
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 78 (2024) 361–368

2352-1465 © 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 2023)
10.1016/j.trpro.2024.02.046

10.1016/j.trpro.2024.02.046 2352-1465

© 2024 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 2023)

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2023) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2023 The Authors. Published by Elsevier BV. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 2023)  

25th Euro Working Group on Transportation Meeting (EWGT 2023) 

Enhanced bi-directional dynamic programming algorithm for the 
resource constrained shortest path problem 

Matteo Salania,* Saverio Bassoa Giovanni Righinib 
aDalle Molle Institute for Artificial Intelligence - IDSIA USI/SUPSI, Lugano, Switzerland 

bUniversità degli Studi di Milano, Milan, Italy  

Abstract 

In this paper we propose an enhanced bi-directional dynamic programming algorithm for the Resource Constrained Shortest Path, 
Righini and Salani (2006). In particular we study the join procedure, one of the time consuming components of the algorithm, and 
propose a dominance based join that uses binary search and Pareto frontier exploration. The proposed method can be used in both 
node-join and arc-join procedures. The computational experiments are performed on two classes of problems both describing 
complete graphs with negative cost cycles. On the first set, with a single resource consumption, the proposed procedure slightly 
improves the overall computational time with savings up to 8.4% for the B class and just 0.4% for the most time consuming class 
M. On the second set, with multiple resources consumption, the proposed procedure exhibits a remarkable improvement with an 
average speedup of 39.2%. 
© 2023 The Authors. Published by Elsevier BV. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 
2023) 
Keywords: Resource Constrained Shortest Path; Dynamic Programming 

1. Introduction 

We consider Resource Constrained Shortest Path Problem (RCSPP), a fundamental combinatorial problem that 
appears in most challenging and practically relevant decision problems in transportation, telecommunication, and 
scheduling. RCSPPs also appear as subproblems in routing and workforce planning problems solved by column 
generation, Desaulniers et al. (2005). 

The RCSPP is defined on a graph G(N, A), which we assume directed, composed of a node set N and an arc set A. 
The problem asks to find a minimum cost elementary path, i.e. a finite sequence of consecutive arcs in which every 

 

 
* Corresponding author. Tel.: +41.58.666.66.70. 

E-mail address: matteo.salani@supsi.ch 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2023) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2023 The Authors. Published by Elsevier BV. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 2023)  

25th Euro Working Group on Transportation Meeting (EWGT 2023) 

Enhanced bi-directional dynamic programming algorithm for the 
resource constrained shortest path problem 

Matteo Salania,* Saverio Bassoa Giovanni Righinib 
aDalle Molle Institute for Artificial Intelligence - IDSIA USI/SUPSI, Lugano, Switzerland 

bUniversità degli Studi di Milano, Milan, Italy  

Abstract 

In this paper we propose an enhanced bi-directional dynamic programming algorithm for the Resource Constrained Shortest Path, 
Righini and Salani (2006). In particular we study the join procedure, one of the time consuming components of the algorithm, and 
propose a dominance based join that uses binary search and Pareto frontier exploration. The proposed method can be used in both 
node-join and arc-join procedures. The computational experiments are performed on two classes of problems both describing 
complete graphs with negative cost cycles. On the first set, with a single resource consumption, the proposed procedure slightly 
improves the overall computational time with savings up to 8.4% for the B class and just 0.4% for the most time consuming class 
M. On the second set, with multiple resources consumption, the proposed procedure exhibits a remarkable improvement with an 
average speedup of 39.2%. 
© 2023 The Authors. Published by Elsevier BV. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 25th Euro Working Group on Transportation Meeting (EWGT 
2023) 
Keywords: Resource Constrained Shortest Path; Dynamic Programming 

1. Introduction 

We consider Resource Constrained Shortest Path Problem (RCSPP), a fundamental combinatorial problem that 
appears in most challenging and practically relevant decision problems in transportation, telecommunication, and 
scheduling. RCSPPs also appear as subproblems in routing and workforce planning problems solved by column 
generation, Desaulniers et al. (2005). 

