
Robust Multi-Agent Pickup and Delivery with Delays
Giacomo Lodigiani
Politecnico di Milano

Milan, Italy
giacomo.lodigiani@mail.polimi.it

Nicola Basilico
Università degli Studi di Milano

Milan, Italy
nicola.basilico@unimi.it

Francesco Amigoni
Politecnico di Milano

Milan, Italy
francesco.amigoni@polimi.it

ABSTRACT
Multi–Agent Pickup and Delivery (MAPD) is the problem of com-
puting collision-free paths for a group of agents such that they can
safely reach delivery locations from pickup ones. These locations
are provided at runtime, making MAPD a combination between
classical Multi–Agent Path Finding (MAPF) and online task assign-
ment. Current algorithms for MAPD do not consider many of the
practical issues encountered in real applications: real agents often
do not follow the planned paths perfectly, and may be subject to
delays and failures. In this paper, we study the problem of MAPD
with delays, and we present two solution approaches that provide
robustness guarantees by planning paths that limit the effects of
imperfect execution. In particular, we introduce two algorithms,
𝑘–TP and 𝑝–TP, both based on a decentralized algorithm typically
used to solve MAPD, Token Passing (TP), which offer deterministic
and probabilistic guarantees, respectively. Experimentally, we com-
pare our algorithms against a version of TP enriched with online
replanning. 𝑘–TP and 𝑝–TP provide robust solutions, significantly
reducing the number of replans caused by delays, with little or no
increase in solution cost and running time.

1 INTRODUCTION
In Multi–Agent Pickup and Delivery (MAPD) [7], a set of agents
must jointly plan collision–free paths to serve pickup–delivery tasks
that are submitted at runtime. MAPD combines a task-assignment
problem, where agents must be assigned to pickup–delivery pairs
of locations, with Multi–Agent Path Finding (MAPF) [14], where
collision–free paths for completing the assigned tasks must be
computed. A particularly challenging feature of MAPD problems is
that they are meant to be cast into dynamic environments for long
operational times. In such settings, tasks can be submitted at any
time in an online fashion.

Despite studied only recently, MAPD has a great relevance for a
number of real–world application domains. Automated warehouses,
where robots continuously fulfill new orders, arguably represent
the most significant industrial deployments [20]. Beyond logistics,
MAPD applications include also the coordination of teams of service
robots [18] or fleets of autonomous cars, and the automated control
of non–player characters in video games [12].

Recently, the MAPF community has focused on resolution ap-
proaches that can deal with real–world–induced relaxations of some
idealistic assumptions usually made when defining the problem.
A typical example is represented by the assumption that planned
paths are executed without errors. In reality, execution of paths
might be affected by delays and other issues that can hinder some
of their expected properties (e.g., the absence of collisions). One
approach is to add online adaptation to offline planning, in order to
cope with situations where the path execution incurs in errors [10].
Despite being reasonable, this approach is not always desirable

in real robotic applications. Indeed, replanning can be costly in
those situations where additional activities in the environment are
conditioned to the plans the agents initially committed to. In other
situations, replanning cannot even be possible: think, as an exam-
ple, to a centralized setting where robots are no more connected
to the base station when they follow their computed paths. This
background motivated the study of robustness [1, 2, 7], generally
understood as the capacity, guaranteed at planning time, of agents’
paths to withstand unexpected runtime events. In our work, we
focus on robustness in the long–term setting of MAPD, where it
has not been yet consistently studied.

Specifically, in this paper, we study the robustness of MAPD to
the occurrence of delays. To do so, we introduce a variant of the
problem that we callMAPD with delays (MAPD–d for short). In this
variant, like in standard MAPD, agents must be assigned to tasks
(pickup–delivery locations pairs), which may continuously appear
at any time step, and collision–free paths to accomplish those tasks
must be planned. However, during path execution, delays can occur
at arbitrary times causing one or more agents to halt at some time
steps, thus slowing down the execution of their planned paths. We
devise a set of algorithms to compute robust solutions for MAPD–d.
The first one is a baseline built from a decentralized MAPD algo-
rithm, Token Passing (TP), to which we added a mechanism that
replans in case collisions caused by delays are detected when follow-
ing planned paths. TP is able to solve well–formed MAPD problem
instances [11], and we show that, under some assumptions, the
introduction of delays in MAPD–d does not affect well–formedness.
We then propose two new algorithms, 𝑘–TP and 𝑝–TP, which adopt
the approach of robust planning, computing paths that limit the
risk of collisions caused by potential delays. 𝑘–TP returns solutions
with deterministic guarantees about robustness in face of delays
(𝑘–robustness), while solutions returned by 𝑝–TP have probabilistic
robustness guarantees (𝑝–robustness). We compare the proposed
algorithms by running experiments in simulated environments and
we evaluate the trade–offs offered by different levels and types of
robustness.

In summary, the main contributions of this paper are: the in-
troduction of the MAPD–d problem and the study of some of its
properties (Section 3), the definition of two algorithms (𝑘–TP and
𝑝–TP) for solving MAPD–d problems with robustness guarantees
(Section 4), and their experimental evaluation that provides insights
about how robustness and solution cost can be balanced (Section 5).

2 PRELIMINARIES AND RELATEDWORK
In this section, we discuss the relevant literature related to our work
and we introduce the formal concepts we will build upon in the
following sections.

A basic MAPF problem assigns a start–goal pair of vertices on a
graph 𝐺 = (𝑉 , 𝐸) to each agent from a set 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎ℓ } and

ar
X

iv
:2

30
3.

17
42

2v
1

 [
cs

.A
I]

 3
0

M
ar

 2
02

3

is solved by a minimum–cost discrete–time set of paths allowing
each agent to reach its goal without collisions [14]. In this work, we
shall define agent 𝑎𝑖 ’s path as 𝜋𝑖 = ⟨𝜋𝑖,𝑡 , 𝜋𝑖,𝑡+1, . . . , 𝜋𝑖,𝑡+𝑛⟩, namely
a finite sequence of vertices 𝜋𝑖,ℎ ∈ 𝑉 starting at some time 𝑡 and
ending at 𝑡 + 𝑛. Following 𝜋𝑖 , the agent must either move to an
adjacent vertex ((𝜋𝑖,𝑡 , 𝜋𝑖,𝑡+1) ∈ 𝐸) or not move (𝜋𝑖,𝑡+1 = 𝜋𝑖,𝑡).

