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Abstract:
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individuals. Sixteen patients (21%) had at least 1 CHIP mutation. DNMT3A was the most frequent
mutation (7/16, 44%). Compared to patients without CHIP, patients with CHIP were enriched for the
presence of t(11;14) (69% vs 25%, respectively, p = 0.004) and, for patients with renal
involvement, a lower Palladini renal stage (p = 0.001). At a median follow-up of 32.5 months, the
presence of CHIP was not associated with worse overall survival or major organ dysfunction
progression-free survival. Larger studies and longer follow-up are needed to better define the
impact of CHIP in patients with AL amyloidosis.
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Key Points 30 

 CHIP is more prevalent in AL amyloidosis patients than in the general population 31 

 CHIP presence was associated with the presence of t(11;14), and a lower Palladini renal 32 

stage in patients with renal involvement 33 

 34 

Abstract 35 

Immunoglobulin light chain (AL) amyloidosis is characterized by the deposition of misfolded 36 

monoclonal free light chains, with cardiac complications accounting for patients’ mortality. 37 

Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with worse 38 

cardiovascular outcomes in the general population. Its significance in AL amyloidosis remains 39 

unclear. We collected clinical information and outcome data on 76 patients with a diagnosis of 40 

AL amyloidosis who underwent deep-targeted sequencing for myeloid neoplasia-associated 41 

mutations between April 2018 and August 2023. Variant allele fraction was set at 2% to call 42 

CHIP-associated mutations. CHIP mutations were present in AL amyloidosis patients at a higher 43 

frequency than age-matched control individuals. Sixteen patients (21%) had at least 1 CHIP 44 

mutation. DNMT3A was the most frequent mutation (7/16, 44%). Compared to patients without 45 

CHIP, patients with CHIP were enriched for the presence of t(11;14) (69% vs 25%, respectively, 46 

p = 0.004) and, for patients with renal involvement, a lower Palladini renal stage (p = 0.001). At 47 

a median follow-up of 32.5 months, the presence of CHIP was not associated with worse overall 48 
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survival or major organ dysfunction progression-free survival. Larger studies and longer follow-49 

up are needed to better define the impact of CHIP in patients with AL amyloidosis.  50 
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Introduction 51 

Immunoglobulin light chain (AL) amyloidosis is a plasma cell (PC) dyscrasia whose hallmark is 52 

the production and secretion of misfolded, monoclonal immunoglobulin free light chains 53 

(FLC).
1,2

 The circulating FLC drives pathogenesis causing direct cytotoxicity in its soluble form 54 

and disruption of target organ architecture upon deposition as insoluble fibrillary aggregates. It is 55 

thought that any organ/system in the body can be involved by AL amyloidosis deposition with 56 

the heart and kidneys being the most commonly affected organs.
3,4

 The severity of cardiac 57 

involvement is the single most important prognostic factor in AL amyloidosis as cardiac events 58 

represent the major cause of mortality.
5,6

 Renal involvement occurs in up to 70% of cases and is 59 

a key determinant of patients morbidity, decreased quality of life, and ineligibility for clinical 60 

trials.
7,8

 To aid in patients’ prognostication and management, several staging systems have been 61 

developed to evaluate cardiac involvement 
9–12

, while Palladini and colleagues have introduced a 62 

score predicting the risk of progression to renal replacement therapy.
7
 Cytogenetic alterations 63 

have also prognostic implications and are an important predictor of response to anti-neoplastic 64 

therapies.
13–16

 Among those, t(11;14) is the most prevalent.
16

 It portends a lower response rate to 65 

bortezomib-based therapies
13

 and is a negative prognostic factor, being associated with decreased 66 

progression-free survival (PFS) compared to patients without any alteration.
15

 Based on the 67 

recently published Andromeda study, daratumumab appears to overcome the negative prognostic 68 

impact of t(11;14).
8
 Further, extrapolating from multiple myeloma, the presence of t(11;14) is a 69 

biomarker for response to Bcl2 inhibitor venetoclax.
4,8,17

 70 

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the presence of clonal, somatic 71 

mutations of myeloid-related genes in the absence of overt myeloid neoplasia or cytopenia. The 72 

most commonly CHIP-associated mutations involve DNMT3A, TET2, and/or ASXL1 genes, 73 
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commonly known under the acronym DTA.
18