The RCSPP is defined on a graph G(N, A), which we assume directed, composed of a node set N and an arc set A. 
The problem asks to find a minimum cost elementary path, i.e. a finite sequence of consecutive arcs in which every 

 

 
* Corresponding author. Tel.: +41.58.666.66.70. 

E-mail address: matteo.salani@supsi.ch 



362 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–3682 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000 

node n ∈ N appears at most once, from a source node s ∈ N to a destination node d ∈ N. The cost is accumulated 
when traversing arcs along the path. We remark that no assumptions are taken on the cost of the arcs and the graph 
may possess negative cost cycles. 

The RCSPP problem has one or more resources that are consumed while traversing arcs. For example, elapsed time, 
transported load, etc., and their availability is constrained. More involving resources can be considered, but for the 
sake of simplicity we limit our discussion to monotone accumulated resource consumption. 

The RCSPP appears in a large variety of real-life applications such as vehicle and crew scheduling problems, 
Desaulniers et al. (1998); Haase et al.(2001), rostering, Gamache et al. (1999), military aircraft management systems, 
Zabarankin et al.(2002), railroad management, Halpern and Priess (1974), telecommunication network design, Cabral 
et al.(2007), green vehicle routing problems, Erdogan and Miller-Hooks (2012) and many others. Surveys on the 
RCSPP and related solution methods have been published by Irnich and Desaulniers (2005), Pugliese and Guerriero 
(2013) and Madkour et al. (2017). 

The most effective algorithms for the RCSPP rely on dynamic programming methods, Mehlhorn and Ziegelmann, 
(2000). Those are based on labels that encode partial path information from the source node to another node of the 
network. In these algorithms, propagation is restricted to Pareto-optimal labels associated at every node. Some notable 
improvements can be obtained by using bi-directional search, Righini and Salani (2006), by propagating labels from 
both the source to the destination and backward, from the destination to the source, and by joining partial paths. Recent 
techniques exploit bucket based approaches, Pecin et al. (2017); Sadykov et al. (2020) with the effect of decreasing 
the number of comparisons for dominance, resulting in significant improvements in running time. 

A more complex variant of the problem, the Resource Constrained Elementary Shortest Path Problem (RCESPP), 
arises when negative cost cycles appears in the network. The problem requires to find elementary paths, i.e. with no 
repeating nodes. For example in Orienteering problems, Golden et al. (1987); Gunawan et al. (2016), prize collection 
Travelling Salesman Problems, Laporte and Martello (1990); Feillet et al. (2005) and pricing problems arising in 
column generation applied to routing problems, Desaulniers et al. (2005). 

While approaches based on Branch-and-Cut exist, Jepsen et al. (2008), the most effective algorithms are based on 
relaxation solved by dynamic programming. Among the top techniques, in Righini and Salani (2008) the authors 
propose to progressively enlarge the state space, by iteratively populating a set of nodes necessary to compute an 
elementary solution. Similarly, ng-path relaxations have been proposed in Baldacci et al. (2011): they define, for each 
node, a set of neighbor nodes that must not contain cycles. More recently, variants of such relaxations based on 
managing sets of neighbor arcs instead of nodes have been introduced in Bulhoes et al. (2018) and Costa et al. (2021). 
Other relevant approaches such as Irnich and Villeneuve (2006) and Desaulniers et al. (2008), rely on forbidding cycles 
of small length and on relaxing elementarity requirements for specific nodes. 