MAPD extends the above one–shot setting to a time–extended
setting by introducing tasks 𝜏 𝑗 ∈ T , each specifying a pickup and a
delivery vertex denoted as 𝑠 𝑗 and 𝑔 𝑗 , respectively. A task has to be
assigned to an agent that must execute it following a collision–free
path from its initial location to 𝑠 𝑗 and then from 𝑠 𝑗 to 𝑔 𝑗 . A peculiar
characteristic of this problem is that the set T is filled at runtime:
a task can be added to the system at any (finite) time and from the
moment it is added it becomes assignable to any agent. An agent
is free when it is currently not executing any task and occupied
when it is assigned to a task. If an agent is free, it can be assigned
to any task 𝜏 𝑗 ∈ T , with the constraint that a task can be assigned
to only one agent. When this happens, the task is removed from
T and, when the agent completes its task eventually arriving at
𝑔 𝑗 , it returns free. A plan is a set of paths, which are required to be
collision–free, namely any two agents cannot be in the same vertex
or traverse the same edge at the same time. Each action (movement
to an adjacent vertex or wait) lasts one time step. Solving MAPD
means finding a minimum–cost plan to complete all the tasks in T .
Cost usually takes one of two possible definitions. The service time
is the average number of time steps needed to complete each task
𝜏 𝑗 , measured as the time elapsed from 𝜏 𝑗 ’s arrival to the time an
agent reaches 𝑔 𝑗 . The makespan, instead, is the earliest time step at
which all the tasks are completed. Being MAPD a generalization of
MAPF, it is NP–hard to solve optimally with any of the previous
cost functions [15, 21].

Recent research focused on how to compute solutions of the
above problems which are robust to delays, namely to runtime
events blocking agents at their current vertices for one or more
time steps, thus slowing down the paths execution. The MAPF
literature provides two notions of robustness, which we will exploit
in this paper. The first one is that of 𝑘–robustness [2, 3]. A plan
is 𝑘–robust iff it is collision–free and remains so when at most 𝑘
delays for each agent occur. To create 𝑘–robust plans, an algorithm
should ensure that, when an agent leaves a vertex, that vertex is
not occupied by another agent for at least 𝑘 time steps. In this
way, even if the first agent delays 𝑘 times, no collision can occur.
The second one is called 𝑝–robustness [1]. Assume that a fixed
probability 𝑝𝑑 of any agent being delayed at any time step is given
and that delays are independent of each other. Then, a plan is 𝑝–
robust iff the probability that it will be executed without a collision
is at least 𝑝 . Differently from 𝑘–robustness, this notion provides a
probabilistic guarantee.

Robustness for MAPD problems has been less studied. One no-
tion proposed in [11] and called long–term robustness is actually a
feasibility property that guarantees that a finite number of tasks
will be completed in a finite time. Authors show how a sufficient
condition to have long–term robustness is to ensure that a MAPD
instance is well–formed. This amounts to require that (i) the number
of tasks is finite; (ii) there are as much endpoints as agents, where
endpoints are vertices designated as rest locations at which agents
might not interfere with any other moving agent; (iii) for any two

Algorithm 1: Token Passing
1 initialize token with path ⟨loc(𝑎𝑖) ⟩ for each agent 𝑎𝑖 (loc(𝑎𝑖) is 𝑎𝑖 ’s

current (eventually initial) location);
2 while true do
3 add new tasks, if any, to the task set T;
4 while agent 𝑎𝑖 exists that requests token do
5 /* token assigned to 𝑎𝑖 and 𝑎𝑖 executes now */;
6 T′ ← {𝜏 𝑗 ∈ T | no path in token ends in 𝑠 𝑗 or 𝑔𝑗 };
7 if T′ ≠ {} then
8 𝜏 ← argmin𝜏 𝑗 ∈T′ ℎ (loc(𝑎𝑖), 𝑠 𝑗) ;
9 assign 𝑎𝑖 to 𝜏 ;

10 remove 𝜏 from T;
11 update 𝑎𝑖 ’s path in token with the path returned by

PathPlanner(𝑎𝑖 , 𝜏, token) ;
12 else if no task 𝜏 𝑗 ∈ T exists with 𝑔𝑗 = loc(𝑎𝑖) then
13 update 𝑎𝑖 ’s path in token with the path ⟨loc(𝑎𝑖) ⟩;
14 else
15 update 𝑎𝑖 ’s path in token with Idle(𝑎𝑖 , token) ;
16 end
17 /* 𝑎𝑖 returns token to system */;
18 end
19 agents move on their paths in token for one time step;
20 end

endpoints, there exists a path between them that traverses no other
endpoints.

In this work, we leverage the above concepts to extend 𝑘– and
𝑝–robustness to long–term MAPD settings. To do so, we will focus
on a current state–of–the–art algorithm for MAPD, Token Passing
(TP) [11]. This algorithm follows an online and decentralized ap-
proach that, with respect to the centralized counterparts, trades off
optimality to achieve an affordable computational cost in real–time
long–term settings. We report it in Algorithm 1. The token is a
shared block of memory containing the current agents’ paths 𝜋𝑖s,
the current task set T , and the current assignment of tasks to the
agents. The token is initialized with paths in which each agent 𝑎𝑖
rests at its initial location 𝑙𝑜𝑐 (𝑎𝑖) (line 1). At each time step, new
tasks might be added to T (line 3). When an agent has reached
the end of its path in the token, it becomes free and requests the
token (at most once per time step). The token is sent in turn to
each requesting agent (line 5) and the agent with the token assigns
itself (line 9) to the task 𝜏 in T whose pickup vertex is closest to
its current location (line 8), provided that no other path already
planned (and stored in the token) ends at the pickup or delivery
vertex of such task (line 6). The distance between the current lo-
cation loc(𝑎𝑖) of agent 𝑎𝑖 and the pickup location 𝑠 𝑗 of a task is
calculated using a (possibly approximated) function ℎ (for the grid
environments of our experiments we use the Manhattan distance).
The agent then computes a collision–free path from its current po-
sition to the pickup vertex, then from there to the delivery vertex,
and finally it eventually rests at the delivery vertex (line 11). Finally,
the agent releases the token (line 17) and everybody moves one
step on its path (line 19). If 𝑎𝑖 cannot find a feasible path it stays
where it is (line 13) or it calls the function Idle to compute a path
to an endpoint in order to ensure long–term robustness (line 15).

2

Note that other dynamic and online settings, different from ours,
have been considered for MAPF and MAPD. For example, [16] in-
troduces a setting in which the set of agents is not fixed, but agents
can enter and leave the system, [8] proposes an insightful compari-
son of online algorithms that can be applied to the aforementioned
setting, and [13] studies a related problem where the actions have
uncertain costs.