 CHIP incidence increases with age, being most 74 

frequent in the elderly population and nearly absent before the age of 40.
19–23

 Its occurrence has 75 

been associated with a higher incidence of hematological malignancies
19,20,22

 and cardiovascular 76 

disease, as well as worse cardiovascular outcomes
22,24–27

. In the context of hematological 77 

neoplasms, CHIP has been detected in 9.7 – 21.6% of patients with PC dyscrasia and 14 – 29% 78 

with lymphoma.
23,28–32

 In patients with multiple myeloma (MM) and lymphoma receiving 79 

autologous stem cell transplant (ASCT), CHIP presence was identified as an adverse prognostic 80 

factor.
28,31

 Thari and colleagues also noted a higher risk of progression to Waldenström 81 

macroglobulinemia (WM) in patients with IgM monoclonal gammopathy of undeterminate 82 

significance or smoldering WM carrying DTA mutations.
29

 Two studies previously reported on 83 

the incidence of CHIP in patients with AL amyloidosis. The incidence of CHIP was 15% (4 out 84 

of 27 patients) in one study and 21% (10 out of 47 patients) in the other and did not correlate 85 

with any specific clinical features. It is important to note that while the presence of CHIP was not 86 

found to have prognostic significance in these studies, the association between CHIP and 87 

cytogenetic alterations or cardiac involvement was not investigated.
32,33

  88 

We were interested in exploring whether an association exists between CHIP and cardiac 89 

outcome, based on prior studies. We were also interested in understanding the co-existence of 90 

relevant disease characteristics with CHIP.  91 

Hence, we performed a single-center, retrospective cohort study including 76 consecutive 92 

patients with AL amyloidosis who were seen at BWH/DFCI between April 2018 and August 93 

2023 and had a bone marrow biopsy performed with a targeted myeloid mutation panel assessed.  94 

This is the largest study to date looking broadly at the prevalence and impact of the presence of 95 

CHIP in AL amyloidosis patients. 96 
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 97 

Materials and Methods 98 

Patients 99 

We identified patients seen at BWH/DFCI for a diagnosis of AL amyloidosis who underwent 100 

deep-targeted sequencing for myeloid neoplasia-associated mutations between April 2018 and 101 

August 2023. We retrospectively collected clinical information, including age, gender, ethnicity, 102 

smoking status, FLC subtype, European modification of 2004 Mayo stage, organ involvement, 103 

cytogenetics alterations detected by fluorescent in-situ hybridization (FISH), left ventricular 104 

ejection fraction, Palladini Renal stage for patients with renal involvement.
7,9

 Additionally, we 105 

looked at the type of anti-neoplastic treatment, depth of hematological response, and whether or 106 

not patients received an ASCT. We chose as a primary outcome the major-organ dysfunction 107 

event-free survival  (MOD-PFS) as defined by Kastritis and colleagues
8
 and the overall survival 108 

(OS). We selected as a secondary outcome the cardiac-specific disease response and PFS 109 

(assessed at 6 months and 12 months post-commencement of therapy), as defined by Palladini 110 

and colleagues.
7
 Next-generation sequencing on bone marrow samples was performed using our 111 

custom-validated assay, Rapid Heme Panel (RHP).
34

 Genes assessed for CHIP attribution 112 

included: JAK1, JAK3, PDGFRA, SFA3A1, DNMT3A, GNB1, CEBPA, SBDS, FLT3, KRAS, 113 

BCORL1, PIGA, SF3B1, ASXL1, CTCF, CSF3R, CUX1, NOTCH3, PPM1D, ZRSR2, ATM, 114 

CCND1, KMT2A, EP300, EZH2, SETD2, SH2B3, GNAS, GATA1, IKZF3, PRPF8, KIT, 115 

NOTCH2, WT1, TET2, PIK3CA, PTPN11, CREBBP, NOTCH1, BRCC3, DDX41, TP53, 116 

CALR, LUC7L2. The median coverage obtained was 759 reads per base (IQR 1131). 117 
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CHIP status was assigned to patient samples when putative driver lesions in genes associated 118 

with myeloid neoplasms were observed at Variant Allele Frequency (VAF) higher than 2%. 119 

