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Abstract

After decades of successes, the ΛCDM standard cosmological model is facing the first
cracks in its structure. The nature of the two most abundant components of the Universe,
namely dark energy and dark matter, still eludes our understanding and we started ob-
serving consistent discrepancies between the early and late-time measurements of some
cosmological parameters. To clarify if these tensions are indicating a deeper problem in
the ΛCDM model and hopefully understand the meaning of its key ingredients, a new
generation of cosmological surveys has just started. A key probe of the cosmological
model is provided by the large-scale distribution of structures in the Universe. The cos-
mic web contains information related to late-time parameters, such as the cosmological
constant or the equation of state of dark energy, and gives means to determine, among
others, the fraction of matter in the Universe, the linear matter power spectrum ampli-
tude, or the neutrino mass.

For this reason, starting from the 80s of last century, the amount of data available for
large-scale structure studies has steadily increased. It is now about to make a further
leap forward thanks to the fourth-generation galaxy surveys, such as Euclid, the dark
energy spectroscopic instrument (DESI), or the Vera C. Rubin Observatory legacy survey
of space and time (LSST). In comparison to previous surveys, these experiments will
observe larger volumes and will measure photometric and spectroscopic information
for an unprecedented number of galaxies. Standard analysis methods will become sub-
optimal in terms of data management, both memory and time-wise, data modelling, and
information extraction capabilities.

To achieve such ambitious goals, it is mandatory to develop new methods to study
the data and improve their management at all levels of the analysis pipelines. In order
to meet the requirements on the precision and accuracy of cosmological parameters, we
need, in particular, to efficiently select the samples to be analysed, to measure redshifts
with high confidence, and to correctly model summary statistics at all scales. The pri-
mary interest of my work is the development of alternative algorithms to improve the
extraction of scientific information from large-scale galaxy surveys. The focus is on ma-
chine learning-based models, but I also study the potential of more standard methods,
such as optimal quadratic estimators.

In the first part of this thesis, I develop and discuss two algorithms that exploit galaxy
photometric information to measure redshifts and select samples for clustering analy-
ses. First, I present a novel method that exploits the angular correlation of galaxies to
improve photometric redshift measurements. We worked on a graph neural network
that classifies angular close pairs of galaxies based on their photometric properties as

v



vi Thesis overview

true or false physical neighbours. The algorithm is especially useful when the spectro-
scopic information of one of the galaxies in the pair is known. In this case, the graph
neural network helps identify catastrophic errors in the redshift measurements reducing
the dispersion of the final photometric sample by a factor of 2 and the fraction of catas-
trophic errors by a factor of ∼ 4. This method is complementary to traditional techniques
based on spectral energy distribution fitting and it also helps break the degeneracies in
colour-redshift space the standard algorithms are prone to.

Secondly, I explore the efficiency of machine learning classifiers for galaxy photomet-
ric selection tasks. The aim of this work is to improve the purity and completeness of the
Euclid galaxy clustering spectroscopic sample using photometric information. I conduct
a performance comparison among six machine learning classifiers and traditional pho-
tometric selection methods based on colour and magnitude cuts. The results reveal that
machine learning algorithms, especially neural networks and support vector classifiers,
can identify more intricate boundaries in the multidimensional colour-magnitude space
compared to standard techniques. Demonstrating the efficacy of combining spectro-
scopic selection with neural network photometric selection, I observe an improvement
in the redshift purity of the final sample by approximately 20% and 50% when using
Euclid photometry alone and Euclid in combination with ground-based photometry, re-
spectively.

In the second part of the thesis, I report my work on cosmological parameter mea-
surements with galaxy clustering data. I present two alternatives to traditional ap-
proaches. I first illustrate my work with the optimal quadratic estimator of the signal
of local primordial non-Gaussianities (PNG), parameterised by fNL, from the large-scale
structure of the Universe. The analysis makes use of optimal redshift weights that max-
imise the response of the tracers to the possible presence of non-zero PNG. Analysing
the power spectrum monopole of the quasar sample of the latest data release of the ex-
tended baryon oscillation spectroscopic survey (eBOSS), I obtain one of the most strin-
gent constraints on local PNG from large-scale structure data up to date. This method
not only mitigates the bias in the results, but also yields more precise bounds, with an
estimated error on fNL of σfNL ∼ 16. This corresponds to an improvement of approxi-
mately 13% compared to the standard approach. In scenarios where quasars exhibit a
lower response to local PNG, the optimal constraint gives σfNL ∼ 21, representing an
improvement of around 30% over standard analyses. This work is a first step in the di-
rection of high-precision fNL measurements from large-scale structure data, which will
enable us to better understand the dynamics of inflation.

Finally, I discuss a preliminary study on the application of convolutional neural net-
works for a field-level analysis of large-scale structure data. This investigation is cur-
rently confined to the analysis of dark matter halo distributions. However, it applies
a realistic survey geometry to generate training data and utilises observational infor-
mation, such as halo angular positions and redshifts, to construct the network inputs. A
novelty is that the training data for the convolutional neural network are generated using
a third-order Lagrangian perturbation theory (3LPT) code, which is faster in producing
halo catalogues than an N-body simulation. I assess the neural network performance
on both 3LPT and N-body simulations to determine its generalisation ability across sim-
ulation types. Preliminary findings indicate that, in both real and redshift space, with
a field pixelisation of approximately ∼ 10Mpch−1, the convolutional neural network
consistently produces comparable results for both 3LPT and N-body simulations. The
possibility to train machine learning algorithms for field-level analyses with fast simu-
lations is of major importance. It would greatly reduce the computational costs of these
methods making them a competitive alternative to traditional approaches.
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Organisational note

The present thesis consists of seven chapters divided into two main parts. The second
and third chapters of Parts I and the first chapter of Part II have appeared as refereed
publications in scientific journals or have been submitted for publication; the co-authors
of the relevant articles are mentioned below. Some variations have been made in the
presentation of previously published results, to maintain consistency of style and content
structure throughout the manuscript.

Chapter 1. Modern cosmology: introduction to the most important concepts of
modern cosmological theory.
Chapter 2. Machine learning: introduction to machine learning and neural net-
works.

Chapter 3. Galaxy distances and redshifts in cosmology: description of the dif-
ferent methods used to measure distances in cosmology.

Chapter 4. Augmenting photometric redshift estimates using spectroscopic near-
est neighbours: development and testing of a graph neural network that classifies
pairs of angular neighbour galaxies as true or false redshift neighbours. This work
has been completed in collaboration with F. Tosone, L. Guzzo, B. R. Granett, and A.
Crespi and has been published as an article in Astronomy & Astrophysics (Tosone
et al., 2023), on which the Chapter is based.

Chapter 5. Euclid: Testing photometric selection of emission-line galaxy targets:
detailed study of applications of photometric machine learning classifiers for the
selection of Euclid spectroscopic galaxy clustering sample. This work has been
completed in collaboration with B. R. Granett, L. Guzzo, M. Bertermin, M. Bol-
zonella, S. de la Torre, P. Monaco, M. Moresco, W. J. Percival, C. Scarlata, Y. Wang,
M. Ezziati, O. Ilber, V. Le Brun et al., the paper will be submitted to Astronomy &
Astrophysics on behalf of the Euclid Collaboration and is currently under review
by the Euclid Consortium Publication Board.

Chapter 6. Optimal constraints on Primordial non-Gaussianity with the eBOSS
DR16 quasars in Fourier space: power-spectrum analysis of the latest eBOSS quasar
sample to measure local primordial non-Gaussianities using a cosmological signal
optimal quadratic estimator. This work has been completed in collaboration with
E. Castorina, M. Bonici, and D. Bianchi and has been accepted for publication as an
article in the Journal of Cosmology and Astroparticle Physics (Cagliari et al., 2023),
on which the Chapter is based.

Chapter 7. Preliminary applications of machine learning to LSS analysis: first
results of a field level machine learning algorithm applied to dark matter halo sim-
ulated catalogues.

Appendix A. Photometric selection additional tests: additional plots and discus-
sion related to Chapt. 5.

Appendix B. Fitting bϕ fNL: appendices related to Chapt. 6. Results of the analyses
that fit the product bϕ fNL.
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Introduction





CHAPTER 1

Modern cosmology

Cosmology is the subject that studies the Universe as its whole. It aims to understand
the physics, the dynamics, and the evolution of the Universe and its content. Cosmology
is a relatively new branch of physics for its development started in the second decade
of the last century after the publication of Einstein’s General Theory of Relativity (GR,
Einstein, 1915).

1.1 A homogeneous Universe

Cosmology pioneers, such as Friedmann and Lemaı̂tre, took as an assumption that the
Universe is isotropic and homogeneous. This axiom is known as the cosmological prin-
ciple. Nowadays, the idea of the homogeneity and isotropy of the Universe is based
on strong observational evidence, which includes the isotropy of the cosmic microwave
background (CMB, Planck Collaboration et al., 2020a) radiation and the distribution of
galaxies on large scales measured in galaxy surveys (Gonçalves et al., 2021).

Another observational fact that is fundamental in cosmology is the expansion of the
Universe. In 1929 Hubble published the evidence of a relation between the distance of
the galaxies and their radial velocity (Hubble, 1929). This was just the proof of what was
independently derived by Friedmann (Friedmann, 1922) and Lemaı̂tre (Lemaı̂tre, 1927)
starting from the metric of an expanding Universe.

1.1.1 The Friedmann-Lemaı̂tre-Robertson-Walker Universe

The cosmological principle and the expansion of the Universe are backed by observa-
tional evidence, while the underlying assumption of cosmology is that the Universe dy-
namics are described by the General Theory of Relativity. The fundamental equations of
GR link the curvature of space-time, which is encoded in the metric gµν , and its content,
which is described by the energy-momentum tensor Tµν . Einstein’s equations read as
follows

Gµν ≡ Rµν − 1

2
gµν R =

8πG

c4
Tµν − Λ gµν , (1.1)

where Gµν is the Einstein tensor, Rµν and R are the Ricci tensor and Ricci scalar, G is the
Newton’s gravitational constant, and c is the speed of light. Equation (1.1) also features
the cosmological constant Λ, which was originally introduced by Einstein in the equa-
tions to obtain a static solution (Einstein, 1917). Nowadays, we know that the cosmo-
logical constant can explain the accelerated expansion of the late Universe (Riess et al.,
1998).

3



4 1.1 A homogeneous Universe

The metric that describes a homogeneous, isotropic, and expanding Universe is the
Friedman-Lemaı̂tre-Robertson-Walker metric (FLRW),

ds2 = −dt2 +
a(t)

c2

[
dr2 +R2 sin2

( r

R
) (

dϑ2 + sin2 ϑ dφ2
)]

. (1.2)

The time coordinate t that appears in Eq. (1.2) is the cosmic time. In the spatial term of
the right-hand side of the equation, a(t) is the scale factor, which describes the expansion
of the Universe and is normalised to 1 at the present epoch t0, R is the spatial curvature
of the Universe at the present epoch, and r is the comoving radial distance, which is the
proper distance of a galaxy at the present epoch. Then, the proper distance at epoch t is

r(t) = a(t) r . (1.3)

With a change of coordinate, r1 = R sin(r/R), Eq. (1.2) becomes

ds2 = −dt2 +
a(t)

c2

[
dr21

1− k r21
+ r21

(
dϑ2 + sin2 ϑ dφ2

)]
, (1.4)

where k is a real number that encodes the spatial curvature of the Universe. If k = 0 the
Universe is flat, if it is positive the Universe is close with a spherical geometry, and if it
is negative the Universe is open and the geometry is hyperbolic.

As mentioned above, Hubble’s law

v = H0 r , (1.5)

which is an observational relation, can be also derived from the expansion of the Uni-
verse as it is described in Eq. (1.3). If we derive this equation with respect to time and
substitute it again we obtain

ṙ(t) = ȧ(t) r =
ȧ(t)

a(t)
r(t) −→ v(t) = H(t) r(t), (1.6)

where H(t) = ȧ(t)
a(t) , usually called Hubble parameter, is a measure of the expansion rate of

the Universe at a given epoch t. Therefore, the Hubble constant represents the expansion
rate at the present epoch, H0 = H(t0), and H(t) defines a Hubble parameter for each
epoch. The Hubble constant has the dimension of the inverse of a time, but it is usually
measured in km s−1 Mpc−1. It is also useful to define the dimensionless Hubble constant

h =
H0

100km s−1 Mpc−1 . (1.7)

In cosmology, we usually model the different Universe components as non-interacting
perfect fluids that are at rest, in thermodynamical equilibrium, and have energy density
ρi and pressure Pi. Given their energy-momentum tensor, Tµν , we can derive the Ein-
stein’s equations for the FLRW metric (see Eq. 1.4) and obtain(

ȧ

a

)2

=
8πG

3

∑
i

ρi −
c2 k

a2
+

Λ

3
, (1.8)

ä

a
= −4πG

∑
i

(
ρi +

3Pi

c2

)
+

Λ

3
. (1.9)
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These two equations are also known as the first and second Friedmann’s equations and
describe the dynamics of the Universe expansion. An additional equation is the local
conservation of energy,

ρ̇i + 3
ȧ

a

(
ρi +

Pi

c2

)
= 0 , (1.10)

which is derived from the local conservation of the energy-momentum tensor.

1.1.2 The Universe bricks

To close the equation system of Eqs. (1.8), (1.9), and (1.10) we need a link between the
pressure and the energy density, which is given by the equation of state,

Pi

c2
= wi ρi . (1.11)

Substituting Eq. (1.11) in Eq. (1.10) we obtain an expression that can be integrated

ρ̇i = −3
ȧ

a
(1 + wi) ρi , (1.12)

ρi ∝ exp

[
−3

∫
a

da′

a′
[1 + wi (a

′)]

]
. (1.13)

If wi is time-independent, Eq. (1.13) becomes

ρi = ρi,0 a
−3 (1+wi) , (1.14)

where ρi,0 is the value of the energy density at the present epoch. Then, to describe
the Universe expansion we need to know its content and the equation of state of its
components.

First, there is the cold matter, which is how we refer to all the non-relativistic compo-
nents of the Universe. Cold matter includes cold dark matter (CDM) and baryons and is
pressureless. Therefore, wm = 0 and

ρm = ρm,0 a
−3 . (1.15)

Equation (1.15) translates in the fact that the matter-energy density scales as the particle
density if their number is conserved in a comoving volume. As second comes radiation,
which comprises all the relativistic components of the Universe such as photons and
relativistic particles. The relativistic equation of state reads

wr =
1

3
, (1.16)

and corresponds to
ρr = ρr,0 a

−4 . (1.17)

Radiation gets diluted faster than matter because of the cosmological redshift. This effect
corresponds to a stretch of the particle wavelengths by a factor a−1, which, combined
with the volume dilution (∝ a−3), leads to the dependence in Eq. (1.17). Equations (1.15)
and (1.17) describe the evolution of the matter and radiation density as functions of the
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Universe expansion. It is possible to identify a time when matter density equals radiation
density. This epoch is called matter-radiation equality and reads

aeq =
ρr,0
ρm,0

. (1.18)

Before aeq the Universe dynamic is dominated by radiation after it is dominated by mat-
ter. We refer to these two eras as radiation or matter domination. As we will see in
Sect. 1.2.1, aeq marks a transition in the rate of the large-scale structure evolution in the
Universe.

Equation (1.8) suggests that also the curvature and the cosmological constant are part of
the cosmic inventory. The curvature energy density is defined as follows

ρk = − 3 k

8πG
a−2 , (1.19)

which means that
wk = −1

3
. (1.20)

Analogously, we can define the cosmological constant energy density

ρΛ =
Λ

8πG
, (1.21)

and its equation of state
wΛ = −1 . (1.22)

Equation (1.22) implies that the pressure of the cosmological constant is negative. Orig-
inally, the fact that the cosmological constant energy density does not vary with the
Universe expansion (Eq. 1.21) led to the idea that Λ was related to the vacuum energy.
However, that is not the case as the measured value of the cosmological constant is be-
tween 50 and 120 order of magnitude lower than expected if it was to be related to the
energy of vacuum (e.g., Adler et al., 1995). Nowadays it is believed that the cosmological
constant is related to the so called dark energy (DE), which is one of the biggest puzzles
of modern physics.

The two Friedmann’s equations (Eqs. 1.8 and 1.9) can be rewritten in terms of Hub-
ble’s parameter and the energy densities defined above becoming

H2(t) =
8πG

3

∑
i

ρi , (1.23)

and
Ḣ(t) = −4πG

∑
i

(1 + wi) ρi . (1.24)

The equations can be further simplified by defining the density parameters. First we in-
troduce the critical density,

ρcr ≡
3H2

0

8πG
, (1.25)

which corresponds to the present epoch energy density of a flat Universe. The density
parameter of the Universe i-th species is its energy density normalised by the critical
density,

Ωi =
ρi
ρcr

=
ρi,0
ρcr

a−3 (1+wi) = Ωi,0 a
−3 (1+wi) . (1.26)
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In Eq. (1.26) Ωi,0 is the density parameter evaluated at the present epoch. Combining
Eqs. (1.23) and (1.26) we obtain a relation for the Hubble parameter as a function of the
scale factor,

H2(a) = H2
0

∑
i

Ωi = H2
0

(
Ωm,0 a

−3 +Ωr,0 a
−4 +Ωk,0 a

−2 +ΩΛ

)
. (1.27)

If we evaluate Eq. (1.27) at the present epoch, t0, it becomes∑
i

Ωi,0 = 1 . (1.28)

1.1.3 Distances in an expanding Universe

As the majority of information on astrophysical objects comes from their electromagnetic
radiation we need to understand how the expansion of the Universe affects travelling
light waves. In Sect. 1.1.2 I already introduced the concept of cosmological redshift, here
I am going to describe the origin of this effect. In general, we define the redshift, z, as the
relative difference between the emitted wavelength, λ1, and the observed one, λ0:

z ≡ λ0 − λ1

λ1
. (1.29)

If we consider a wave packet, which travels along null cones, ds2 = 0, that is moving
radially (dϑ = 0 and dφ = 0), Eq. (1.2) becomes:

cdt

a(t)
= −dr . (1.30)

Let us say that this wave packet was emitted between time t1 and t1+∆t1 with frequency
ν1, and received by an observer at present time in an interval between time t0 and t0+∆t0
and frequency ν0. The leading edge of the wave packet travels the comoving distance, r,
between time t1 and t0, ∫ t1

t0

cdt

a(t)
= −

∫ 0

r

dr , (1.31)

while its end must travel the same comoving distance from time t1 +∆t1 and t0 +∆t0∫ t1+∆t1

t0+∆t0

cdt

a(t)
= −

∫ 0

r

dr . (1.32)

Combining Eqs. (1.31) and (1.32) we obtain∫ t1

t0

cdt

a(t)
+

c∆t0
a(t0)

+
c∆t1
a(t1)

=

∫ t1

t0

cdt

a(t)
. (1.33)

Knowing that a(t0) = 1, Eq. (1.33) becomes

∆t0 =
∆t1
a(t1)

. (1.34)

This result, known as time dilation, can be reduced to a relation between the redshift and
the Universe expansion. If the emission interval is ∆t1 = ν−1

1 and the observed one is
∆t0 = ν−1

0 , Eq. (1.34) can be rewritten as

ν0 = a(t1)ν1 . (1.35)
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Substituting this expression in the redshift definition, Eq. (1.29) becomes

z =
λ0

λ1
− 1 =

ν1
ν0

− 1 =
1

a(t1)
− 1 −→ a(t1) =

1

z + 1
. (1.36)

The redshifting effect is only related to the expansion of the Universe and not to the
relative velocity between the source and the observer, thus it is known as cosmological
redshift. Cosmological redshift is a measure of the scale factor of the Universe at the
epoch in which the radiation was emitted.

Now, combining Eq. (1.30) and the definition of the Hubble parameter we find a
relation between the radial comoving distance of a source at scale factor a and the scale
factor itself

r(a) = c

∫ t0

t(a)

dt′

a(t′)
= c

∫ 1

a

da′

a′2 H(a′)
. (1.37)

From this expression, we understand that the comoving distance is the maximum dis-
tance light can travel between the time of emission t(a) and the time of observation t0.
We call the comoving horizon the distance light could have travelled from t = 0. Since no
information can travel faster than light, events that are further than the comoving hori-
zon are causally disconnected. Alternatively, combining Eqs. (1.36) and (1.37) we can
write a relation between the comoving distance and the redshift of the source,

r(z) = c

∫ z

0

dz′

H(z′)
. (1.38)

At the end of the previous section, I presented a relation between the Hubble parameter
and the scale factor (Eq. 1.27). With the change of coordinate of Eq. (1.36), we can write a
relation between the Hubble parameter as a function of the cosmological redshift. There-
fore, given a cosmological model, we can solve the integral of Eq. (1.38) and measure the
radial comoving distance of an object starting from its redshift. This makes the redshift
one of the primary pieces of information we want to measure in any cosmological obser-
vation.

