1	Spurious capillary zone electrophoresis pattern in hypercholesterolemic dogs
2	
3	Giulia Mangiagalli, Sara Meazzi, Alessia Giordano, ¹ Silvia Rossi
4	
5	BiEsseA Laboratorio Analisi Veterinarie, Milano, Italy (Mangiagalli, Rossi); Department of
6	Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy (Meazzi,
7	Giordano).
8	
9	¹ Corresponding author: Alessia Giordano, Department of Veterinary Medicine and Animal
10	Science, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.
11	alessia.giordano@unimi.it
12	
13	Running head: Spurious electrophoretic peak in hypercholesterolemic dogs

Page 1 of 21

15	Abstract. Capillary zone electrophoresis (CZE) is a relatively new serum protein
16	electrophoresis (SPE) method with higher resolution than other electrophoretic techniques.
17	Hypercholesterolemic dogs exhibit a peculiar CZE pattern. Specifically, they have a shoulder
18	or peak immediately next to the albumin peak. We investigated the prevalence of this
19	spurious peak in hypercholesterolemic dogs and its correlation with the serum cholesterol
20	concentration. Moreover, possible discrepancies between the CZE and spectrophotometric
21	(bromocresol green method; BCG) albumin concentrations in those animals were evaluated,
22	as well as the accuracy in measuring albumin by a different CZE fractionation system. We
23	retrospectively enrolled 500 hypercholesterolemic and normotriglyceridemic dogs. Each
24	electrophoretic curve was inspected visually to identify a spurious peak (prevalence of
25	68.8%). We chose 120 dogs to further investigate the albumin concentration; CZE albumin
26	was significantly higher than measured using the BCG method. A weak but significant
27	correlation ($r = 0.412$; $p < 0.0001$) was observed between the magnitude of the spurious peak
28	and the serum cholesterol concentration. Finally, the significant difference between CZE and
29	BCG albumin measurement disappeared ($p = 0.92$) when the spurious peak was considered as
30	α1 globulins instead of albumin.

31

32 Keywords: albumin; canine; capillary zone electrophoresis; cholesterol; lipoproteins.

Page 2 of 21

33	Serum protein electrophoresis (SPE) is considered a reference method for the evaluation of
34	serum protein classes (namely albumin, and $\alpha 1$, $\alpha 2$, β , and γ globulins). ²⁶ SPE is used widely
35	in veterinary medicine for research and diagnostic purposes, as well as to monitor treatment.
36	Indeed, variations in protein fraction concentrations, together with an abnormal
37	electrophoretic pattern, can help to identify various pathologic conditions, such as acute and
38	chronic inflammation, infectious diseases, ^{19,43} and neoplasia. ^{17,30} Moreover, it can help to
39	identify immunodeficiencies that are characterized by low levels of immunoglobulins, which
40	usually migrate in β - and γ -globulin regions. ⁸ Furthermore, in canine species, electrophoretic
41	flattening is considered a positive prognostic factor in evaluation of the treatment response in
42	chronic infectious diseases, such as leishmaniasis and ehrlichiosis.8
43	Three electrophoretic methods can be used to evaluate serum proteins: cellulose
44	acetate, agarose gel (AGE), and capillary zone (CZE) electrophoresis. The CZE system is a
45	relatively new technique that has been validated for dogs and cats. ¹⁹ Even though CZE is
46	more expensive than the other methods, it offers some advantages, such as higher
47	resolution, ¹⁷ high degree of automation, and similar sensitivity to AGE in detecting
48	monoclonal peaks. ²¹
49	In SPE, albumin is the most prominent peak on the anodal side of the
50	electrophoretogram,40 and its concentration can be quantified by converting its electrophoretic
51	percentage from the total protein concentration measured by the biuret method. ³² However,
52	albumin concentration can also be measured using spectrophotometric methods. Indeed, the
53	bromocresol green (BCG) method is a dye-binding method that is used routinely to measure
54	the albumin concentration in both human ²⁰ and veterinary medicine. ¹⁶ Nevertheless, the BCG
55	dye is not an albumin-specific reagent; thus, it can also bind other serum proteins, such as the
56	acute-phase proteins, ²⁰ leading to false overestimation of the albumin concentration, which
57	seems more severe in hypoalbuminemic dogs and horses.35 Overestimation of the albumin