Reported variants were then analyzed and filtered according to common practice standards 120 

through a semi-automatic pipeline.
35–37

 The age-specific CHIP rates reported by Jaiswal et al. 121 

have been used to calculate the standardized incidence rate.
19

 122 

This study was approved by the BWH/DFCI Institutional Review Board with the approval 123 

number 2023P001501 and was conducted in accordance with the Declaration of Helsinki. 124 

 125 

Statistical Analysis 126 

Statistical analyses were performed using Stata statistical software release 17 (StataCorp LLC, 127 

College Station, TX) and R version 4.2.3 (Shortstop Beagle). Normal distribution was visually 128 

assessed for all continuous variables. Data dispersion was assessed with standard deviation (SD) 129 

for normally distributed variables and with interquartile range (IQR) for non-normally 130 

distributed variables. Baseline demographics and disease characteristics were compared between 131 

patients with and without CHIP. Comparison for normally-distributed variables was performed 132 

with the independent samples t-test, while, for non-normally distributed, with the Wilcoxon rank 133 

sum (Mann Whitney U) test. Comparison for categorical variables was performed with the Chi-134 

square test and the Fisher exact test. MOD-PFS and cardiac-specific PFS were measured from 135 

the time of diagnosis to the time of the first MOD-PFS/cardiac-progression defining event or 136 

were censored at the last follow-up. All reported p values were two-sided, with a statistical 137 

significance set at <0.05. We used the Kaplan-Meier method to estimate the survival curves for 138 

the OS and MOD-PFS, and the Log-rank test to assess the difference between survival curves. 139 
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We used a Cox regression and a stratified Cox regression model to assess the time-to-event 140 

outcome and calculate hazard ratios (HR) with 95% confidence intervals (CI). The stratified 141 

multivariate Cox regression model was built using a forward selection principle and following a 142 

10:1 events to covariate ratio. 143 

This study was approved by the BWH/DFCI Institutional Review Board with the approval 144 

number 2023P001501. 145 

 146 

Results 147 

CHIP is present at a higher prevalence in AL amyloidosis patients as compared to a healthy 148 

population 149 

We identified a total of 76 patients. Sixteen patients (21%) had at least 1 CHIP mutation. Figure 150 

1 shows the detected mutational profile. DNMT3A was the most frequently involved gene (7/16, 151 

44%), followed by TET2, GNB1, ATM (each 2/16, 12.5%), and SF3B1, TP53, ZRSR2, EZH2, 152 

BRCC3, PPM1D, ASXL1 (6%). DNMT3A variants included 6 missense (2 of which were in the 153 

same patient) at the R882, R736, Y735, I780, and F755 residues, and 3 nonsense lesions. TET2 154 

lesions included 3 stop codons and 1 variant in the catalytic domain (residues 1843-2002). 155 

ASXL1, GNB1, and ATM-reported variants included known missense hotspots. Of note, 5 156 

samples carried more than one CHIP-defining lesion. The median VAF of CHIP-associated 157 

mutations was 0.036. A subset of 4 cases carried CHIP variants with an allele frequency equal to 158 

or higher than 10%, suggesting the presence of a larger clone. Based on the age distribution of 159 

our patients, the age-standardized incidence rate of CHIP would be 6%. 160 
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Ten patients (13%) had more than one sample available. Eight out of ten patients with more than 161 

one bone marrow biopsy available had no evidence of CHIP on either biopsy. In contrast, the 162 

other 2 patients (20%) were initially negative and subsequently had a biopsy positive for CHIP 163 

(DNMT3A, ZRSR2). There were no patients with CHIP on a first biopsy who were CHIP 164 

negative on a subsequent biopsy (Figure 2).  165 

 166 

Clinical characteristics 167 

Baseline demographics are shown in Table 1. The mean age of our cohort was 63 years (range 44 168 