3 MAPDWITH DELAYS
Delays are typical problems in real applications ofMAPF andMAPD
and may have multiple causes. For example, robots can slow down
due to some errors occurring in the sensors used for localization
and coordination [5]. Moreover, real robots are subject to physical
constraints, like minimum turning radius, maximum velocity, and
maximum acceleration, and, although algorithms exists to convert
time–discrete MAPD plans into plans executable by real robots [9],
small differences between models and actual agents may still cause
delays. Another source of delays is represented by anomalies hap-
pening during path execution and caused, for example, by partial
or temporary failures of some agent [4].

We define the problem of MAPD with delays (MAPD–d) as a
MAPD problem (see Section 2) where the execution of the com-
puted paths 𝜋𝑖 can be affected, at any time step 𝑡 , by delays repre-
sented by a time–varying set D(𝑡) ⊆ 𝐴. Given a time step 𝑡 , D(𝑡)
specifies the subset of agents that will delay the execution of their
paths, lingering at their currently occupied vertices at time step
𝑡 . An agent could be delayed for several consecutive time steps,
but not for indefinitely long in order to preserve well–formedness
(see next section). The temporal realization of D(𝑡) is unknown
when planning paths, so a MAPD–d instance is formulated as a
MAPD one: no other information is available at planning time. The
difference lies in how the solution is built: in MAPD–d we compute
solutions accounting for robustness to delays that might happen at
runtime.

More formally, delays affect each agent’s execution trace. Agent
𝑎𝑖 ’s execution trace 𝑒𝑖 = ⟨𝑒𝑖,0, 𝑒𝑖,1, ..., 𝑒𝑖,𝑚⟩1 for a given path 𝜋𝑖 =

⟨𝜋𝑖,0, 𝜋𝑖,1, . . . , 𝜋𝑖,𝑛⟩ corresponds to the actual sequence of𝑚 (𝑚 ≥ 𝑛)
vertices traversed by 𝑎𝑖 while following 𝜋𝑖 and accounting for
possible delays. Let us call idx(𝑒𝑖,𝑡) the index of 𝑒𝑖,𝑡 (the vertex
occupied by 𝑎𝑖 at time step 𝑡) in 𝜋𝑖 . Given that 𝑒𝑖,0 = 𝜋𝑖,0, the
execution trace is defined, for 𝑡 > 0, as:

𝑒𝑖,𝑡 =

{
𝑒𝑖,𝑡−1 if 𝑎𝑖 ∈ D(𝑡)
𝜋𝑖,ℎ | ℎ = idx(𝑒𝑖,𝑡−1) + 1 otherwise

An execution trace terminates when 𝑒𝑖,𝑚 = 𝜋𝑖,𝑛 for some𝑚.
Notice that, if no delays are present (that is, D(𝑡) = {} for all 𝑡)

then the execution trace 𝑒𝑖 exactly mirrors the path 𝜋𝑖 and, in case
this is guaranteed in advance, the MAPD–d problem becomes de
facto a regular MAPD problem. In general, such a guarantee is not
given and solving a MAPD-d problem opens the issue of computing
collision–free tasks–fulfilling MAPD paths (optimizing service time
or makespan) characterized by some level of robustness to delays.

The MAPD-d problem reduces to the MAPD problem as a special
case, so the MAPD–d problem is NP-hard.

1For simplicity and w.l.o.g., we consider a path and a corresponding execution trace
starting from time step 0.

3.1 Well-formedness of MAPD–d
In principle, if a problem instance is well–formed, delays will not
affect its feasibility (this property is also called long–term robust-
ness, namely the guarantee that a finite number of tasks will be
completed in a finite time, see Section 2). Indeed, well–formedness
is given by specific topological properties of the environment and
delays, by their definition, are not such a type of feature. There is,
however, an exception to this argument corresponding to a case
where a delay does cause a modification of the environment, even-
tually resulting in the loss of well–formedness and, in turn, of
feasibility. This is the case where an agent is delayed indefinitely
and cannot move anymore (namely when the agent is in D(𝑡) for
all 𝑡 ≥ 𝑇 for a given time step 𝑇). In such a situation, the agent
becomes a new obstacle, potentially blocking a path critical for pre-
serving the well–formedness. The assumption that an agent cannot
be delayed indefinitely made in the previous section ensures the
well-formedness of MAPD–d instances. More precisely, a MAPD–d
instance is well–formed when, in addition to requirements (i)–(iii)
from Section 2, it satisfies also: (iv) any agent cannot be in D(𝑡)
forever (i.e., for all 𝑡 ≥ 𝑇 for a given 𝑇).

In a real context, condition (iv) amounts to removing or repairing
the blocked agents. For instance, if an agent experiences a perma-
nent fail, it will be removed (in this case its incomplete task will
return in the task set and at least one agent must survive in the
system) or repaired after a finite number of time steps. This guar-
antees that the well–formedness of a problem instance is preserved
(or, more precisely, that it is restored after a finite time).

3.2 A MAPD–d baseline: TP with replanning
Algorithms able to solve well–formed MAPD problems, like TP, are
in principle able to solve well–formed MAPD–d problems as well.
The only issue is that these algorithms would return paths that do
not consider possible delays occurring during execution. Delays
cause paths to possibly collide, although they did not at planning
time. (Note that, according to our assumptions, when an agent is
delayed at time step 𝑡 , there is no way to know for how long it will
be delayed.)

In order to have a baseline to compare against the algorithms
we propose in the next section, we introduce an adaptation of TP
allowing it to work also in the presence of delays. Specifically, we
add to TP a replanning mechanism that works as follows: when
a collision is detected between agents following their paths, the
token is assigned to one of the colliding agents to allow replanning
of a new collision–free path. This is a modification of the original
TP mechanism where the token can be assigned only to free agents
that have reached the end of their paths (see Algorithm 1). To do
this, we require the token to include also the current execution
traces of the agents.