Page 3 of 21

58	concentration was reported as well using the BCG method in heparinized canine plasma
59	samples because of fibrinogen binding. ⁴⁴ In human medicine, overestimation has been
60	reported for the CZE albumin concentration compared to bromocresol purple and
61	immunoturbidimetric methods. ^{14,32} However, there are no similar reports in veterinary
62	medicine, probably because of the difficulties to run nephelometry and immunoturbidimetry,
63	which are considered the gold standard methods for serum albumin measurement. ^{14,32}
64	Hypoalbuminemia is a common type of dysproteinemia, ²⁶ and the accuracy of serum albumin
65	concentration measurement is pivotal, especially to allow recognition and severity assessment
66	of hypoalbuminemia, as well as for monitoring purposes.
67	Cholesterol, the main sterol in animals, can be obtained from a diet based on animal
68	products or it can be synthesized, mostly by the liver, endocrine glands, and other tissues.
69	Pure cholesterol and cholesterol esters are hydrophobic and insoluble in plasma, and they
70	must be transported as lipoproteins. Plasma lipoproteins are very large molecules composed
71	of lipids, phospholipids, and proteins, ⁶ and they can be classified according to their
72	electrophoretic mobility (α - β lipoprotein regions) or, more frequently, according to their
73	chemical and physical aspects (density, size, composition) determined by ultracentrifugation,
74	in which case, they are classified as chylomicrons, very low-density lipoproteins (VLDL),
75	low-density lipoproteins (LDL), and high-density lipoproteins (HDL). ²⁶ Chylomicrons are the
76	main transporters of dietary lipids and serum triglycerides; VLDL, LDL, and HDL mainly
77	contain cholesterol and are involved in the metabolism of endogenously produced lipids. ^{4,45,47}
78	Some diseases (e.g., nephrotic syndrome) or comorbidities (e.g., cholestasis associated
79	with inflammation) can lead to concurrent hypoalbuminemia and hypercholesterolemia.
80	Indeed, it is pivotal to recognize any possible interference of hypercholesterolemia with the
81	serum albumin concentration measurement to avoid clinical misclassification. ¹¹
82	Hypercholesterolemia, as well as the presence of different lipoprotein profiles, have been

Page 4 of 21

83	investigated in dogs. ^{45,47,49} Primary hyperlipidemia is reported in various breeds, such as
84	Briards, ⁴⁶ Rough Collies, ²² Shetland Sheepdogs, ³⁹ and Miniature Schnauzers. ^{38,48} Endocrine
85	disorders, such as hypothyroidism, ³⁷ diabetes mellitus, and hyperadrenocorticism, ¹⁸ as well as
86	other diseases, such as protein-losing nephropathy, ²⁴ cholestasis, ¹² and obesity, ^{10,31} are among
87	the most frequent conditions associated with hypercholesterolemia.
88	During routine analyses in our diagnostic laboratory (BiEsseA Laboratorio Analisi
89	Veterinarie, Milano, Italy), we observed a shoulder on the right side of the albumin peak
90	(cathodal side) of serum CZE in dogs with hypercholesterolemia. To our knowledge, this
91	electrophoretic pattern has not been reported previously in veterinary medicine. In human
92	medicine, a cathodic shoulder on the albumin peak using CZE is reported with severe
93	hyperlipidemia, especially with hypertriglyceridemia. ^{7,36} In veterinary medicine, interference
94	as a result of hypertriglyceridemia has been reported as a cathodic peak in the α 2-globulin
95	region. ²⁸ The inclusion of this spurious peak within the albumin fraction could cause albumin
96	overestimation and consequent underestimation of the globulin fractions, with increased risk
97	of clinical misclassification.
98	Our aims were 1) to assess the prevalence of this spurious electrophoretic pattern in
99	hypercholesterolemic dogs, 2) to compare CZE and BCG albumin measurement in
100	hypercholesterolemic dogs, 3) to investigate correlation between the observed spurious CZE
101	peak and serum cholesterol concentration, and 4) to propose an electrophoretic fractionation
102	system to improve the accuracy of CZE albumin measurement in hypercholesterolemic dogs.
103	Materials and methods
104	Sample selection
105	We retrospectively searched the database of the commercial veterinary laboratory BiEsseA
106	Laboratorio Analisi Veterinarie, from November 2019 to March 2021, for 500 canine serum
107	samples with the following inclusion criteria:

Page 5 of 21

108	-	Availability of serum biochemistry, performed using an automated spectrophotometer
109		(AU 480; Beckman Coulter) and including the following parameters: urea, creatinine,
110		calcium, potassium, sodium, chloride, glucose, alkaline phosphatase, aspartate
111		aminotransferase, alanine aminotransferase, creatine kinase, lactate dehydrogenase,
112		gamma-glutamyl transferase, amylase, lipase, total bilirubin, total protein (TP), albumin,
113		globulin, albumin:globulin ratio, cholesterol, triglycerides, C-reactive protein.
114	-	Serum triglyceride concentration (measured using the glycerol phosphate oxidase
115		method) within-the-laboratory RIs (WRIs; 0.34-1.24 mmol/L).
116	-	Serum cholesterol concentration (measured using the cholesterol esterase method) higher
117		than the laboratory upper RI limit (URL; >7.51 mmol/L).
118	-	SPE evaluated on fresh serum samples and performed by a CZE automated analyzer
119		(Minicap; Sebia) using reagents provided by the manufacturer (Protein(E) 6 kit) with
120		standard setting.
121		As part of our QA procedure, we monitored the reproducibility of results from 2
122	ref	erence canine serum samples obtained from routine submissions and stored properly (with
123	noi	rmal and pathologic electrophoretic patterns, respectively) run together with routine
124	sar	nples. ¹ Specifically, instrument analytical performance was judged as acceptable if CVs
125	we	re <10% for each electrophoretic fraction. The CZE curves were inspected visually by 2
126	qua	alified operators (S Rossi, ECVCP Diplomate; G Mangiagalli, ECVCP resident) for a
127	spi	rious peak on the cathodic side of the albumin peak. Both operators were blinded to the
128	sar	nple cholesterol concentration. The spurious peak might appear as an inflection point of
129	vai	iable amplitude and shape (Fig. 1).
130		From the 500 samples selected, we selected 120 more-recent cases with the spurious peak
131	(gr	oup A) and used them to assess the correlation between the magnitude of the spurious
132	alb	umin peak and the concentration of cholesterol, as well as for comparison with BCG-