– 85). Thirty-two patients were females (42%), 6 patients (8%) were black, 2 (3%) were Asian, 1 169 

was Middle-Eastern (1%), 2 (3%) self-reported as other, and 65 (85%) were white. No 170 

significant difference was noted in epidemiologic characteristics between patients harboring a 171 

CHIP mutation and those without (p>0.05). Sixty-nine percent of patients with CHIP and 67% of 172 

patients without CHIP (p = 1) were treatment naïve at the time the RHP was obtained. Among 173 

patients with CHIP, 2 (12.5%), 5 (31%), 7 (44%), and 2 (12.5%) had a Mayo stage of I, II, IIIA, 174 

and IIIB, respectively. Among those without CHIP, 19 (32%), 13 (22%), 14 (24%), and 13 175 

(24%), had a Mayo stage of I, II, IIIA, and IIIB, respectively. There was no statistically 176 

significant difference in the partition of the Mayo stage between the two groups. When focusing 177 

on patients with histopathology-proven or clinically determined renal involvement, patients with 178 

CHIP were more likely to have a lower Palladini renal stage
7
 (p = 0.001). No significant 179 

difference was noted regarding the frequency of organ involvement (i.e., heart, kidneys, liver, 180 

lung, autonomic nervous system, peripheral nervous system, gastrointestinal tract, and soft 181 

tissue) and the total number of organs affected. The left ventricular ejection fraction (LVEF) and 182 

the presence of anginal symptoms were also evaluated: the mean LVEF was 55% (SD 6.4%) for 183 
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patients with CHIP and 53% (SD 10.2%) for those without. None of the CHIP patients had an 184 

LVEF ≤40% as opposed to 7 (12%) non-CHIP patients, but this difference was not statistically 185 

significant (p = 0.34). Two patients with CHIP (13%) reported anginal symptoms, as opposed to 186 

4 patients without CHIP (7%) but this difference was not statistically significant (p = 0.60). We 187 

then assessed the cytogenetic profile of our cohort (Table 2). A total of 54 patients could be 188 

evaluated with FISH, 13 with CHIP (81%), and 41 without CHIP (68%). Among those with 189 

CHIP, 11/13 (85%) were found to harbor the t(11;14) as opposed to 15/41 (37%) without CHIP 190 

(p = 0.004). To exclude a possible confounding effect of age on the association between CHIP 191 

and the t(11;14) we performed a multivariate logistic regression to assess this association when 192 

keeping age constant. Even after adjusting for age, the association between CHIP and t(11;14) 193 

remained statistically significant (adjusted odds ratio 10.92, CI 1.91 – 62.31, p = 0.007). No 194 

other cytogenic abnormality was found to be significantly associated with CHIP. In regards to the 195 

treatment received, 35 (46%) patients received the combination cyclophosphamide, bortezomib, 196 

dexamethasone (CyBorD), 28 (37%) CyBorD in association with Daratumumab (Dara-CyBorD), 197 

while 12 (16%) other regimens (bortezomib – dexamethasone [VD], lenalidomide – bortezomib 198 

– dexamethasone [RVD], Dara-VD, and melphalan - dexamethasone). Ten (13%) patients 199 

received ASCT during their disease course, including 2 (12.5%) patients with CHIP and 8 (13%) 200 

without. 201 

 202 

The presence of CHIP does not impact MOD-PFS or OS 203 

After a median follow-up from diagnosis of 32.5 months (range 0.5 – 168), 11 patients (14%) 204 

died and 30 (39%) had a MOD-PFS defining event including death. The presence of CHIP was 205 

not associated with lower OS (p = 0.483) (Figure 2A) or with lower MOD-PFS (p = 0.815) 206 
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(Figure 2B). In the univariate Cox proportional hazard model, variables associated with an 207 

increased hazard of mortality were age (HR 1.12, 95% CI, 1.04 – 1.21, p = 0.003), a Mayo stage 208 

>2 (HR 5.74, 95% CI 1.22 – 26.93, p= 0.027), LVEF ≤40% (4.11, 95% CI 1.09 – 15.53, p = 209 

0.037) and a co-occurring diagnosis of coronary artery disease (CAD) (HR 4.94, 95% CI 1.31 – 210 