Algorithm 2 reports the pseudo–code for this baseline method
that we call TP with replanning. At the current time step a collision
is checked using the function CheckCollisions (line 4): a collision
occurs at time step 𝑡 if an agent 𝑎𝑖 wants to move to the same
vertex to which another agent 𝑎 𝑗 wants to move or if 𝑎𝑖 and 𝑎 𝑗
want to swap their locations on adjacent vertices. For example, this
happens when 𝑎 𝑗 is delayed at 𝑡 or when one of the two agents
has been delayed at an earlier time step. The function returns the

3

Algorithm 2: TP with replanning
1 initialize token with the (trivial) path ⟨loc(𝑎𝑖) ⟩ for each agent 𝑎𝑖 ;
2 while true do
3 add new tasks, if any, to the task set T;
4 R ← CheckCollisions(token) ;
5 foreach agent 𝑎𝑖 in R do
6 retrieve task 𝜏 assigned to 𝑎𝑖 ;
7 𝜋𝑖 ← PathPlanner(𝑎𝑖 , 𝜏, token) ;
8 if 𝜋𝑖 is not null then
9 update 𝑎𝑖 ’s path in token with 𝜋𝑖 ;

10 else
11 recovery from deadlocks;
12 end
13 end
14 while agent 𝑎𝑖 exists that requests token do
15 proceed like in Algorithm 1 (lines 5-17);
16 end
17 agents move along their paths in token for one time step (or

stay at their current position if delayed);
18 end

set R of non–delayed colliding agents that will try to plan new
collision–free paths (line 7). The PathPlanner function considers
a set of constraints to avoid conflicts with the current paths of
other agents in the token. A problem may happen when multiple
delays occur at the same time; in particular situations, two or more
agents may prevent each other to follow the only paths available to
complete their tasks. In this case, the algorithm recognizes the situ-
ation and implements a deadlock recovery behavior. In particular,
although with our assumptions agents cannot be delayed forever,
we plan short collision–free random walks for the involved agents
in order to speedup the deadlock resolution (line 11). An example
of execution of TP with replanning is depicted in Figure 1.

4 ALGORITHMS FOR MAPDWITH DELAYS
In this section we present two algorithms, 𝑘–TP and 𝑝–TP, able to
plan paths that solve MAPD-d problem instances with some guar-
anteed degree of robustness in face of delays. In particular, 𝑘–TP
provides a deterministic degree of robustness, while 𝑝–TP provides
a probabilistic degree of robustness. For developing these two algo-
rithms, we took inspiration from the corresponding concepts of 𝑘–
and 𝑝–robustness for MAPF that we outlined in Section 2.

4.1 𝑘–TP Algorithm
A 𝑘–robust solution for MAPD–d is a plan which is guaranteed
to avoid collisions due to at most 𝑘 consecutive delays for each
agent, not only considering the paths already planned but also those
planned in the future. (By the way, this is one of the main differ-
ences between our approach and the robustness for MAPF.) As we
have discussed in Section 3, TP with replanning (Algorithm 2) can
just react to the occurrence of delays once they have been detected.
The 𝑘–TP algorithm we propose, instead, plans in advance consid-
ering that delays may occur, in the attempt of avoiding replanning
at runtime. The algorithm is defined as an extension of TP with

Figure 1: An example of TP with replanning. The figure
shows a grid environment with two agents and two tasks
at different time steps. Initially (top), the agents plan their
paths without collisions. At time steps 6 and 7 (middle) 𝑎2 is
delayed and at time step 7 a collision is detected in the token.
Then, 𝑎1 regains the token and replans (bottom).

replanning, so it is able to solve all well–formed MAPD–d prob-
lem instances. A core difference is an additional set of constraints
enforced during path planning.

The formal steps are reported in Algorithm 3. A new path 𝜋𝑖 ,
before being added to the token, is used to generate the constraints
(the𝑘–extension of the path, also added to the token, lines 17 and 23)
representing that, at any time step 𝑡 , any vertex in

{𝜋𝑖,𝑡−𝑘 , . . . , 𝜋𝑖,𝑡−1, 𝜋𝑖,𝑡 , 𝜋𝑖,𝑡+1, . . . , 𝜋𝑖,𝑡+𝑘 }
should be considered as an obstacle (at time step 𝑡) by agents plan-
ning later. In this way, even if agent 𝑎𝑖 or agent 𝑎 𝑗 planning later
are delayed up to 𝑘 times, no collision will occur. For example, if
𝜋𝑖 = ⟨𝑣1, 𝑣2, 𝑣3⟩, the 1-extension constraints will forbid any other
agent to be in {𝑣1, 𝑣2} at the first time step, in {𝑣1, 𝑣2, 𝑣3} at the
second time step, in {𝑣2, 𝑣3} at the third time step, and in {𝑣3} at
the fourth time step.

The path of an agent added to the token ends at the delivery
vertex of the assigned task, so the space requested in the token to
store the path and the corresponding 𝑘–extension constraints is
finite, for finite 𝑘 . Note that, especially for large values of 𝑘 , it may
happen that a sufficiently robust path for an agent 𝑎𝑖 cannot be
found at some time step; in this case, 𝑎𝑖 simply returns the token and
tries to replan at the next time step. The idea is that, as other agents
advance along their paths, the setting becomes less constrained
and a path can be found more easily. Clearly, since delays that
affect the execution are not known beforehand, replanning is still
necessary in those cases where an agent gets delayed for more than
𝑘 consecutive time steps.

4.2 𝑝–TP Algorithm
The idea of 𝑘–robustness considers a fixed value 𝑘 for the guarantee,
which could be hard to set: if 𝑘 is too low, plans may not be robust

4

Algorithm 3: 𝑘-TP
1 initialize token with the (trivial) path ⟨𝑙𝑜𝑐 (𝑎𝑖) ⟩ for each agent 𝑎𝑖 ;
2 while true do
3 add new tasks, if any, to the task set T;
4 R ← CheckCollisions(token) ;
5 foreach agent 𝑎𝑖 in R do
6 proceed like in Algorithm 2 (lines 6-11);
7 end
8 while agent 𝑎𝑖 exists that requests token do
9 /* token is assigned to 𝑎𝑖 and 𝑎𝑖 executes now */;

10 T′ ← {𝜏 𝑗 ∈ T | no path in token ends in 𝑠 𝑗 or in 𝑔𝑗 };
11 if T′ ≠ {} then
12 𝜏 ← argmin𝜏 𝑗 ∈T′ ℎ (loc(𝑎𝑖), 𝑠 𝑗) ;
13 assign 𝑎𝑖 to 𝜏 ;
14 remove 𝜏 from T;
15 𝜋𝑖 ← PathPlanner(𝑎𝑖 , 𝜏, token) ;
16 if 𝜋𝑖 is not null then
17 update token with k-extension(𝜋𝑖 , 𝑘) ;
18 else if no task 𝜏 𝑗 ∈ T exists with 𝑔𝑗 = loc(𝑎𝑖) then
19 update 𝑎𝑖 ’s path in token with the path ⟨loc(𝑎𝑖) ⟩;
20 else
21 𝜋𝑖 ← Idle(𝑎𝑖 , token) ;
22 if 𝜋𝑖 is not null then
23 update token with k-extension(𝜋𝑖 , 𝑘) ;
24 end
25 /* 𝑎𝑖 returns token to system */;
26 end
27 agents move along their paths in token for one time step (or

stay at their current position if delayed);
28 end

enough and the number of (possibly costly) replans could be high,
while if 𝑘 is too high, it will increase the total cost of the solution
with no extra benefit (see Section 5 for numerical data supporting
these claims).