Page 6 of 21

- 133 measured albumin. As well, we selected 50 serum samples from a control population (group
- 134 B), which included normocholesterolemic and normotryglyceridemic dogs selected in the
- 135 same retrospective period as group A, according to the following inclusion criteria:
- 136 Availability of the same serum biochemical parameters reported for group A.
- 137 Serum triglycerides concentration WRI 0.34–1.24 mmol/L.
- 138 Serum cholesterol concentration WRI 3.62-7.51 mmol/L.
- 139 SPE performed using the same CZE automated analyzer as for group A. CZE curves
- 140 were visually evaluated for the absence of the spurious peak.
- 141 For each serum sample, TP values (measured using the biuret method) and BCG albumin,
- 142 globulins (calculated by subtraction of albumin from TP), cholesterol, and triglycerides were
- 143 retrieved from the biochemistry panel. The concentrations (g/L) of the spurious
- 144 electrophoretic peak (when present) and of the other protein fractions were calculated using
- 145 the electrophoresis software (Phoresis; Sebia) based on the TP concentration and the
- 146 percentage of each fraction, calculated as the area under the curve (AUC) of each
- 147 electrophoretic peak. Then, each electrophoretic curve from group A was modified manually
- 148 to separate the spurious peak from the major albumin peak at the inflection point. The
- 149 spurious peak was then included in the α 1-globulin fraction, and the AUC of the modified
- 150 albumin and the combined spurious peak plus α1-globulin fractions were automatically
- 151 recalculated by the CZE instrument software.

152 Statistical analysis

- 153 Statistical analyses were performed (Analyse-it v.4.97 software) in Excel (v.2209, Microsoft).
- 154 The distribution of data (cholesterol and albumin measured with both BCG and CZE) was
- assessed through the Shapiro-Wilk test. Because the distribution of data was not normal for
- 156 group A, subsequent analyses were performed using non-parametric statistical tests. The
- 157 correlation between BCG and CZE albumin in both groups, and the correlation between

Commentato [mgm1]: Correct.? 2009? Commentato [SM2R1]: I confirm that the correct version number of Excel is 2209.

Page 7 of 21

158	serum cholesterol and the spurious peak AUC in group A, was performed using the Spearman	
159	test. The comparison between the Δ albumin (i.e., the difference between albumin measured	
160	using CZE and BCG) in the 2 groups was performed using the Wilcoxon-Mann-Whitney U	
161	test. The same test was used to compare the results of the α 1-globulin concentration before	
162	and after modification of the electrophoretogram in group A. The agreement between	
163	methods (BCG vs CZE) for the evaluation of albumin concentration was performed using	
164	Passing-Bablok regression analysis and Bland-Altman difference plot testing in both groups.	
165	Statistical significance was set at $p \leq 0.05$.	
166	Results	
167	Among the canine samples with hypercholesterolemia enrolled retrospectively, 344 of 500	
168	(68.8%) had a spurious CZE peak; the remaining 156 dogs had hypercholesterolemia without	
169	a spurious electrophoretic peak. Moreover, dogs with a spurious peak had a higher median	
170	cholesterol concentration (median: 9.32 mmol/L; min-max: 7.50-17.92 mmol/L) compared to	
171	those without a spurious CZE peak (median: 8.39 mmol/L; min-max: 7.50-11.74 mmol/L; p	
172	<0.0001).	
173	Based on the inclusion criteria, we further evaluated the most recent 120 of the 344	
174	hypercholesterolemic dogs with the spurious peak (group A). Purebred dogs ($n = 85$; 70.8%)	
175	were mainly Golden Retrievers ($n = 16$; 13.3%) and German Shepherds ($n = 6$; 5%); the	
176	remaining dogs were crossbred dogs ($n = 35, 29.2\%$). Of these 120 dogs, 52 (43.3%) were	
177	females and 65 (54%) were males (sex was not reported for 3 dogs); neutered or intact status	
178	was not reported. The median age was 8.8 y (range $0.4-18$ y). The control group (group B, n	
179	= 50), had a breed composition similar to that of group A (34 purebred, 68%; 16 crossbred,	
180	32%). Females were 30 (60%); males were 20 (40%) (sex was not reported for 4 dogs);	
181	neutered or intact status was not reported. The median age was 6.8 y (range 0.5-14 y). None	
182	of the dogs belonging to group B had a spurious electrophoretic peak.	

