝑜𝑟𝑒|𝜒𝜈⟩ + ∑  𝑃𝜆𝜎
𝑄𝑀 [ (𝜒𝜇  𝜒𝜈|𝜒𝜎 𝜒𝜆) −

1

2
(𝜒𝜇  𝜒𝜆|𝜒𝜎 𝜒𝜈)]

𝑀

𝜆,𝜎=1

+ ∑ 𝑃𝜆𝜎
𝐸𝐿𝑀𝑂 [(𝜒𝜇  𝜒𝜈|𝜒𝜎 𝜒𝜆) −

1

2
(𝜒𝜇  𝜒𝜆|𝜒𝜎 𝜒𝜈)]

𝜆,𝜎∈𝐸𝐿𝑀𝑂

=  ℎ𝜇𝜈
𝑐𝑜𝑟𝑒 + 𝐹𝜇𝜈

𝑄𝑀 + 𝐹𝜇𝜈
𝐸𝐿𝑀𝑂      (15),  

while the relation existing between the Fock matrix 𝐅′ expressed in the basis 𝛘′ and the Fock 

matrix 𝐅 expressed in the basis 𝛘 is simply 

𝐅′ = 𝐁†𝐅 𝐁    (16) 

with 𝐁 as the transformation matrix defined in equation (9) and 𝐁† its transpose. 

The algorithm of the QM/ELMO method is quite analogous to the one for the original LSCF 

method and it is shown in the flow chart depicted in Figure 2. It is easy to observe that the 

computation of the contribution to the Fock matrix due to the transferred and frozen ELMOs is 

carried out only once before starting the real self-consistent field (SCF) cycle and, afterwards, 

this contribution is kept frozen. Conversely, at each SCF-iteration, only the 𝐅𝑄𝑀  contribution is 

updated and, furthermore, the diagonalization of the Fock matrix is performed on the reduced 

and orthogonal basis-set for the QM region, which allows a reduction of the global 

computational cost. Throughout the SCF procedure, the transferred ELMOs are kept frozen and 
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not polarized by the quantum mechanical part. For this reason, the currently proposed 

QM/ELMO approach can be classified as a multi-scale electrostatic embedding technique. 

 

Figure 2. Flow chart of the QM/ELMO algorithm implemented in the modified version of Gaussian09. 

However, it is also worth noting that, in the current preliminary implementation of the algorithm, 

at each iteration, the Fock matrix 𝐅𝑄𝑀 is initially computed in the space of the complete set of M 
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basis functions for the investigated system. This obviously makes this step the real rate-limiting 

step of the algorithm.  To overcome this drawback we plan to introduce a suitable criterion based 

on equation (5) to select a reduced number of basis functions, which will limit the size of 

𝐅𝑄𝑀and, consequently, will be crucial to further speed up the calculations. 

The algorithm was implemented by modifying the Hartree-Fock routines of the Gaussian09 

quantum chemistry package,56 which was afterwards used also to perform all the quantum 

mechanical calculations described in the paper, including the ONIOM computations that also 

exploit molecular mechanics as lower-level method (see Supporting Information for a complete 

description of all the computational details). 

To test its correct functioning, the new technique was initially applied to model homopeptides 

constituted of 100 serine residues (Ser100) in three different conformations: 𝛼-helix, 𝛽-sheet and 

globular. For each of them, we carried out different QM/ELMO calculations (cc-pVDZ basis-set) 

by gradually increasing the size of the QM region and we compared the obtained absolute 

energies to those resulting from the corresponding full Hartree-Fock/cc-pVDZ computations. 

The collected results are shown in Table 1. Since the transferred ELMOs are kept frozen during 

the calculations, the energy values associated with the QM/ELMO method are systematically 

higher than the Hartree-Fock ones, always leading to positive energy variations (Δ𝐸). The extent 

of the discrepancies decreases when the number of residues in the quantum mechanical region 

increases and it converges to zero when the whole system is treated at Hartree-Fock level. This 

point also confirms that the new strategy is variational and that the HF energy is the lower 

bound. Similar results were obtained also for the 𝛼-helix and 𝛽-sheet conformations of the Trp45 

polypeptide (see Table S1 in the Supporting Information). 
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Table 1. Hartree-Fock energies (𝐸𝐻𝐹) and their differences with respect to the QM/ELMO energies 

(𝛥𝐸𝑄𝑀(𝑁)/𝐸𝐿𝑀𝑂  =  𝐸𝑄𝑀(𝑁)/𝐸𝐿𝑀𝑂  −  𝐸𝐻𝐹), as resulting from the calculations performed on the Ser100 

polypeptide.(a) 