An alternative approach is to resort to the concept of 𝑝–robustness.
A 𝑝–robust plan guarantees to keep collision probability below a
certain threshold 𝑝 (0 ≤ 𝑝 ≤ 1). In a MAPD setting, where tasks
are not known in advance, a plan could quickly reach the threshold
with just few paths planned, so that no other path can be added
to it until the current paths have been executed. Our solution to
avoid this problem is to impose that only the collision probability
of individual paths should remain below the threshold 𝑝 , not of
the whole plan. s discussed in [19], this might also be a method to
ensure a notion of fairness among agents.

We thus need a way to calculate the collision probability for a
given path. We adopt a model based on Markov chains [6]. Assum-
ing that the probability that any agent is delayed at any time step
is fixed and equal to 𝑝𝑑 , we model agent 𝑎𝑖 ’s execution trace 𝑒𝑖
(corresponding to a path 𝜋𝑖) with a Markov chain, where the tran-
sition matrix 𝑃 is such that with probability 𝑝𝑑 the agent remains
at the current vertex and with probability 1 − 𝑝𝑑 advances along
𝜋𝑖 . We also assume that transitions along chains of different agents
are independent. (This simplification avoids that delays for one
agent propagate to other agents, which could be problematic for
the model [19], while still providing an useful proxy for robustness.)

This model is leveraged by our 𝑝–TP algorithm reported as Algo-
rithm 4. The approach is again an extension of TP with replanning,
so also in this case we are able to solve any well–formed MAPD in-
stance. Here, one difference with the basic algorithms is that before
inserting a new path 𝜋𝑖 in the token, the Markov chain model is
used to calculate the collision probability cprob𝜋𝑖 between 𝜋𝑖 and
the paths already in the token (lines 18 and 30). Specifically, the
probability distribution for the vertex occupied by an agent 𝑎𝑖 at
the beginning of a path 𝜋𝑖 = ⟨𝜋𝑖,𝑡 , 𝜋𝑖,𝑡+1, . . . , 𝜋𝑖,𝑡+𝑛⟩ is given by a
(row) vector 𝑠0 with length 𝑛 that has every element set to 0 except
that corresponding to the vertex 𝜋𝑖,𝑡 , which is 1. The probability
distribution for the location of an agent at time step 𝑡 + 𝑗 is given
by 𝑠0𝑃 𝑗 (where 𝑃 is the transition matrix defined above). For ex-
ample, in a situation with 3 agents and 4 vertices (𝑣1, 𝑣2, 𝑣3, 𝑣4), the
probability distributions at a given time step 𝑡 for the locations of
agents 𝑎1, 𝑎2, and 𝑎3 could be ⟨0.6, 0.2, 0.1, 0.1⟩, ⟨0.3, 0.2, 0.2, 0.3⟩,
and ⟨0.5, 0.1, 0.3, 0.1⟩, respectively. Then, for any vertex traversed
by the path 𝜋𝑖 , we calculate its collision probability as 1 minus the
probability that all the other agents are not at that vertex at that
time step multiplied by the probability that the agent is actually
at that vertex at the given time step. Following the above example,
the collision probability in 𝑣1 for agent 𝑎1 at 𝑡 (i.e., the probability
that at least one of the other agents is at 𝑣1 at 𝑡) is calculated as
[1 − (1 − 0.3) · (1 − 0.5)] · 0.6 = 0.39. The collision probabilities of
all the vertices along the path are summed to obtain the collision
probability cprob𝜋𝑖 for the path 𝜋𝑖 . If this probability is above the
threshold 𝑝 (lines 19 and 31), the path is rejected and a new one
is calculated. If an enough robust path is not found after a fixed
number of rejections itermax, the token is returned to the system
and the agent will try to replan at the next time step (as other agents
advance along their paths, chances of collisions could decrease).

Also for 𝑝–TP, since the delays are not known beforehand, re-
planning is still necessary. Moreover, we need to set the value of 𝑝𝑑 ,
with which we build the probabilistic guarantee according to the
specific application setting. We deal with this in the next section.

5 EXPERIMENTAL RESULTS
5.1 Setting
Our experiments are conducted on a 3.2 GHz Intel Core i7 8700H
laptop with 16 GB of RAM. We tested our algorithms in two ware-
house 4–connected grid environments where the effects of delays
can be significant: a small one, 15 × 13 units, with 4 and 8 agents,
and a large one, 25 × 17, with 12 and 24 agents (Figure 2). (Envi-
ronments of similar size have been used in [11].) At the beginning,
the agents are located at the endpoints. We create a sequence of
50 tasks choosing the pickup and delivery vertices uniformly at
random among a set of predefined vertices. The arrival time of each
task is determined according to a Poisson distribution [17]. We test
3 different arrival frequencies _ for the tasks: 0.5, 1, and 3 (since, as
discussed later, the impact of _ on robustness is not relevant, we
do not show results for all values of _). During each run, 10 delays
per agent are randomly inserted and the simulation ends when all
the tasks have been completed.

We evaluate 𝑘–TP and 𝑝–TP against the baseline TP with replan-
ning (to the best of our knowledge, we are not aware of any other
algorithm for finding robust solutions to MAPD–d). For 𝑝–TP we

5

Algorithm 4: 𝑝-TP
1 initialize token with path ⟨𝑙𝑜𝑐 (𝑎𝑖) ⟩ for each agent 𝑎𝑖 ;
2 while true do
3 add new tasks, if any, to the task set T;
4 R ← CheckCollisions(token) ;
5 foreach agent 𝑎𝑖 in R do
6 proceed like in Algorithm 2 (lines 7 - 13);
7 end
8 while agent 𝑎𝑖 exists that requests token do
9 /* token assigned to 𝑎𝑖 and 𝑎𝑖 executes now */;