2. Exact algorithm for the RCESPP  

The exact algorithm used in this paper is based on the bi-directional dynamic programming algorithm proposed by 
Righini and Salani (2006). In Dynamic Programming (DP), states represent partial paths from the source node s to the 
nodes in the network. Different states can be associated with the same node and they correspond to different partial 
paths. DP iteratively extends states until no further extensions are possible. Each state is encoded in a label, in bi-
directional DP called forward and backward labels. A forward label associated with node i ∈ N is a tuple: 

 𝑙𝑙𝑖𝑖
𝑓𝑓 = (𝑖𝑖, 𝑐𝑐𝑖𝑖, 𝑆𝑆, 𝑅𝑅) (1) 

where i is the last node visited in the partial path, ci is the accumulated cost, S is a binary vector that keep tracks of 
the visited nodes in the partial path and R is the so called resource vector that keeps track of the consumption of each 
resource. Backward labels are similar and correspond to paths from nodes to the destination d. Labels ending at the 
same node i can be compared and those that will not lead to an optimal solution, i.e. those with a larger cost and larger 
consumption of resources, are said to be dominated and can be safely discarded. 

The DP algorithm extends all feasible non dominated forward and backward labels. The extension of a forward 
label corresponds to appending an additional arc (i, j) to a path from s to i, obtaining a path from s to j, while the 
extension of a backward label corresponds to pre-pending an additional arc (j,i) to a path from i to d, obtaining a path 
from j to d. Labels are stored in convenient data structures, referred as label pools. 



 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–368 363 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000  3 

 

 
 (a) (b) (c) (d) 

Fig. 1. Illustration of the pareto-join procedure. (a) The binary search explores the area. A feasible join is found and the joins in the shaded area 
are identified as suboptimal. (b) The binary search converges. (c) The binary search is recursively called on the unexplored joins in the white 

areas. (d) The procedure terminates when no potential join areas left unexplored. 

Once extension is completed, forward and backward are joined to produce complete paths from node s to node d, 
ensuring that the final path contains no cycles nor violates resource constraints. Indeed, among the feasible paths that 
are generated by the join operation, we compute the optimal path: its existence is guaranteed by the domination criteria. 
The join operation can be performed considering the sets of forward and backward labels ending at a node i (node 
join) or, for any pair of nodes (i, j), the set of forward labels ending at node i and the set of backward labels starting 
from node j (arc join). 

Let Fw and Bw be the set of forward and backward labels, respectively. Regular implementations check for label 
joining by inspecting the label pools extensively starting from lower cost labels, although it is less likely that a low 
cost forward label combines feasibly with a low cost backward label. We propose an enhanced join method that we 
call pareto-join and that works for both types of join procedures (node and arc join) and that aims at minimizing the 
number of pairwise feasibility checks. We assume that forward and backward labels are ordered by non-decreasing 
cost so that we can index the i − th forward label and j − th backward label to form the joining pair (𝑓𝑓𝑤𝑤𝑖𝑖, 𝑏𝑏𝑤𝑤𝑗𝑗). The 
optimal solution, if exists, lies on the Pareto frontier of the non dominated feasible label pairs. 

We want to find the Pareto-frontier as quickly as possible. We illustrate the procedure in Figure 1 in which the set 
of label pairs is explored with binary search to find a feasible solution. Any feasible pair (𝑓𝑓𝑤𝑤𝑖𝑖, 𝑏𝑏𝑤𝑤𝑗𝑗) dominates all 
pairs (𝑓𝑓𝑤𝑤𝑘𝑘, 𝑏𝑏𝑤𝑤𝑧𝑧) with k ≥ i and z ≥ j. When the RCSPP is defined on a single resource and an infeasible pair 
(𝑓𝑓𝑤𝑤𝑖𝑖, 𝑏𝑏𝑤𝑤𝑗𝑗) is found, then all pairs (𝑓𝑓𝑤𝑤𝑘𝑘, 𝑏𝑏𝑤𝑤𝑧𝑧) with k ≤ i and z ≤ j are infeasible as well. Instead, for multi-resource 
RCSPPs we lose this property and an infeasible label pair does not guarantee that cheaper and feasible label pairs do 
not exist. 

Figures 2 and 3 report the pseudo-code of the Pareto-Join algorithm. The algorithm is recursive and its presentation 
is divided in the search phase in figure 2 and the recursive calls phase in figure 3. The algorithm searches for the 
optimal feasible join of two labels belonging to the ordered sets of labels Fw and Bw, it also receives the value of the 
best feasible solution found so far and possibly updates it. 