 α-helix β-sheet Globular 

𝐸𝐻𝐹 -32148.9857 -32148.4900 -32147.6523 

Δ𝐸𝑄𝑀(2)/𝐸𝐿𝑀𝑂  13.0062 12.7134 14.1009 

Δ𝐸𝑄𝑀(6)/𝐸𝐿𝑀𝑂  12.4778 12.1953 13.5367 

Δ𝐸𝑄𝑀(10)/𝐸𝐿𝑀𝑂  11.9477 11.6773 12.9783 

Δ𝐸𝑄𝑀(18)/𝐸𝐿𝑀𝑂  10.8862 10.6412 11.8353 

Δ𝐸𝑄𝑀(26)/𝐸𝐿𝑀𝑂  9.8249 9.6048 10.6917 

Δ𝐸𝑄𝑀(50)/𝐸𝐿𝑀𝑂  6.6406 6.4961 7.1958 

Δ𝐸𝑄𝑀(75)/𝐸𝐿𝑀𝑂  3.3297 3.2578 3.6299 

(a) The number of residues (𝑁) included in the QM region for the QM/ELMO calculations are reported in 

parentheses. All the values are expressed in Eh. 

A slight but important difference has been observed for the globular conformation when 

compared to the α-helix and β-sheet ones. In fact, for an equal number of residues treated at fully 

quantum mechanical level, the energy difference with the Hartree-Fock reference value is always 

greater than those observed in the 𝛼-helix and 𝛽-sheet cases (see Table 1). The discrepancy 

between the energy differences decreases when more amino acids are treated at Hartree-Fock 

level. This can be explained by considering that, due to its very compact structure, the globular 

conformation is characterized by a larger number of non-covalent interactions that the transferred 

and frozen ELMOs can only partially describe. This is also the reason why the inclusion of a 
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larger number of residues in the QM subsystem entails larger “corrections” compared to the case 

of the 𝛼-helix and 𝛽-sheet structures. 

To complete the analysis of the results obtained on the considered homopeptides, we also 

evaluated the energy differences between the different conformations, always using the α-helix 

conformer as reference (see Tables S2 and S3 in the Supporting Information for the Ser100 and 

Trp45 polypeptides, respectively). As one should expect, in all cases we observe a systematic 

trend in gradually recovering the Hartree-Fock energy difference between the conformers when 

the number of residues in the QM region increases. However, in this regard, it is also worth 

pointing out that the new QM/ELMO approach, as any other multi-scale embedding technique 

(e.g., QM/MM strategies), was conceived to mainly study local variations in specific regions of 

macromolecules (e.g., conformational changes of a ligand in the binding pocket of an enzyme) 

and not to evaluate energy variations associated with very global conformational changes. 

Finally, in Tables 2 and S4 we also reported the computational costs of the performed 

QM/ELMO calculations. In its current preliminary implementation, the new approach already 

entails a significant reduction in terms of CPU time, mainly because the global Fock matrix is 

diagonalized in the reduced and orthogonal basis-set associated with the QM region. However, 

as already mentioned above, it is also important to note that the computational performances of 

the technique can be further and significantly improved through the introduction of a criterion to 

reduce the size of the basis functions space in which the 𝐅𝑄𝑀  matrix is constructed.  
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Table 2. CPU time associated with the SCF cycles of the Hartree-Fock and QM/ELMO calculations 

performed on the Ser100 homopeptides. The Hartree-Fock times are given in seconds, while the 

QM/ELMO ones are expressed as fraction of the corresponding Hartree-Fock reference value. The 

number of SCF iterations is also reported in parenthesis. 

Method α-helix β-sheet Globular 

Hartree-Fock 390623.4 (20) 328668.5 (21) 439674.1 (15) 

𝑄𝑀(2)/𝐸𝐿𝑀𝑂 0.206 (15) 0.133 (16) 0.307 (16) 

𝑄𝑀(6)/𝐸𝐿𝑀𝑂 0.230 (16) 0.136 (15) 0.337 (17) 

𝑄𝑀(10)/𝐸𝐿𝑀𝑂 0.244 (17) 0.149 (16) 0.364 (17) 

𝑄𝑀(18)/𝐸𝐿𝑀𝑂 0.280 (17) 0.161 (16) 0.481 (17) 

𝑄𝑀(26)/𝐸𝐿𝑀𝑂 0.280 (16) 0.151 (16) 0.558 (19) 

𝑄𝑀(50)/𝐸𝐿𝑀𝑂 0.434 (18) 0.322 (18) 0.658 (18) 

𝑄𝑀(75)/𝐸𝐿𝑀𝑂 0.628 (18) 0.471 (15) 0.871 (19) 

  

After the preliminary test on the correct functioning of the technique, we started assessing the 

capability of the QM/ELMO approach in reproducing protein-ligand interaction energies. To 

accomplish this task we have considered the complex formed by the CFTR Associated Ligand 