We can define two additional distances. From the FLRW metric, Eq. (1.2), it is straight-
forward to obtain the angular size of a source with proper length ∆l perpendicular to
the radial coordinate and at redshift z. The relevant spatial component in the metric is
the angular term in dϑ,

∆l = a(t)R sin
( r

R
)
∆ϑ = a(t)r1 ∆ϑ =

r1∆ϑ

1 + z
. (1.39)

I already introduced the distance measure r1 in Eq. (1.4). Now, we can give a physical
interpretation of this definition. Let us consider an object that is expanding with the
Universe. Its proper dimension at epoch t is ∆l(t) = a(t)∆l0 = ∆l0 (1 + z)

−1 and it
subtends an angle

∆ϑ =
∆l(t) (1 + z)

r1
=

∆l0
r1

. (1.40)

The distance measure r1 is the distance of a source with angular dimension ∆ϑ that is
expanding with the Universe and is called comoving angular diameter distance. We can
also define the angular diameter distance rA = r1 (1 + z)

−1 and reduce Eq. (1.40) to the
standard Euclidean relation between distance and angle at any epoch t,

∆ϑ =
∆l

rA
. (1.41)
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Finally, we can tackle the problem of the relation between the observed flux density
S(ν0), which is the energy per unit of time, area, and bandwidth, and the source lu-
minosity L(ν1) that is the total energy emitted over 4π steradians per unit of time and
bandwidth. The luminosity of a source that emits N(ν1) photons with energy hP ν1,
where hP is the Planck constant, in a bandwidth ∆ν1, and in a proper time interval ∆t1
is

L(ν1) =
N(ν1)hP ν1
∆t1 ∆ν1

. (1.42)

The photons travel on the surface of a sphere centred on the source. The number of
photons an observer will see depends on their telescope angular dimension with respect
to the source, while the observed frequency and the observed time interval are related
to the emitted ones by Eqs. (1.34) and (1.35). Let us say that the telescope, which is in
the present epoch t0, has a diameter ∆l and it subtends an angular diameter ∆ϑ for the
source in epoch t1, then

∆l = r1∆ϑ . (1.43)

The area of this telescope is π∆l2/4, the solid angle it subtends is ∆Ω = π∆ϑ2/4 =
π∆l2 (4 r21)

−1, and the number of photons it observes is N(ν1)∆Ω/(4π). These photons
are observed in a time interval ∆t0 at frequency ν0, thus the flux density of the source is

S(ν0) =
4N(ν1)hP ν0 ∆Ω

4π∆t0 ∆ν0 π∆l2
. (1.44)

Substituting in this expression the luminosity at the source, Eq. (1.42), the relation be-
tween times and frequencies at different epochs, Eqs. (1.34) and (1.35), and rewriting ∆Ω
as above Eq. (1.44) reads

S(ν0) =
L(ν1)

4π r21(1 + z)
. (1.45)

If we consider the case of bolometric luminosities and flux densities we can define a new
distance measure called luminosity distance, rL, as follows

Sbol =
Lbol

4π r21 (1 + z)2
=

Lbol

4π r2L
, (1.46)

where rL = r1 (1 + z).

1.2 The large-scale structure of the Universe

In the previous section, I discussed the dynamic of a homogeneous and isotropic Uni-
verse. However, nowadays we observe a Universe that has very strong anisotropies on
small scales and contains stars, galaxies, and clusters of galaxies. We observe the seeds
of these same anisotropies in the CMB radiation, which have a very small amplitude
(∼ 10−5 K). The top panel of Fig. 1.1 shows the map of the CMB anisotropies, the bot-
tom panel presents their temperature power spectrum and the outstanding match of the
ΛCDM model with the observed data. The CMB anisotropies evolved into the Universe
we observe now. Figure 1.2 shows the cosmic web in the near Universe.

The theory of structure evolution describes how the present large-scale structure
(LSS) of the Universe formed starting from the CMB anisotropies. In principle, we need
to solve Einstein’s equations (Eq. 1.1) in the case of a perturbed metric, where the pertur-
bation fields are Ψ(x, t) for the time component of the metric and Φ(x, t) for the space
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Figure 1.1: The cosmic microwave background radiation as it was observed by the ESA
Planck satellite (top) and the power spectrum of its temperature anisotropies (bottom). In
the bottom panel, the points correspond to Planck observations, while the blue solid line
is the ΛCDM prediction. Figures credits to ESA and Planck Collaboration et al. (2020a).

https://www.esa.int/Science_Exploration/Space_Science/Planck
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Figure 1.2: A slice through the distribution of the main galaxy sample in the northern
part of the Sloan Digital Sky Survey (SDSS; York et al., 2000). Each dot depicts the posi-
tion of a galaxy, with colour chosen to represent the actual colour of the galaxy. Figure
credits to Michael Blanton and the SDSS Collaboration.

Figure 1.3: A schematic description of the interaction between the different components
of the Universe. Figure credits to Dodelson & Schmidt (2020).

https://www.sdss.org/
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part, and an inhomogeneous energy-momentum tensor. Then, combining this with the
Boltzman’s equation we can derive the evolution of the perturbation for each component
of the cosmic inventory. Boltzmann’s equation gives the evolution of the distribution func-
tion f of a species in phase-space given its particle-particle interactions encoded in the
collision term. Figure 1.3 schematically shows the possible interactions between the uni-
verse components. All of them interact through gravity. Additionally, electrons interact
with nuclei and protons via Coulomb scattering and with photons via Compton scattering.
It is important to note that in the case that dark energy is a cosmological constant it does
not have any perturbations and contributes only to the background homogeneous part
of the metric.

Ultimately, in LSS studies we observe the distribution of baryonic matter, which, in
first approximation, is only determined by the dark matter distribution. For this reason,
we are mainly interested in the evolution of the CDM perturbations and their distribu-
tion. We use a statistical description of random fields to analyse the matter distribution
(Peebles, 1980) and we start defining the matter density field,

δ(r) =
ρ(r)− ρ̄

ρ̄
, with ⟨ρ(x)⟩ = ρ̄ , (1.47)

where the symbol ⟨·⟩ corresponds to the ensemble average. This average should be
computed over different realisations of the Universe, but in practice we we use a large
enough volume assuming ergodicity. The density field, as defined in Eq. (1.47), has
⟨δ(r)⟩ = 0. To describe this random field we use its correlation functions

ξ(n)(x1, . . . ,xn) = ⟨δx1
. . . δxn

⟩ , (1.48)

where the superscript (n) refers to the n-th order correlation function. In a Universe
that is isotropic and homogeneous, the correlation functions only depend on the relative
distance between points. Therefore ξ(n) only depends on n−1 spatial coordinates. Then,
the two-point correlation function of the density field reads as follows

ξ(r) = ⟨δ(x) δ(x+ r)⟩ , (1.49)

and depends only on the modulus of the distance of two points, r. The two-point corre-
lation function represents the excess probability of finding two points at distance r and,
if the random field is Gaussian, is the only non-null correlation function.

It can also be useful to work in Fourier space. The Fourier transform of the overden-
sity is

δ(k) =

∫
d3x δ(x) eik·x , (1.50)

while its inverse reads

δ(x) =

∫
d3k

(2π)3
δ(k) e−ik·x , (1.51)

where k·x denotes the scalar product between the two vectors. Analogously to Eq. (1.48)
we can define the correlation between the Fourier transform of the density field. The
two-point function in Fourier space is the power spectrum

⟨δ(k)δ(k′)⟩ ≡ (2π)3 δKkk′ P (k) , (1.52)

where δK is the Kronecker delta. The two-point correlation function as defined in Eq. (1.49)
and the power spectrum form a Hankel pair

P (k) = 4π

∫ ∞

0

dr ξ(r) r2
sin kr

kr
. (1.53)



Modern cosmology 13

Figure 1.4: Evolution of the gravitational potential Φ and the dark matter density per-
turbation for modes of different wavenumber in the fiducial ΛCDM cosmology. The
curves are normalised to the value of the potential at early times. Left: evolution of the
gravitational potential perturbations. Right: evolution of the density perturbations. The
amplitude of each mode starts to grow upon horizon entry. Well after aeq, all sub-horizon
modes evolve identically, and scale as the growth factor D+(a), see Eq. (1.55). During
matter domination, before Λ becomes relevant, D+(a) = a. At the very latest times, we
can see a slight suppression from this linear trend due to the onset of accelerated expan-
sion. Figure credits to Dodelson & Schmidt (2020).

1.2.1 The large-scale structure evolution

The density contrast and its momenta either in configuration or Fourier space gives us
a means to describe the matter field. Now, we would like to understand how this field,
which is embedded in an expanding background, evolved with time.

When the perturbations are small (δ(x) ≪ 1) we can use linear theory to describe
the evolution and, in Fourier space, different k scales evolve independently. Figure 1.4
left panel shows the evolution of the gravitational perturbation at different scales as a
function of the scale factor, while the right panel shows the evolution of the density
contrast. From these plots, we can see that there are different evolution regimes for the
perturbation. First, all the modes are outside of the horizon and the potential is constant.
Later on, the modes start entering the horizon, from small to large scales. The scales
that cross the horizon during the radiation domination era have a very sharp decay in
comparison to the modes that enter the horizon after the epoch of equality. In late times,
during the matter domination era, all the modes have entered the horizon and evolve
identically remaining constant.

Given the primordial potential ΦP(k) we divide its evolution in a scale-dependent
part and in a time-dependent part as follows

Φ(k, a) =
3

5
ΦP(k)T (k)

D+(a)

a
(a > alate) , (1.54)

where alate is an epoch in the late matter domination era, T (k) is the transfer function, and
D+(a) is the growth factor. The transfer function encodes the evolution through the epoch
of horizon crossing and the transition between radiation and matter domination eras and
conventionally is normalised to be 1 for large scales. The growth factor describes the
scale-independent evolution at late times. When the potential is constant in the matter-
dominated era D+(a) ∼ a and describes the growth of the matter density perturbation
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Figure 1.5: The linear matter power spectrum in the fiducial ΛCDM cosmology at differ-
ent redshifts. Scales to the left of the vertical lines, which indicate kNL(z) for each of the
redshifts shown, are still evolving approximately linearly at each redshift. Figure credits
to Dodelson & Schmidt (2020).

in time as depicted in the right panel of Fig. 1.4. We obtain this same result by relating
the matter density and the potential through the Poisson equation in the large k and no
radiation limit. Then, we can write the late time density evolution with respect to the
primordial potential

δ(k, a) =
2

5

k2 c2

Ωm,0H2
0

ΦP(k)T (k)D+(a) (a > alate, k ≫ aH) . (1.55)

Equation (1.55) holds for any adiabatic perturbation. Finally, we can write the power
spectrum of matter at late times in the case of linear evolution

PL(k, a) =
8π2

25

As

Ω2
m,0

D2
+(a)T

2(k)
kns

H4
0 k

ns−1
p

, (1.56)

where the power spectrum of the primordial perturbation is

PΦP(k) = 2π2 k−3 As (k/kp)
ns−1 (1.57)

as a consequence of inflation (Baumann, 2011). In Eq. (1.56), ns is the scalar spectral
index, kp is the pivot scale, and As is the scalar amplitude of the fluctuation. In the case
of a galaxy survey σ8 usually substitutes the amplitude As. This parameter corresponds
to the amplitude of the linear matter power spectrum at the present epoch and at the
scale of 8h−1Mpc. Figure 1.5 shows the matter linear power spectrum as a function of
the scale k and the redshift z. At large scales, where T (k) = 1, the power spectrum is
proportional to kns , while at small scales we observe a turnover. In Fig. 1.4 left panel
we see that when a mode enters the horizon before the matter/radiation equality epoch
its potential decays and its density (right panel) will start increasing again only after



Modern cosmology 15

matter/radiation equality. All the scales that enter the horizon before aeq undergo a
suppression leading to a decreasing power spectrum up to the scale keq that entered the
horizon during matter/radiation equality. The value of this scale depends on Ωm,0.

In the case of a linear perturbation, it is possible to write the equation that describes
the evolution of the matter density contrast, δ,

d2δ

da2
+

d
(
ln a3 H(a)

)
da

dδ

da
=

3

2

Ωm,0 H
2
0

a5 H2(a)
δ . (1.58)

In general, this differential equation has to be solved numerically. In the late Universe,
where matter and the cosmological constant are dominant, we can write an integral so-
lution for Eq. (1.58), which reads

D+(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

(a′ H(a′)/H0)3
. (1.59)

Equation (1.59) is not a solution to Eq. (1.58) if dark energy is not a cosmological constant.
In this case, Eq. (1.58) needs to be solved numerically. However, for the logarithmic
derivative of the growth factor, which is the growth rate f , an empirical fit exists and
takes the following form in GR

f(a) ≡ d lnD+(a)

d ln a
≃ [Ωm(a)]

0.55
. (1.60)

Figure 1.5 shows some additional features. First, at each redshift, the dashed verti-
cal lines mark the nonlinear scale, kNL. For k < kNL the linear approximation solution
discussed above breaks as δ(x) ∼ 1. A first approximation to analytically describe the
nonlinear regime is the spherical collapse. Second, starting from k ∼ 0.1hMpc−1 there is
an oscillation in the power spectrum. At early times, before the emission of the CMB ra-
diation baryons and photons were coupled by the Compton interaction. Acoustic plasma
waves travelled through the baryon-photon fluid and left a footprint in the baryon distri-
bution, which subsequently affect the matter distribution. These oscillations we observe
in the matter power spectrum are known as baryon acoustic oscillations (BAO) and have
been detected in the clustering of galaxies (Eisenstein et al., 2005).

1.3 The concordance model of cosmology: ΛCDM

Starting from the theory that describes the homogeneous Universe and the formation
of structure together with observation, the cosmological community has developed a
concordance model. Nowadays the Universe is considered to be Euclidean, dominated
by non-baryonic cold dark matter, and a cosmological constant (Planck Collaboration
et al., 2020a). This standard cosmological model is usually referred to as flat ΛCDM and
it only requires six parameters to describe the Universe with its content and its evolu-
tion. These primary six parameters are the baryon density parameter, Ωbh

2, the cold
dark matter density parameter, Ωch

2, the Hubble parameter, h, the scalar spectral index,
ns, the scalar power spectrum primordial amplitude, As, and the re-ionisation optical
depth, τ . We can compute all the other parameters introduced in the previous sections
starting from the six primary parameters. An additional ingredient to the standard cos-
mological model is inflation, which is the most accredited mechanism to generate the
initial conditions of the Universe.
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We can also expand the ΛCDM model with some additional parameters. We can re-
move the assumption of the Universe flatness and add the curvature density as a free
parameter of the model Ωkh

2 as well as the one on the total neutrino mass, mν . Ad-
ditionally, we can drop the idea of a cosmological constant in favour of a dark energy
component with a time-dependent equation of state (Linder, 2003)

wDE(z) = w0 + wa
z

1 + z
. (1.61)

Such a model is referred to as dynamical dark energy. The measurement of a possible
dependence with time of the dark energy equation of state is one of the key objectives
of all the next-generation cosmological surveys (e.g., LSST Science Collaboration et al.,
2009; Laureijs et al., 2011; DESI Collaboration et al., 2016).

The standard cosmological model is extremely successful in its description of the
Universe and an alternative model that is able to survive all the tests the ΛCDM model
has overcome is yet to be developed. However, in the last years, the cosmological com-
munity is starting to see cracks in it. First, the nature of the two main components of the
model, dark energy and dark matter, is still unknown and dark matter is still eluding
a direct detection or description on the particle physics side. Moreover, there are ten-
sions in the measurement of some cosmological parameters between early and late time
observation. These tensions may be related to our ignorance of the physical processes
that produce the observed data or related to new physics beyond the standard model.
The most concerning discrepancies in the model are related to the measurements of H0

(e.g., Verde et al., 2019) and S8 ≡ σ8

√
Ωm/0.3 (e.g., Abbott et al., 2022). The H0 tension

is particularly disconcerting as the measurements of this parameter from supernovae of
type Ia (Riess et al., 2021) and the CMB (Planck Collaboration et al., 2020a) show a 4.2σ
discrepancy.

1.4 Galaxy redshift surveys

In the previous section, I discussed the evolution of the overdensity of dark matter. How-
ever, what we observe is the distribution of the galaxies, which is a mapping of the un-
derlying dark matter distribution. In first approximation, we expect the two density
fields to be linearly related as follows

δg(x) ∼ b1 δm(x) , (1.62)

where δg(x) and δm(x) are the density field respectively of galaxies and matter. In
Eq. (1.62), b1 is the linear bias and represents the response of the galaxy (or any other
tracer) density field to the matter density field. The bias describes the fact that we expect
galaxies to form in dark matter overdensities.

Given Eq. (1.62) and the definition of the correlation function and the power spec-
trum (Eqs. 1.49 and 1.52), the relation between the galaxy and matter correlation function
or power spectrum reads

ξg(r) ∼ b21 ξm(r) , (1.63)

Pg(k) ∼ b21 Pm(k) . (1.64)

From the theory of structure formation, we know how the linear matter power spectrum,
Pm(k), evolves.

An additional complication in the analysis of the galaxy density distribution is that
galaxies can have a peculiar velocity, which is a motion with respect to the background
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evolution of the matter perturbation. Therefore, the redshift distance, s, of an object,
which is

s ≡ c z (1.65)

in velocity units, differs from the true distance v = H0 r expressed in velocity units and
defined by Hubble’s law (Eq. 1.5). A galaxy appears displaced by the projection of its
peculiar velocity, u, along the line-of-sight r̂ (Kaiser, 1986; Hamilton, 1998)

s = v + u · r̂ . (1.66)

As a consequence of Eq.(1.66) the distribution of galaxies in redshift space, which is
what we observe, is a distortion of the real distribution. This effect is called redshift space
distortions (RSD). Kaiser (1986) showed that in linear theory RSD change the amplitude
of the observed power spectrum,

P s
g (k, µ) = b21

(
1 +

f

b1
µ2

)
Pm(k) , (1.67)

where µ is the cosine of the angle between the line-of-sight and the object.
Despite all the complications, the measurement of the galaxy distribution still re-

mains one of the best ways to map the matter density field and we can actually exploit
RSD to indirectly measure the growth rate and test GR (Guzzo et al., 2008). The sur-
veys that measure the galaxy angular positions and their redshift to map their three-
dimensional distribution in the Universe are called galaxy redshift surveys. They are di-
vided into two categories, spectroscopic and photometric redshift survey, and differ in
the method used to measure the redshifts of the galaxies (see Chapt. 3). The first sys-
tematic redshift survey was the Center for Astrophysics redshift survey (CfA; Tonry &
Davis, 1979), which was followed by the Sloan Digital Sky Survey (SDSS York et al.,
2000) and the Two-degree-Field galaxy redshift survey (2dF; Colless et al., 2003).

1.4.1 Modern redshift surveys

After the pioneering work of the SDSS and 2dF galaxy redshift surveys many other
projects mapped the galaxy distribution in the last two decades. In this section, I will
introduce the three surveys I used during my thesis work.

The first survey is the VIMOS Public Extragalactic Redshift Survey (VIPERS; Guzzo
et al., 2014). This survey is based on observation performed with the Visible MultiOb-
ject Spectrograph (VIMOS; Le Fèvre et al., 2003) mounted on the Very Large Telescope
(VLT) of the European Southern Observatory (ESO) at Cerro Paranal in Chile. VIPERS
consists in a spectroscopic sample of ∼ 90 000 galaxies with iAB < 22.5 and in the red-
shift range 0.5 < z < 1.5. The spectroscopic targets of the survey were selected from the
two fields W1 and W4 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)
Wide photometric catalogue.1 In addition to the magnitude cut the targets were selected
from the colour-colour plane (r−i) vs (u−g), where it was possible to identify a very effi-
cient cut to select galaxies within the redshift range of interest. The two fields of VIPERS
cover an area of ∼ 24deg2 and the survey has a total volume of ∼ 5 × 107 h−3 Mpc3. I
used VIPERS data for the work presented in Chapts. 4 and 7.

The second catalogue is the extended Baryon Oscillation Spectroscopic Survey Data
Release 16 quasar sample (eBOSS DR16Q; Lyke et al., 2020). The eBOSS survey is part of
SDSS phase IV (SDSS-IV; Blanton et al., 2017) and is based on the observation of the Sloan

1https://www.cfht.hawaii.edu/Science/CFHTLS/

https://www.cfht.hawaii.edu/Science/CFHTLS/


18 1.4 Galaxy redshift surveys

Foundation 2.5m telescope at the Apache Point Observatory in New Mexico (Gunn et al.,
2006). The eBOSS DR16Q sample contains a total of ∼ 350 000 quasars in the redshift
range 0.8 < z < 2.2. The sample is divided into two fields of view, the North and South
Galactic cap, and covers an area of ∼ 4800deg2 and a volume of ∼ 20h−3 Gpc3. I used
the eBOSS DR16Q sample in the work presented in Chapt. 6.

Finally, I worked with mock data that simulates Euclid observations. Euclid is a Euro-
pean Space Agency’s medium-class mission (ESA), which was conceived to probe the na-
ture of dark matter and dark energy by measuring the expansion of the Universe history
and the growth of large-scale structures (Laureijs et al., 2011).2 Euclid was successfully
launched from Cape Canaveral, Florida, on July 1st 2023 on board of the SpaceX Falcon
9 launcher. It is now in the second Sun-Earth Lagrangian point at ∼ 1.5 × 106 km from
Earth and has started observations. Euclid is a 1.2m Korsch telescope with two mounted
instruments, the Near-Infrared Spectrograph and Photometer (NISP; Maciaszek et al.,
2022) and the VISual instrument (VIS; Cropper et al., 2016). NISP has three broadband
near-infrared filters (Euclid Collaboration: Schirmer et al., 2022) and a set of grisms for
slitless spectroscopy; VIS is a single optical broadband filter with high spatial resolution.
The large field of view of Euclid (∼ 0.5deg2) was specifically designed to observe one-
third of the sky (∼ 15 000deg2) over the six years of its operations. Euclid will combine
an imaging and a spectroscopic survey, with which the Euclid Consortium will respec-
tively perform weak lensing and galaxy clustering analyses. The weak lensing survey
will cover the redshift range 0.2 < z < 0.8 and contain ∼ 1.5 × 109 galaxies, while the
galaxy clustering analyses will interest ∼ 50 × 106 Hα emitters within 0.9 < z < 1.8. In
Chapt. 5 I will discuss my work with Euclid mock data.

1.4.2 Analysis pipeline

The extraction of cosmological information from the raw observation of a redshift sur-
vey is a complex process. In this section, I will schematically describe this pipeline as
the main topic of this thesis is the management and analysis of redshift survey data at
different stages of data processing.

In the case of traditional spectroscopic redshift survey the spectroscopic targets are
selected beforehand from a parent photometric catalogue, e.g., the spectroscopic targets
of VIPERS were selected from the CFHTLS Wide photometric catalogue. Then, we can
define the sample completeness and its purity with respect to the parent sample. Slitless
spectroscopic surveys, e.g., Euclid, miss this pre-selection step and the sample complete-
ness and purity have a less straightforward definition (see Sect. 5.1). In the case of a
slitless survey, in order to improve these metrics we can apply a target post-selection,
which is applied to the already observed data.