Page 8 of 21

183	There was no statistical difference in albumin concentration between groups A and B
184	measured with either BCG ($p = 0.68$) or CZE ($p = 0.052$; Table 1). Both groups had a strong
185	significant positive correlation between CZE albumin and BCG albumin concentrations,
186	which was higher in group B ($r = 0.933$; $p < 0.0001$) than in group A ($r = 0.881$; $p < 0.0001$).
187	Passing-Bablok regression analysis of the albumin methods calculated for group A
188	revealed a proportional bias when including the spurious peak within the albumin fraction
189	(intercept: -0.12; 95% CI: -3.58-2.87; slope: 1.23; 95% CI: 1.12-1.34; Fig. 2). The Bland-
190	Altman test highlighted significantly higher values of CZE albumin when including the
191	spurious peak within the albumin fraction (bias 6.5; 95% CI: 6.08–6.91; $p < 0.0001$; Fig. 2).
192	For group B, Passing-Bablok regression analysis of the albumin methods revealed
193	proportional bias (intercept: -0.47; 95% CI: -4.49-3.98; slope: 1.17; 95% CI: 1.04-1.29;
194	Suppl. Fig. 1). The Bland–Altman test highlighted significantly higher values of CZE albumin
195	compared to the BCG method (bias 4.65; 95% CI: 4.22–5.07; <i>p</i> <0.0001; Suppl. Fig. 1).
196	However, the Δalbumin was significantly higher in group A than in group B (group A
197	median: 6.4 g/L; min-max: -1.6-15.4 g/L; group B median: 4.9 g/L; min-max: 1-7.2 g/L; p
198	<0.0001).
199	A weak but significant correlation was observed between the spurious peak (expressed
200	in g/L) and the cholesterol concentration in group A ($r = 0.412$; $p < 0.0001$). On the contrary,
201	no significant correlation was observed between the spurious peak and BCG albumin ($r =$
202	0.094; $p = 0.30$) or TP ($r = 0.108$; $p = 0.24$) concentrations.
203	Removing the spurious peak from the CZE albumin fraction resulted in a slightly
204	increased correlation between BCG albumin and corrected CZE albumin concentration in
205	group A ($r = 0.894$; $p < 0.0001$). Passing-Bablok regression analysis of the albumin methods
206	revealed both a constant and a proportional bias after the removal of the spurious peak from
207	the CZE albumin fraction in group A (intercept: -6.31; 95% CI: -10.243.66; slope: 1.21;

Page 9 of 21

208	95% CI: 1.12–1.34; Fig. 2). Conversely, the Bland–Altman test highlighted the absence of
209	significant differences between CZE and BCG albumin measurements when removing the
210	spurious peak from the albumin fraction (bias -0.02, 95% CI: -0.4–0.36; $p = 0.92$; Fig. 2).
211	The spurious peak was then included in the α 1-globulin fraction, resulting in a
212	significant increase of the latter fraction (original α 1 median: 3.3 g/L; min-max: 1.7–6.8 g/L;
213	α 1 + spurious peak median: 9.7 g/L; min-max: 7.1-14.5 g/L; p <0.0001). Specifically,
214	observing the original data, only 6 of 120 dogs (5%) had an α 1-globulin concentration that
215	exceeded the URL for this specific fraction, whereas the inclusion of the spurious peak into
216	the α 1-globulin peak resulted in a concentration of this fraction above the URL in all dogs
217	enrolled in group A. In group A, 35 of 120 dogs (42%) were hypoalbuminemic according to
218	BCG results. However, considering the original data using CZE, only 9 of 120 dogs (10.8%)
219	were classified as hypoalbuminemic. After removal of the spurious peak, 31 of 120 (37.2%)
220	dogs had an albumin value that fell below the lower reference limit (LRL), meaning that
221	inclusion of the spurious peak in the albumin fraction would result in misclassification of 22
222	dogs (26.4%). Some discordant results were observed between CZE and BCG. Specifically, 4
223	dogs were classified as hypoalbuminemic with CZE but normoalbuminemic with BCG
224	(however, all of the BCG results were close to the LRL). Eight dogs were classified as
225	hypoalbuminemic with BCG but as normoalbuminemic using CZE even after removal of the
226	spurious peak.
227	Discussion
228	We observed a peculiar electrophoretic pattern with a spurious peak located in the cathodic
229	side of the albumin fraction in 344 of 500 (68.8%) hypercholesterolemic dogs, but never in
230	normocholesterolemic dogs. The observed correlation between the spurious peak
231	concentration and serum cholesterol concentration may suggest that cholesterol (most likely
232	HDL cholesterol) is the main component of this peak, even though other possible components