(CAL) PDZ domain with the polypeptide iCAL36 (PDB entry: 4E34; see also Figure S2 in the 

Supporting Information).57 Two QM/ELMO calculations (cc-pVDZ basis-set) were performed on 

this complex: i) one with a QM region that includes all the residues of the polypeptide and those 

residues of the PDZ domain forming hydrogen bonds or 𝜋 − 𝜋 interactions with the ligand 

(quantum mechanical region QM1), and ii) one with a larger QM subsystem obtained by adding 

to the region QM1 those residues of the PDZ domain involved in indirect or hydrophobic 

interactions with iCAL36 (quantum mechanical region QM2). The complete list of residues 
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included in the QM regions is given in the Supporting Information. The obtained interaction 

energies (with and without counterpoise correction58 to account for the basis-set superposition 

error (BSSE)) were compared to those obtained at full Hartree-Fock/cc-pVDZ level (benchmark 

values) and to those resulting from different kind of ONIOM calculations, for which we 

exploited the same partitionings adopted in the QM/ELMO computations to define the higher 

and lower level regions. For the ONIOM calculations, the lower level regions were treated both 

at quantum mechanics and molecular mechanics level (see Table 3 and Supporting Information 

for more details). 

Table 3. Interaction energies calculated at Hartree-Fock level (𝐸𝑖𝑛𝑡,𝐻𝐹 , with and without counterpoise 

(CP) correction for BSSE) and their differences with respect to the values obtained through the other 

methods used in this study (Δ𝐸𝑖𝑛𝑡,𝑋 = 𝐸𝑖𝑛𝑡,𝑋 − 𝐸𝑖𝑛𝑡,𝐻𝐹, where 𝑋 indicates the method).(a)  

 QM region 1  QM region 2 

 No CP correction CP correction  No CP correction CP correction 

𝐸𝑖𝑛𝑡,𝐻𝐹 -134.84 -99.65  -134.84 -99.65 

Δ𝐸𝑖𝑛𝑡,𝑄𝑀/𝐸𝐿𝑀𝑂  4.23 2.52  -1.20 -1.39 

Δ𝐸𝑖𝑛𝑡,ONIOM(HF/cc−pVDZ:HF/6−31G) -0.30 //  -1.60 // 

Δ𝐸𝑖𝑛𝑡,ONIOM(HF/cc−pVDZ:HF/3−21G) -6.86 //  0.45 // 

Δ𝐸𝑖𝑛𝑡,ONIOM(HF/cc−pVDZ:UFF,emb) -8.07 //  -50.17 // 

Δ𝐸𝑖𝑛𝑡,ONIOM(HF/cc−pVDZ:UFF)) -31.37 //  6.44 // 

(a) All the energies are expressed in kcal/mol.   

In Table 3 we can observe that the QM/ELMO method provides global interaction energies that 

are in a very good agreement with those resulting from the full Hartree-Fock calculations. 
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Despite the large number of intermolecular contacts (i.e., 8 strong hydrogen bonds and other 

hydrophobic interactions; see Figure S2), discrepancies are in absolute value always lower than 5 

kcal/mol, independently of the chosen QM region and of the introduction of the counterpoise 

correction. Furthermore, and more importantly, it is also worth noting that, using the larger 

quantum mechanical region QM2, the QM/ELMO interaction energies are closer (around 1 

kcal/mol) to the Hartree-Fock ones. Concerning the comparison to ONIOM, it is immediately 

clear that the QM/ELMO strategy gives better results compared to all the performed QM:MM 

ONIOM-type calculations, regardless of the use of electronic embedding. Conversely, a less 

clear trend is observed when the QM:QM’ results are taken into account. For example, 

considering the HF/cc-pVDZ:HF/6-31G case, the ONIOM technique provides a better agreement 

with the Hartree-Fock benchmark when the quantum mechanical region QM1 is considered, 

while the QM/ELMO approach outperforms ONIOM when the larger region QM2 is exploited. 

The opposite behavior is actually observed for the HF/cc-pVDZ:HF/3-21G calculations. 

However, notwithstanding the observed and unavoidable small discrepancies, it is worth 

stressing that the QM/ELMO results are completely comparable to those obtained by means of 

QM:QM’ ONIOM calculations, which further confirms the reliability of the proposed approach. 