After their acquisition, the data undergo a first reduction, e.g., one-dimensional spec-
tra are extracted from the two-dimensional observation and spurious objects, such as
stars, are identified, then the redshifts of the objects are measured. Potentially we now
have all the information needed to measure the galaxy field summary statistics. How-
ever, when analysing real data a few additional steps are required. First, we need to
identify any systematic effects related to observation, such as the redshift rate failure, the
fibre collision in the case of spectroscopic surveys, or imaging inhomogeneities. Second,
we need to determine the window function of the survey, which represents its footprint
on the sky. The window function has an angular component, which is determined by the
peculiar shape of the survey on the sky surface, and a radial component, which depends

2https://www.esa.int/Science_Exploration/Space_Science/Euclid

https://www.esa.int/Science_Exploration/Space_Science/Euclid
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on the radial selection of the survey.
Starting from the survey footprint the random catalogue and mock catalogues are built.

The random catalogue traces the mean density of the observed galaxy sample in the
case of no clustering. The random catalogue is required to estimate the field summary
statistics (e.g., Landy & Szalay, 1993; Yamamoto et al., 2006). The mocks are simulated
catalogues that represent different realisations of the Universe and are used to determine
the covariance of the summary statistics. Finally, the cosmological parameters of interest
are measured with a Bayesian analysis.

The first half of this thesis (Chapts. 4 and 5) is related to photometric redshift mea-
surements and sample selection, while in the second half (Chapts. 6 and 7) I will discuss
optimal methods to extract cosmological information from the galaxy density field.





CHAPTER 2

Machine learning

Machine learning (ML) is a branch of the broader field of artificial intelligence. We call ar-
tificial intelligence any software that automates routine labour starting from the simplest
repetitive task to the understanding of speech and figures. Computers can easily solve
and perform problems that we describe with a list of mathematical rules and usually
prove to be challenging tasks for human beings. On the other hand, computers strug-
gle to solve tasks that are difficult to describe formally, but that are performed daily by
humans, such as recognising faces, animals, and words. To solve these tasks a computer
should learn from experience rather than use a set of mathematical rules or hard-coded
knowledge.

Machine learning and deep learning are the branch of artificial intelligence in which a
computer gathers its own experience by directly extracting patterns from raw (or semi-
raw) data. Figure 2.1 describes the hierarchy inside the field of artificial intelligence
and what characterises each of its branches. As described above, the simplest artificial
intelligence algorithm is a rule-based system, where we feed the inputs to and hand-
designed program. In the case of classic machine learning, the algorithm is ‘free’ to find
the mapping between a representation of the data and the output. The representation of
the data contains features, which summarise pieces of information.

An example of a classic machine learning algorithm is logistic regression, which is a
simple model that usually gives binary answers. Logistic regression is widely used in
medicine to predict, e.g., mortality in patients or the probability of developing specific
diseases (e.g., Boyd et al., 1987; Biondo et al., 2000). These algorithms take as input
a representation of the data previously determined and synthesised by the doctor, who
directly analyses the patient. Then, we can say that these features are hand-designed and
the algorithm does not have any control over their definition. The representation of the
data can heavily influence the performance of an algorithm: for example, for humans, it
is easier to count using Arabic numbers rather than Roman numbers.

There are tasks in which it is difficult to understand the best representation of the
data. In cosmology, for example, we usually describe the galaxy field with its power
spectrum, but we know that the field is non-Gaussian on small scales (and also on large
scales, in the case of primordial non-Gaussianities). Thus, the power spectrum represen-
tation of the data is sub-optimal. A solution to this representation problem is not only to
have the algorithm find the mapping from a representation to output, but also to have it
find the representation itself. This is what is usually called representation learning. When
the representation learning algorithm is able to express features in terms of simpler rep-
resentations we talk about deep learning. An example is a model that analyses images.
Given, e.g., the image of a house, a deep learning algorithm will represent it in terms of
the simpler shapes by which it is composed, which in turn can be represented by straight
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Figure 2.1: Flowcharts showing how the different parts of an artificial intelligence sys-
tem relate to each other within different artificial intelligence disciplines. The shaded
boxes indicate components that are capable of learning from the data. Figure from Good-
fellow et al. (2016).
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or curved lines. The most famous example of a deep learning model is the neural net-
work (NN). Neural networks will be the most used algorithm in this thesis work (see
Chapts. 4, 5, and 7) and I will discuss them in more detail in the next section.

Finally, machine learning algorithms can be supervised or unsupervised. Supervised
learning works with labelled data, where the algorithm learns to make predictions based
on the provided examples. The goal of a supervised algorithm is to find a mapping be-
tween the input and the output based on the labelled data. During the training, the al-
gorithm adjusts its internal parameters to minimise the loss function, which depends on
the difference between the prediction and the label. Supervised learning is usually em-
ployed in regression and classification problems. We evaluate a supervised algorithm’s
performance from its ability to accurately predict target values of previously unseen
data. On the other hand, unsupervised learning deals with unlabelled data and aims to
discover patterns or structures within data without explicit guidance. Unsupervised al-
gorithms are used in clustering, dimensionality reduction, and anomaly detection tasks.
As they do not deal with labelled data what is minimised during the training process
is not the loss function, but, depending on the task, other functions are minimised. For
example, in clustering algorithms what is minimised is the distance between the features
or metrics of cluster quality.

2.1 Neural networks

A neural network is a computational model inspired by the human brain, consisting of
interconnected nodes, also known as neurons, organised in layers, with the ability to learn
patterns and make predictions from data through iterative training processes (LeCun
et al., 2015).

In a feed-forward neural network, the information flows in only one direction, from
one layer to the following, and there are no connections between neurons of the same
layer. Each layer is characterised by the activation function, h(i), its neurons apply to
their input features. These activation functions can be distinct for each layer or uniform
throughout the entire network, but they must be nonlinear functions. Given the input
data, x, the output of the network is

y ≡ h(x;ϑ) = h(n)
(
h(n−1)

(
. . .
(
h(1)

(
x;ϑ(1)

)
; . . .

)
;ϑ(n−1)

)
;ϑ(n)

)
, (2.1)

where ϑ(i) are the free parameters of the i-th layer. The length of the chain of Eq. (2.1)
is equivalent to the number of layers n and represents the depth of the network. We call
the first layer input layer and the last one is the output layer. All the other layers, those
with which the user has no direct interaction, are the hidden layers.

As information progresses from one layer to the next, it undergoes a linear transfor-
mation. We can reorganise the parameter vector ϑ(i) of a layer into an n × m matrix
W (i), where n is the number of neurons in the layer and m is the number of neurons in
the previous layer, and an n-component vector b(i) known as bias. The input on the i-th
layer is

x(i) = W (i) · h(i−1)
(
x(i−1)

)
+ b(i) , (2.2)

where h(i−1)
(
x(i−1)

)
is the m-component output of the previous layer. The components

of W (i) and b(i) are referred as weights. To summarise, the features first undergo a lin-
ear transformation (see Eq. 2.2) and then a nonlinear one through the neuron activation
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Figure 2.2: Schematic representation of the training process. First, the inputs are forward
propagated to the output; then, the model prediction is compared to the label through
the loss function. Finally, in the backward propagation, the gradients of the loss function
with respect to the outputs of the network are computed. These gradients are used by
the optimiser to update the model weights. This process is a training iteration and is
repeated until the loss function is minimised.

function. This simple scheme is repeated for each layer and thanks to it neural networks
have the potential of fitting any nonlinear function (LeCun et al., 2015).

2.1.1 Training

During the training process, the network weights are iteratively adjusted to minimise
the difference between the predicted and real outputs. This process enables the model
to learn and generalise patterns from the training data. More rigorously, the objective of
the training of a neural network is to approximate its output y = h(x;W , b) to the real
relation between the input x and the label ŷ = h∗(x) by optimising the weights W and
b. Figure 2.2 schematically presents the steps that take place during the training process.
In this section, I will discuss in detail all these steps.

When a neural network is initialised its weights are just random numbers and the
network output will be completely uncorrelated to the real value of the label. The train-
ing of a neural network can be divided into three main steps: the forward propagation,
the loss computation, and the backward propagation. The sequence of these three steps is a
training iteration. During the forward propagation input data pass through the network
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as described in the previous section (see Eqs. 2.1 and 2.2) and predictions are calculated
using the current weights.

The next step is the loss computation. The loss function compares the prediction y
with the label ŷ and outputs a loss score. The loss function quantifies in the loss score the
distance between the prediction and the label. Different problems require different loss
functions, e.g., classification and regression tasks need different loss functions. The most
diffuse loss function for classification is the cross-entropy loss function, which, in the case
of binary classification, reads as follows

LBCE(ŷ, p) = − (ŷ ln (p) + (1− ŷ) ln (1− p)) , (2.3)

where ŷ is the label, which can either be 0 or 1, and p is the predicted probability of
belonging to class 1. The cross-entropy penalises the model more heavily for making
confident incorrect predictions and encourages it to be confident in the correct predic-
tions. Many other loss functions exist for classification, but they usually are modified
versions of this cross-entropy loss. For regression tasks, the most diffuse loss functions
are the mean root squared error, the mean squared error, and the mean absolute error.
In my work, I mainly use the mean squared error loss function or loss functions derived
from it. The mean squared error loss function reads as follows

LMSE(ŷ,y) =
1

m

m∑
i=1

(yi − ŷi)
2
, (2.4)

where ŷi and yi are the label and the prediction of the i-th input and m is the number
of samples observed during a training iteration. Equation (2.4) is valid for a model that
outputs one value for each input. In the case of regression over multiple parameters, we
usually take either the sum or the mean of the mean squared error of each parameter as
the loss score.

Backward propagation is the last and arguably the most important step of the train-
ing iteration. It is an optimisation algorithm used to adjust the model weights based on
the computed gradients of the loss function with respect to these parameters. The objec-
tive is to minimise the loss, improving the model’s ability to make accurate predictions.
Backward propagation starts by calculating the gradient of the loss with respect to the
output of the neural network. The computed gradients from the backward pass are used
to update the model weights. This is part of the gradient descent optimisation algorithm
and the algorithm that performs it is also called the optimiser. The weights are updated
based on the gradients and shifted in the direction that minimises the loss. After this
first weight update, the gradients are also propagated backward through the layers of
the network and they are used to calculate the local gradients with respect to the layer
inputs and outputs. These local gradients are used to update the weights of each layer
individually. The general formula for the weight update is

wnew = wold − lr ∂wL , (2.5)

where wnew is the updated weight, wold is the current weight, lr is the learning rate,
which determines the step size in the weight update, and ∂wL is the gradient of the loss
function with respect to the corresponding weight wold. The update of Eq. (2.5) can be
modified by more complex optimiser algorithms, which are used in the gradient descent
phase; however, for the second update of the weights the standard update formula is
used. One of the most common optimisers is the Adaptive moment estimator (Adam;
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Figure 2.3: Example of the loss score as a function of the training epoch. The solid line
represents the loss of the training set, while the dashed curve is the loss of the validation
set. In the first phase of the training the model is underfitting the data, but as training
goes on the model starts to overfit the training set. It is important to identify the model
that minimises the validation loss and it is possible to stop the training when this model
has been selected.

Kingma & Ba, 2014), which adjusts the learning rate for each parameter based on both
the first and second moments of the gradients. In all my work I used the Adam optimiser.

With the layer-wise weight update, the training iteration is concluded. This process
should be repeated until the loss function is minimised. During a training iteration, the
model does not necessarily see the whole training data set. We say that the training has
completed an epoch when the entire training set has passed through the network. An
epoch can be composed of more than one training iteration. This happens when the
batch size is smaller than the number of data points in the training sample. The batch size
refers to the number of training examples utilised in one training iteration. Larger batch
sizes may provide more accurate gradient estimates but require more memory. Smaller
batch sizes introduce more noise but may lead to faster convergence. The number of
epochs and the batch size are hyper-parameters of the model.

As discussed above, to train a network we use a training set of data points, however,
the performance of a network is determined by its ability to make correct predictions
for unseen data. We say that a data point is unseen if it is not part of the training set
and has not had any role in the optimisation of the network weights. We can use un-
seen data not only to determine the performance of a model after the training, but also
to monitor the network performance during the training itself. In the former case, we
call the set of unseen data the test set, while in the latter case, we talk about validation
set. The validation set has a critical role in the training of machine learning models and
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acts as an essential benchmark to evaluate the model performance on unseen data (see
Fig. 2.3). As models train, they face the risk of overfitting, capturing noise and details
from the training set that do not generalise well. Conversely, underfitting arises when
a model is too simplistic and fails to grasp the underlying patterns in the data. The use
of the validation set can prevent these issues. By evaluating the model on data it has
not encountered during training, we can discern whether the network strikes the right
balance between complexity and generalisation. Additionally, we can also exploit the
validation set to determine when we can stop the training of the network, this practice is
called early stopping, and to select the best weights of the model. Early stopping consists
of monitoring the model performance on the validation set and halting training when
further iterations produce diminishing returns or risk overfitting. Moreover, the valida-
tion set helps in selecting the best weights for the network. We usually say that the best
model is the one that minimises the loss evaluated over the validation set rather than the
training set, doing so we select a model that not only fits the training data well but also
exhibits robustness and effectiveness on new and unseen examples.

2.1.2 Data structures and neural network architectures

The neural network described in Sect. 2.1 is usually referred to as a dense neural network.
The name remarks the fact that all the neurons of a layer are connected to the neurons of
the following layer through the linear transformation of Eq. (2.2). To summarise the lay-
ers are densely connected. As mentioned in the previous sections, this structure has the
potential of fitting any nonlinear function ŷ = h∗(x). However, this statement, broadly
known as universal approximation theorem (e.g., Hornik et al., 1989), is based on a number
of assumptions that cannot be met in real-life models, e.g., arbitrary width of the layer
or arbitrary depth of the network. To actually reach a good approximation of the func-
tion h∗(x) it is important to identify the appropriate hyper-parameters of the model. In
Sect. 2.1.1 I mentioned the batch size and the number of epochs for the training as hyper-
parameters, but the loss function, the optimiser, and the neurons’ activation functions
are hyper-parameters as well. Broadly speaking any choice we make when building the
network is a hyper-parameter that could be optimised for the problem at hand.

Arguably, the most important hyper-parameter is the architecture of the network. By
network architecture, we refer to the overall design and structure of the neural network.
The arrangement, connectivity, and number of components, such as layers and neurons,
are part of the network architecture and determine how the information flows through
the network. In particular, some architectures are specifically designed to manage dif-
ferent types of data structures. In the case of data with a grid-like topology, such as
pixelised images or time series, an optimal architecture is the convolutional neural network
(CNN; LeCun, 1989; Goodfellow et al., 2016). A network is called convolutional if at
least one of its layers employs convolution instead of the general matrix multiplication
described in Eq. (2.2).

Figure 2.4 represents a two-dimensional convolution. Rigorously, this operation is a
cross-correlation and reads as follows

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) , (2.6)

where I is the input two-dimensional grid and K is the m×n two-dimensional convolu-
tion kernel, also known as filter. Many machine learning libraries (e.g., PyTorch; Paszke
et al., 2017) implement the cross-correlation of Eq. (2.6) and call it convolution. Convo-
lution has three main advantages over a dense neural network: it has sparse interaction,
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Figure 2.4: A schematic representation of a 2-dimensional convolution. For this example,
the output is restricted to only positions where the kernel lies entirely within the image.
The green boxes with arrows indicate how by applying the kernel to the upper-left region
of the input produces the upper-left element of the output. Figure from Goodfellow et al.
(2016).
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parameter sharing, and an equivariant representation. As mentioned above in dense neural
networks a neuron is connected to all the neurons of the previous and following layer,
so every output unit interacts with every input unit. However, if the kernel is smaller
than the image the CNN is processing, the interactions between input and output units
are sparse. In Fig. 2.4, since we apply a 2 × 2 filter to a 3 × 4 input, the outputs only
depend on four of the input units. This is a sparse interaction. This does not necessarily
mean that there is no interaction between input neurons far from one another, e.g., a and
l. If the convolutional neural network is deep enough the deeper outputs can indirectly
interact with a larger portion of the input image, if not the whole image.

The convolution operation also enforces parameter sharing, which corresponds to
the fact that it uses the same parameter for more than one operation in the model. In
Eq. (2.2) the weight matrix W has n × m different parameters, where m and n are the
numbers of neurons in the input and output layer respectively. As a consequence of
this, there are n × m weights to be stored and n × m operations to be performed. On
the other hand, the convolution applies more than once the same weights. In Fig. 2.4
we see that the same 4 elements of the kernel appear in each output unit. This greatly
reduces the memory requirements and the number of operations the model performs.
Finally, convolution is also equivariant to translation. It means that if a specific feature
in the input is shifted the corresponding representation in the output is shifted in the
same way. This means that the network is able to identify the same pattern in different
regions of an image.

In general, we build a convolutional neural network as a sequence of convolutional
layers whose output is flattened and processed by a dense neural network into the out-
put neurons. Each convolutional layer enforces Eq. (2.6) multiple times with different
filters. Therefore, with each convolution the input is compressed and its information
content is divided into multiple outputs. In this process, each filter learns a specific
feature of the input. We can also combine convolutional layers with normalisation or
pooling operations, but I will discuss each one of these solutions in the description of
the specific CNNs I designed for this thesis work (see Chapt. 7). Finally, the dense layers
post-process the convolutional layers output. This output is a (N + 1)-dimensional ten-
sor, where N is the original dimension of the input (e.g., 2 for a one-colour image), and
the additional dimension is introduced by the use of more than one filter in each con-
volutional layer. Potentially, we could use only one dense layer to map the convolution
output to the final output of the network. However, as I just described, the convolution
can output a very large data vector. In these cases, it is more efficient to compress the
information not with one layer, but with a sequence of dense layers.

Another data type that can be interesting in LSS studies is the graph. Graphs are
used to represent interaction-based data, e.g., friend and citation networks or molecular
structures. Graphs can be an alternative way to represent the cosmic web and we can
exploit their versatility for any type of unstructured data. Mathematically, a graph G =
(V, E) is a set of nodes V and edges E . We denote a node with vi ∈ V and the edge from
node vi to node vj as eij = (vi, vj) ∈ E . Edges normally have a direction. In the definition
above eij goes from vi to vj , while eji goes from vj to vi. Additionally, we can define the
node v ∈ V neighbourhood as N(v) = {u ∈ V|(u, v) ∈ E}, which corresponds to the set of
nodes that have an edge going to v. We collect all the edge information in the adjacency
matrix A. This is a n × n matrix, where n is the number of nodes in the graph, with
Aij = 1 if eij ∈ E and Aij = 0 otherwise. As edges are directed, the adjacency matrix
is not symmetric a priori. It becomes symmetric in the case of an undirected graph. In
this case, if two nodes are connected there is a pair of edges with opposite directions
between them. Finally, both nodes and edges in a graph may have attributes. The node
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attributes are collected in X ∈ Rn×d, where d is the number of attributes the nodes have.
Analogously, we define an edge attribute matrix Xe ∈ Rm×f , where m is the number of
edges in the graph and f the number of their attributes.

Graphs are extremely flexible in comparison to grid-structured data and can easily
represent irregular data sets. This comes at the cost of complexity in the application of
deep learning to graphs (Hamilton, 2020). The networks designed to manage graphs are
called graph neural networks (GNNs). Graph neural networks are designed to manage
inputs with varying dimensions as graphs representing the same type of object, e.g., a
molecule, can have a different number of nodes and edges. Under the name of GNNs
goes a large number of deep learning models that solve many different tasks (Wu et al.,
2019). Graph neural networks can perform node classification, node regression, or pre-
dict missing node attributes. We can also use GNNs for relation prediction or graph
classification and regression. These last two tasks consist of the extraction of graph-level
information and are the most similar to standard deep-learning methods.

What makes all these graph neural networks very efficient is the ability to share infor-
mation between node neighbourhoods. In comparison to the grid convolution defined
for CNNs (see Eq. 2.6) the information sharing in GNNs is based on the concept of mes-
sage passing. Many GNN models implement and exploit message passing in different
ways, but this mechanism is always characterised by a series of defined steps. The three
main phases of message passing are message generation, message aggregation and update.
During message generation nodes send messages to their neighbours. These messages
are generated by combining the sender node’s attributes with edge-specific information.
After receiving the messages from the neighbourhood a node aggregates them before
updating its representation by combining its current attribute with the aggregated mes-
sage. The most general way to describe the message passing operation that transforms
the i-th node attributes xi into the updated attributes x′

i is as follows (Gilmer et al., 2017)

x′
i = γ

(
xi,2j∈N(i)h

(
xi,xj ,x

e
ji

))
, (2.7)

where γ(·) is a differentiable update function, 2j∈N(i) is a permutation-invariant ag-
gregation function, e.g., a summation or an average over the neighbourhood messages,
and h(·) is the differentiable message function. The j-th neighbour attributes are xj and
xe
ji are the attributes of edge eji, which sometimes undergo a transformation before the

message creation (e.g., Gong & Cheng, 2018). We update the attributes of all the nodes
in the graph sharing the same message, aggregation, and update functions. Therefore,
message passing itself is a form of parameter sharing. Note that the update and message
functions can also be dense neural networks. This choice makes the message-passing op-
eration extremely general, but it also makes a GNN complex to manage memory-wise.

Similarly to convolutional neural networks, where there can be a sequence of convo-
lutional layers, in graph neural networks, we can build a sequence of message-passing
layers. Each time we repeat a message passing operation the information is propagated
further away from the node it originated from. Finally, when the graph neural network
performs a graph regression or classification we aggregate the information from all the
nodes and usually pass it through a sequence of dense layers (as we do for CNNs) to
obtain the final output.

In summary, each task requires an attentive design of the deep learning model used
to tackle it. In this section, I specifically discussed convolutional and graph neural net-
works as I used them during my thesis work. However, other neural network archi-
tectures exist that can be used to manage different data types or tasks, e.g., recursive
neural networks for sequence-like data or generative adversarial networks to generate
new synthetic data sets from existing ones.
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Redshift and sample selection





CHAPTER 3

Galaxy distances and redshifts in cosmology

Measuring distances in astrophysics is no trivial task. We can not use the same method
for all the distance scales. Therefore, over the years, astronomers and astrophysicists
developed different methods to measure the distances of increasingly distant objects.
These methods overlap on some distance scales so that their precision can be tested.
Therefore, the precision of each step of this ‘distance ladder’ depends on the precision of
the previous one until the first step is reached. The first step must be model-independent
in order to make the whole ladder coherent.