10 T′ ← {𝜏 𝑗 ∈ T | no path in token ends in 𝑠 𝑗 or in 𝑔𝑗 };
11 if T′ ≠ {} then
12 𝜏 ← argmin𝜏 𝑗 ∈T′ ℎ (loc(𝑎𝑖), 𝑠 𝑗) ;
13 assign 𝑎𝑖 to 𝜏 ;
14 remove 𝜏 from T;
15 𝑗 ← 0;
16 while 𝑗 < itermax do
17 𝜋𝑖 ← PathPlanner(𝑎𝑖 , 𝜏, token) ;
18 cprob𝜋𝑖 ← MarkovChain(𝜋𝑖 , token) ;
19 if cprob𝜋𝑖 < 𝑝 then
20 update 𝑎𝑖 ’s path in token with 𝜋𝑖 ;
21 break
22 𝑗 ← 𝑗 + 1;
23 end
24 else if no task 𝜏 𝑗 ∈ T exists with 𝑔𝑗 = loc(𝑎𝑖) then
25 update 𝑎𝑖 ’s path in token with the path ⟨loc(𝑎𝑖) ⟩;
26 else
27 𝑗 ← 0;
28 while 𝑗 < itermax do
29 𝜋𝑖 ← Idle(𝑎𝑖 , token) ;
30 cprob𝜋𝑖 ← MarkovChain(𝜋𝑖 , token) ;
31 if cprob𝜋𝑖 < 𝑝 then
32 update 𝑎𝑖 ’s path in token with 𝜋𝑖 ;
33 break
34 𝑗 ← 𝑗 + 1;
35 end
36 end
37 /* 𝑎𝑖 returns token and system executes now */;
38 end
39 agents move along their paths in token for one time step (or

stay at their current position if delayed);
40 end

use two different values for the parameter 𝑝𝑑 , 0.02 and 0.1, modeling
a low and a higher probability of delay, respectively. (Note that this
is the expected delay probability used to calculate the robustness of
a path and could not match with the delays actually observed.) For
planning paths of individual agents (PathPlanner in the algorithms),
we use an A* path planner with Manhattan distance as heuristic.

Solutions are evaluated according to the makespan (i.e., the ear-
liest time step at which all tasks are completed, see Section 2).
(Results for the service time are qualitatively similar and are not
reported here.) We also consider the number of replans performed
during execution and the total time required by each simulation
(including time for both planning and execution). The reported re-
sults are averages over 100 randomly restarted runs. All algorithms

Figure 2: Large warehouse with 24 agents, obstacles (black),
pickup (colored squares) and delivery (triangles) vertices,
and endpoints (green circles)

Table 1: Small warehouse, _ = 0.5, and 10 delays per agent

ℓ = 4 ℓ = 8

𝑘 or 𝑝 makespan # replans runtime [s] makespan #replans runtime [s]
𝑘
-T
P

0 364.88 7.26 0.85 234.59 16.04 2.11

1 374.48 1.4 0.91 240.69 3.85 2.27

2 390.82 0.1 1.16 241.14 0.73 2.15

3 411.09 0.01 1.59 259.38 0.09 3.12

4 436.12 0.0 2.0 278.33 0.04 4.49

𝑝
-T
P,
𝑝
𝑑
=
.1

1 364.88 7.26 1.14 234.59 16.04 2.63

0.5 369.5 6.29 1.81 237.27 12.59 5.0

0.25 395.07 4.29 2.88 255.21 5.63 6.11

0.1 409.17 2.9 3.16 268.99 3.23 6.32

0.05 428.64 2.93 3.42 279.26 2.76 6.48

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 366.72 7.34 1.29 238.83 12.81 3.87

0.25 378.42 6.8 1.57 236.21 10.21 4.38

0.1 391.63 4.53 2.37 250.39 6.73 5.57

0.05 405.53 3.51 2.66 256.24 4.25 5.34

are implemented in Python and the code is publicly available at an
online repository2.

5.2 Results
Results relative to small warehouse are shown in Tables 1 and 2 and
those relative to large warehouse are shown in Tables 3 and 4. For
the sake of readability, we do not report the standard deviation in
tables. Standard deviation values do not present any evident oddity
and support the conclusions about the trends reported below.

The baseline algorithm, TP with replanning, appears twice in
each table: as 𝑘–TP with 𝑘 = 0 (that is the basic implementation as
in Algorithm 2) and as 𝑝–TP with 𝑝𝑑 = 0.1 and 𝑝 = 1 (which accepts
all paths). The two versions of the baseline return the same results
in terms of makespan and number of replans (we use the same
random seed initialization for runs with different algorithms), but
the total runtime is larger in the case of 𝑝–TP, due to the overhead

2Link hidden to keep anonymity.

6

Table 2: Small warehouse, _ = 3, and 10 delays per agent

ℓ = 4 ℓ = 8

𝑘 or 𝑝 makespan # replans runtime [s] makespan # replans runtime [s]

𝑘
-T
P

0 354.77 8.3 0.6 217.79 14.67 1.93

1 363.22 1.47 0.77 219.87 4.01 1.81

2 383.59 0.2 0.95 226.75 0.58 1.89

3 400.77 0.01 1.33 250.23 0.12 3.02

4 429.12 0.0 1.68 263.47 0.01 4.32

𝑝
-T
P,
𝑝
𝑑
=
.1

1 354.77 8.3 0.86 217.79 14.67 2.53

0.5 360.29 6.7 1.45 224.31 11.06 4.93

0.25 381.98 5.12 2.3 245.24 6.46 5.83

0.1 404.92 2.93 2.81 251.42 3.55 5.66

0.05 417.04 2.65 3.05 262.73 3.65 6.11

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 358.14 8.05 1.25 219.58 13.19 3.61

0.25 372.92 7.02 1.57 228.25 10.93 3.77

0.1 380.31 4.41 2.12 233.97 6.89 4.65

0.05 393.55 3.45 2.5 244.62 4.81 4.98

of calculating the Markov chains and the collision probability for
each path.

Looking at robustness, which is the goal of our algorithms, we
can see that, in all settings, both 𝑘–TP and 𝑝–TP significantly re-
duce the number of replans with respect to the baseline. For 𝑘–TP,
increasing 𝑘 leads to increasingly more robust solutions with less
replans, and the same happens for 𝑝–TP when the threshold prob-
ability 𝑝 is reduced. However, increasing 𝑘 shows a more evident
effect on the number of replans than reducing 𝑝 . More robust so-
lutions, as expected, tend to have a larger makespan, but the first
levels of robustness (𝑘 = 1, 𝑝 = 0.5) manage to reduce significantly
the number of replans with a small or no increase in makespan.
For instance, in Table 4, 𝑘–TP with 𝑘 = 1 decreases the number
of replans of more than 75% with an increase in makespan of less
than 2%, with respect to the baseline. Pushing towards higher de-
grees of robustness (i.e., increasing 𝑘 or decreasing 𝑝) tends to
increase makespan significantly with diminishing returns in terms
of number of replans, especially for 𝑘–TP.