18.63, p = 0.018). In this cohort, CHIP was not associated with an increased hazard for mortality. 211 

We then looked at MOD-PFS, and the variables associated with an increased hazard for MOD-212 

defining events were Mayo stage 3a or 3b (HR 4.68, 95% CI 1.94 – 11.29, p = 0.001), an LVEF 213 

≤40% (HR 3.09, 95% CI 1.15 – 8.34, p = 0.026), a diagnosis of CAD (HR 5.43, 95% CI 2.13 – 214 

13.88, p < 0.001), the presence of orthostatic hypotension requiring treatment (HR 2.35, 95% CI 215 

1.08 – 5.10, p = 0.030). CHIP was not associated with an increased hazard for MOD events.  216 

A multivariate Cox regression model stratified for age (44-54, 55-64, 65-71, >71) for MOD-PFS 217 

was constructed, which included CAD and Mayo stage 3a or 3b, in addition to CHIP status. 218 

Mayo stage 3a or 3b (HR 4.10, 95% CI 1.55 – 10.81, p = 0.004) and the presence of CAD (HR 219 

4.89, 95% CI 1.58 – 15.16, p = 0.006) were associated with an increased hazard for MOD-220 

defining event (Figure 3). CHIP was not associated with an increased hazard for MOD-defining 221 

events in the multivariate models.  222 

We then focused solely on cardiac-specific outcomes assessed at 6-months and 12-months. In 223 

patients with cardiac involvement at diagnosis (n = 58), patients harboring CHIP had a lower rate 224 

of cardiac organ response compared to those without CHIP, but this difference was not 225 

statistically significant (7/14, 50%, versus 28/44, 64%, respectively, p = 0.532). Cardiac-specific 226 

disease progression was observed in a total of 29 patients (38%), including 8 patients with CHIP 227 

(50%) and 21 patients without CHIP (35%). CHIP presence was not associated with a higher 228 
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hazard for cardiac-specific disease progression in a univariate Cox regression analysis (HR 1.66, 229 

95% CI 0.70 – 3.94, p = 0.250). 230 

 231 

Discussion 232 

Hereby, we describe the prevalence, clinical characteristics, and outcome implications of CHIP 233 

presence in a cohort of 76 consecutive AL amyloidosis patients seen at our center. We noted that 234 

CHIP occurs at a higher frequency (21%) than expected for an age-matched healthy population 235 

(5-10% depending on the studies).
19,20

 The median VAF of CHIP-associated mutations was 236 

0.036, lower than what was previously reported in AL amyloidosis patients, but comparable to 237 

MM patients.
31,32

 We also report on an association between CHIP and the presence of 238 

prognostically adverse, t(11;14). Harboring CHIP was not associated with a decreased OS, 239 

MOD-PFS, or cardiac-PFS, and, although a lower rate of cardiac response was observed, this 240 

difference was not statistically significant. The presence of orthostatic hypotension requiring 241 

treatment with midodrine was found to be associated with worse MOD-PFS in a univariate 242 

analysis but was not included in the multivariate model. Conversely, an association between an 243 

underlying diagnosis of CAD and a Mayo stage 3a or 3b and decreased MOD-PFS was detected 244 

in a multivariate model. 245 

The prevalence of CHIP we reported (21%) is consistent with the available literature for patients 246 

with hematological malignancies, where CHIP driven by DTA genes was identified in 15 – 21% 247 

of patients.
32,33

 In our cohort, DNMT3A was the most frequently mutated gene, followed by 248 

TET2, which appears in line with previous studies on patients with plasma cell dyscrasia.
32,33

 249 
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Consistent with prior data in AL patients, CHIP status did not correlate with age or smoking 250 

status.
32

 This is different from what others have observed in the general population and in the 251 

context of MM.
20,31,38

  252 

Furthermore, our study included longitudinal data for a subset of patients. Interestingly, two 253 

patients (59 and 80 years old at the time of diagnosis) with no CHIP detected at the initial RHP 254 

evaluation were subsequently found to have a CHIP (DNMT3A and ZRSR2, respectively) after 255 

only a few cycles of therapy. 256 

The association between lower Palladini renal stage
7
 and the presence of CHIP was unexpected, 257 

as it was the association between CHIP and the presence of the t(11;14). Age was found not to be 258 

a significant confounder in the association between t(11;14) and CHIP, making this association 259 

even more intriguing. However, in this cohort of patients, it is impossible to ascertain whether 260 