This first method is parallax. Parallax is the measure of the maximum angular annual
displacement of nearby stars due to the revolution of Earth around the Sun. Knowing a
star’s parallax and the Earth-Sun distance we can measure the distance of the star from
the Sun. We can measure the parallax of stars as far as 1kpc, which are galactic objects.
However, now, thanks to the new astrometric data acquired with the ESA satellite Gaia,
it is possible to reach distances up to 10kpc using the parallax method.

The following step is the so called spectroscopic parallax. This method measures the
distance of a star confronting its apparent magnitude, which is what we measure, with
its absolute magnitude extrapolated from its temperature using the Hertzsprung-Russel
(HR) diagram. The temperature of the star is measured with spectroscopy and the HR
diagram is built from stars whose distances were measured with parallax. Spectroscopic
parallax reaches stars as far as 10kpc, which are still galactic objects.

Next, there are some methods based on variable stars, the most famous of which
are the variable Cepheids.1 From parallax and spectroscopic parallax measurements we
were able to understand the relation between the absolute magnitude and the period of
luminosity variation for Cepheid stars. Therefore, by measuring the variation period of
a distant variable star and its apparent magnitude we can estimate its distance. With
variable star methods, we can measure the distance of every galaxy in which we can
resolve single objects (in particular variable stars). Variable stars are used to measure
distance up to ∼ 10Mpc, which is the distance of the Virgo cluster, one of the nearest
galaxy clusters.

At further distances, we can not resolve single objects in a galaxy except for masers
and supernovae. Masers are monochromatic point sources in the microwave wave-
lengths. They are produced by specific quantum transitions in non-thermal gas pop-
ulations and they can occur in gas accretion disks around the black holes in the centre
of galaxies. These masers are produced by transitions of water molecules and are also
known as water masers. Knowing the rest-frame wavelength of the transition, assum-
ing a Keplerian rotation of the maser around the central black hole, and measuring the
angular distance of the maser from the centre of its orbit, its velocity, and its accelera-
tion, we can estimate the physical distance of the maser from the black hole and have a

1The variable Cepheids method was used by Hubble to measure the distance of the nearest galaxies.
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direct measurement of the distance of the maser from the Sun. The most distant maser
is at ∼ 150Mpc. However, masers are rare, up to date there are only six masers with a
distance measurement obtained with this method. For this reason, we mainly use them
to make an additional calibration of other extra-galactic methods.

The other type of objects that we can resolve within other galaxies are supernovae.
Supernovae are explosions during which the luminosity of a star can exceed the lumi-
nosity of a whole galaxy. A supernova is a very complicated phenomenon. However, su-
pernovae type Ia, which are the explosion of white dwarfs that reach the Chandrasekhar
mass, have a very peculiar characteristic: their peak absolute luminosity is constant and
correlates with the peak width. Therefore, if a supernova Ia explodes in a far galaxy we
can observe it and, knowing its absolute luminosity, we can measure its distance.

However, also supernovae are rare phenomenons, thus for the majority of the fur-
thest galaxies the only information we receive is the electromagnetic spectral energy
distribution (SED) of the whole galaxy which, on first approximation, is the sum of the
spectra of the galaxy stars. Due to the expansion of the Universe the galaxy SEDs are
stretched toward longer wavelengths and appear redshifted. As shown in Sect. 1.1.3, a
wave packet wavelength is red-shifted and its flux density is dimmed by a factor (1+ z).
Moreover, from Eq. (1.38) we are able to calculate distances from redshifts given a set of
cosmological parameters. Thus, in observational cosmology, redshift measurements are
distance measurements once we assume a cosmological model.

Before we start to describe in detail the methods used to measure cosmological red-
shifts we need to mention that baryon acoustic oscillations can be used to measure cos-
mological distances as well. From structure formation theory we know that the physical
dimension of the BAO is fixed by the sound horizon at recombination and its angular di-
mension can be measured using the angular correlation function for a sample of galaxies
measured in a survey (see Sect. 1.2.1). Having this information provides the relationship
between redshift and angular diameter distance from which we can constrain the pa-
rameters of the cosmological model.

3.1 Spectroscopic redshift

There are two different methods used to measure redshifts on cosmological scales, both
with advantages and flaws. They both aim to identify characteristic features in the
galaxy’s spectral energy distributions and measure how much they were redshifted. Let
us start our description from the more straightforward one which is spectroscopy.

Spectroscopy provides a measure of the SED with high wavelength resolution. Galaxy
spectra are the sum of the spectra of their content. Galaxies have different spectra de-
pending if their stellar population is young or old and if they are rich or poor in inter-
stellar medium. However, all galaxy spectra have in common two features: the Lyman
break and the Balmer break. Any photon with a wavelength shorter than 912 Å, Lyman
continuum, will be absorbed by neutral hydrogen gas, both in the galaxy itself and in
the intergalactic medium. Not only will these photons be absorbed, but also any with
a wavelength corresponding to the line in the Lyman series. Consequently, we do not
receive light with a wavelength shorter than the Lyman-α line at 1216 Å. Hence, a step
is produced in the galaxy SED at 1216 Å, this feature is known as Lyman break and it is
marked by the black solid line on the left in Fig. 3.1.

Analogously, the Balmer break can be explained. This spectral feature is related to
the hydrogen Balmer series from 3646 Å to 4000 Å and is seen in stellar spectra. Photons
with wavelengths less than 3646 Å have sufficient energy to excite the Balmer transition
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Figure 3.1: Spectroscopic and photometric redshifts. Top: The SEDs at z = 0 of a Star-
burst galaxy (SB). The solid vertical lines indicate the Lyman and the Balmer breaks in
the galaxy rest frame. The dashed line is the Starburst galaxy SED shifted at z ∼ 1.1,
while the dashed vertical lines indicate the Lyman and the Balmer breaks shifted at that
same redshift. The shown SED is from the COSMOS templates (Ilbert et al., 2009). Bot-
tom: Observed YE − JE colour as a function of redshift for the starburst galaxy plotted
above and an elliptical galaxy (Ell). The dashed horizontal line indicates YE − JE = 0.8
and shows the photo-z degeneracy.
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and are thus absorbed by hydrogen atoms in stars. The step we observe in the SED at
4000 Å is therefore called Balmer break. It is the excited hydrogen to produce this feature,
therefore the Balmer break is more visible in galaxies with a higher star-formation rate.
In Fig. 3.1 the Balmer break is marked by the solid line on the right.

Observing the spectrum of a far galaxy enables us to measure with high precision
how much these features, with other characteristic emission or absorption lines, were
redshifted, and infer the cosmological redshift z of the galaxy (see Fig. 3.1). With this
method, redshifts are measured with high precision with an error lower than 5 ·10−3(1+
z) for resolution R > 200 (e.g. Guzzo & Vipers Team, 2017). One of the first spectroscopic
redshift surveys with a high number of objects (∼ 106) is the Sloan Digital Sky Survey
(York et al., 2000), which enabled cosmologists to study the three-dimensional structure
of the Universe, the properties of galaxies and their scaling in redshift and much more
(see Sect. 1.4.1).

However, measuring spectroscopic redshifts is time and resource-consuming. Ob-
serving the spectra of distant faint objects, which are affected by cosmological dimming,
requires large telescopes and long-time exposure in order to be able to decompose the
light signal into the spectrum. The faint object signal-to-noise ratio is often too low for
redshift measurements. In addition, for a solid spectroscopic redshift measurement, at
least two spectral features are needed, which means a wide wavelength coverage is es-
sential. Therefore, even if spectroscopy is the best method to probe the local and near
Universe it becomes less suitable for this task the farther we want to study.

3.2 Photometric redshift

An alternative to spectroscopic redshifts is the so called photometric redshift, known as
photo-z. This method was first proposed by Baum (1957). Photometric redshift is based
on the idea that we can constrain the SED shape with wide band flux measurements
and infer the redshift of the object from its observed colour, which is the difference in
magnitudes of two bands, that is related to SED broad features such as the Lyman and
Balmer breaks. The breaks are steep changes in the SED, therefore we should be able to
detect gradients between observed fluxes in adjacent filters, which are the colours, and
identify the position of a break.

Figure 3.1 bottom panel shows how the colour of a galaxy depends on its redshift.
The first thing we notice from Fig. 3.1 is that the colour has a maximum at a given redshift
that depends on the galaxy type. When designing a photometric redshift survey, the
filters must be chosen in order to observe key features of the redshift and objects of
interest. Second, we see that there is a degeneracy for the redshift solution in the colour
space. This degeneracy, known as photo-z degeneracy, can be broken by combining
several colours. Therefore, also a photo-z survey must have a wavelength coverage as
broad as possible with multiple filters.

In principle, if we follow these prescriptions, we can derive the redshift of every
source in an imaging survey. The price we must pay for this surveying completeness is
the redshift precision, which decreases by one or two orders of magnitude compared to
spectroscopic measurements. Photo-z popularity has increased in the last two decades.
If well calibrated with spectroscopy, the photometric redshifts enable us to make sta-
tistical analyses of larger samples than spectroscopic redshifts do. Moreover, it makes
it possible to infer redshifts for very faint objects. This means that we simultaneously
have a more complete observation of the region than spectroscopy probes and the pos-
sibility to study regions with higher redshifts than spectroscopy does. Photo-z preci-
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sion is enough to study galaxy evolution, formation and properties with cosmic time,
to search primordial galaxies (e.g., Dunlop et al., 2012), to identify galaxy clusters (e.g.,
Finoguenov et al., 2007) and limited precision analyses of galaxy environment (Ethering-
ton & Thomas, 2015; Malavasi et al., 2016). In addition, photo-z has recently become a
tool to probe large-scale clustering (e.g., Abbott et al., 2022), measure the galaxy bias and
cosmological parameters and study properties of dark energy (e.g., Abbott et al., 2018).

All photo-z techniques have in common the aim to build a map between the colour
(or flux) space and the redshift one (Salvato et al., 2019; Newman & Gruen, 2022). When
the map is ready we can obtain by comparison the redshift of a source and the redshift
probability distribution function, hereafter redshift distribution. The photo-z techniques
can be divided into two macro groups: the physical methods and the data-driven meth-
ods. The physical, or template-fitting, methods start from a set of theoretical or empirical
SED templates. Theoretical templates are built from stellar emission models, empiri-
cal ones are based on observed spectra sometimes extended over broader wavelength
ranges. Then, all the physical processes light undergoes travelling from the source to
the observer are taken into account to build the colour-redshift map. For example, two
processes the accounting of which greatly improves the photo-z measurements, are neb-
ular emission lines and dust absorption and extinction. Most of all dust extinction needs
to be modelled because it reddens light and normally it is most efficient in the ultravio-
let (UV) band. The galaxy rest frame UV part of the SED, where the Lyman break lies,
is what optical and NIR data observe for galaxies with z > 1. Extinction reddens the
light signal we observe and may cause an overestimation of the galaxy redshift if it is
not taken into account. Physical methods usually model dust as a free parameter, using
both interstellar attenuation laws (e.g., Calzetti et al., 2000) and intergalactic ones (e.g.,
Madau, 1995).

The most popular data-driven methods are machine learning algorithms. Starting
from a sample of data an ML algorithm learns the colour-redshift map during the train-
ing. ML algorithms can be supervised or unsupervised learning methods (see Chapt. 2).
Supervised learning needs labelled data, therefore galaxy redshifts have to be known as
well as photometry, during the training, while unsupervised learning needs only pho-
tometry in this phase. Supervised learning algorithms aim to approximate the function
between the multi-dimensional photometry space and the redshift space starting from
the training data. At the end of the training, the algorithm has built a function that maps
each point in flux space to a redshift, ideally, every galaxy has a different redshift from
the others. Therefore, to ensure a good interpolation of the mapping function the sam-
pling data set must be representative of the properties of the sample for which prediction
will be made, otherwise, accuracy will be lost. Moreover, supervised ML methods are
by nature limited to low redshift and bright objects because the redshift values used
during the training are obtained from spectroscopic redshift measurements. Two of the
most common supervised learning algorithms are random forest and neural networks
(see Sect. 2.1). On the other hand, unsupervised learning methods need only photome-
try for their training. Rather than a detailed approximation of the mapping function, as
supervised methods do, they aim to roughly describe this function assigning different
redshift values to galaxies that have been grouped. An unsupervised algorithm con-
structs the flux-redshift map in two steps. Firstly the training galaxies are divided into
groups based on their properties (e.g., k-means; MacQueen, 1967), usually their colours,
then, when the groups are fixed, another training sample of galaxies with known red-
shift is used to estimate the redshift of each group. Therefore, an unsupervised learning
method assigns a redshift value to each group of galaxies, not to each galaxy, and it is
as good as the groups it builds are compact in redshift space. Possibly the most popular
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unsupervised ML algorithm for photo-z measurements is the self-organising map (SOM;
Masters et al., 2015; Wilson et al., 2020).



CHAPTER 4

Augmenting photometric redshift estimates using
spectroscopic nearest neighbours

The present chapter is based on the paper ‘Augmenting photometric redshift estimates using spec-
troscopic nearest neighbours’ by Federico Tosone, Marina S. Cagliari, Luigi Guzzo, Benjamin
R. Granett, and Andrea Crespi, published in Astronomy & Astrophysics in April 2023 (Tosone
et al., 2023).

4.1 Introduction

Knowledge of galaxy distances is of uttermost importance for cosmology, as to recon-
struct the underlying three-dimensional dark matter distribution that encapsulates key
information about the evolution and matter content of the Universe. On cosmological
scales, the most efficient method to estimate distances is through their cosmological red-
shift, which directly connects to the standard definitions of distance. Sufficiently precise
redshift measurements allow us to test the world model through the redshift-distance
relation, coupled with standard rulers and standard candles (e.g., Riess et al., 1998; Perl-
mutter et al., 1998).

Over the past 25 years, galaxy clustering measurements from large redshift surveys
have been able to quantify the universal expansion and growth histories, pinpointing
the value of cosmological parameters to high precision (e.g. Tegmark et al., 2006; Colless
et al., 2003; Blake et al., 2011; de la Torre et al., 2017; Alam et al., 2017; Pezzotta et al.,
2017; Bautista et al., 2021). Even larger redshift surveys are now ongoing (DESI; DESI
Collaboration et al., 2016), or soon to start (Euclid; Laureijs et al., 2011), with the goal of
further refining these measurements to exquisite precision and find clues on the poorly
understood ingredients of the remarkably successful standard model of cosmology.

The redshift is measured from the shift in the position of emission and absorption
features identified in galaxy spectra, typically through cross-correlation techniques with
reference templates, which capture the full information available (e.g., Tonry & Davis,
1979). Despite the considerable advances of multi-object spectrographs over the past
40 years, collecting spectra for large samples of galaxies, however, remains an expen-
sive task. A cheaper, lower-precision alternative is offered by photometric estimates, i.e.,
measurements based on multi-band imaging, in which integrated low-resolution spec-
tral information is collected at once, for large numbers of objects over large areas. The
price to be paid is that of larger measurement errors, together with a number of catas-
trophic failures, which limit the scientific usage of such photometric redshifts to specific
applications (e.g., Newman & Gruen, 2022). Still, when a sufficient number of photo-
metric bands is available, (Benitez et al., 2014; Laigle et al., 2016; Alarcon et al., 2021),
or even information about the ensemble mean spectrum can be obtained (Cagliari et al.,
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Figure 4.1: Correlation between a galaxy’s own redshift and that of its nth nearest angu-
lar neighbour (n = {1, 2, 3, 4}), as seen in the VIPERS redshift survey data, which cover
the range 0.5 < z < 1.2. Clearly, while a tight correlation exists for a number of objects,
many other angular pairs just correspond to chance superpositions.
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2022), these samples become highly valuable in many respects. Photo-zs are traditionally
estimated by fitting template spectral energy distributions to the measured photometric
fluxes (e.g., Bolzonella et al., 2000; Arnouts et al., 2002; Maraston, 2005; Ilbert et al., 2006).
Detailed reviews can be found in Salvato et al. (2019), Brescia et al. (2021), and Newman
& Gruen (2022).

Since the pioneering work of Collister & Lahav (2004, see also Lahav 1994), who
first used artificial neural networks (ANN) to obtain photo-z estimates, machine learn-
ing algorithms have seen many further applications in this context. These include ran-
dom forests (Carliles et al., 2010), self-organising maps (Masters et al., 2015), and advanced
ANNs (Sadeh et al., 2016). A notable recent application uses the full images of galaxies
through convolutional neural networks (Pasquet et al., 2019; Henghes et al., 2022). All
these methods provide photo-z estimates by using information that is strictly local, i.e.,
the flux of each object measured in a number of photometric bands, independently of
correlations with the other galaxies in the sample.

In the specific case when a photometric survey includes spectroscopic redshifts for
a representative sub-sample spread over the same area, these represent extra informa-
tion, which can be exploited to obtain improved estimates of the missing redshifts. Since
galaxies are spatially clustered, angular neighbours on the sky preserve a degree of red-
shift correlation, depending on the depth of the catalogue. The deeper the catalogue,
the weaker the correlation, due to projection over a deeper baseline. Still, an angular
correlation remains, as can be seen explicitly in Fig. 4.1, in the data of the VIMOS Public
Extragalactic Redshift Survey (Guzzo et al., 2014).

Such a correlation was exploited, for example, to improve knowledge of the sample
overall redshift distribution (Newman, 2008), a fundamental quantity for many cosmo-
logical investigations, as, e.g., weak lensing tomography. With VIPERS, instead, it was
used in the estimate of the galaxy density field, to fill the gaps due to missing redshifts
(Cucciati et al., 2014). Even more finely, Aragon-Calvo et al. (2015) used the fact that
galaxies are typically confined within cosmic web structures to get a dramatic improve-
ment in the estimate of photo-zs for ∼ 200 million Sloan Digital Sky Survey galaxies,
starting from only ∼ 1 million spectroscopically measured redshifts.

Our goal with the work presented here has been to optimally retrieve such non-local
information from the neighbouring objects of a given galaxy building upon a specific
class of ML architectures, graph neural networks. The key property of this class is the
ability to combine information from unstructured data, based on our priors of the task
at hand (Bronstein et al., 2017). The end goal is to obtain an improved estimate of the
galaxy redshift.

As shown by Fig. 4.1, the existing correlation between angular neighbours is strongly
diluted by the sea of chance superpositions along the line of sight. Thus, the problem can
be more appropriately recast into quantifying the probability that a given angular neigh-
bour (with known redshift) is a physical companion for a given galaxy and thus closely
correlated in redshift as well. Our GNN model, dubbed NezNet, combines the intrinsic
features of a target galaxy and a neighbour, i.e., their multi-band fluxes, the spectroscopic
redshift of the neighbour and their relative angular distance, to output the probabil-
ity for the two galaxies to be spatially correlated. We train and test NezNet using the
spectroscopic sample of VIPERS. We show that discarding those targets for which no
real physical neighbour is identified with significant probability, improves the quality of
the associated photo-z catalogue obtained through classic SED-fitting, increasing preci-
sion and accuracy and reducing the fraction of catastrophic outliers. Moreover, when
real neighbours are identified, the redshift of the highest-probability one represents an
estimate for the redshift of the target that is typically more precise than that obtained
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Figure 4.2: Schematic architecture of NezNet: the input features are first processed by a
dense network; afterwards, message passing between the two layers through Eq. (4.1) is
applied, to take into account both relative differences and global values of the features
as well. Before the final dense layer, the features are summed and then reprocessed with
an MLP to output the score probability of two galaxies being actual neighbours.

through the classical SED fitting.
The idea of using GNNs to draw extra redshift information from neighbouring galax-

ies is not totally new. Beck & Sadowski (2019) present preliminary results of an approach
based on using only the photometry of a neighbourhood of galaxies, obtaining a 10%
improvement on the median absolute deviation of the photo-zs estimated via a single
object-based ML algorithm. We believe that the main shortcoming of methods based
on apparent neighbours lies in the large fraction of chance superpositions, evident in
Fig. 4.1. Here, we reformulate the problem as a detection task that identifies the physi-
cal neighbours of the surrounding spectroscopic objects, including also the neighbour’s
spectroscopic information, obtaining in this way a significant improvement.

The chapter is organised as follows. In Sect. 4.2 we give a brief description of how
GNNs work and specify the architecture of our model. In Sect. 4.3 we describe the prop-
erties of VIPERS data and the way we prepare the training set, in particular how we
define real or apparent neighbouring objects. Section 4.4 describes how the model is ap-
plied to the data and the metrics that we use to quantify the performance of the results.
Finally, in Sect. 4.5 we present and discuss our results, and conclude in Sect. 4.6.

4.2 Model

A neural network model can be summarised as a set of nonlinear functions applied to
a set of inputs which undergo a linear mapping. Each mapping has many parameters
that are optimised through a training process, which allows the network model to ap-
proximate a wide variety of almost arbitrary functions (LeCun et al., 2015). In its sim-
plest form, a neural network model corresponds to a multi-layer perceptron (MLP), also
known as a dense neural network (Murtagh, 1991). If one is dealing with images, neu-
ral architectures such as CNN are more suited, as they take into account our a priori
knowledge about the data structure (O’Shea & Nash, 2015).

This reasoning can be pushed further by introducing neural networks for graph rep-
resentations (Zhou et al., 2018). In this work, we make use of one key aspect of GNN,
i.e., message passing (Gilmer et al., 2017). To fix ideas, the problem we want to address is
the following: we need to find the spectroscopic galaxies with the highest probability of
being close to a galaxy for which only photometric information is available. This can be
recast as a classification task for each pair of galaxies, in which our aim is to distinguish
between apparent and real neighbours when projected on the plane of the sky.

Intuitively, a model to distinguish between apparent and real neighbours should be
based on the relative difference between galaxy features. Such a neural network can be
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designed by including a layer of the form

xxx′
i =

∑
j∈N (i)

h(xxxi,xxxi − xxxj) , (4.1)

where xxxi refers to the array of input features of the node i-th, N (i) is the neighbourhood
of the same node,

∑
is the aggregation function which sums the outcomes from each pair

of nodes. The function h is an MLP that explicitly combines the value of the input feature
at the node and the relative difference of that feature with respect to the neighbour.
It is worth noting that such a GNN is both permutation equivariant and permutation
invariant, so that it is not affected by changing the order of the nodes, i.e. the input
galaxies.