Preprocessing. The algorithm first tests the potential of the entire set of labels by performing a preprocessing step 
(lines 6-7). Then, three special cases are evaluated: when there are just one forward and one backward labels and their 
join is feasible the process can immediately terminate (lines 10-12). When there is just one forward (resp. backward) 
label, the join is tested with all the labels in the opposite direction using a linear search. As soon as the pair is 
suboptimal (line 17 and 26) or the join is feasible (line 19 and 28), the process can immediately terminate. 

Binary Search. The binary search procedure starts at line 33 and to explore it the algorithm uses two pairs of indexes 
(s_fw, e_fw) (s_bw, e_bw) (lines 33-34). The region is explored by binary search (lines 38-39). If the current pair 
(Fw[i], Bw[j]) is suboptimal, then all pairs (Fw[k], Bw[z]) with k ≥ i and z ≥ j are suboptimal and the search region is 
reduced decreasing the upper limits (lines 41-42). Some special care is needed when the boundary of the region is 
reached, the procedure anyway guarantees that at each iteration the search region is reduced. Similarly, when a feasible 
pair is found then a new incumbent solution is found too. Its value is updated and the search region is reduced 
decreasing the upper limits (lines 45-46). Instead, if the current pair is not suboptimal but infeasible, the search region 
is reduced increasing the lower limits (lines 48-49). The main while loop converges as at each iteration the search 
region is decreased by at least one unit. The loop terminates when s_fw = e_fw and s_bw = e_bw. The last label pair 



364 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–3684 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000 

in (Fw[s_fw], Bw[s_bw]) is either the best feasible solution found, the last suboptimal solution (regardless if feasible 
or not) or an unfeasible label pair.  

Recursive calls. Figure 3 reports how the remaining search space is split in portions according the the status of the 
last evaluated label pair. The recursive calls consider subsets of the Fw and Bw sets by defining the two new extremes 
using the following notation: Fw[i:j] means that the subset of forward labels from the index i to the index j is 
considered in the recursive call. When the last pair is feasible or suboptimal two recursive calls are made (lines 6-9). 
When the join on the last pair is infeasible but the cost is lower than the current incumbent solution, some more 
involving recursive calls are necessary. The procedure guarantees that no potential feasible pair is lost during the 
search. 

3. Implementation 

The algorithm has been implemented using PathWise, a flexible (soon-to-be) open-source library for the solution 
of the RCSPP, Salani and Basso (2023). PathWise can solve a variety of standard RCSPPs with an off-the-shelf 
implementation of state-of-the-art algorithms and allows experienced users to develop their algorithmic components 
of PathWise while taking advantage of the framework thanks to clear interfaces and well-defined hook points. 

Pathwise implements several relaxation schemes such as Decremental state space relaxation, DSSR, Righini and 
Salani (2008) and ng-path relaxation, Baldacci et al. (2011) as well as hybridizations inspired by Martinelli et al. 
(2014) and different techniques that guarantee complete or partial elementarity, i.e. techniques that return solutions 
where cycles are forbidden on all or subsets of nodes, respectively. All these relaxations share the idea that only a 
fraction of the nodes are relevant to compute the optimal solution without cycles or a strong relaxation with cycles 
and, in the label definition, the vector S is restricted to those nodes only. In iterative algorithms, such as DSSR and its 
hybridizations, the set is empty at the start of the algorithm and it is iteratively enlarged until a solution without cycles 
is found. Attempts to initialize the set S have been explored in Righini and Salani (2009). 

Pathwise implements an ad-hoc technique called semi-dynamic half way point inspired by the work recently 
proposed by Tilk et al. (2017). The main idea is to adjusts the critical resource splitting threshold during the label 
extension procedure in order to keep the dimensions of the forward and backward sets of labels as balanced as possible. 