Page 10 of 21

233	of the spurious peak could not be excluded completely. It is worth noting that, in our
234	prevalence study, some hypercholesterolemic dogs did not have the spurious peak, thus
235	suggesting that a different lipoprotein-bound cholesterol (namely HDL and LDL) could
236	possibly affect the presence and the shape of the peak. Indeed, the spurious peak could appear
237	in different shapes, even in samples with similar serum cholesterol concentrations. In some
238	cases, it appeared as a cathodic shoulder on the albumin peak, whereas in others it was a more
239	defined and isolated peak. Further studies, investigating the lipoprotein composition in
240	hypercholesterolemic dogs with and without the spurious CZE albumin peak, may help in
241	elucidating these aspects. These differences may rely on different lipoprotein migration
242	properties based on their classes (e.g., VLDL, LDL, HDL), or on the classes involved in a
243	specific pathologic process. Indeed, it is well known that lipoprotein classes and their
244	concentrations can vary depending on the underlying disease.49
245	In our caseload, CZE albumin of dogs with the spurious peak was significantly higher
246	than BCG albumin. Given that BCG may have low specificity in measuring serum albumin in
247	dogs,44 the observation of higher CZE albumin values compared to BCG increased the
248	suspicion of a possible overestimation of CZE albumin, most likely the result of increased
249	cholesterol concentrations, leading to an inaccurate CZE albumin measurement. Thus, a
250	correction of this electrophoretic alteration might be needed to obtain a more reliable albumin
251	concentration in these patients. To reduce the interference of cholesterol with CZE albumin
252	measurement, we considered different fractionation systems. Complete removal of the
253	spurious peak was considered inappropriate given that it would lead to rearrangement of the
254	electrophoretic fraction concentrations with subsequent overestimation of the globulin
255	fractions (Suppl. Table 1). For this reason, we preserved the spurious peak and included it in
256	the α 1-globulin fraction; regardless of the electrophoretic method used, this region is not
257	considered important diagnostically. ²³ In healthy dogs, $\alpha 1$ globulins are represented by a

Page 11 of 21

258	weak band or a flat region between the albumin and the α 2-globulin fraction, and it is
259	assumed that $\alpha 1$ lipoprotein (also called HDL), $\alpha 1$ antitrypsin, and $\alpha 1$ antichymotrypsin
260	migrate in this region. ⁴²
261	Note that most of the information about the contribution of specific proteins to the
262	different electrophoretic regions is based on human medicine. Indeed, studies about CZE $\alpha 1$
263	fraction protein migration are lacking in veterinary medicine, and it has been simply
264	presumed that the protein migration may be similar to that reported in people. In human
265	medicine, $\alpha 1$ lipoprotein may overlap the albumin fraction (Sebia Capillarys) or may appear
266	as a diffuse increase between albumin and $\alpha 1$ acid glycoprotein (orosomucoid) band (Paragon
267	CZE 2000; Beckman Coulter), depending on the analyzer. ^{23,25} We used a Minicap analyzer
268	(Sebia) in our study, and, according to the manufacturer, $\alpha 1$ lipoprotein, which is the most
269	prominent lipoprotein fraction reported in dogs, ^{9,27} could migrate as part of the albumin band
270	as it does in human samples. The use of specific methods, such as immunoelectrophoresis ^{15,41}
271	or lipoprotein electrophoresis, ^{5,29} would allow identification of the proteins that migrate in the
272	spurious peak. However, given the retrospective nature of our study, it was not possible to
273	perform specific additional evaluations. Nevertheless, based on reports in people, a major
274	component of this peak could likely be represented by al lipoproteins in
275	hypercholesterolemic dogs. Another hypothesis that would explain the presence of the
276	spurious peak in hypercholesterolemic dogs could be that the binding between serum
277	cholesterol and albumin may give a different electrophoretic mobility to the albumin itself. In
278	human medicine ³⁴ and in rats, ¹³ it has been hypothesized that serum cholesterol (especially
279	the non-esterified form) could be a serum albumin ligand, acting as a transport protein. Thus,
280	the spurious peak could be considered a portion of the albumin fraction with different
281	migration properties; similarly, it has been reported that drugs and hormones bound to
282	albumin can lead to a different migration pattern of the albumin itself in SPE. ^{2,3} However, if

Page 12 of 21

283	the spurious peak was composed of molecule-bound albumin, the removal of this peak from
284	the albumin fraction would possibly have resulted in a negative bias in CZE albumin
285	compared to BGE albumin. On the contrary, the removal of the spurious peak from the
286	albumin fraction resulted in better agreement, supported by the Bland-Altman test, with no
287	significant differences between CZE and BCG albumin measurement, making the hypothesis
288	of albumin-bound cholesterol less likely.

289 A positive bias has been reported in the measurement of human serum albumin concentration with CZE compared to bromocresol purple, turbidimetry, and nephelometry 290 methods.^{32,33} In the control group of our study (group B), the comparison of the 2 methods 291 292 revealed a significant difference between CZE and BCG albumin concentrations, with higher 293 CZE albumin concentrations. In dogs, it was suggested that the serum albumin concentration 294 measured with the BCG method tended to be higher compared to SPE.35 However, in our 295 study, the serum albumin concentration was lower when measured with the BCG method 296 compared to CZE in control dogs. Further studies should be performed to better investigate 297 this result. However, given our results, it is advisable to use the same method when 298 comparing serial albumin measurements (e.g., for treatment monitoring). 299 One of our aims was to evaluate the agreement between CZE and BCG methods for 300 the measurement of the albumin concentration. The inclusion of the spurious peak in the α l 301 fraction instead of the albumin fraction increased the correlation between CZE and BCG 302 albumin concentration, and the Bland-Altman test revealed the absence of significant 303 differences between these methods. Thus, the proposed electrophoretogram modifications 304 would decrease the risk of clinical misclassification of the albumin concentration using CZE 305 in hypercholesterolemic dogs, improving the agreement and correlation between CZE and 306 BCG albumin concentrations. The risk of misclassification was further supported observing 307 the noteworthy number of group A dogs (15 of 120) that would have been erroneously