The complete architecture of our model is illustrated in Fig. 4.2. Each node is a galaxy,
whose inputs (e.g. the photometric measurements) are pre-processed through a MLP,
before undergoing the message passing of Eq. (4.1). In our work, we restrict ourselves to
the case of pairs of galaxies, so that the neighbourhood N (j) includes one galaxy only,
and the aggregation function simply sums the features xxx′

1 + xxx′
2. This model can be seen

as a trivial version of EdgeConv (Wang et al., 2018), where the adjacency matrix is a 2×2
matrix, with 0 entries for diagonal elements and 1 for the off-diagonal elements. Finally,
the summed features undergo a last dense layer with a scalar output. All the activation
functions are rectified linear units, with the exception of the final layer where we use a
sigmoid, as to represent a probability for our classification task.

We dub this classification model Nearest-z Network (NezNet). NezNet provides the
probability for a pair of galaxies to be real neighbours. The loss function adopted to train
NezNet is a standard binary cross-entropy

L =
1

n

n∑
i

[yi log pi + (1− yi) log (1− pi)] , (4.2)

where pi is the output probability of NezNet for each pair of galaxies, while yi = 0, 1
is the corresponding training label, and the sum is averaged over the mini-batch. To
design our model we made use of the Spektral library (Grattarola & Alippi, 2020), where
the EdgeConv layer is conveniently already implemented.1

4.3 Data

We train and test our approach on the final data release of VIPERS (Guzzo et al., 2014;
Scodeggio et al., 2018), for which the redshift correlation between angular neighbours
has been in Fig. 4.1. The survey used the VIMOS multi-object spectrograph at the ESO
Very Large Telescope to target galaxies brighter than iAB = 22.5 in the Canada-France-
Hawaii Telescope Legacy Survey Wide (CFHTLS-Wide) catalogue, with an additional
(r − i) vs (u− g) colour pre-selection to remove objects at z < 0.5. The resulting sample
covers the redshift range 0.5 ≲ z ≲ 1.2, with an effective sky coverage of 16.3deg2, split
over the W1 and W4 fields of CFHTLS-Wide. We used only galaxies with secure redshift
measurements, as identified by their quality flag, corresponding to a 96.1% confidence
level (see Scodeggio et al. 2018).

For each galaxy in the catalogue the following information is considered:

• the spectroscopic redshift measurement zspec,

1https://graphneural.network

https://graphneural.network
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• the 6 magnitudes u, g, r, i, z (not to be confused with redshift) and Ks,

• right ascension α (RA), in radians,

• declination δ (Dec), in radians.

The angular separation on the sky between two objects with RA α1 and α2, and Dec
δ1 and δ2, is given by the haversine formula

∆Θ = arccos (sin δ1 sin δ2 + cos δ1 cos δ2 cos (α1 − α2)) . (4.3)

We select the parent photometric sample by applying the same VIPERS colour and
magnitude cuts defined above, to be fully coherent with the spectroscopic data.

4.4 Application

We set up a training set from the VIPERS W1 galaxy catalogue: we randomly select about
3×104 target galaxies, whose spectroscopic redshift during training is ignored. For each
of them, we identify the first nNN angular nearest neighbours as defined by Eq. (4.3),
which we dub spectroscopic galaxies, since their spectroscopic redshift information is used
in our model. Each of these spectroscopic neighbours is associated with the same target
galaxy, but the pairs can be considered independent from one another in our model.
Each angular pair is assigned label 1 if it is a real physical pair, otherwise, it is assigned
a 0. The training set is thus made of pairs of galaxies.

A target galaxy of a pair can also be the nearest neighbour of another target galaxy, in
another pair. We make this choice in order to maximise the number of training examples
available in W1. Our final tests on the W4 catalogue show that this does not lead to
any over-fitting of VIPERS data, as the model generalises well. We note that this setting
assumes a ratio of spectroscopic to photometric objects of 1 : 1. In the Conclusions
(Sect. 4.6) we also confirm these results in the more realistic case where the number
of spectroscopic redshifts used for training is a fraction of the number of photometric
objects.

The definition of a real neighbour is arbitrary; it is reasonable to consider that two
angular neighbours form a physical pair if their spectroscopic separation is smaller than
a given threshold

∆z (1 + zspec). (4.4)

This means that in setting up the training data there are two hyper-parameters, the num-
ber of nearest neighbours nNN to be considered, and the spectroscopic separation ∆z. As
we will show, these two hyper-parameters can affect the results significantly, and it is
thus relevant to set them up wisely, depending on the specific survey.

In NezNet, for each galaxy in the pairs, the input features of the nodes are the pho-
tometry, the spectroscopy and the angular position, listed in Sect. 4.3. For the target
galaxy, we always set zspec = 0, so to have the model consider it as a missing feature,
while providing its value for the neighbouring galaxy. Magnitudes are normalised to
the range [0, 1], as computed over the whole VIPERS dataset. The angular inputs are
provided in terms of relative distance with respect to the target galaxy, so that ∆Θ = 0
for the latter, while for the neighbour it corresponds to Eq. (4.3). By adopting this choice
we guarantee that the model has translational invariance.

Another tested option (see Sect. 4.6), is to use as input variables the relative distance
in the two sky coordinates RA and Dec, rather than the angular separation of the two
galaxies. This choice is due to the fact that the surface distribution of the sample is not
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rotationally invariant on the sky, due to the technical set-up of the slits in the VIMOS
focal plane, with the spectral dispersion oriented along the declination direction. As
spectra must not overlap on the detector, targets need to be separated in Dec much more
than in RA. As a result, the minimum separation is ∼ 1.9 arcmin in Dec and 5 arcsec in
RA. More details can be found in Bottini et al. (2005) and Pezzotta et al. (2017, cf. their
Sect. 4.1). As a matter of fact, our experiments show that providing the model with the
angular separation ∆Θ introduces a bias in the redshift metrics, which is not observed
when the relative separations along RA and Dec are given. In general, however, we find
that the separation information does not significantly improve the classifier and, for this
reason, we do not use it in our final model. Rather, spatial information comes only from
the number of nearest neighbours considered.

The other hyper-parameters of the model, i.e. batch size, number of neurons and
learning rate, have a much lesser impact than ∆z and nNN and have been set to fiducial
values: a batch size of 32, a learning rate of 0.001, and a total number of parameters of
the order of a few thousand. We find little difference in the output metrics of the redshift
estimates when increasing the complexity of the model, or changing the batch size and
the learning rate around these fiducial values.

NezNet gives in output the probability for two galaxies to be real neighbours. As
each target galaxy corresponds to nNN independent pairs, we can select the neighbour
with the highest probability among them. If this probability is below the classification
threshold set to define a positive case, we conclude that in the catalogue there is no
physical neighbour for that target galaxy. This implies that the latter is to high proba-
bility an outlier in terms of its properties, when compared to its neighbours. Removing
such objects from the final catalogue significantly improves the metrics when comparing
photo-z and spectroscopic measurements. In particular, the reduction in the number of
catastrophic redshifts confirms our assumption. Finding a true neighbour, instead, re-
inforces the confidence in the photo-z. At the same time, in this case, the spectroscopic
redshift of the neighbour is typically an even better estimate of the target redshift, com-
pared to the SED-estimated photo-z. These tests are discussed in the following section.

The quantitative comparison between NezNet results, spectroscopic measurements
z
(i)
spec and SED-fitting estimated photo-zs is performed using the metrics defined in Sal-

vato et al. (2019). These are the precision, (i.e., the dispersion of the estimated values),

σ =

√√√√ 1

N

N∑
i

(
z
(i)
spec − z(i)

1 + z
(i)
spec

)2

, (4.5)

the bias

b =
1

N

N∑
i

(z
(i)
spec − z(i)) , (4.6)

and the absolute bias

|b| = 1

N

N∑
i

|z(i)spec − z(i)| , (4.7)

quantifying systematic deviations. Finally, the outliers are defined as those objects for
which

|z(i)spec − z(i)| ≥ 0.15(1 + z
(i)
spec) . (4.8)

All the results presented in the following section have been obtained by applying the
trained NezNet to a test catalogue built in a similar fashion to W1, randomly selecting
about 2× 104 galaxies from the twin W4 field of VIPERS.
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Finally, in the following discussion about our classifier, we will use the notion of true
positive rate (TPR), which is the fraction of correctly predicted positive examples with
respect to all the real positive examples, defined as

TPR =
NTP

NTP +NFN
, (4.9)

where NTP stands for true positives and NFN stands for false negatives. Similarly, we can
define the false positive rate (FPR), which is the fraction of negative examples classified
as positives with respect to all the real negative examples, which reads

FPR =
NFP

NFP +NTN
, (4.10)

where NFP stands for false positives and NTN stands for true negatives.

4.5 Results

As explained in the previous section, NezNet can be used to simply clean a photo-z
sample by discarding low-probability neighbours or to provide an alternative redshift
estimate derived from the highest probability neighbour. This is demonstrated on the
test catalogue in Fig. 4.3, for a model trained using the hyper-parameters ∆z = 0.08 and
nNN = 30. In addition to the VIPERS spectroscopic redshifts, this comparison includes
also the original photo-zs estimated by Moutard et al. (2016) using standard SED fitting.
For these and all following results, angular information (i.e., the separation of the two
objects on the sky) was not used as an input variable. The reason for this was already
mentioned in the previous section and is discussed again in more detail below.

From Fig. 4.3, we see that by simply dismissing the outliers as identified by NezNet,
all the metrics show significant improvements (top-right panel). Also, when the best
neighbour redshifts are adopted for the target galaxies (bottom panel), we obtain met-
rics that are comparable or even better than those of the cleaned photo-z sample. It is
worth noting that in this case the plot shows a characteristic checkerboard pattern due
to the reflection of the spectroscopic redshift striping, as spectroscopic redshifts are now
assigned to target photometric objects.

Figure 4.3 also shows the limits of the method. Comparing the left panel with the
other two, we can notice that NezNet tends to cut off the high redshift tail of the distribu-
tion. This is easily understood considering the magnitude-limited (iAB < 22.5) character
of the sample used here, which becomes very sparse at z ≳ 1, where only rare luminous
galaxies are present. This means that the model becomes intrinsically less efficient, due
to the lower number of real physical neighbours available both for the training and for
inference, as also evident from the density of points at high redshift in Fig. 4.1. Devising
a different loss function to up-weight the few physical pairs in this regime could perhaps
improve the classification task, but an intrinsic limit to the method clearly exists when
the density of the sample decreases.

Figure 4.4 shows the same set of plots, but using in the training a larger value for the
spectroscopic separation, i.e., ∆z = 0.15. As expected, allowing for a larger separation in
the definition of real angular neighbours discards a smaller fraction of data. Conversely,
there is in general a lower precision and a small increase in the fraction of outliers.

In principle, using a stricter ∆z could remove even more outliers, retaining only pairs
that are closer in redshift and leading to a smaller, but more precise sub-sample. We
explore this dependence in Fig. 4.5. Overall, this method is always able to clean bad
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Figure 4.3: The top-left panel shows the distribution of photometric vs spectroscopic
estimates in the original data. In the top-right panel, we show the same distribution
after removing from the catalogue the galaxies with low score probability (fr stands for
the fraction of retained data). Finally, the bottom panel shows estimates of redshift by
assigning to the target galaxy the spectroscopic redshift of the neighbour with the highest
detection probability. The model was trained with nNN = 30 and ∆z = 0.08.
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Figure 4.4: Same as Fig. 4.3, but the model was trained with the higher ∆z = 0.15, while
nNN = 30 is the same as before. As we can see, increasing the error which defines a
neighbour retains more data points, but the precision decreases slightly.
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Figure 4.5: Redshift estimates derived from the best nearest neighbour, for various ∆z,
at fixed nNN = 30. Increasing the spectroscopic separation to define physical neighbours,
while diminishing the quality of the metrics, increases the fraction of data not dismissed
from the catalogue.
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Figure 4.6: The ROC curve varying the redshift threshold ∆z, at fixed nNN = 30. The
performance of our classifier (AUC) improves as we use a less strict definition of what
we define as a true neighbour. The probability that an angular neighbour is a physical
neighbour increases at larger ∆z, which is also reflected by the high detection threshold
(thr).

estimates off the sample, but at the price of discarding many data points. The minor
improvement in precision probably does not justify the use of ∆z < 0.08 in the case of
VIPERS, because more than half of the sample is excluded.

It is apparent that the hyper-parameter ∆z is very relevant for the quality of the clas-
sifier. This is made clear by the receiver operator characteristic (ROC) curve in Fig. 4.6,
which shows the TPR (Eq. 4.9) against the FPR (Eq. 4.10), and has been computed from
the target galaxies in the test catalogue by considering their neighbour with the highest
probability. In general, the area under the curve (AUC) is higher for the better classifier.
Increasing ∆z increases the AUC, which would tend to unity for very large values of
this parameter, as all galaxies would then be considered real neighbours. However, our
ultimate goal is not to increase the performance of the classifier per se, but to improve
the metrics of our redshift estimates. These show that ∆z ≳ 0.08 represents the best
choice for VIPERS.

The other hyper-parameter of NezNet, i.e., nNN, the number of nearest neighbours
considered in the training, has a lesser impact on the classifier. We show this in Fig. 4.7,
where each ROC curve corresponds to a model trained with a different nNN, but all with
the same ∆z. Changing drastically nNN does not correspond to comparable changes in
the AUC. However, nNN has a large impact on the redshift estimates, as Fig. 4.8 makes
apparent. Considering a larger number of angular neighbours increases the probability
of finding a physical pair, as can be seen from the metrics in Fig. 4.7. We also experi-
mented with raising the value of nNN up to 50, but found no further gain with respect
to using nNN = 30. Already above nNN = 10 the redshift metrics start to saturate to the
optimal values.

We also computed, as a further test, the gradients of the predictions with respect to
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Figure 4.7: The ROC curve varying the number of nearest neighbours nNN = 30, at fixed
∆z = 0.08. Increasing the number of neighbours that are given in input to the training
seems to make the training more difficult. However, this test of the classifier does not
reflect the quality of the final redshift estimate, as Fig. 4.8 shows.

their input variables, to detect the most relevant ones, as shown in Fig. 4.9. It is inter-
esting to see that the neighbour’s redshift is a relevant input, as one would expect, and
some of the photometric bands are even more relevant. This confirms the intuition that
the photometric information of the neighbours does indeed provide additional informa-
tion about the relative distance from the target. In this plot, we also show results for the
case when the angular separation is considered as one of the input variables. These show
that the angular separation ∆Θ between the target and the neighbour does affect the pre-
dictions. This manifests itself as a bias in the redshift estimates, as visible in Fig. 4.10: in
this case NezNet systematically favours neighbours that are closer to us than the target,
increasing the value of the bias b (Eq. 4.6). We also tested what happens if the angular
separation information is rather given in terms of the relative difference in the angular
coordinates RA and Dec of the two galaxies. In this case, the bias disappears and the
results are comparable to the standard case in which no angle information is provided.
However, we see that in this case the two parameters have smaller gradients than when
∆Θ alone is considered, which suggests they are in fact not contributing to the predict-
ing power of the model. For these reasons, in our final results, the angular separation is
not considered as input variable.

One of the novelties of NezNet is the message passing between node features. This
is where GNNs differ from a standard ANN, where all input variables of both galaxies
would be provided directly to dense layers. We also experimented with a simpler graph
model, closely resembling the architecture of NezNet, but without message passing. The
input features are processed independently by MLP layers for each node (we tried using
either just one or several layers). The new architecture is as in Fig. 4.2, with the exception
of h function blocks which are now substituted with new MLP blocks, without applying
any message passing. The xxx′

i features are summed by the aggregation function, and the
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Figure 4.8: Redshift estimates based on the best nearest neighbour, for various nNN, at
fixed ∆z = 0.08. Increasing the number of nearest neighbours for each target improves
the performance of NezNet in estimating redshifts, as it increases the probability that
physical pairs are considered. .
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Figure 4.9: Average absolute values of the gradients of NezNet with respect to the input
features of the neighbours. For each target, we only considered the neighbour with the
highest probability. Despite the angular separation ∆Θ can be a relevant input, we do
not use it in our final results, because of the bias it introduces, apparent in Fig. 4.10.

Figure 4.10: Results of redshift estimates for the target galaxies, in the case where the
angular separation Eq. (4.3) is an explicit input of the model. We can see that many
galaxies have slightly smaller values than the real spectroscopic value, resulting in a
large bias b. Currently, we do not have an explanation of this observed effect.
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Figure 4.11: Comparison of the redshift distribution for the predictions of NezNet, and
a simpler graph model without message passing. While the latter performs reasonably
well in general, it tends to cut the tail of the distribution.

summed features are mapped to the output probability through final dense layers with
sigmoid activation output, just like in the model with message passing. This kind of
model, which maintains the permutation invariance property of a graph, is often referred
to as a deep set (Zaheer et al., 2017). We find that this simple model still works remarkably
well and is in general comparable to NezNet. However, it systematically cuts off the
high-redshift tail of the catalogue (Fig. 4.11), despite the overall metrics remaining good.

4.6 Conclusions

We have presented a new ML model, dubbed NezNet, which for a pair of galaxies takes
in input their measured fluxes in a number of bands, together with the redshift of one of
the two. NezNet is capable of learning probabilistically whether their redshift distance
is below a given threshold ∆z, which is set as a hyper-parameter of the model. The
angular separation between the galaxies is implicit in the training set, as for every target
galaxy we select its first nNN angular neighbours (another hyper-parameter), but it can
be an explicit input variable of the model. The backbone of the model is a GNN, a class
of neural networks based on message passing and the aggregation of features (Fig. 4.2).
This message passing is explicitly performed as a relative difference between features
(Eq. 4.1).

NezNet outputs the score probability for a pair of galaxies to be real neighbours, an
information that can be used in two ways. On one side, if none of the nNN nearest neigh-
bours is identified as a physical one, the target galaxy can be considered an outlier in
terms of its properties. This may suggest it is an interloper, i.e., a foreground or back-
ground object with respect to the volume sampled by the spectroscopic sample we are
using for the comparison. As such, it should be discarded from any sample that aims at
covering the same redshift range of the spectroscopic catalogue, e.g., via photometrically
estimated redshifts. We have proved this to be true using the VIPERS catalogue. On the
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Figure 4.12: Redshift estimates based on the best nearest neighbour, obtained by uni-
formly subsampling the W1 catalogue, at fixed nNN = 30 and ∆z = 0.08. The titles of
the panels refer to the surface density of spectroscopic objects of W1 used for training,
with Σ referring to the complete W1 sample. Apart from minor fluctuations in the red-
shift statistics, we see that NezNet maintains a performance similar to the case without
subsampling. The only noticeable trend is the fraction of central galaxies for which a
physical pair is found, which decreases for lower densities. This could be due to the de-
creasing number of training data available. The percentage of real physical neighbours
for a central galaxy, which decreases only slightly when going from Σ to Σ/8, remaining
around 40 %, explains why NezNet is still effective.
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other side, if a physical neighbour is identified, the target galaxy can be assigned the
spectroscopic redshift of the highest scoring galaxy among the nNN angular neighbours,
providing in this way an independent estimate of its redshift.

These results are summarised in Fig. 4.3 and Fig. 4.4: by simply discarding outliers
as detected by NezNet, all the metrics of the sample improve considerably. Moreover,
NezNet’s redshift estimates are comparable or superior in precision to SED-based pho-
tometric redshifts, depending on the values chosen for the hyper-parameters. Increasing
∆z increases the goodness of the classifier (Fig. 4.6), as well as the fraction of retained
data (Fig. 4.5). Changing nNN has a smaller impact on the classifier (Fig. 4.7), although
it significantly affects the redshift quality metrics, since a large enough nNN improves
the probability of detecting a real neighbour; a value nNN ∼ 30 is optimal in the case of
VIPERS (Fig. 4.8).

It is often the case that the fraction of the parent photometric sample without a spec-
troscopic measurement has a higher density than the spectroscopic sample. Indeed
VIPERS has a spectroscopic surface density of Σ ∼ 6×103 deg−2, to compare against the
photometric surface density Σph ∼ 45 × 103 deg−2. For this reason, we tested NezNet
by varying the surface density of the spectroscopic sample used during training. We
achieve this by repeating the training procedure on a uniformly subsampled catalogue
extracted from W1. The test is performed on W4 without any subsampling, so that we
test for the effectiveness of NezNet trained on a lower-density catalogue. Figure 4.12
shows that NezNet keeps its effectiveness even when using a subsample of one eight
of the original spectroscopic density Σ, similar to the VIPERS ratio of spectroscopic to
photometric objects.

This suggests that NezNet could have an interesting potential also in the context of
future experiments, such as Euclid or the NASA Nancy Grace Roman mission (Akeson
et al., 2019). Indeed, such slitless spectroscopic surveys will naturally deliver overlap-
ping photometric and spectroscopic data, which can be combined using NezNet to im-
prove photometric redshift estimates.

It is worth stressing that some details of the results presented here depend on the spe-
cific features of VIPERS and its parent CFHTLS photometric sample. Some of these may
have been advantageous, but others could have penalised the success of the method. For
example, the slit-placement constraints in VIPERS limit the ability to target close pairs
of galaxies, which introduces a ‘shadow’ in the layout of a VIMOS pointing (see Fig. 6
of Guzzo et al., 2014), and forces a lower limit in the separation of observable galaxy
pairs (see Sect. 4.4). This means that, in fact, in the present analysis the training sample
of NezNet was not ideal, as surely many of the missed angular pairs were also physi-
cal pairs. This increases our confidence in the obtained results, as it shows that also for
samples characterised by small-scale incompleteness, as typical of surveys built using
fibre or multi-slit spectrographs, the method still delivers very useful results. In the case
of the VIPERS data, an interesting exercise in this respect would be to use as a training
sample the data from the VLT-VIMOS Deep Survey (VVDS) (Le Fèvre et al., 2005), which
used the same spectrograph, but with repeated passes over the same area of 0.5deg2 that
substantially mitigate the proximity bias. We leave this exercise for future work.