PathWise has a flexible architecture (see figure 4) built around a central solver unit that manages and interacts with 
other 5 major modules: configuration, problem, algorithm, solution and data collection. In order to implement the 
ParetoJoin algorithm we extended the unit called Label Manager in the algorithmic module. This module unit handles 
labels, while performing core operations and providing encapsulation. 

4. Computational Experiments 

We perform computational experiments on 2 classes of problems including both instances found in the literature 
and newly generated ones. Both classes represent cyclic problem, meaning that each instance present cycles of 
negative costs. 

SPPRCLIB. The first dataset consists of 45 instances with a single capacity constraint. They present a complete 
graph with up to 262 nodes, and positive distances on arcs and negative costs on nodes (i.e., prizes), making the 
problem cyclic. This dataset was taken from the repository found in (SPPRCLIB, 2008), where instances were 
generated from VRP problems. They are organized in subsets A, B, E, G, M and P, that differ in how nodes are 
positioned and possibly clustered, along with different capacities. A detailed description of these sets can be found in 
(Uchoa et al., 2017). 

Prize Collecting (PC). The second dataset, was generated ad-hoc starting from CVRPLIB instances (CVRPLIB, 
2014). It consists of 48 instances with multiple resource consumptions: the problem has two capacity bounds, a node 
limit and time windows, therefore it is a multi-resource problem. Graphs are complete and up to 100 nodes. In this 
case, every arc of the network presents a negative distance and the optimal solution maximizes the collection of prizes 
within feasible resource consumption. Similar problems are present in the literature: we cite, as a reference, arc 
orienteering problems (Gavalas et al., 2015) and prize collecting TSPs (Balas, 1989). 

PathWise is developed in C++20. Compilation was performed through GCC 11.3 with the “O3” optimization flag 
and the experiments were executed on a machine running Kubuntu 22.04, with an eight-core Intel i9-11900 @ 2.50 



 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–368 365 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000  5 

GHz and 32GB RAM. We compare the proposed Pareto Join procedure with the currently best performing join 
procedure available in PathWise called Ordered Join. 

 
1 ParetoJoin (Fw, Bw, incumbent) 
2   // Fw: set of forward labels ordered by non decreasing cost 
3   // Bw: set of backward labels ordered by non decreasing cost 
4   // incumbent: best solution found so far 
5 
6   if cost(Fw[1], Bw[1]) >= incumbent 
7       return // Any possible join of Fw and Bw labels is suboptimal 
8 
9    // Join single labels 
10   if Fw.size == 1 and Bw.size == 1 and isJoinFeasible(Fw[1] , Bw[1]) 
11       incumbent = cost(Fw[1], Bw[1]) 
12       return 
13 
14   // Join with single forward label 
15   if Fw.size == 1 
16       for (j in 1..Bw.size) 
17           if cost(Fw[1], Bw[j]) >= incumbent 
18               return // All remaining joins are suboptimal 
19           if isJoinFeasible(Fw[1], Bw[j]) 
20               incumbent = cost(Fw[1], Bw[j]) 
21               return // Found the best possible join, all the remaining joins are suboptimal 
22 
23   // Join with single backward label 
24   if Bw.size == 1 
25       for (i in 1.. Fw.size) 
26           if cost(Fw[i], Bw [1]) >= incumbent 
27               return // All remaining joins are suboptimal 
28           if isJoinFeasible(Fw[1], Bw[i]) 
29               incumbent = cost(Fw[1], Bw[1]) 
30               return // Found the best possible join, all the remaining joins are suboptimal 
31 
32    // Sets Fw and Bw have at least two labels each 
33    s_fw = s_bw = 1 
34    e_fw = Fw.size ; e_bw = Bw.size 
35 
36    // Perform binary search 
37    while ( s_fw < e_fw or s_bw < e_bw ) 
38        i = floor(( s_fw + e_fw ) / 2) 
39        j = floor(( s_bw + e_bw ) / 2) 
40        if cost(Fw[i], Bw[j]) >= incumbent 
41           if ( s_fw != e_fw ) e_fw = i - 1 
42           if ( s_bw != e_bw ) e_bw = j - 1 
43        else if isJoinFeasible(Fw[i], Bw[j]) 
44           incumbent = cost (Fw[i], Bw[j]) 
45           if ( s_fw != e_fw ) e_fw = i - 1 
46           if ( s_bw != e_bw ) e_bw = j - 1 
47        else 
48           if ( s_fw != e_fw ) s_fw = i + 1 
49           if ( s_bw != e_bw ) s_bw = j + 1 
50 
51    // Test the status of the last pair of labels 
52    if cost(Fw[ s_fw ], Bw[ s_bw ]) >= incumbent 
53        feasible_or_suboptimal = true 
54    else if isJoinFeasible(Fw[ s_fw ], Bw[ s_bw ]) 
55        incumbent = cost(Fw[ s_fw ], Bw[ s_bw ]) 
56        feasible_or_suboptimal = true 
57    else 
58        feasible_or_suboptimal = false 
59 
60 (cont.) 