Comparing 𝑘–TP and 𝑝–TP, it is clear that solutions produced
by 𝑘–TP tend to be more robust at similar makespan (e.g., see 𝑘–TP
with 𝑘 = 1 and 𝑝–TP with 𝑝𝑑 = .1 and 𝑝 = 0.5 in Table 1), and
decreasing 𝑝 may sometimes lead to relevant increases in makespan.
This suggests that our implementation of 𝑝–TP has margins for
improvement: if the computed path exceeds the threshold 𝑝 we
wait the next time step to replan, without storing any collision
information extracted from the Markov chains; finding ways to
exploit this information may lead to an enhanced version of 𝑝–TP
(this investigation is left as future work). It is also interesting to
notice the effect of 𝑝𝑑 in 𝑝–TP: a higher 𝑝𝑑 (which, in our experi-
ments, amounts to overestimating the actual delay probability that,
considering that runs last on average about 300 time steps and there
are 10 delays per agent, is equal to 10

300 = 0.03) leads to solutions
requiring less replans, but with a noticeable increase in makespan.

Considering runtimes, 𝑘–TP and 𝑝–TP are quite different. For
𝑘–TP, we see a trend similar to that observed for makespan: a low

Table 3: Large warehouse, _ = 0.5, and 10 delays per agent

ℓ = 12 ℓ = 24

𝑘 or 𝑝 makespan # replans runtime [s] makespan # replans runtime [s]

𝑘
-T
P

0 283.62 17.18 2.8 269.25 20.71 8.32

1 276.7 3.88 3.27 264.96 5.37 5.78

2 285.32 1.18 4.89 275.48 1.62 9.54

3 304.05 0.24 7.54 300.55 0.4 15.55

4 310.59 0.01 10.9 300.45 0.1 22.11

𝑝
-T
P,
𝑝
𝑑
=
.1

1 283.62 17.18 4.12 269.25 20.71 11.2

0.5 286.95 10.02 11.3 291.78 17.09 38.61

0.25 305.13 5.38 17.26 313.63 9.59 58.95

0.1 330.58 4.51 19.6 322.26 4.51 54.92

0.05 337.33 3.56 20.27 348.89 3.89 57.24

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 289.86 14.51 7.41 290.05 20.3 28.74

0.25 287.72 9.92 10.19 286.77 14.15 39.47

0.1 311 6.53 13.76 304.24 8.94 49.04

0.05 313.38 6.41 14.91 308.1 7.02 49.96

Table 4: Large warehouse, _ = 3, and 10 delays per agent

ℓ = 12 ℓ = 24

𝑘 or 𝑝 makespan # replans runtime [s] makespan # replans runtime [s]

𝑘
-T
P

0 265.23 18.96 2.91 258.49 30.83 8.12

1 269.78 4.22 3.28 254.56 8.98 9.81

2 274.78 1.19 4.75 261.3 1.71 12.03

3 279.02 0.18 7.31 273.56 0.59 19.43

4 290.59 0.04 10.76 282.07 0.17 30.91

𝑝
-T
P,
𝑝
𝑑
=
.1

1 265.23 18.96 4.16 258.49 30.83 10.78

0.5 268.74 11.31 9.04 257.64 17.21 36.74

0.25 298.01 7.39 14.58 287.75 9.96 48.14

0.1 318.37 5.3 16.33 310.46 6.32 47.11

0.05 331.1 3.83 16.83 334.06 4.42 47.62

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 259.64 12.47 7.22 247.76 20.47 26.21

0.25 289.75 12.05 9.23 264.6 15.72 39.68

0.1 280.07 6.78 11.59 290.65 9.88 42.76

0.05 298.34 6.21 12.98 293.68 8.81 42.23

value of 𝑘 (𝑘 = 1) often corresponds to a slight increase in runtime
with respect to the baseline (sometimes even a decrease), while
for larger values of 𝑘 the runtime may be much longer than the
baseline. Instead, 𝑝–TP shows a big increase in runtime with respect
to the baseline, that does not change too much with the values of 𝑝 ,
at least for low values of 𝑝 (𝑝 = 0.1, 𝑝 = 0.05). Finally, we can see
how different task frequencies _ have no significant impact on our
algorithms, but higher frequencies have the global effect of reducing
makespan tasks (which are always 50 per run) are available earlier.

We repeat the previous experiments increasing the number of
random delays inserted in execution to 50 per agent, thus gener-
ating a scenario with multiple troubled agents. We show results
for task frequency _ = 1 in Tables 5 and 6. Both algorithms signifi-
cantly reduce the number of replans with respect to the baseline,

7

Table 5: Small warehouse, _ = 1, and 50 delays per agent

ℓ = 4 ℓ = 8

𝑘 or 𝑝 makespan # replans runtime [s] makespan # replans runtime [s]

𝑘
-T
P

0 419.86 24.52 1.34 283.42 44.27 4.37

1 424.1 8.77 0.87 283.69 18.35 3.21

2 427.79 3.88 1.03 279.91 8.28 3.18

3 445.52 1.27 1.46 303.73 4.7 3.66

4 470.42 0.53 1.74 307.76 2.17 4.63

𝑝
-T
P,
𝑝
𝑑
=
.1

1 419.86 24.52 1.71 283.42 44.27 5.64

0.5 414.79 16.18 1.64 283.58 28.85 7.74

0.25 430.99 11.83 2.46 294.97 15.42 8.03

0.1 448.5 6.82 2.81 300.26 8.39 8.48

0.05 458.92 5.68 2.91 309.03 5.77 7.38

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 407.29 18.47 1.46 271.96 32.15 5.44

0.25 417.52 16.62 1.69 285.29 28.41 6.49

0.1 430.55 12.5 2.26 290.72 17.75 7.14

0.05 439.95 7.83 2.41 291.05 9.76 6.12

reinforcing the importance of addressing possible delays during
planning and not only during execution, especially when the delays
can dramatically affect the operations of the agents, like in this case.
The 𝑘–TP algorithm performs better than the 𝑝–TP algorithm, with
trends similar to those discussed above. Note that, especially in the
more constrained small warehouse (Table 5), the big reduction in
the number of replans produces a shorter runtime for 𝑘–TP with
small values of 𝑘 wrt the baseline TP.