CHAPTER 5

Euclid: Testing photometric selection of emission-line
galaxy targets

The present chapter is based on the paper in preparation ‘Euclid: Testing photometric selection
of emission-line galaxy targets’ by Marina S. Cagliari, Benjamin R. Granett, Luigi Guzzo,
Matthieu Bertermin, Micol Bolzonella, Sylvain de la Torre, Pierluigi Monaco, Michele Moresco,
Will J. Percival, Claudia Scarlata, Yun Wang, Meriam Ezziati, Olivier Ilber, Vincent Le Brun et
al., the paper will be submitted to Astronomy & Astrophysics on behalf of the Euclid Collabora-
tion.

5.1 Introduction

The ESA Euclid mission will carry out an imaging and spectroscopic survey over one-
third of the sky (Laureijs et al., 2011). The imaging channel will enable measurements of
cosmic shear providing a tomographic view of the matter distribution, while the spec-
troscopic redshift survey will map the large-scale structure in three dimensions. Jointly,
the two probes will yield unprecedented constraints on the cosmological model (Euclid
Collaboration: Blanchard et al., 2020).

The Euclid near-infrared spectrograph and photometer (Maciaszek et al., 2022) has
three broadband filters for imaging, YE, JE, and HE (Euclid Collaboration: Schirmer
et al., 2022) and a set of grisms for spectroscopy, while the visual instrument (Cropper
et al., 2016) images through a single broad pass band, IE, spanning the range [530, 920]
nm, with high spatial resolution of 0.1 arcsec/pixel. Jointly, these two instruments will
carry out the Euclid Wide and Deep Surveys (Euclid Collaboration: Scaramella et al.,
2022). The NISP instrument operates as a slitless spectrograph, to record the dispersed
light of all sources in the field of view to a nominal emission-line flux limit of 2 ×
10−16 erg s−1 cm−2, which corresponds to a 3.5σ detection of a 0.5 arcsec diameter source
in the Wide survey as designed. The use of slitless spectroscopy makes the spectroscopic
survey highly efficient, since individual sources do not need to be targeted; however, re-
liable redshift measurements will only be secured for a fraction of the galaxies that are
detected photometrically. The Wide Survey will detect the most luminous Hα emit-
ters over the redshift range 0.9 < z < 1.8, with typical broadband flux corresponding
to HE ≲ 24; however, it will be sensitive to continuum emission only from the most
luminous galaxies and, so, the redshift estimation will be based primarily on the de-
tection of emission lines (Euclid Collaboration: Gabarra et al., 2023). The Wide Survey
will be complemented by the Deep Survey, which will reach 2 magnitudes deeper in
flux over an area of 50deg2 split over three separate fields. In the Deep Survey blue
grism ([926, 1366]nm) observations will complement those with the standard red grism
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Figure 5.1: Schematic description of the spectroscopic sample selection pipeline. The
flowchart shows where a photometric target selection would be inserted in the spec-
troscopic selection pipeline. The photometric classifier performance is quantified by its
precision and recall (defined in Sect. 5.2.1), while the final spectroscopic sample is char-
acterised by the redshift purity and sample completeness.

([1206, 1892]nm). Both the grisms have a dispersion of 13 Å/pixel. With greater sen-
sitivity and an extended wavelength range, the Deep Survey will be used to construct
a reference galaxy sample with secure spectroscopic redshift measurements, to charac-
terise the selection function and redshift error distribution of the Wide Survey.

The design of the Euclid spectroscopic survey poses a particular challenge for sample
selection: bright emission-line galaxies for which the redshift can be measured make up
a small fraction of all photometrically detected sources and this sample is not known
beforehand. We can illustrate our expectations of the Euclid spectroscopic sample us-
ing the Flagship2 mock galaxy catalogue, which was calibrated against the Hα lumi-
nosity function model 3 of Pozzetti et al. (2016). The mock catalogue contains approx-
imately 2 × 105 galaxies/deg2 to the magnitude limit HE < 24. Out of this sample,
only 2% are in the redshift range 0.9 < z < 1.8 and have Hα emission-line flux greater
than 2 × 10−16 erg s−1 cm−2. The majority of the photometrically detected sources with
HE < 24 will leave no signal on the spectrograph, being either too faint in continuum
emission, or not having a detectable emission line in the wavelength range of the red
grism. When targeting galaxies at the low signal-to-noise limit, spurious noise features
can be mistaken for emission lines leading to wrong redshift measurements. Current
end-to-end tests of the data reduction pipeline suggest that the spurious detection rate
is even higher than the naive prediction based on Gaussian noise statistics due to arte-
facts from spectral contamination. If not appropriately treated, such wrong redshifts in
the galaxy catalogue degrade the cosmological constraints derived from the two-point
correlation function or power spectrum galaxy clustering statistics (Addison et al., 2019).

In principle, when selecting the sample for analysis all available information should
be used to minimise the fraction of spurious measurements, while at the same time,
maximising the number density of the sample, or other figure of merit. However, the
benefits from including additional constraints in the sample selection criteria must be
carefully weighed against potential systematic biases. In the case of Euclid, including
additional information from ground-based photometry modifies the selection function
of the survey and could couple the sample with unwanted systematic effects that arise
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from observations made through the Earth’s atmosphere (see, e.g., Ross et al., 2011, for
a quantitative discussion of the impact of angular systematics on the measured cluster-
ing). The trade off of adding ground-based information will clearly also depend on the
scientific analysis being considered. With slitless spectroscopy, since every galaxy in the
field is in any case observed, we shall have the important advantage of being able to test
a posteriori the impact of any chosen selection on the measured clustering, and evaluate
the robustness of the results.

Our aim with this work is to investigate photometric classification criteria that are
sensitive to both redshift and emission line flux, in order to identify the sources that
are likely to give successful spectroscopic redshift measurements in the Wide Survey.
This strategy is similar to the methods used in ground-based spectroscopic surveys that
make use of magnitude and colour selections to build the target sample for spectroscopy.
For example, colour selections were applied to build the SDSS Luminous Red Galaxy
sample (Eisenstein et al., 2001) and VIPERS (Guzzo et al., 2014). A sample of emission
line galaxies was targeted by eBOSS using a colour selection (Comparat et al., 2016), and
a similar approach was adopted for the emission line galaxy sample targeted by the dark
energy spectroscopic instrument (DESI; Raichoor et al., 2023).

As a generalisation of the conventional colour cuts that are made in a two-dimensional
colour-colour plane, we apply machine learning-based classification algorithms. These
algorithms are well suited to optimising classification tasks in a high-dimensional pa-
rameter space. Thus, we expect them to outperform simple selection rules.

An option that is immediately available for such a use are photometric redshifts.
Euclid will construct an unprecedented photometric redshift catalogue from the combi-
nation of ground-based and Euclid photometric bands. However, as we will discuss,
photometric redshifts alone do not solve the problem. Even if photometric redshifts al-
low us to select a sample of galaxies at the target redshift range, additional criteria on
galaxy physical properties, such as the star formation rate, will still be needed to identify
the population with bright emission lines (see Sect. 5.4.4).

A schematic representation of the Euclid spectroscopic sample selection pipeline is
shown in Fig. 5.1. A redshift measurement will be performed for all sources detected in
photometry, and will be accompanied by an assessment of its confidence level, as well
as the measurements of spectral features including emission line fluxes. Sources that do
not have a significant detection in spectroscopy should be assigned a low measurement
confidence. Additionally, Euclid will produce photometric catalogues based on the IE,
YE, JE and HE-band images, which will be augmented with ground-based measurements
(u, g, r, i, z) needed particularly for photometric redshift estimation (Stanford et al.,
2021).

The photometric classification that we discuss enters as a second input to spectro-
scopic sample selection. The classifier can be trained on the Deep Field catalogues, which
is expected to give robust redshift measurements for the emission line target galaxies in
the Wide survey. The classifier will be applied to the photometric data of the Euclid
Wide Survey, and its results combined with the spectroscopic measurements to build the
final selected sample. This can be characterised in terms of its redshift purity and sample
completeness. Any photometric criteria will necessarily reduce the number density of the
sample; however, if emission line galaxy targets can be identified from the photometry,
this will increase the fraction of correctly-measured redshifts and improve the purity.

We use the terms sample completeness and redshift purity to characterise the quality
of the Euclid spectroscopic samples. We define completeness with respect to the Hα
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emission line galaxy sample that exists in the Universe, which we call the true targets.1
These are defined by a set of intrinsic properties, including angular position, redshift,
size and flux, that do not depend on the measurement process. Once the observations are
made, we construct the sample catalogue which contains the set of measured properties,
signal-to-noise estimates and quality flags for the detected sources. The completeness
tells us the fraction of the true targets that have a correct redshift measurement and
makes it into the sample for analysis,

C =
NTrue Targets & Sample & Correct-z

NTrue Targets
. (5.1)

On the other hand, the redshift purity tells us the fraction of the sample that has a correct
redshift measurement,

P =
NSample & Correct-z

NSample
. (5.2)

The redshift purity only makes reference to the sample selected for analysis and does
not depend on other intrinsic properties of the galaxies besides redshift.2

In this chapter, we focus on the photometric classification, which is one step of the
selection process illustrated in Fig. 5.1. We consider the potential gain from the pho-
tometric classification in terms of its precision and recall (defined in Sect. 5.2.1), which
will impact the final purity and completeness of the spectroscopic redshift sample. The
photometric selection reduces the size of the sample in the numerator of completeness
(Eq. 5.1) and thus leads to a lower value of completeness. However, it acts on both the
numerator and denominator of purity (Eq. 5.2), and so is a way to potentially boost the
purity. The propagation of the photometric classification to the spectroscopic sample se-
lection and the computation of purity and sample completeness requires full end-to-end
simulations of the Euclid reduction pipeline. In Sect. 5.5, we will present results from pre-
liminary simulations based on the Euclid spectroscopic pipeline, leaving a more detailed
investigation to follow-up work.

The chapter is organised as follows. In Sect. 5.2 we present the different algorithms
we tested, and introduce the metrics we used to quantify the classifier performance. In
Sect. 5.3 we discuss the mock catalogues, the noise model we apply to the photome-
try, and give the target definition. The results of the different analyses are presented
in Sect. 5.4 and discussed in Sect. 5.4.4. In Sect. 5.5 we discuss how the photometric
selection affects the spectroscopic sample. We conclude in Sect. 5.6.

5.2 Classification algorithms

A classifier is an algorithm that outputs the probability of an object of being an element of
a given class, or group. For the purpose of this work, which is to identify target galaxies
from their photometric properties, we use a binary classifier. In this case, the algorithm
simply outputs the probability p of the object being a target, and 1− p the probability of
it being a non-target. A galaxy enters the target sample if p > pthresh, where pthresh is a
threshold probability value. How the threshold is chosen is discussed in Sect. 5.2.1.

1This definition differs from that typically used in ground-based multi-object spectroscopic surveys that
define completeness with respect to a known target sample constructed from photometric catalogues. Since
the detection in Euclid spectroscopy will depend primarily on the signal-to-noise ratio of the emission lines,
the sample with spectroscopic redshifts will not be representative of a simple photometric selection.

2We do not consider the sample purity, which can include other criteria such as flux, since our main objec-
tive is to select galaxies with good redshift measurements for the galaxy clustering analysis.
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Figure 5.2: Relationship between precision and recall of a classifier. The lines are colour-
coded as a function of the classification probability threshold. The solid and dotted lines
show the behaviour of two classifiers for illustration. The classifier represented by the
solid line performs better than the dotted line since it gives higher precision and recall.

In this work, we tested six different machine learning classifiers. The first three are
self-organising maps (SOMs), dense neural networks (NNs) and support vector machine
classifiers (SVCs). The other three are voting classifiers based on decision trees: the ran-
dom forest (RF), the adaptive boosting classifier, or AdaBoost (ADA), and the extremely
randomised tree classifier, or extra-tree classifier (ETC). These specific algorithms were
chosen for our tests as they are known to perform well in classification tasks and are able
to identify non-linear boundaries between classes.

5.2.1 Classification metrics

To compare the results from different classifiers, we adopt three metrics defined from
their confusion matrix. The elements of the confusion matrix of a binary classifier are
the counts of true positives (NTP), true negatives (NTN), false positives (NFP), and false
negatives (NFN). Our chosen metrics are the precision, recall, and false positive rate (FPR),
defined respectively as

precision =
NTP

NTP +NFP
, (5.3)

recall =
NTP

NTP +NFN
, (5.4)

FPR =
NFP

NFP +NTN
. (5.5)

The precision is the fraction of the selected sample that are true targets, i.e., it quantifies
the level of contamination due to wrongly classified sources. The recall, also known as
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true positive rate, is the fraction of true targets that are identified correctly (as NTP +NFN
corresponds to the total number of targets). The false positive rate, or fall-out, is the
fraction of non-targets that are mislabelled as targets and enter the selected sample as
interlopers. The complement of the false positive rate is the true negative rate,

TNR =
NTN

NFP +NTN
= 1− FPR , (5.6)

which characterises the fraction of non-targets that are correctly removed from the sam-
ple.

These metrics change as functions of the probability threshold chosen for the classi-
fier, i.e., the probability value pthresh above which an object is classified as a target. This is
a hyper-parameter of the model, which we set to maximise a chosen metric. In a binary
classification, a training set is said to be ‘balanced’ when it is evenly split between targets
and non-targets, and pthresh ∼ 0.5. When the training set contains a much larger num-
ber of targets than non-targets, or vice versa, it is called unbalanced, and we refer to this
case as an unbalanced classification. In general, in unbalanced classifications the optimal
probability threshold is very different from 0.5. Precision and recall can be computed as
a function of pthresh and plotted against each other, as shown in the example of Fig. 5.2.
Such a plot is very informative for the photometric selection task that is the scope of
our work. In Fig. 5.2 we present two possible behaviours of this curve. The solid line
is an almost ideal classifier that has high precision also when the recall is high, while
the dotted curve corresponds to a classifier with worse performance. Since the photo-
metric criteria make up only one step of the spectroscopic sample selection process (see
Fig. 5.1), we want to keep the recall of the photometric classification as high as possible.
In other words, we want to get a resulting sample as complete as possible, discarding
the minimum number of true targets. Thus, we choose a specific value for the recall and,
from this relation, derive the corresponding precision yielded by the algorithm. We use
the precision at 95% recall as our benchmark value. A similar plot can be produced in
terms of redshift purity and sample completeness. The shape of this curve will depend
on the chosen probability threshold, and consequently the recall, of the photometric clas-
sification. In Sect. 5.5 we justify the choice of the 95% recall value and present results for
the redshift purity and sample completeness.

Finally, we use the false positive rate as the main metric to compare algorithms
trained with different input features (see Sect. 5.4.4). The false positive rate helps to
visualise the fraction of misidentified objects in terms of redshift or emission-line flux
and shows the source of the contaminants.

5.2.2 Self-organising map

Self-organising maps (Kohonen, 1982, 1990) use unsupervised learning to project a high-
dimensional feature space onto a lower-dimensional one, usually a two-dimensional
space, as the name map suggests. We build a 55×55 map trained for 60 epochs, where an
epoch corresponds to an iteration of the algorithm during which the entire training set is
processed. To train the self-organising map, in addition to the photometric features used
as inputs for all the other methods, we also add the target label (see Sect. 5.3). Then, when
projecting new data onto the self-organising map the target labels are removed. These
steps make the implementation of the self-organising map presented here more similar
to a supervised learning algorithm. We also introduce a weight, wSOM, of the photomet-
ric features, which enables us to control the importance of the label in the training. This
is a hyper-parameter of the self-organising map model. Finally, the probability of an
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Figure 5.3: A schematic representation of the neural network architecture used for classi-
fication. Values pass from the input to the output along the connected edges; each node
represents a linear combination of the inputs and the application of a non-linear acti-
vation function. The value at the output represents the binary classification probability
between 0 and 1. The number of input neurons varies for the different configurations (4
for Euclid-only, and 8 after adding ground-based photometry, see Sect. 5.4). For visuali-
sation, the number of neurons in each hidden layer has been divided by 4.

object of being a target is defined by the target fraction in the cell it has been projected
onto. The self-organising maps were implemented using SOMPY (Moosavi et al., 2014).

5.2.3 Neural network

Neural networks are by far the most popular supervised learning algorithms. They can
be described as a sequence of layers; when the inputs are processed by a layer they
first undergo a linear transformation and then a nonlinear function is applied to them.
During the learning process, the neural network updates the coefficients, usually called
weights, of the linear transformation of each layer in order to fit the target function y =
f(x) that relates the inputs x, to the labels y. This structure enables neural networks to
potentially fit any function of the input features (LeCun et al., 2015).

Our neural network architecture was optimised for the problem at hand. Figure 5.3
shows a schematic representation of the neural network. The input layer is followed by a
first block that consists of a dense layer with 32 neurons and a batch normalisation layer
(Ioffe & Szegedy, 2015). Then, a second block which consists of a dense layer with 64
neurons and an alpha dropout layer (Klambauer et al., 2017) with rate 0.05 is repeated
four times. Finally, the first block is repeated before the output layer, which consists
of 1 neuron. The activation function of all the layers except for the output is a scaled
exponential linear unit (SELU; Klambauer et al., 2017). The last layer, as it has to output
a probability, has a sigmoid activation function. Since the ratio between positive and
negative examples is very low, we opted for a sigmoid focal cross-entropy loss function
(Lin et al., 2017),

FL(p) = −α (1− p)γ ln(p) , (5.7)

where α and γ are two hyper-parameters of the model. We use α = 0.6 and γ = 4. We
implemented the neural network in the TensorFlow2 framework (Abadi et al., 2015).
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5.2.4 Support vector machine classifier

Support vector classifiers (Boser et al., 1992) partition the feature space by applying a
kernel transformation to map curved boundaries into planes and finding the maximum-
margin hyperplane that separates the classes. It is important to note that for our training
we weight differently the target and non-target examples. This weighting is necessary
in the case of imbalanced classes. Alternatively, one could select a balanced subsample
of the original training set. However, such a solution would greatly reduce the size of
the training sample. Our approach uses the support vector classifier implementation of
scikit-learn (Pedregosa et al., 2011), which has an inbuilt functionality to balance
the sample via weighting.

We adopt the scikit-learn default kernel, which is the radial basis function kernel
(RBF),

K(x,x′) = exp
(
−γ ∥x− x′∥2

)
, (5.8)

where ∥x − x′∥2 is the Euclidean squared distance, and γ is the hyper-parameter that
controls the dimension of the region of influence of the training point.

5.2.5 Decision tree-based classifiers

The last three classifiers are voting or ensemble classifiers. In general, a voting classifier
is an algorithm that combines the output of different base classifiers through a vote,
which can be weighted or not. In this work we used classifiers based on the same base
algorithm, the decision tree. These classifiers differ in how they split the data set to train
the trees, how they build the trees, and how they combine together their probability
outputs.

A decision tree is a supervised machine learning model that approximates a function
with a series of simple decision rules (see Hastie et al., 2001, Chap. 9). Decision trees
have the advantages that they can be easily visualised, have high explainability, and
require very little data preparation; however, they can easily over-fit the training sample
making their output and final structure dependent on the training set. These issues can
be reduced by combining the results of different trees (e.g., Bauer & Kohavi, 1999).

The first of these voting classifiers are random forests. Random forests (Breiman,
2001) are an ensemble of decision trees each one trained with a subsample of the train-
ing set. This subsample is a bootstrap sample, which means its elements are randomly
selected with replacement from the complete training set. The final output of the ran-
dom forest for classification tasks is a majority voting between all the decision trees of the
forest. Random forests very efficiently reduce the overfitting of single-decision trees. To
take into account the class imbalance of the sample we weigh the two class examples by
the inverse of their frequency. The weights are computed for each bootstrap subsample.

The second ensemble classifier is a discrete adaptive boosting classifier (Freund &
Schapire, 1997). Differently from the random forest, adaptive boosting classifiers can
use different base classifiers. In this work, we limited the analysis to adaptive boosting
classifiers based on decision trees with weighted data to balance the sample examples.
Adaptive booster classifiers combine the results of subsequently trained base learners
with a weighted majority vote. At each step of the training, a new learner is built from
the training set, which is re-weighted to reduce the importance of data that have been
correctly classified in the previous steps.

Finally, the last algorithm we use is the extra-tree classifier. Extra-tree classifiers are
ensemble classifiers based on decision trees (Geurts et al., 2006). An extra-tree classifier
is composed of a group of decision trees, which are trained with bootstrap subsample
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of the training set, as in random forest training. The difference between a random forest
and an extra-tree classifier lies in how the decision rules of the trees are selected. In
random forests, the splits of the tree nodes are deterministic and depend on the selection
algorithm; in extra-tree classifiers, instead, they are randomly drawn and the final rule
is chosen as the best-performing one among them. This helps in reducing even more the
variance of the method. All three voting classifiers are implemented in scikit-learn,
and the function to weigh the data to balance them is part of their built-in functionalities.

5.3 Benchmark data

5.3.1 Mock galaxy catalogues

We use two catalogues to benchmark the selection algorithms: the EL-COSMOS cata-
logue and the Euclid Flagship2 mock galaxy catalogue. These catalogues include broad-
band photometry, emission-line fluxes and morphological properties. We make use of
the Euclid photometric bands from VIS, IE, and NISP, YE, JE, and HE (Euclid Collabo-
ration: Schirmer et al., 2022), with depths listed in Table 5.1. Additionally, photometric
data from multiple ground-based surveys will be included in Euclid analyses to extend
the wavelength coverage to the optical with u, g, r, i, and z bands and obtain reliable
photometric redshifts that are key for Euclid weak lensing science. These include the
Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST; LSST Science Col-
laboration et al., 2009), the Dark Energy Survey (DES; Flaugher, 2005), and the Ultra-
violet Near Infrared Optical Northern Survey (UNIONS).3 In order to benchmark the
photometric selection in this work, we use the Vera C. Rubin filter system, ugriz, and
UNIONS survey depths, which are listed in Table 5.1. Hereafter, we refer to the pho-
tometry of the four Euclid filters as Euclid photometry, and to the photometric data from
the five LSST filters as ground-based photometry. The photometry does not include the
effect of Milky Way extinction.