Fig. 2. Multi resource ParetoJoin algorithm - Searching Phase 

  



366 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–368
6 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000 

1 ParetoJoin (Fw, Bw, incumbent ) 
2 (cont.) 
3 
4    if feasible_or_suboptimal 
5         // The last tested labels were feasible or suboptimal 
6         if e_fw > 1 
7             ParetoJoin (Fw[ 1:e_fw – 1 ], Bw, incumbent) 
8         if e_bw > 1 
9             ParetoJoin (Fw[ e_fw:Fw.size ], Bw[ 1:e_bw – 1 ], incumbent) 
10    else 
11        // The last tested labels were unfeasible but super - optimal 
12        if e_fw == Fw. size 
13            ParetoJoin (Fw[ 1:e_fw - 1 ], Bw , incumbent ) 
14            if e_bw > 1 
15                ParetoJoin (Fw[ e_fw:e_fw ], Bw [ 1:e_bw - 1 ], incumbent) 
16        else 
17            ParetoJoin (Fw[ 1:e_fw ], Bw, incumbent ) 
18            if e_fw < Fw.Size 
19                ParetoJoin (Fw[ e_fw + 1:Fw.size ], Bw[ 1:e_bw ], incumbent) 

Fig. 3. Multi resource ParetoJoin algorithm - Recursive calls 

 
Fig. 4. PathWise architecture 

Table 1 reports experimental results related to SPPRCLIB instances. For each class of instances we report the 
averages over the set. We detail computational overall time dedicated to the join procedure and the global 
computational time to converge to proven optimality. We observe that the pareto join procedure dominates the ordered 
join procedure and is 76.6% faster on average. This major speedup only slightly reflect on overall computational times 
with an average speedup of only 0.7%. This is due to the fact that the time taken by the join procedure represents a 
small fraction of the overall computational time. Three instances do not converge within 1h of computation and the 
pareto-join procedure does not help to reach convergence. The set G is composed by just one instance which did not 
converge in 1h of computation. Therefore, this set does not appear in the table. 

Table 2 reports experimental results related to PC instance. The table is organized as table 1. We observe that the 
overall join time for this set of instances constitutes the largest contribution. We observe that the proposed pareto-join 
procedure dominates the ordered-join procedure for the majority of instances with a speedup of 45.3% on average. In 
this set of instances pareto-join is effective in improving the overall computational time, saving 39.2% of global 
computational time on average. 
  



 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–368 367 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000  7 

 Join Time [s] Global Time [s] 

Instance Class 
Pareto 

Join 
Ordered 

Join 
Speedup 

Pareto 
Join 

Ordered 
Join 

Speedup 

A 0.018 0.044 60.4% 0.976 1.022 4.5% 
B 0.049 0.131 62.9% 1.142 1.247 8.4% 
E 0.007 0.012 41.0% 0.995 1.007 1.2% 
M 3.254 14.169 77.0% 283.674 284.802 0.4% 
P 0.066 0.274 75.8% 6.569 6.779 3.1% 
Average 0.347 1.481 76.6 % 29.927 30.140 0.7% 

Table 1. Comparison on SPPRClib instance classes. We report the average Join Time (s) and the average Global Time (s) along with the 
percentage speedup. 