CHIP followed or preceded a diagnosis of t(11;14) plasma cell disorder, and the biological 261 

significance of this association still needs to be elucidated. No difference in regards to the 262 

kidney-specific outcome was noted between patients with or without CHIP (data not shown), but 263 

given the low number of patients, no adjustment could be performed for the renal involvement at 264 

diagnosis or the Palladini renal stage
7
 in patients with known renal involvement. Larger 265 

prospective studies are needed to clarify the significance of these preliminary findings and 266 

potential cause-effect relationship. 267 

In our study, the presence of CHIP was not associated with all-cause mortality or MOD-PFS. 268 

Although this finding appears in contrast with previous studies on MM and lymphomas 269 

undergoing ASCT
28,31

, they are consistent with what was observed in AL amyloidosis patients in 270 

other studies.
32,33

 However, other possible explanations for the absence of an association between 271 

CHIP and worse cardiac outcomes may be the small sample size and the limited follow-up of our 272 
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series. Furthermore, there may have been a bias in patients enrolled in our study as critically ill 273 

patients who could not travel to our center for care or who died prior to commencing plasma 274 

cell-directed therapy were not included, potentially confounding the association with CHIP. 275 

Interestingly, we identified an association between the presence of orthostatic hypotension 276 

requiring treatment and reduced MOD-PFS. Although we chose not to include this variable in 277 

the final multivariate analysis to avoid overfitting the model, the impact between orthostatic 278 

hypotension and lower outcome persisted when included in the multivariate analysis (data not 279 

shown). This has not been previously reported and warrants further evaluation.  280 

There are several limitations to our study. First, given the limited sample size, the power of our 281 

analysis is significantly reduced, with wide confidence intervals. Second, because of the short 282 

duration of follow-up, a low number of events was detected, reducing our capacity to fit more 283 

variables into our regression model. Lastly, in our series, t(11;14) did not emerge as a negative 284 

prognostic factor and was therefore not included in the multivariate model. This could be due to 285 

the use of DaraCyBorD in over a third of the patients or possibly to the short duration of follow-286 

up and low incidence of events.  287 

In conclusion, we showed that CHIP mutations are frequent in the largest cohort of patients with 288 

AL amyloidosis analyzed to date. We demonstrated an association between CHIP and a lower 289 

Palladini renal stage
7
 at diagnosis and the presence of t(11;14). No impact on OS or MOD-PFS 290 

was observed for patients with CHIP as compared to patients without CHIP. Larger prospective 291 

studies and a more prolonged follow-up are needed to better elucidate the impact of CHIP in 292 

patients with AL amyloidosis and to establish a cause-effect relationship with the observed 293 

associations. 294 
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Table 1. Demographics of AL amyloidosis patients with and without CHIP.  421 

Demographics Total (n=76) With CHIP 

(n=16) 

Without CHIP 

(n=60) 

P (CHIP versus 

no CHIP) 

Age (mean ±SD) 63 ±9.9 66 ±10.1 63 ±9.8 0.28* 

Gender 

            Male 

            Female 

 

44 (57.9%) 

32 (42.1%) 

 

7 (43.7%) 

9 (56.3%) 

 

37 (61.7%) 

23 (38.3) 

 

0.26† 

Ethnicity 

            White 

            Black 

           Asian 

           Middle-Eastern 

           Other 

 

65 (85%) 

6 (8%) 

2 (3%) 

1 (1%) 

2 (3%) 

 

15 (94%) 

1 (6%) 

0 

0 

0 

 

50 (84%)  

5 (8%) 

2 (3%) 

1 (2%) 

2 (3%) 

 

0.83† 

 

 

Smoking status 

            Smoker 

            Non-Smoker 

 

43 (58%) 

31 (42%) 

 

7 (44%) 

9 (56%) 

 

24 (41%) 

34 (59%) 

 