Page 13 of 21

308	considered as normoalbuminemic rather than hypoalbuminemic if the spurious peak had been
309	included in the albumin fraction. Moreover, the inclusion of the spurious peak among $\alpha 1$
310	globulins avoids the rearrangement of the globulin fractions, given that the $\alpha 1$ region was the
311	only fraction affected. Nevertheless, the clinical relevance of an increase of the $\alpha 1$ fraction
312	has not been reported in veterinary medicine.
313	Our study has some limitations. Lipoprotein electrophoresis and
314	immunoelectrophoresis would be suggested to confirm our hypothesis about the presence of
315	lipoproteins and to evaluate which classes of lipoproteins migrate in the albumin region in
316	CZE in dogs. Moreover, we performed only the CZE method in our study. The use of
317	different electrophoretic methods or instruments could increase the robustness of the results
318	obtained. Even though no reports are present in the literature about spurious peaks in
319	hypercholesterolemic dogs using AGE, investigations are warranted to verify if the higher
320	albumin concentrations in hypercholesterolemic dogs found in our study can be detected also
321	using other SPE techniques. Another limitation is that a standardized cutoff allowing isolation
322	of the spurious peak was not feasible, and removal of the spurious peak was performed only
323	on visual inspection of the curves. This is because of both the different shapes of the CZE
324	albumin peak in normal samples ¹⁹ and also the different appearances of the spurious peak in
325	hypercholesterolemic dogs. Our approach, especially in samples with only an albumin right-
326	shoulder spurious peak, may lead to false, slightly lower, CZE albumin concentrations, given
327	that the manual cutoff could include a very small portion of the albumin peak. Nevertheless,
328	our results highlighted better correlation between the 2 albumin measurements after removal
329	of the spurious peak, thus supporting the methodology employed. Discordant results should
330	be interpreted cautiously, especially in those cases in which only CZE albumin was lower
331	than the RIs (considering that, in healthy animals, CZE albumin concentrations were higher
332	than BCG albumin). Laboratory results should always be interpreted considering the history

Page 14 of 21

333	and other clinical findings. Finally, although we investigated the agreement between 2
334	methods that are used routinely to measure the albumin concentration, neither of these is the
335	gold standard for albumin measurement. Nevertheless, the use of immunoturbidimetry or
336	nephelometry is not feasible in routine testing, given the need for species-specific antibodies.
337	Declaration of conflicting interests
338	The authors declared no potential conflicts of interest with respect to the research, authorship,
339	and/or publication of this article.
340	Funding
341	The authors received no financial support for the research, authorship, and/or publication of
342	this article.
343	References
344	1. Arnold JE, et al. ASVCP Guidelines: Principles of Quality Assurance and Standards for
345	Veterinary Clinical Pathology (version 3.0): Developed by the American Society for
346	Veterinary Clinical Pathology's (ASVCP) Quality Assurance and Laboratory Standards
347	(QALS) Committee. Vet Clin Pathol 2019;48:542-618.
348	2. Arvan DA, et al. Transient "bisalbuminemia" induced by drugs. Clin Chim Acta
349	1968;22:211- 218.
350	3. AvRuskin TW, et al. Familial dysalbuminemic hyperthyroxinemia: a rare example of
351	albumin polymorphism and its rapid molecular diagnosis. J Pediatr Endocrinol Metab
352	2002;15:801-807.
353	4. Bauer JE. Comparative lipid and lipoprotein metabolism. Vet Clin Pathol 1996;25:49–56.
354	5. Behling-Kelly E. Comparison of 2 electrophoretic methods and a wet-chemistry method in
355	the analysis of canine lipoproteins. Vet Clin Pathol 2016;45:124–134.
356	6. Bruss ML. Lipids and ketones. In: Kaneko JJ, et al., eds. Clinical Biochemistry of
357	Domestic Animals. 6 th ed. Elsevier, 2008: 81–116.

Page 15 of 21

358 7. Bossuyt X, et al. Automated serum electrophoresis by Capillarys. Clin Chem Lab Med