Instance Class Join Time [s] Global Time [s] 

Nodes Capacity Node Limit 
Pareto 

Join 
Ordered 

Join 
Speedu

p 
Pareto 

Join 
Ordered 

Join 
Speedup 

50 25 8 0.057 0.080 29.0% 0.140 0.164  14.6% 
50 25 18 0.106 0.167 36.3% 0.261 0.321 18.8% 
50 40 8 4.020 4.240 5.2% 4.811 5.032 4.4% 
50 40 18 6.388 12.710 49.7% 9.257 15.594 40.6% 
50 25 8 1.131 1.517 25.4% 2.161 2.541  14.9% 
50 25 18 1.215 2.842 57.2% 3.450 5.124 32.7% 
50 40 8 61.539 62.716 1.9% 70.142 71.324 1.7% 
50 40 18 178.419 378.044 52.8% 233.807 433.064 46.0% 
Average   31.609 57.790 45.3 % 40.504 66.654 39.2% 

Table 2. Comparison on PC instance classes. We report the average Join Time (s) and the average Global Time (s) along with the percentage 
speedup 

5. Conclusions 

We proposed an enhancement for a bi-directional dynamic programming algorithm for the RCSPP focusing on the 
join procedure. We introduce the Pareto-join procedure, a recursive search procedure based on binary search. The 
proposed procedure has proven effective on two classes of problems. The improvements on the first set with a single 
resource consumption are modest with an overall speedup of just 0.7%. On the second set with multiple resources 
consumption, the proposed procedure improved the computational time by 39.2% in average. The paretojoin 
procedure becomes a candidate to be the standard procedure released with PathWise. 

References 

Balas, E., 1989. The prize collecting traveling salesman problem. Networks 19, 621–636. 
Baldacci, R., Mingozzi, A., Roberti, R., 2011. New route relaxation and pricing strategies for the vehicle routing problem. Operations Research 

59, 1269–1283. 
Bulhoes, T., Sadykov, R., Uchoa, E., 2018. A branch-and-price algorithm for the minimum latency problem. Computers & Operations Research˜ 

93, 66–78. 
Cabral, E.A., Erkut, E., Laporte, G., Patterson, R.A., 2007. The network design problem with relays. Eur. J. Oper. Res. 180, 834–844. Costa, L., 

Contardo, C., Desaulniers, G., Pecin, D., 2021. Selective arc-ng pricing for vehicle routing. International Transactions in Operational 
Research 28, 2633–2690. 

CVRPLIB, 2014. http://vrp.galgos.inf.puc-rio.br [Online; accessed 24-Feb-2023]. 
Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M.M., Soumis, F., Villeneuve, D., 1998. A unified framework for deterministic time 

constrained vehicle routing and crew scheduling problems, in: Crainic, T.G., Laporte, G. (Eds.), Fleet Management and Logistics. Springer 
US, Boston, MA, pp. 57–93. 

Desaulniers, G., Desrosiers, J., Solomon, M.M., 2005. Column generation. volume 5. Springer Science & Business Media. 



368 Matteo Salani  et al. / Transportation Research Procedia 78 (2024) 361–368
8 Matteo Salani / Transportation Research Procedia 00 (2019) 000–000 

Desaulniers, G., Lessard, F., Hadjar, A., 2008. Tabu search, partial elementarity, and generalized k -path inequalities for the vehicle routing 
problem with time windows. Transportation Science 42, 387–404. 

Erdogan, S., Miller-Hooks, E., 2012. A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review˘ 48, 
100–114. Select Papers from the 19th International Symposium on Transportation and Traffic Theory. 