The resolution of Euclid NISP spectroscopic observations is not sufficient to separate
Hα from its neighbouring [N II]λ6549 and [N II]λ6584 companions. As such, Euclid will
measure the combined flux of this triplet of emission lines, which we shall use here and
indicate for brevity as

fHα+[N II] = fHα + f[N II]λ6549 + f[N II]λ6584 . (5.9)

We refer to the triplet as the Hα complex.
We also investigate the benefit of adding morphological information to the target

classification. The two mock galaxy catalogues we use here include morphological model
parameters including disk ellipticity, bulge scale, disk scale and bulge-to-disk ratio; how-
ever, since these properties will not be, in general, directly measured from the data, we
used them to derive the observable half-light radius, rhalf and axial ratio, e. To do this,
we ran GALSIM (Rowe et al., 2015) using the morphological parameters for each mock
galaxy to generate a simulated image of the galaxy as it would be observed by VIS, from
which we estimated the half-light radius and axial ratio. We carried out this procedure
only for the Flagship2 catalogue.

We use only galaxies in the mock catalogue, without accounting for the possibility
that stars or active galactic nuclei may be misclassified in real data and enter the sample.
Contamination from faint stars, in particular, can potentially reduce the purity of the
galaxy sample. The severity of such contamination depends on the performance of the

3https://www.skysurvey.cc/aboutus/.

https://www.skysurvey.cc/aboutus/
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star-galaxy classification, which is a separate step of the Euclid data analysis and whose
impact is beyond the scope of this work.

EL-COSMOS

The EL-COSMOS catalogue is an extension of the COSMOS 2020 photometric catalogue
(Weaver et al., 2021). The COSMOS catalogue is a multi-band data set assembled in the
Hubble Space Telescope COSMOS field over the past fifteen years (Scoville et al., 2007).
The catalogue was extended as described in Saito et al. (2020) with synthetic photom-
etry and emission-line fluxes assigned by spectral energy fits. To assign the fluxes of
the emission lines the authors combined spectral energy fits of the stellar continuum,
which correlates with the intrinsic emission line fluxes, with a careful modelling of dust
attenuation as a function of redshift. We use an update to the emission-line catalogue
produced for the Euclid Consortium (Euclid Collaboration, in prep.). It contains about
2 × 105 galaxies and 2000 active galactic nuclei. This catalogue also contains stars ob-
served in the COSMOS field, which, as explained, we do not consider.

Euclid Flagship

The Euclid Flagship2 mock galaxy catalogue (Euclid Collaboration, in prep.) is based
on the Flagship2 N-body simulation, the large reference simulations built by the Euclid
Consortium. Galaxies were added to the simulation using an extended halo occupation
distribution model. The Flagship2 galaxy mock catalogue represents an improvement
with respect to the previous version in terms of modelling of the galaxy properties. The
catalogue contains photometric and spectroscopic information, morphological parame-
ters, along with lensing properties. The morphological parameters are correlated with
the galaxy properties to reproduce observed trends in galaxy size. For our work, we
selected a subsample of ∼ 2 × 105 objects to contain a number of galaxies comparable
to EL-COSMOS. We note that Flagship2 does not contain active galactic nuclei, while
EL-COSMOS contains about 2000 of them.

An additional step must be taken to compute the total flux of the Hα complex for
Flagship2 mock galaxies. The catalogue gives the flux of Hα and of the [N II]λ6584 line
only. Assuming a relative 1:3 ratio for the [N II] doublet, we estimate the total flux as

fHα+[N II] = fHα +
4

3
f[N II]λ6584 . (5.10)

The emission line fluxes in Flagship2 were calibrated against the Hα luminosity func-
tion model 3 of Pozzetti et al. (2016). We use the line and broadband fluxes with internal
dust attenuation applied. From Flagship2 we use both Euclid and ground-based photo-
metric data, as well as the morphological parameters derived as discussed earlier.

The Flagship2 catalogue also provides photometric redshift estimates obtained with
state-of-the-art algorithms using both Euclid and ground-based photometry (Euclid Col-
laboration: Desprez et al., 2020). In order to allow the computations of photo-zs for
billions of Euclid sources, a two-stage approach has been adopted. First, Phosphoros,
a template-fitting code (Paltani et al. in preparation), is used to compute the redshift
probability distribution functions on a sample of galaxies selected from reference fields
that benefit from very deep observations in a large number of photometric bands (e.g.,
COSMOS; Weaver et al., 2021). The k-nearest neighbour photometric redshift algorithm
(Tanaka et al., 2018) is then used to estimate the posterior distributions of redshift for
sources in the Euclid Wide Survey. This procedure was replicated in the Flagship2 mock
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Band mlim,10σ

u 23.5
g 24.4
r 24.1
i 23.5
z 23.3

IE 24.6
YE 23.0
JE 23.0
HE 23.0

Table 5.1: Point source magnitude limits at depth (S/N)lim = 10 for ugriz, and for IE,
YE, JE, and HE in AB magnitude.

galaxy catalogue. In this work, we use the first mode of the posterior redshift distribu-
tion as the photo-z estimate. We use the photo-z to select galaxies within the redshift
range of interest and compare the metrics with the results from the trained classifiers.

5.3.2 Noise model

The errors on the broadband photometric measurements were simulated assuming back-
ground limited observations (Euclid Collaboration: Pocino et al., 2021) such that the
standard deviation on the measurement is

σf =
flim

S/Nlim
, (5.11)

where flim is the flux at the specified signal-to-noise limit S/Nlim. In Table 5.1 we show
the AB magnitude limits, mlim, corresponding to flim. for (S/N)lim = 10.4 The observed
fluxes were then extracted from a Gaussian distribution with the true galaxy flux, f ,
as mean, and variance given by σf . In order to be able to reproduce the results, we
constructed observed catalogues for both EL-COSMOS and Flagship2, which contain
realisations of the flux errors produced following the recipe described above.

The driving idea in the application of our selection procedure to the real Euclid data, is
that the training set will be constructed from the higher signal-to-noise data of the Euclid
Deep Fields, which will have high completeness and purity at the depth of the Wide
Survey. In order to build a training set that matches the noise properties in the Wide
Survey, the photometry from the Deep Fields will have to be either measured in Wide-
like stacks, or degraded appropriately as to match the noise level of the Wide Survey.

5.3.3 Sample selection and pre-processing

For our analysis, we selected from the EL-COSMOS and Flagship2 catalogues two sub-
samples limited to HE < 24 (which corresponds to a 4σ point-source detection limit).
In addition, as mentioned earlier, the resulting Flagship2 catalogue was further sparsely
sampled in order to match the same number of objects of EL-COSMOS. Each catalogue

4The magnitude limits for UNIONS in Table 5.1 were computed from the 5σ limits available at https:
//www.skysurvey.cc/survey/.

https://www.skysurvey.cc/survey/
https://www.skysurvey.cc/survey/
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was then split into three subsets, for training, validation, and testing, containing respec-
tively 75%, 15%, and 10% of the total parent catalogue. In fact, the validation set is
needed only for the training of the neural network; for the other algorithms, we could
use 90% of the total sample as the training set. However, for the sake of a fair compar-
ison, we opted to use the same training and test sets for all methods, by discarding the
validation set objects when not needed.

The galaxies we aim to select with the photometric selection have, on top of the HE <
24 cut, {

0.9 < z < 1.8

fHα+[N II] > 2× 10−16 erg s−1 cm−2
, (5.12)

where z and fHα+[N II] are the true redshift and emission line flux of the galaxies. The
objects satisfying this selection are what we call target galaxies. In terms of the classifier
training, we assign a label 1 to the target galaxies and a label 0 to the remaining objects,
hereafter non-targets. It should be noted that the Hα + [N II] flux criterion in the tar-
get definition is specified to select galaxies with bright emission lines that are likely to
give successful spectroscopic redshift measurements. We will see that this target defini-
tion does not impose a sharp flux cut in the measured sample; galaxies just below the
flux limit still have a high probability of being selected and of giving a correct redshift
measurement. Moreover, these galaxies will also contribute to the redshift purity metric.

The percentage of galaxies entering the target sample within the full HE < 24 cata-
logues is very low: ∼ 8% for EL-COSMOS and ∼ 3% for Flagship2. The difference be-
tween the two catalogues is consistent with the current uncertainty in the Hα luminosity
function at z > 1. The low target fractions of the two catalogues make the classification
task extremely unbalanced. The solutions adopted for each classifier were discussed in
Sect. 5.2 and span from weighting schemes to specific loss functions.

Finally, all input training parameters are pre-processed via standard scaling,

X =
x− x̄

σx
, (5.13)

where x̄ is the mean value of input feature x over the training sample, and σx its stan-
dard deviation. After this normalisation, the sample has zero mean and unit standard
deviation, which makes the training of the algorithms more efficient, typically leading
to better results.

5.4 Results and discussion

5.4.1 Benchmark selections

Before discussing the performance of the machine learning classifiers we present the
results from simple classifiers based on magnitude and colour with Euclid photometry.
These tests provide a benchmark for the machine learning algorithms. We focus on the
(IE − HE) versus HE plane, which shows the largest displacement between targets and
non-targets (see Figs. 5.4 and A.1). The distributions are seen to be most separated in
HE magnitude. Indeed, the use of HE is expected to be particularly suited to capture
information on the Hα flux, as it covers the [1.5, 2.0]µm band, which encompasses the
Hα complex for 1.3 ≲ z ≲ 2. In addition, the (IE − HE) colour is sensitive to redshift,
since it spans the 4000 Å break at z > 1.

We thus begin by applying a cut in HE to select the target sample. Table 5.2 gives
the resulting recall and precision metrics. For the Flagship2 catalogue, all targets have
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EL-COSMOS Flagship2

HE cut Recall Precision Recall Precision

22.84 95 13.8 - -

22.06 - - 95 8.9

21.0 20.2 11.3 47.6 10.0

22.0 63.1 16.3 93.3 9.1

23.0 97.1 12.7 100 4.8

24.0 100 7.8 100 2.6

Colour cut 95 14.3 95 9.9

Table 5.2: Recall (%) and precision (%) for different HE cuts for EL-COSMOS and Flag-
ship2. The first two rows correspond to the HE cut that gives 95% recall respectively for
EL-COSMOS and Flagship2.

SOM NN SVC RF ADA ETC

Euclid EL-COSMOS 13.9 17.5 17.3 16.4 12.9 16.7

Flagship2 12.7 16.0 18.0 15.5 10.4 16.9

Flagship2 morphology 9.6 17.6 16.8 15.3 11.0 14.7

Euclid + EL-COSMOS ground 20.7 34.3 34.3 31.5 29.1 28.0

Flagship2 ground 26.1 47.9 43.5 39.3 39.7 35.6

Table 5.3: Precision values (%) at 95% recall for the different classifiers. The two top rows
give the results for training using Euclid photometry only, while morphological data
and ground-based photometry, respectively, are used in the bottom rows. The relative
uncertainty on all values is ∼ 6%, estimated from multiple realisations of the training
and test sets.
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Figure 5.4: Optimised colour selection in the (IE − HE) versus HE colour-magnitude
plane for EL-COSMOS and Flagship2. The blue dashed lines correspond to the non-
target distribution and the solid red lines to the target distribution. The contours contain
99%, 50%, and 25% of the samples. The dotted black segments represent an optimised
colour cut in this plane corresponding to recall ∼ 95%.
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HE < 23 giving 100% recall at that limit, while for EL-COSMOS, 100% recall is reached
at HE < 24.

Next, we consider a selection in the (IE−HE) versus HE plane. The colour-magnitude
selection reads as follows,

(IE −HE) < a (HE − b) AND HE < Hcut
E . (5.14)

We searched for a selection with the form of Eq. (5.14) that maximises the purity while
giving recall ∼ 95%. The best colour cut for EL-COSMOS has slope a = −2.36, pivot
b = 23.60, and Hcut

E = 22.85. For Flagship2 the slope is a = −1.90, b = 14.74, and
Hcut

E = 22.13.
Figure 5.4 shows the targets (solid red) and non-target (dashed blue) distributions

in the colour-magnitude plane of interest for EL-COSMOS (top panel) and Flagship2
(bottom panel). The dotted black line corresponds to the colour-magnitude cut. The two
panels show the difference in the target distributions of EL-COSMOS and Flagship2.
Flagship2 does not have any targets with HE > 23, in contrast, EL-COSMOS targets
reach the magnitude limit of the sample. For this reason, we allow the HE cut to adapt
to the training data. We report the precision of these cuts in the bottom line of Table 5.2.

From Table 5.2, we see that the selection gives a higher precision for EL-COSMOS
than Flagship2. This can be understood since the fraction of targets is lower in Flagship2
than in EL-COSMOS. We next show the results from machine learning classifiers, which
make full use of the high-dimensional parameter space to optimise the selection.

5.4.2 Using Euclid data only

We first discuss the results obtained training the classifiers using only Euclid photome-
try, comparing the two catalogues EL-COSMOS and Flagship2. The input features for
each object are the same for both catalogues, namely its HE magnitude and near-infrared
colours, (IE − YE), (YE − JE), (JE −HE).

Figure 5.5 shows the precision-recall curve produced by the six different classifiers
using respectively EL-COSMOS (top panel) and Flagship2 (bottom panel). We remark
that, for an ideal classifier, the plot would show a close-to-flat precision around unity
(see Fig. 5.2), followed by a sharp drop at the highest possible recall value. To provide
a reference baseline, in Fig. 5.5 we also present (dotted magenta line) the curve one ob-
tains when simply selecting HE < H limit

E magnitude-limited samples. The curve has
been computed by smoothly varying H limit

E between 20.0 and 24.0 (see Table 5.2). The
vertical black line corresponds to 95% recall, which we chose as the reference value for
comparing the algorithms (see Sects. 5.2.1 and 5.5), as reported in Table 5.3.

Comparing the two panels, the first evident difference is the larger variance in per-
formance over the whole recall range shown by the different algorithms in the case of the
Flagship2 sample. Conversely, the classifiers trained with EL-COSMOS show a sharper
drop in precision at small recall values. The HE magnitude limit selection appears to
be more effective for EL-COSMOS than for Flagship2. In both cases, this simple selec-
tion is (not unexpectedly) worse than the machine learning classifiers, but in the case
of EL-COSMOS the resulting performance becomes comparable to that of the worse-
performing classifiers at 95% recall.

Overall, Fig. 5.5 and Table 5.3 show similar performance when training with either
Flagship2 or EL-COSMOS, with the former showing a larger variance at the recall thresh-
old. Such an agreement is an encouraging indication of the robustness of the general
conclusions that can be drawn from these results. In both cases, the best-performing
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Figure 5.5: Precision vs. recall performance of the different classifiers, using Euclid pho-
tometry alone for the training. The two panels correspond to the two test catalogues as
indicated. The vertical solid line gives our reference recall value of 95%.
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Figure 5.6: Same as Fig. 5.5, but now adding morphological information in terms of half-
light radius and axial ratio values.

algorithms are the neural network, the support vector classifier, and the extra-tree classi-
fier. The random forest follows shortly behind, indicating that the bootstrap resampling
used in the decision tree training is especially efficient for this task. Last comes the self-
organising map, which is not optimised for this kind of task, and the adaptive boosting
classifier.

The effect of complementing Euclid infrared photometry with morphological infor-
mation described by the galaxy half-light radius and axial ratio values, can be seen in
Fig. 5.6. The plot shows no large improvement and some classifiers perform worse and
there is an even larger variance between the different classifiers, especially at low recall
values. The best-performing one is still the neural network, followed by the support vec-
tor classifier, the random forest and the extra-tree classifier. Again, the adaptive boosting
classifier and the self-organising map fare poorly. A more detailed discussion is left for
Sect. 5.4.4.

5.4.3 Adding ground-based photometry

When we combine Euclid and ground-based photometry we substitute the IE band with
the five ground-based filters, ugriz. In this case, the input features of the classifiers are
the following seven colour combinations (u−g), (g−r), (r−i), (i−z), (z−YE), (YE−JE),
and (JE −HE). In addition, we also use HE as the last input feature.

Figure 5.7 shows how the diagnostic plots change when combining Euclid and ground-
based photometry. We immediately see from Fig. 5.7 how the ground-based data im-
proves the overall performance, yielding curves that are much closer to the ideal shape
(see Fig. 5.2). In the bottom panel, we also show (green dot) the precision (∼ 5.5%) and
recall (∼ 92.4%) values recovered when using photometric redshifts to simply isolate
targets with 0.9 ≤ zphoto ≤ 1.8, with no extra information to constrain the desired Hα
line flux. We note that the photometric redshift selection does not reach the 95% recall
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Figure 5.7: Precision versus recall curves for the analyses with Euclid photometry and
ground-based photometry. Top: results for EL-COSMOS. Bottom: results for Flagship2.
The dotted magenta line represents the combined selection of HE cuts and the photo-z
selection. The green point marks the precision and recall value obtained with the photo-
z selection alone.
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value. We also consider photometric redshift selections with various HE magnitude lim-
its, shown by the magenta dotted line. In Appendix A.2 we present a preliminary test
that combines the photometric and the redshift information in the training of a neural
network.

The improvement in performance appears to be larger when estimated using Flag-
ship2 than with EL-COSMOS with a difference of ∼ 10% in precision for all algorithms.
The reason for this can be related to the colour distribution of the targets. In the EL-
COSMOS catalogue the distribution functions of magnitudes and colours for targets
show more variance than in Flagship2 where the targets are more localised on colour
space. When Euclid-only photometry is used, the information is not sufficient for tightly
constraining the target region in the parameter space, thus producing similar results
from the two catalogues. However, when ground-based photometry is added, in the
Flagship2 case it becomes easier to isolate the targets. These differences may be due to
the recipes used for assigning spectral energy distributions and synthetic emission lines
in the two catalogues.

The relative ranking of the different classifiers derived from the two catalogues is the
same. The worst-performing algorithm at the recall threshold is the self-organising map,
which shows a steeper drop in precision than the others (see Table 5.3). The remaining
algorithms have precision values > 35% for Flagship2, with the neural network reach-
ing almost 50%. For EL-COSMOS at the recall threshold the values of the precision are
always > 25%, peaking at ∼ 34% for both the neural network and the support vector
classifiers.

5.4.4 Comparison of the results

In this section, we focus on the results based on the Flagship2 training and discuss the
results obtained with the three configurations. We will then focus on the best-performing
classifier, the neural network, and discuss in more detail the three cases. We will also
show a comparison with a simpler redshift-only selection based on Euclid photometric
redshifts.

Figures 5.5, 5.6, and 5.7, together with Table 5.3, provide a direct quantitative com-
parison of the three training configurations: the best performance is obtained by the
combined Euclid and ground-based photometry. For Flagship2, this more than doubles
the precision at the recall threshold with respect to the other two configurations, a clear
benefit of the extra information on lower redshift objects provided by the optical bands
(see discussion in the following). The addition of morphological information through the
half-light radius and ellipticity, conversely, does not introduce any significant improve-
ment: the neural network and the adaptive boosting classifier show only a minimal gain,
while all others worsen their performance.

The half-light radius, in particular, does show a trend as a function of redshift, but
this relation has a large scatter and weak correlation coefficient. It is possible that other
morphological measures that we did not consider, such as the Sérsic index, will be more
sensitive to galaxy type and have a greater importance for classification; however, we
reserve this investigation for future work. When fed uninformative features, the classi-
fication algorithms will tend to ignore them. The majority of the tested classifiers have,
in fact, built-in mechanisms to ignore a feature. Specifically, the neural network would
reduce, during the training, the weight of the specific feature that appears to be uninfor-
mative, while the decision tree-based classifier would not introduce decision rules based
on it. Similarly, the support vector classifier would only produce boundaries orthogonal
to an uninformative feature. The same cannot be said about a standard self-organising
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Figure 5.8: Mean gradients of the neural network output as a function of the input for
the three training configurations. In blue, orange and purple are respectively plotted the
mean gradients of the neural networks trained with Euclid photometry, Euclid photome-
try and morphology, and Euclid and ground-based photometry. All gradients have been
normalised to that corresponding to the Euclid HE magnitude.

map: in this case, the effect of an uninformative feature is to spread the classification
targets over a larger number of cells, thus reducing the sensitivity.

In order to understand which features are most relevant for classification, which is
known as the saliency in the machine learning literature, in Fig. 5.8 we show the mean
gradients of the network with respect to the input features. We see that the most impor-
tant feature turns out to be the HE magnitude, followed by the ground-based colours.
The dependence on the optical colours and in particular on (IE − YE) in the Euclid pho-
tometry configuration has two main reasons. First, the optical bands retain low redshift
information (see following discussion); second, the correlation between the between IE

and fHα+[N II] is even stronger than the correlation of the emission line flux and HE. The
network uses (IE − YE) to extract IE from the pivot magnitude HE and infer this corre-
lation. Lastly, as expected, the morphological parameters are the least important inputs
for the neural network.

Having identified the HE magnitude as the most informative feature, we can gain
additional intuition about the classifiers by comparing the number counts N(HE) of the
true targets to those of the samples recovered by the neural network. These are shown
in Fig. 5.9. The green histogram gives the number counts for the true targets, i.e., the
reference distribution we are trying to reproduce with the classifier. Notably, the counts
go to zero for HE > 22.5, hence there are no target galaxies fainter than this magni-
tude. This explains the rapid gain in precision one obtains by simply cutting the full
sample (here shown by the orange histogram) at brighter and brighter values of HE (see
Table 5.2). Looking at the other histograms, we see that the application of the neural
network effectively cuts the distribution down to the correct HE. When using only Eu-
clid bands (blue histogram), this leaves an excess of sources, which are either outside the
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Figure 5.9: HE-band number counts for samples built from the Flagship2 catalogue. The
samples selected with the neural network classifier, using Euclid photometry only or
combined with ground-based photometry are shown, respectively, by the blue-solid and
magenta-dashed histograms. As indicated by the legend, the red-dotted histogram cor-
responds to a sample selected in redshift only, using Euclid photometric redshifts. The
counts for the full Flagship2 catalogue and the true target sample are also shown for
reference, by the orange and green histograms. Note how the distribution of the true
targets (green histogram) dies off at magnitudes fainter than HE ≃ 22.5. The targets in
the EL-COSMOS catalogue extend to fainter flux.
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redshift range or below the chosen Hα+[N II] flux limit, which are significantly reduced
by adding the ground-based information (magenta dashed histogram). Note also how
a selection over the target redshift range [0.9, 1.8] using photometric redshifts, clearly
does not effectively cut on the HE magnitude, leaving a large population of faint objects.
Nevertheless, we remind the reader that this discussion is specific to Flagship2. In the
case of EL-COSMOS, also galaxies fainter than HE ≃ 22.5 are part of the target sample
(see Fig. 5.4 and Table 5.2).