0.54† 

Other Neoplasm 

            Yes 

                   MM 

                   SMM 

                   WM 

                   CML 

            No 

 

13 (17%) 

       9 (12%)  

       2 (3%) 

       1 (1%) 

       1 (1%) 

63 (83%) 

 

3 (19%) 

      3 (19%) 

      0 

      0 

      0 

13 (81%) 

 

10 (17%) 

     6 (10%) 

     2 (3%) 

     1 (2%) 

     1 (2%) 

50 (83%) 

 

0.55† 

Type of FLC 

            Lambda 

            Kappa 

 

63 (82.9%) 

13 (17.1%) 

 

12 (75%) 

4 (25%) 

 

51 (85%) 

9 (15%) 

 

0.45† 

Treatment status at 

CHIP evaluation 

      Newly Diagnosed 

 

 

51 (67%) 

 

 

11 (69%) 

 

 

40 (67%) 

 

 

1† 
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      Rel/Ref 

          Median time in 

months from diagnosis 

          Median number 

of lines of therapy 

(range) 

25 (33%) 

1 (0 – 159) 

 

1 (1 – 3) 

5 (31%) 

1 (0 – 41) 

 

1 (1 – 3) 

20 (33%) 

1 (0 – 159) 

 

1.5 (1 – 2) 

 

0.73‡ 

 

0.64‡ 

 

Mayo Stage 

            I 

            II 

            IIIA 

            IIIB 

Mayo stage IIIA - IIIB 

 

21 (28%) 

18 (24%) 

21 (28%) 

15 (20%) 

36 (48%) 

 

2 (12.5%) 

5 (31%) 

7 (44%) 

2 (12.5%) 

9 (56%) 

 

19 (32%) 

13 (22%) 

14 (24%) 

13 (22%) 

27 (46%) 

 

0.44‡ 

 

 

 

0.58 

Palladini Kidney 

Stage (if kidney 

involvement) 

            I 

            II 

            III 

 

 

9 (28%) 

14 (44%) 

9 (28%) 

 

 

5 (100%) 

0 

0 

 

 

4 (15%) 

14 (52%) 

9 (33%) 

 

0.001‡ 

Number of Organs 

involved (median, 

range) 

Sites 

           Heart 

           Renal 

           ANS 

           PNS 

           GI 

           Soft tissue/Skin 

           Liver 

           Lungs/Pleura 

           Lymph node 

 

3 (1 – 7) 

 

60 (79%) 

32 (42%) 

23 (30%) 

19 (25%) 

36 (47%) 

32 (42%) 

3 (4%) 

4 (5%) 

2 (3%) 

 

3 (1 – 5) 

 

15 (94%)  

5 (31%) 

8 (50%) 

3 (19%) 

8 (50%) 

7 (44%) 

1 (6%) 

0 

0 

 

3 (1 – 7) 

 

45 (75%) 

27 (45%) 

15 (25%) 

16 (27%) 

28 (47%) 

25 (42%) 

2 (3%) 

4 (7%) 

2 (3%) 

 

0.43‡ 

 

N.S. 

 

 

 

 

 

N.As. 

LVEF (mean ±SD) 53 ±9.5 55 ±6.4 53 ±10.2 0.28* 

D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/doi/10.1182/bloodadvances.2024012840/2223533/bloodadvances.2024012840.pdf by guest on 30 M

ay 2024



 

22 
 

                ≤40% 

                ≤50% 

9.5% 

28% 

0 

13% 

12% 

33% 

0.34† 

0.13† 

Coronary artery 

disease 

         Yes 

         No 

 

 

6 (8%) 

70 (92%) 

 

 

2 (12%) 

14 (88%) 

 

 

4 (7%) 

56 (93%) 

 

 

0.6† 

Del 17p 

          Yes 

          No 

          N.A. 

 

36 (13%) 

18 (58%) 

22 (29%) 

 

0 (13%) 

13 (69%) 

3 (19%) 

 

1 (13%) 

40 (55%) 

19 (32%) 

 

1† 

t(4;14) 

          Yes 

          No 

          N.A. 