Feillet, D., Dejax, P., Gendreau, M., 2005. Traveling salesman problems with profits. Transportation Science 39, 188–205. 
Gamache, M., Soumis, F., Marquis, G., Desrosiers, J., 1999. A column generation approach for large-scale aircrew rostering problems. 

Operations Research 47, 247–263. 
Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., Vathis, N., 2015. Approximation algorithms for the arc orienteering problem. 
Information Processing Letters 115, 313–315. 
Golden, B.L., Levy, L., Vohra, R., 1987. The orienteering problem. Naval Research Logistics (NRL) 34, 307–318. 
Gunawan, A., Lau, H.C., Vansteenwegen, P., 2016. Orienteering problem: A survey of recent variants, solution approaches and applications. 

European Journal of Operational Research 255, 315–332. 
Haase, K., Desaulniers, G., Desrosiers, J., 2001. Simultaneous vehicle and crew scheduling in urban mass transit systems. Transportation Science 

35, 286–303. 
Halpern, J., Priess, I., 1974. Shortest path with time constraints on movement and parking. Networks 4, 241–253. 
Irnich, S., Desaulniers, G., 2005. Shortest Path Problems with Resource Constraints. Springer US, Boston, MA. pp. 33–65. 
Irnich, S., Villeneuve, D., 2006. The shortest-path problem with resource constraints and k-cycle elimination for k ≥ 3. INFORMS Journal on 

Computing 18, 391–406. 
Jepsen, M., Petersen, B., Spoorendonk, S., 2008. A branch-and-cut algorithm for the elementary shortest path problem with a capacity constraint. 

Technical Report 08/01, DIKU, University of Copenhagen . 
Laporte, G., Martello, S., 1990. The selective travelling salesman problem. Discrete Applied Mathematics 26, 193–207. 
Madkour, A., Aref, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S.M., 2017. A survey of shortest-path algorithms. CoRR abs/1705.02044. 

arXiv:1705.02044. 
Martinelli, R., Pecin, D., Poggi, M., 2014. Efficient elementary and restricted non-elementary route pricing. European Journal of Operational 

Research 239, 102–111. 
Mehlhorn, K., Ziegelmann, M., 2000. Resource constrained shortest paths, in: Paterson, M.S. (Ed.), Algorithms - ESA 2000, Springer Berlin 

Heidelberg, Berlin, Heidelberg. pp. 326–337. 
Pecin, D., Pessoa, A., Poggi, M., Uchoa, E., 2017. Improved branch-cut-and-price for capacitated vehicle routing. Mathematical Programming 

Computation 9, 61–100. 
Pugliese, L.D.P., Guerriero, F., 2013. A survey of resource constrained shortest path problems: Exact solution approaches. Networks 62, 183–

200. 
Righini, G., Salani, M., 2006. Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with 

resource constraints. Discrete Optimization 3, 255–273. Graphs and Combinatorial Optimization. 
Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks 

51, 155–170. 
Righini, G., Salani, M., 2009. Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with 

time windows with dynamic programming. Computers & Operations Research 36, 1191–1203. 
Sadykov, R., Uchoa, E., Pessoa, A., 2020. A bucket graph–based labeling algorithm with application to vehicle routing. Transportation Science 

55, 4–28. 
Salani, M., Basso, S., 2023. Pathwise: a flexible, open-source library for the resource constrained shortest path. arXiv:2306.08622. 
SPPRCLIB, 2008. http://hjemmesider.diku.dk/~spooren/spprclib.htm [Online; accessed 24-Feb-2023]. 
Tilk, C., Rothenb acher, A.K., Gschwind, T., Irnich, S., 2017. Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving 

shortest path problems with resource constraints faster. European Journal of Operational Research 261. 
Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A., 2017. New benchmark instances for the capacitated vehicle routing 

problem. European Journal of Operational Research 257, 845–858. 
Zabarankin, M., Uryasev, S.P., Pardalos, P.M., 2002. Optimal risk path algorithms. 