Moreover, unlike the ONIOM approach, the novel QM/ELMO method has also the non-

negligible advantage of providing an approximate wave function and electron density for the 

whole system under investigation. Therefore, the obtained QM/ELMO electron distributions and 

the reference Hartree-Fock charge density have been compared point-by-point in the crucial 

region for the protein-ligand interaction by exploiting three different similarity indexes: the 

traditional root-mean-square deviation (RMSD), the real-space R value59 (RSR) and the Walker-

Mezey index35 𝐿(𝜌𝑥 , 𝜌𝑦 , 𝑎, 𝑎′). More details about these similarity descriptors are given in the 
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Supporting Information; here, for the sake of clarity and completeness, it is only worth 

mentioning that complete similarities are observed for values of RMSD, RSR and 𝐿 equal to 0, 0 

and 100, respectively. The obtained values for the similarity indexes are collected in Table 4, 

where, for the sake of comparison, the values associated with the comparison between the 

Hartree-Fock and pure ELMO electron densities are also shown. Both QM/ELMO calculations 

provide electron distributions that are in better agreement with the reference Hartree-Fock one 

compared to the ELMO case. Furthermore, as one should expect, the agreement improves as a 

larger QM subsystem is taken into account in the QM/ELMO calculations. All these aspects are 

also graphically confirmed in Figures 3, where we plotted the three-dimensional differences 

between the ELMO, QM/ELMO and Hartree-Fock charge distributions. For the QM/ELMO 

residual densities there are no relevant differences between the compared electron densities in 

the intermolecular interaction region where important hydrogen bonds are formed (compare 

Figures 3B and 3C to Figure 3A). On the contrary, small residuals start appearing only within the 

subsystem treated at ELMO level in the QM/ELMO computations. Furthermore, in agreement 

with the values of the similarity indexes reported in Table 4, we can also observe that the region 

without electron density residuals clearly expands when a larger QM subsystem is exploited in 

the QM/ELMO calculations (compare Figure 3C to Figure 3B). In light of these results we 

believe that the QM/ELMO approach could be fruitfully exploited in the framework of quantum 

crystallography60-64 for more accurate refinements of crucial regions of protein crystal structures 

(e.g., coupling with the quantum chemistry-based Hirshfeld Atom Refinement technique65,66). 
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Table 4. Values of the similarity indexes corresponding to the comparison of the the Hartree-Fock, 

ELMO and QM/ELMO electron densities in the region of intermolecular interactions for the 

protein:ligand complex.(a)  

 RMSD RSR 𝐿(0.001,10.0) 𝐿(0.001,0.1) 𝐿(0.1,10.0) 

HF Vs. ELMO 0.00212 0.00812 96.09 95.66 98.31 

HF Vs. QM/ELMO (QM1) 0.00153 0.00448 97.67 97.40 99.06 

HF Vs. QM/ELMO (QM2) 0.00115 0.00271 98.52 98.34 99.44 

(a) Acronyms are described in the text. 

 

Figure 3. Three-dimensional residual densities obtained comparing the ELMO, QM/ELMO (QM1) and 

QM/ELMO (QM2) electron distributions to the Hartree-Fock one. The isosurface-values are set to 0.01 

e/bohr3, with positive and negative isosurfaces in blue and red, respectively; in the ELMO case (left 

panel) the “licorice representation” is only used to highlight the region of the most important 

intermolecular contacts, while, for the QM/ELMO comparisons (center and right panels), it is used to 

indicate the QM regions, with the ligand molecule colored in orange and the protein residues in lime 

green. 
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Finally, also to show the potential usefulness of the QM/ELMO approach in the context of drug 

design studies, we have computed the electrostatic potentials associated with the obtained 

Hartree-Fock and the QM/ELMO wave functions for the protein under exam. From visual 

inspections of Figure S3 and from the analyses of the computed root-mean-square deviations 

(see the reported RMSD values in Figure S3), it is possible to observe that, also for the 

electrostatic potentials, the newly developed technique provides results in excellent agreement 

with the Hartree-Fock benchmark. 

To summarize, exploiting the recently constructed libraries of extremely localized molecular 

orbitals and properly modifying the LSCF approach, in this Letter we have proposed a new 

multi-scale electrostatic embedding method that allows the investigation of large biological 

molecules at a fully quantum mechanical level. Preliminary test calculations have shown that the 

new QM/ELMO technique works correctly and provides results in very good agreement with 

those obtained through fully quantum mechanical computations, both in the evaluation of 

intermolecular interaction energies and in the determination of electron density distributions and 

electrostatic potentials. Although further and more detailed test calculations will be necessary to 

completely assess the capabilities of the method and although the technique can be still 

significantly improved (e.g., introduction of criteria to further speed up the SCF iterations and 

treatment of the QM region with DFT or post Hartree-Fock strategies), the obtained results are 

already quite promising and we envisage the future application of the QM/ELMO approach to 

different fields of physical chemistry, such as enzyme catalysis, in silico drug design67,68 and 

structural refinement of biological molecules through the techniques of quantum 

crystallography60-64. 
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