Table 6: Large warehouse, _ = 1, and 50 delays per agent

ℓ = 12 ℓ = 24

𝑘 or 𝑝 makespan # replans runtime [s] makespan #replans runtime [s]

𝑘
-T
P

0 310.51 42.8 4.83 317.23 66.53 12.66

1 314.26 18.79 4.7 303.98 26.76 12.26

2 321.13 9.43 5.98 316.6 18.29 16.56

3 330.1 4.7 7.8 333.35 7.61 22.42

4 345.93 2.98 11.26 336.2 4.7 28.49

𝑝
-T
P,
𝑝
𝑑
=
.1

1 310.51 42.8 9.71 317.23 66.53 19.36

0.5 330.24 28.99 19.26 319.39 38.59 48.64

0.25 337.99 17.06 23.28 341.49 22.81 62.19

0.1 355.03 10.16 25.25 368.1 13.19 63.77

0.05 371.34 7.23 25.21 367.2 9.48 56.24

𝑝
-T
P,
𝑝
𝑑
=
.0
2

0.5 323.94 35.19 9.66 320.26 49.95 37.02

0.25 326.09 27.45 11.6 339.79 40.87 56.83

0.1 330.93 15.9 13.6 342.91 24.73 54.53

0.05 350.39 15.67 15.11 345.79 20.17 55.37

Finally, we run simulations in a even larger warehouse 4–con-
nected grid environment of size 25 × 37, with 50 agents, _ = 1,
100 tasks, and 10 delays per agent. The same qualitative trends
discussed above are observed also in this case. For example, 𝑘–TP
with 𝑘 = 2 reduces the number of replans of 93% with an increase

of makespan of 5% with respect to the baseline. The runtime of
𝑝–TP grows to hundreds of seconds, also with large values of 𝑝 ,
suggesting that some improvements are needed. Full results are not
reported here due to space constraints.

6 CONCLUSION
In this paper, we introduced a variation of the Multi-Agent Pickup
and Delivery (MAPD) problem, called MAPD with delays (MAPD–
d), which considers an important practical issue encountered in real
applications: delays in execution. In a MAPD–d problem, agents
must complete a set of incoming tasks (by moving to the pickup
vertex of each task and then to the corresponding delivery vertex)
even if they are affected by an unknown but finite number of delays
during execution. We proposed two algorithms to solve MAPD–
d, 𝑘–TP and 𝑝–TP, that are able to solve well–formed MAPD–d
problem instances and provide deterministic and probabilistic ro-
bustness guarantees, respectively. Experimentally, we compared
them against a baseline algorithm that reactively deals with de-
lays during execution. Both 𝑘–TP and 𝑝–TP plan robust solutions,
greatly reducing the number of replans neededwith a small increase
in solution makespan. 𝑘–TP showed the best results in terms of
robustness–cost trade–off, but 𝑝–TP still offers great opportunities
for future improvements.

Future work will address the enhancement of 𝑝–TP according
to what we outlined in Section 5.2 and the experimental testing of
our algorithms in real–world settings.

REFERENCES
[1] D. Atzmon, R. Stern, A. Felner, N. Sturtevant, and S. Koenig. 2020. Probabilistic

Robust Multi-Agent Path Finding. In Proc. ICAPS. 29–37.
[2] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou. 2020. Robust

multi-agent path finding and executing. J Artif Intell Res 67 (2020), 549–579.
[3] Z. Chen, D. Harabor, J. Li, and P. Stuckey. 2021. Symmetry breaking for k-robust

multi-agent path finding. In Proc. AAII. 12267–12274.
[4] P. Guo, H. Kim, N. Virani, J. Xu, M. Zhu, and P. Liu. 2018. RoboADS: Anomaly

Detection Against Sensor and Actuator Misbehaviors in Mobile Robots.. In Proc.
DSN. 574–585.

[5] E. Khalastchi and M. Kalech. 2019. Fault Detection and Diagnosis in Multi-Robot
Systems: A Survey. Sensors 19, 18 (2019), 1–19.

[6] D. Levin and Y. Peres. 2017. Markov chains and mixing times. Vol. 107. American
Mathematical Society.

[7] H. Ma. 2020. Target Assignment and Path Planning for Navigation Tasks with Teams
of Agents. Ph.D. Dissertation. University of Southern California, Department of
Computer Science, Los Angeles, USA.

[8] H. Ma. 2021. A Competitive Analysis of Online Multi-Agent Path Finding. In
Proc. ICAPS. 234–242.

[9] H. Ma, W. Hönig, T. Kumar, N. Ayanian, and S. Koenig. 2019. Lifelong Path
Planning with Kinematic Constraints for Multi-Agent Pickup and Delivery. In
Proc. AAAI. 7651–7658.

[10] H. Ma, TK Kumar, and S. Koenig. 2017. Multi-agent path finding with delay
probabilities. In Proc. AAAI. 3605–3612.

[11] H. Ma, J. Li, T. Kumar, and S. Koenig. 2017. Lifelong Multi-Agent Path Finding
for Online Pickup and Delivery Tasks. In Proc. AAMAS. 837–845.

[12] H. Ma, J. Yang, L. Cohen, T. Kumar, and S. Koenig. 2017. Feasibility Study: Moving
Non-Homogeneous Teams in Congested Video Game Environments. Proc. AIIDE
(2017), 270–272.

[13] T. Shahar, S. Shekhar, D. Atzmon, A. Saffidine, B. Juba, and R. Stern. 2021. Safe
multi-agent pathfinding with time uncertainty. J Artif Intell Res 70 (2021), 923–
954.

[14] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li, D. Atzmon,
L. Cohen, T. Kumar, R. Barták, and E. Boyarski. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In Proc. SoCS. 151–159.

[15] P. Surynek. 2010. An Optimization Variant of Multi-Robot Path Planning is
Intractable. In Proc. AAAI. 1261–1263.

[16] J. Svancara, M. Vlk, R. Stern, D. Atzmon, and R. R. Barták. 2019. Online Multi-
Agent Pathfinding. In Proc. AAAI. 7732–7739.

8

[17] K.-K. Tse. 2014. Some Applications of the Poisson Process. Applied Mathematics
05 (2014), 3011–3017.

[18] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal. 2015. CoBots: Robust Symbiotic
Autonomous Mobile Service Robots. In Proc. IJCAI. 4423–4429.

[19] Glenn Wagner and Howie Choset. 2017. Path planning for multiple agents under
uncertainty. In Proc. ICAPS. 577–585.

[20] P. Wurman, R. D’Andrea, and M. Mountz. 2007. Coordinating Hundreds of
Cooperative, Autonomous Vehicles in Warehouses. In Proc. IAAI. 1752–1759.

[21] J. Yu and S. LaValle. 2013. Structure and Intractability of Optimal Multi-Robot
Path Planning on Graphs. In Proc. AAAI. 1443–1449.

9

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	3 MAPD with Delays
	3.1 Well-formedness of MAPD–d
	3.2 A MAPD–d baseline: TP with replanning

	4 Algorithms for MAPD with delays
	4.1 k–TP Algorithm
	4.2 p–TP Algorithm

	5 Experimental Results
	5.1 Setting
	5.2 Results

	6 Conclusion
	References