359 2003;41:704–710

- 360 8. Ceron JJ, et al. Answers to some common questions on serum protein electrophoresis. Vet
- 361 Rec. 2011;168:453-454.
- 362 9. Chapman MJ. Comparative analysis of mammalian plasma lipoproteins. In: Segrest JP,
- 363 Albers JJ, eds. Plasma Lipoproteins Part A: Preparation, Structure, and Molecular Biology.
- 364 Methods in Enzymology. Elsevier, 1986;128:70-143.
- 365 10. Chikamune T, et al., Serum lipid and lipoprotein concentrations in obese dogs. J Vet
- 366 Med Sci 1995;57:595–598.
- 367 11. Conner BJ. Treating hypoalbuminemia. Vet Clin North Am Small Anim Pract
- 368 2017;47(2):451-459.
- 369 12. Danielsson B, et al. Plasma lipoprotein changes experimental cholestasis in the dog.
 370 Clin Chim Acta 1977;80:157-170.
- 371 13. Deliconstantinos G, et al. Evidence for the existence of non-esterified cholesterol
- 372 carried by albumin in rat serum. Atherosclerosis 1986;61:67-75.
- 373 14. Duly EB, et al. Measurement of serum albumin by capillary zone electrophoresis,
- 374 bromocresol green, bromocresol purple, and immunoassay methods. J Clin Pathol
- 375 2003;56:780-781.
- 376 15. Dumon MF, et al. Discontinuous polyacrylamide gel agarose gel
- 377 immunoelectrophoresis for analysis of plasma lipoproteins. Electrophoresis 1990;11:846-
- 378 885.
- 379 16. Evans GO, Parsons CE. A comparison of two dye-binding methods for the
- 380 determination of dog, rat and human plasma albumins. J Comp Pathol 1988;98:453-460.
- 381 17. Facchini R, et al. Detection of biclonal gammopathy by capillary zone electrophoresis
- in a cat and a dog with plasma cell neoplasia. Vet Clin Pathol 2010;39:440–446.

Page 16 of 21

383 18. Feldman EC, Nelson RW. Canine and Feline Endocrinology. 4th ed. Saunders,

384 2015:77–554.

- 385 19. Giordano A, Paltrinieri S. Interpretation of capillary zone electrophoresis compared
- 386 with cellulose acetate and agarose gel electrophoresis: reference intervals and diagnostic
- 387 efficiency in dogs and cats. Vet Clin Pathol 2010;39:464–473.
- 388 20. Hill PG. The measurement of albumin in serum and plasma. Ann Clin Biochem
 1985;22:565-578.
- 390 21. Jeffries CM, Harris RA, Ashton L, Moore, AR. Method comparison for serum protein
- 391 electrophoretic M-protein quantification: agarose gel electrophoresis and capillary zone
- 392 electrophoresis in canine and feline sera. Vet Clin Pathol 2021;50:543–550
- Jeusette I, et al. Hypercholesterolaemia in a family of rough collie dogs. J Small Anim
 Pract 2004;45:319–324.
- 395 23. Karen DF. Proteins identified by serum protein electrophoresis. In: Keren DF, ed.

396 Protein Electrophoresis in Clinical Diagnosis. 2nd ed. Edward Arnold, 2003:69-71.

- 397 24. Klosterman ES, Pressler BM. Nephrotic syndrome in dogs: clinical features and
- 398 evidence-based treatment considerations. Top Companion Anim Med 2011;26:135–142.
- 399 25. Luraschi P, et al. High-density lipoproteins contribute to the alpha-1-globulin zone in
- 400 capillary electrophoresis of human serum proteins. Electrophoresis 2004;25:1551–1554.
- 401 26. Eckersall PD. Serum protein, proteomics, and dysproteinemias. In: Kaneko JJ, et al.,
- 402 eds. Clinical Biochemistry of Domestic Animals. 6th ed. Elsevier, 2008:117–155.
- 403 27. Mahley RW, et al. Canine lipoproteins and atherosclerosis. II. Characterization of the
- 404 plasma lipoproteins associated with atherogenic and nonatherogenic hyperlipidemia. Circ
- 405 Res 1974;35:722-733.

Page 17 of 21

- 406 28. Martínez-Subiela S, et al. Effects of haemolysis, lipaemia, bilirubinaemia and
- 407 fibrinogen on protein electropherogram of canine samples analysed by capillary zone
- 408 electrophoresis. Vet J 2002;164:261-268.
- 409 29. Milanovic Z, et al. Association of acute Babesia canis infection and serum lipid,
- 410 lipoprotein, and apoprotein concentrations in dogs. J Vet Intern Med 2019;33:1686–1694.

411 30. Moore AR, Avery PR. Protein characterization using electrophoresis and

- 412 immunofixation; a case-based review of dogs and cats. Vet Clin Pathol 2019;48:29–44.
- 413 31. Mori N, et al. Potential use of cholesterol lipoprotein profile to confirm obesity status
- 414 in dogs. Vet Res Commun 2011;35:223–235.
- 415 32. Padelli M, et al. Is capillary zone electrophoresis a suitable method for estimating
- 416 serum albumin: a comparison of four methods. Clin Chim Acta 2018;487:250–255.
- 417 33. Padelli M, et al. Systematic overestimation of human serum albumin by capillary zone
- 418 electrophoresis method due to monoclonal immunoglobulin interferences. Clin Chim Acta419 2019;491:74–80.
- 420 34. Peng L, et al. The interaction between cholesterol and human serum albumin. Protein
- 421 Pept Lett 2008;15:360-364.
- 422 35. Ramery E, Bureau F. Measurement of serum albumin by protein electrophoresis and
- 423 bromocresol green methods in canine and equine patients. Vet Clin Pathol 2012;41:5.
- 424 36. Regeniter A, Siede WH. Peaks and tails: evaluation of irregularities in capillary serum
- 425 protein electrophoresis. Clin Biochem 2018;51:48–55.
- 426 37. Rogers WA, et al. Lipids and lipoproteins in normal dogs and in dogs with secondary
- 427 hyperlipoproteinemia. J Am Vet Med Assoc 1975;166:1092–1100.
- 428 38. Rogers WA, et al. Idiopathic hyperlipoproteinemia in dogs. J Am Vet Med Assoc
- 429 1975;166:1087–1091.