 

1 (1%) 

53 (70%) 

22 (29%) 

 

0  

13 (81%) 

3 (19%)  

 

1 (2%) 

40 (67%) 

19 (32%) 

 

1† 

Monosomy 13 

          Yes 

          No 

          N.A. 

 

5 (7%) 

49 (64%) 

22 (29%) 

 

0 

13 (81%) 

3 (19%) 

 

5 (8%) 

36 (60%) 

19 (32%) 

 

0.32† 

Gain 1q 

          Yes 

          No 

          N.A. 

 

6 (8%) 

48 (63%) 

22 (29%) 

 

2 (12%) 

11 (69%) 

3 (19%) 

 

4 (7%) 

37 (61%) 

19 (32%) 

 

0.62† 

≥2 trisomies 

          Yes 

          No 

          N.A. 

 

3 (4%) 

51 (67%) 

22 (29%) 

 

0 

13 (81%) 

3 (19%) 

 

3 (5%) 

38 (63%) 

19 (32%) 

 

1† 

t(11;14) 

            Yes 

            No 

 

26 (34%) 

28 (37%) 

 

11 (69%) 

2 (12%) 

 

15 (25%) 

26 (43%) 

 

0.004† 
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            N.A. 22 (29%) 3 (19%) 19 (32%) 

BM PC percentage 

(median, IQR)  

15% (7% – 20%) 17% (10% – 

22%) 

15% (7% – 20%) 0.08‡ 

First line treatment 

             CyBorD 

             Dara-CyBorD 

             Other§ 

              None 

 

35 (46%) 

28 (37%) 

12 (16%)  

1 (1%) 

 

5 (31%) 

8 (50%) 

3 (19%) 

0 

 

30 (50%) 

20 (33%) 

9 (15%) 

1 (2%) 

 

0.33† 

ASCT 

         Yes 

         No 

 

10 (13%) 

66 (87%) 

 

2 (12.5%) 

14 (87.5%) 

 

8 (13%) 

52 (87%) 

 

1† 

 422 

SD, standard deviation; rel/ref, relapsed/refractory; SMM, smoldering multiple myeloma; CML, chronic 423 

myeloid leukemia; N.S., non-statistically significant; N.As., statistical significance not assessed; N.A., not 424 

available; BM, bone marrow; PC, plasma cells; IQR, interquartile range. 425 

* Using two-samples independent t-test. 426 

† Using Fisher’s exact test. 427 

‡ Using Wilcoxon rank-sum test. 428 

§Other regimens were bortezomib – dexamethasone, lenalidomide – bortezomib – dexamethasone, 429 

daratumumab – bortezomib – dexamethasone, and melphalan – dexamethasone. 430 

  431 
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Figure 1. Oncoplot displaying CHIP results. Oncoplot showing the relative genetic 432 

contribution to CHIP in the cohort (76 patients, of which 16 carrying CHIP-defining lesions). 433 

Mutation types are color-coded according to legend. The right barchart shows the number of 434 

samples carrying a specific genetic variant while the top barchart recapitulates the number of 435 

variants per sample. DTA lesions are shown in the first three lines followed by other genes 436 

involved in hematologic neoplasms.  437 

 438 

Figure 2. Longitudinal data. Plot showing patients with longitudinal samples available. White 439 

circles represent RHP not showing any CHIP, while black squares represent RHP where CHIP 440 

was detected. Two patients (PT 14 and PT16) who had no CHIP at the initial RHP, were later 441 

found to harbor one CHIP (DNMT3A and ZRSR2, respectively). In contrast, no CHIP was found 442 

in the repeated RHP of the remaining eight patients. 443 

 444 

Figure 3. Overall survival and MOD-PFS. Kaplan-Mayer curves showing overall survival (A) 445 

and MOD-PFS (B) expressed in months among AL amyloidosis patients with (red line) and 446 

without (black line) CHIP. 447 

 448 

Figure 4. Multivariate Cox regression model. Forest plot recapitulating MOD-PFS 449 

determinants in terms of Hazard Ratios. Mayo stage >2, and the presence of CAD were found to 450 

be statistically significant negative MOD-PFS predictors (p=0.004 and p=0.006, respectively). 451 
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