Page 18 of 21

430 39. Sato K, et al. Hypercholesterolemia in Shetland Sheepdogs. J Vet Med Sci

431	2000;62:1297-130	1.

- 432 40. Snozek CL, et al. Comparison of bromcresol green and agarose protein electrophoresis
- 433 for quantitation of serum albumin in multiple myeloma. Clin Chem. 2007;53:1099-1103.
- 434 41. Solyom A, et al. Apolipoprotein and lipid distribution in canine serum lipoproteins.
- 435 Biochim Biophys Acta 1971;229:471-483.
- 436 42. Stockham SL, Scott MA. Proteins. In: Stockham SL, Scott MA, eds. Fundamentals of
- 437 Veterinary Clinical Pathology. 2nd ed. Blackwell, 2008:378.
- 438 43. Stranieri A, et al. Frequency of electrophoretic changes consistent with feline
- 439 infectious peritonitis in two different time periods (2004-2009 vs 2013-2014). J Feline
- 440 Med Surg. 2017;19:880-887.
- 441 44. Stokol T, et al. Overestimation of canine albumin concentration with the bromcresol
- 442 green method in heparinized plasma samples. Vet Clin Pathol 2001;30:170-176.
- 443 45. Watson TDG, Barrie J. Lipoprotein metabolism and hyperlipidaemia in the dog and
- 444 cat: a review. J Small Anim Pract 1993;34:479-487.
- 445 46. Watson P, et al. Hypercholesterolaemia in Briards in the United Kingdom. Res Vet Sci
- 446 1993;54:80–85.
- 447 47. Xenoulis PG, Steiner JM. Lipid metabolism and hyperlipidemia in dogs. Vet J
- 448 2010;183:12-21.
- 449 48. Xenoulis PG, et al. Investigation of hypertriglyceridemia in healthy Miniature
- 450 Schnauzers. J Vet Intern Med 2007;21:1224–1230.
- 451 49. Xenoulis PG, Steiner JM. Canine hyperlipidaemia. J Small Anim Pract 2015;56:595-
- 452 605.

453

Page 19 of 21

454 **Table 1.** Median and minimum–maximum values for albumin (g/L) measured both with

455 bromocresol green (BCG) and capillary electrophoresis (CZE) in hypercholesterolemic dogs

456 with the spurious electrophoretic peak (group A) and in normocholesterolemic dogs without

457 the spurious electrophoretic peak (group B). No significant differences were observed in

458 albumin concentration between groups A and B measured with either BCG or CZE.

Method	Group	Minimum	Median	Maximum
BCG	А	16.0	29.8	36.7
	В	18.0	29.6	41.3
CZE	А	18.2	36.6	48.2
	В	21.3	34.8	45.0

459

460	Figure 1. Examples of capillary zone electrophoresis (CZE) patterns in		Commentato [mgm3]: Looks fine now. I uploaded.
461	normocholesterolemic and hypercholesterolemic dogs, with different spurious peak shapes.		
462	A. CZE of a normal canine serum sample without a spurious peak (cholesterol concentration:		
463	4.39 mmol/L). B. Right shoulder within the albumin peak (cholesterol concentration: 9.82		
464	mmol/L). C. Isolated peak on the right side of the albumin peak, (cholesterol concentration:		
465	9.26 mmol/L). D. Distinct isolated peak on the right side of the albumin peak (cholesterol		
466	concentration: 18.67 mmol/L).		
467	Figure 2. Passing-Bablok regression analyses (left) and Bland-Altman difference plots		Commentato [mgm4]: The plots are OK, but please move A and B to the lower left corner of the images, and reset ALBUMIN as
468	(right) of albumin measurement with capillary zone electrophoresis (CZE) compared to the		albumin. Thanks.
469	bromocresol green (BCG) method in hypercholesterolemic dogs with a spurious CZE peak A)		Commentato [SM5R4]: Both Figure 2 and S1 have been modifies as suggested (there is a slight modification in height of Figure 2 to have enough space for A and B in the lower left corner, I
470	before and B) after the removal of the spurious albumin peak.		hope this may be fine).
471			
472	Supplemental Figure 1. Passing-Bablok regression analysis (left) and Bland-Altman plot	<	Commentato [mgm6]: Same comment for albumin
473	(right) of albumin measurement with capillary electrophoresis (CZE) compared to the		Commentato [SM7R6]: Done (see above)
474	bromocresol green (BCG) method in normocholesterolemic dogs without the spurious		

475 electrophoretic peak (group B).

Page 21 of 21