We can use the false positive rate (see Sect. 5.2.1) to interpret the origin of misclassi-
fied galaxies as a function of redshift and emission line flux. In the top panel of Fig. 5.10
this quantity is plotted as a function of redshift. The sample produced using Euclid pho-
tometry alone shows an excess of false positives at z < 1. This explicitly shows the
inability with only the Euclid bands to properly exclude low-redshift galaxies, as well
as some with flux below the flux limit. The addition of ground-based photometry effec-
tively cures this, removing all galaxies at z < 0.9, leaving only a fraction of misidentified
objects fainter than 2×10−16 erg s−1 cm−2 inside the target redshift range. It is interesting
to note that the Euclid-only and the Euclid plus ground curves become indistinguishable
at z ≳ 1.4. This is consistent with the redshift at which the 4000 Å break enters the YE

band (at 9600 Å) and indicates that in this range the combination of IE and YE, JE, HE

provides, in general, sufficient spectral leverage to break degeneracies to both capture
the correct redshift and identify emission line targets. As also shown, a photometric red-
shift selection is effective at removing low-redshift galaxies, but keeps in the sample all
the low-flux galaxies (as is expected, since we are selecting on redshift alone).

In Fig 5.10 bottom panel, instead, we plot the false positive rate as a function of
fHα+[N II]. In this case, the peak and discontinuity evident at the flux limit, 2×10−16 erg s−1

cm−2, is due to sources just below the flux limit, which enter the sample as false posi-
tives. Above the flux limit, instead, false positives arise from galaxies that are outside the
redshift range. For this reason, the photo-z selection gives the lowest false positive rate,
followed by the Euclid and ground-based classification. This does not tell the full story,
however. The photo-z selection includes a number of false positives entering the sample
at low fluxes, which are the cause of the very low precision shown by this selection. The
classifier trained with ground-based photometry provides the best solution by balancing
the two conditions of removing objects below the line flux limit and outside the redshift
range.

Complementary, it is also interesting to look at the true negative rate (Eq. 5.6) of the
whole selected sample, which gives an insight into the fraction of non-targets removed
from the sample. When we select galaxies using Euclid photometry only, the true neg-
ative rate is 87%; the combination with ground-based data increases this metric up to
97%. Conversely, the true negative rate of the photo-z selection is 59%. Again, the better
performance of the classifiers in comparison to the photo-z selection reflects the fact that
the latter does not make a selection in the emission line limiting flux.

Finally, the machine learning algorithms identify regions in the full colour-magnitude
space with a higher density of targets. In the case of the classifier trained on Euclid pho-
tometry, this is a four-dimensional space. In Appendix A.3 we present slices through
the four-dimensional probability maps constructed from each classifier, showing how
the selection depends on colour. It is interesting to visualise the boundaries constructed
by each classifier. There is no visible separation between target and non-target galaxies
in the colour planes and the classification algorithms define complex boundaries in the
four-dimensional space. The support vector classifier and the neural network produce
particularly smooth boundaries, while the self-organising map and tree-based classifiers
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Figure 5.10: False positive rate as function of redshift and fHα+[N II]. The plot allows
us to identify the origin of non-targets that enter the selected samples. The solid blue,
dashed orange, and dotted purple curves, respectively, correspond to the neural net-
works trained with Euclid photometry, Euclid plus morphological data, and Euclid plus
ground-based photometry. The dash-dotted red line is the false positive rate of the
photo-z selection. Top: False positive rate as a function of z. The green shaded area
marks the target redshift range. Bottom: False positive rate as a function of fHα+[N II].
The green shaded area corresponds to the Hα limiting flux. There is a peak in the false
positive rate just below the flux limit used to define the target sample, although we note
that these galaxies can still give correct redshift measurements.
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do not. The irregular boundary is an indication that the classifier is overfitting the train-
ing set and will not generalise well. In addition, we verified that the 5% of the targets
that we lose by imposing the 95% recall value are uniformly distributed in colour and
are not part of any particular object class. We note that the lost targets are mainly faint
objects.

5.5 Purity and completeness

The final purity of the spectroscopic sample will depend on the combination of the pho-
tometric information with the selection criteria applied to the spectroscopic measure-
ments, as described by the flow diagram of Fig. 5.1. To provide a concrete, yet prelim-
inary, example, we would like to quantify here the improvement in the final redshift
purity and sample completeness produced by our photometric selection process. This
work is based on a set of simulated spectra that were processed by the Euclid spectro-
scopic measurement pipeline (the SPE processing function). Although the simulated
data were not yet fully realistic, they are nevertheless very useful for understanding
how a machine learning-based photometric classification can aid in the sample selec-
tion. Also, the simulated spectra were built from the EL-COSMOS sample described in
Sect. 5.3.1, which helps in making this test self-consistent. Two-dimensional spectral im-
ages were generated using the FastSpec code based on the spectral energy distribution
and morphological parameters of the galaxies. These images were convolved with the
NISP instrumental point spread function and realistic noise was added according to the
detector model. Multiple exposures were simulated for each source and stacked with
one to four exposures. One-dimensional spectra were extracted from the images and in-
put to the Euclid spectroscopic measurement processing function to measure the redshift
and spectral features.

The spectroscopic measurement pipeline carries out a likelihood analysis using spec-
tral templates to estimate the redshift. It produces a probability distribution function of
the redshift that is typically sharply peaked with a few primary redshift solutions. The
integral of the peak provides a useful measure of the reliability of the solution. We vary
the threshold in this reliability value to select spectroscopic samples and build the rela-
tionship between redshift purity and completeness, as shown by the SPE solid blue line
in Fig. 5.11.

In the following discussion we focus on the results from the neural network classi-
fier applied to the simulated spectroscopic sample. The purity and completeness val-
ues should be taken as indicative of the general trends and not as accurate forecasts of
the pipeline performance. The values depend on the specific distribution of simulated
sources and instrumental configuration. The target sample is defined as described in
Sect. 5.3.3, using the total flux of the Hα and N II complex.

Figure 5.11 shows how redshift purity versus sample completeness plot improves
when we complement the pure spectroscopic reliability cut selection (blue solid line)
with increasing information provided by the photometric neural network classifier for
the two configurations using Euclid-only or Euclid and ground-based photometry. The
curve corresponding to the HE magnitude-limit selection that gives 95% recall (see Ta-
ble 5.2) is also plotted together with the curve corresponding to the colour selection
presented in Sect. 5.4.1. These two curves visually overlap, but the colour cut curve
(dash-dot-dotted purple line) is actually higher than the simple magnitude cut curve
(dash-dotted orange line). This behaviour was expected as the two selections have very
similar precision values at 95% recall and the colour cut has slightly better performance.
The figure shows that in the range between 40% and 60% completeness, the photometric
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Figure 5.11: Redshift purity and sample completeness as a function of spectroscopic reli-
ability threshold. The solid blue, dashed red, dotted green, and dash-dotted orange lines
respectively correspond to a selection using only SPE reliability, SPE reliability combined
with a photometric classification based on Euclid data, with the classification that uses
Euclid and ground-based photometry, with the HE magnitude limit selection, and with
the colour selection in the (IE −HE)-HE plane. In all cases, the recall of the photometric
classification is set to 95%.
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Figure 5.12: Spectroscopic redshift purity and completeness with the addition of the
photometric classification. Top: the curves are colour-coded as a function of the recall
of the photometric classification. The spectroscopic reliability threshold varies along
each curve, while varying the threshold on the photometric classification probability
shifts the curve. The purity improves as recall increases, reaching a maximum for recall
∼ 95% and declining after. For better visualisation, the first lines are labelled with the
corresponding recall value. At recall values above 95% the curves are tightly packed.
The solid black line corresponds to 100% recall, while the dashed line to 95% recall, the
value we chose to benchmark our results. Bottom: redshift purity as a function of the
recall of the photometric classification, fixing the value of sample completeness to 45%.
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classification improves the redshift purity. For example, at a fixed value of 45% sam-
ple completeness, the classification based on Euclid-only bands improves the purity by
∼ 20%, when we add ground-based photometry the improvement rises to ∼ 45%. The
simple HE magnitude limit selection, at that same completeness value, gives an improve-
ment of a few per cent only (≲ 10%), evidencing the importance of exploiting all available
photometric information.

To examine the effect of the photometric classification in more detail, in the top panel
of Fig. 5.12 we show the redshift purity and sample completeness as a function of the
reliability threshold imposed on the spectroscopic redshift measurement. The photo-
metric classification has its own threshold parameter on the classification probability,
which when combined with the spectroscopic selection, produces a family of curves. We
label these curves based on their recall values. The bottom panel shows the dependence
of redshift purity on the photometric selection recall, when the completeness is fixed to
45%. As we see, a recall value of 95% approximately maximises the purity-completeness
curve, which justifies the choice made in Sect. 5.2.1. In addition, we verified that the 5%
of the targets that we lose with the selection are uniformly distributed in colour and are
not part of any particular object class. We note that the lost targets are mainly very faint
objects.

The main conclusion from this exercise is that the impact of properly elaborated pho-
tometric information on the final purity and completeness of the Euclid spectroscopic
sample is very significant, with a major improvement especially when ground-based
visible bands are included. The precise gain, however, will depend on the galaxy distri-
bution, the survey configuration and the instrument model.

5.6 Conclusions

We have investigated the benefits of combining photometric information with the spec-
troscopic measurement criteria for selecting Euclid spectroscopic samples. Euclid spec-
troscopy will give estimates of the galaxy redshifts, fluxes of the emission lines, and con-
fidence intervals. However, since emission-line galaxies make up only a small fraction
of the photometric sample, measurement noise can reduce the redshift purity and com-
pleteness of the sample and degrade the figure of merit for the galaxy clustering probe.
The addition of photometric criteria in the selection can allow us to improve the purity
of the sample by identifying sources that are likely to be bright emission-line galaxies at
the target redshift.

To this end, we compared a set of machine learning classification algorithms with the
aim of photometrically selecting emission-line target galaxies that are likely to give good
redshift measurements in the Euclid Wide Survey. We used two catalogues to benchmark
the classification performance, EL-COSMOS and Flagship2. Both catalogues have Euclid
and ground-based simulated photometry. We produced noisy realisations of the cat-
alogues assuming background-limited observations. The two catalogues yield similar
results when using as input Euclid-only photometry, but when this is combined with
ground-based data, the results using Flagship2 outperform those with EL-COSMOS.
This is related to the differences in the Hα luminosity function and colour distribution of
the two catalogues. In addition to these two configurations (Euclid-only and Euclid plus
ground), we also considered adding morphological information (half-light radius and
the axial ratio). We find that in general, while the addition of ground-based data strongly
improves the precision (doubling it in the case of Flagship2), including morphological
information (at least in the form provided here) gives negligible improvement.
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The purity of the final spectroscopic sample will depend on the combination of the
photometric classification with further selection criteria based on the properties of the
spectroscopic data (see diagram in Fig. 5.1). To investigate this requires full end-to-end
simulations of the spectroscopic reduction pipeline. We presented a preliminary exercise
to assess the relative gain when the spectroscopic data are complemented by the photo-
metric selection discussed here. This will be expanded in future work. We showed that
in the range between 40% and 60% completeness, the purity is boosted by ∼ 20% when
using Euclid-only bands, and between 40% and 100% when including ground-based pho-
tometry. We consider this a remarkable indication.

The introduction of ground-based data significantly improves the purity of the sam-
ple, but in the practical application can also bring additional nuisance in the form of
systematic errors. The ground-based photometry will come from multiple surveys and
so will not be fully homogeneous. It will also suffer from additional selection effects
correlated with the observing conditions that can propagate as systematic errors to the
galaxy clustering measurements and cosmological constraints. Thus, the gains in purity
from incorporating ground-based data must be carefully weighed against the potential
of adding systematic errors, also considering the specific requirements of the science
analysis to be carried out. We foresee that ground-based data may be used in analyses
where a higher level of purity is desired, such as for studying the galaxy halo occupation
distribution or galaxy evolution as a function of environment.

Photometric redshifts can also play a key role in sample selection. We used the Euclid
photometric redshift estimates to select galaxies in the target redshift range and com-
pared the performance of such a selection to that of the colour-based machine learning
classifiers. Figure 5.10 shows that the photo-z selection is very efficient for redshift classi-
fication, especially to remove low redshift interlopers, but is not effective in identifying
emission-line galaxies. Indeed, the photo-z selection has the highest fraction of false
positives from faint galaxies with fHα+[N II] < 2 × 10−16 erg s−1 cm−2, but the lowest for
bright ones with fHα+[N II] > 2 × 10−16 erg s−1 cm−2, which means that it makes a bet-
ter redshift selection than the algorithms presented in this work. Photometric redshifts
could be used with additional constraints from spectral energy distribution fits to iden-
tify bright emission-line galaxy targets. In particular, the Euclid photometric redshift
pipeline will output estimates of galaxy physical properties including the star-formation
rate and dust attenuation, which will allow us to select emission-line galaxy samples. We
expect that a classifier developed based on photometric redshifts and estimates of phys-
ical properties from spectral energy distribution fitting would perform similarly to the
pure colour and magnitude-based classifiers that we tested, since the underlying pho-
tometric information is the same. Analogously, we expect a classifier trained to make a
selection in redshift alone to perform similarly to the photo-z selection. Alternative clas-
sifiers that use the estimates of galaxy physical properties from the Euclid photometric
redshift pipeline for sample selection will be investigated in a future work.

It is important to note that in this study some of the complications that will be present
in real Euclid data were not considered. First, we assume an ideal training set, which
is fully representative of the Wide Survey data. In the actual Euclid Wide Survey, the
training set will come from the Deep Fields, which will total ∼ 50deg2. Shallow and
full-depth photometric measurements will be available for the Euclid photometry in the
Deep Fields; however, we will only have the full-depth measurements for the ground-
based photometry. As they are currently trained, the machine learning algorithms learn
to classify the targets at a given noise level and it is not necessarily true that they will be
able to generalise their results when trained and tested on samples with different noise
levels. Therefore, if ground-based photometry is used, it will be necessary to degrade



the measurements to match the noise level in the Wide Survey. Since the ground-based
photometry will come from multiple surveys, this operation will not be simple, and
residual variations in homogeneity in the noise can lead to systematic variations in the
classifier performance.

Moreover, the effective emission-line flux limit will vary across the Wide Survey due
to foreground emission including zodiacal light and scattered stellar light (Euclid Col-
laboration: Scaramella et al., 2022). In this study, we used a fixed flux limit to build the
training set of emission-line galaxies. In practice, this does not impose a sharp flux cut
in the measured sample. However, when developing a classifier on real data, we will
be able to use the Deep Survey to define the training set as the set of galaxies that are
correctly measured by the Euclid pipeline, without imposing any specific constraints on
their physical properties. It will also be possible to construct a classifier that accounts for
variations in the noise level across the Wide Survey to optimise the sample.

Finally, a further complication that must be considered is contamination from stars
in the galaxy catalogue that can impact the purity. The photometric classifier can be
trained to maximise the precision in the presence of stars. This work will require us to
incorporate a star-galaxy classifier, which is based both on size and photometric colours.
Here, the morphological measurements will be important.

In the next stage of this work, we will consider the full set of spectroscopic and pho-
tometric selection criteria in order to compute the redshift purity, sample completeness
and ultimately cosmologically relevant figures of merit. This requires running the spec-
troscopic reduction pipeline on mock data in order to produce end-to-end simulations.
Such simulations will allow us to optimise the sample selection criteria, possibly with
the use of machine learning classifiers. With Euclid observations began in fall 2023, we
will be able to further tune the selection based on the actual telescope performance and
ultimately construct the spectroscopic galaxy sample that will be used to test the cosmo-
logical model.
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CHAPTER 6

Optimal constraints on Primordial non-Gaussianity with
the eBOSS DR16 quasars in Fourier space

The present chapter is based on the paper ‘Optimal constraints on Primordial non-Gaussianity
with the eBOSS DR16 quasars in Fourier space’ by Marina S. Cagliari, Emanuele Castorina,
Marco Bonici, and Davide Bianchi, accepted by Journal of Cosmology and Astroparticle Physics
(Cagliari et al., 2023).

6.1 Introduction and main results

The late-time distribution of the large-scale structure of the Universe is the result of
the evolution, under gravitational interaction, of the set of primordial curvature per-
turbations. By measuring the n-point functions of a galaxy sample we have therefore
the unique opportunity to test the statistical properties of the initial conditions of the
Universe. Of particular relevance for LSS probes is the presence of possible primordial
non-Gaussianities (PNG). The leading hypothesis for the dynamical generation of the
primordial density fluctuations, Inflation (see Baumann, 2011, for a review), offers theo-
retical guidance to the most generic ways PNG could arise in cosmological correlators,
also indicating that PNG are generically smaller than the dominant Gaussian term.

In this work we focus on the so-called local PNG, for which the primordial gravita-
tional potential ΦP (x) is a non-linear function of a Gaussian field φ, ΦP = φ+ fNL(φ

2 −〈
φ2
〉
). The amplitude of local PNG is parameterised by a single number fNL, and we

immediately see that, if the primordial fluctuations are of O(10−5), local PNG are O(105)
smaller than the Gaussian term for fNL = 1. Local PNG are among the most studied in
the literature because they are exactly zero if the inflationary dynamics is driven by a
single degree of freedom, the so-called single-field models (Maldacena, 2003; Creminelli
& Zaldarriaga, 2004; Cabass et al., 2017). A robust detection of fNL will therefore exclude
all such models and point to a more complicated inflationary sector. Conversely, multi-
field models of inflation generically predict fNL ∼ O(1) (Senatore & Zaldarriaga, 2012;
Alvarez et al., 2014), and could be severely constrained by a strong experimental bound.
Measurements of the anisotropies of the cosmic microwave background from the Planck
satellite put the stringent limit fNL = 0.8 ± 5 (Planck Collaboration et al., 2020b), and
upcoming instruments are expected to reduce this error bar by another 50% (Abazajian
et al., 2016). Differently, than the CMB, which is sensitive to fNL starting with the three-
point function, LSS can probe PNG at the two-point, or power spectrum in Fourier space,
level. As first pointed out in Dalal et al. (2008), the quadratic term in the definition of
the primordial potential ΦP induces a correlation between the long-wavelength gravita-
tional field and the small-scale fluctuations. The latter could very well be in the range
corresponding to the formation of halos and galaxies, whose number density is therefore
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modulated by the large-scale value of ΦP . Mathematically, we say that the large-scale
bias of galaxies is modified in the presence of local PNG, and it reads

δg(x, z) = b(z) δm(x, z) + fNL bϕ(z) ΦP (x) (6.1)

where δg is the galaxy density perturbation and b is the Gaussian linear bias. The new
bias coefficient bϕ parameterises the actual response of small-scale fluctuations to the
presence of local PNG, and it is subject to large theoretical uncertainties due to our
incomplete knowledge of galaxy formation physics (Barreira, 2022a,b).1 Via Einstein’s
Equations, the presence of ΦP in the above expression implies that, on large scales, the
power spectrum acquires a distinct k−2 feature, which is then interpreted as the smoking
gun of local PNG. In this respect, knowing the value of bϕ is not a fundamental limita-
tion, since what ultimately matters to exclude single field models is a detection rather
than the actual value of fNL. The possibility to measure local PNG with the galaxy power
spectrum has spurred a tremendous amount of research activities, and all major spectro-
scopic and photometric instruments like DESI (DESI Collaboration et al., 2016), Euclid
(Laureijs et al., 2011), SPHEREx (Crill et al., 2020) and the Vera C. Rubin Observatory
(LSST Science Collaboration et al., 2009) have the search for PNG as one of their primary
science goals. It also serves as an important science case for future facilities (Achúcarro
et al., 2022). Current LSS bounds are still far from the CMB one, |fNL| ∼ O(20 − 30)
(Castorina et al., 2019; Mueller et al., 2022; D’Amico et al., 2022; Cabass et al., 2022), but
are expected to improve down to σfNL ∼ 1 with current and future observations (Sailer
et al., 2021; Cabass et al., 2023; Ansari et al., 2018; Bragança et al., 2023; Karagiannis et al.,
2018).2

The main goal of this work is to provide the most stringent and robust constraints on
local PNG with current data. We will use the extended Baryon Oscillation Spectroscopic
Survey data release 16 quasar (QSO) sample (Ross et al., 2020; Lyke et al., 2020). Our
analysis takes advantage of optimal signal weighting that maximises the response of a
given galaxy sample to the presence of local PNG. These weights were first derived in
Castorina et al. (2019), and are based on optimal quadratic estimators (Tegmark, 1997;
Bond et al., 2000; Tegmark et al., 1998). The main reason to use optimal weights lies
in Eq. (6.1): the non-Gaussian contribution is proportional to the primordial potential,
and therefore it does not evolve over time, while the linear bias term is proportional to
the matter density, which grows over time. This suggests that, in a given sample, high-
redshift objects should be given more weight than low-redshift ones, since the Gaussian
piece is smaller at earlier times. As we will see in Sect. 6.2 in more detail, the optimal
analysis downweights the Gaussian signal by w0 ∼ b(z)D(z), where D(z) is the linear
growth factor that decreases with increasing redshift, and upweights the PNG term by
w̃ ∼ bϕ.

The optimal redshift weighting therefore requires some prior knowledge of the re-
sponse bϕ of a given sample to the presence of local PNG. For mass selected halos, an-
alytical models (Slosar et al., 2008; Biagetti, 2019) and simulations (Biagetti et al., 2017;
Barreira et al., 2020) suggest that bϕ ∝ (b−p), where p is a number of O(1), is a very good
approximation to the true response. As stated above, the picture is however much more
complicated for observed galaxies. In this work, we will present constraints on fNL for

1This point could, however, be turned the other way around and suggests that by carefully selecting the
galaxy sample one could maximise the response, i.e. the value of bϕ, to improve the constraint (Castorina et al.,
2018; Sullivan et al., 2023; Barreira & Krause, 2023).

2Recent work, see Rezaie et al. (2023), presents evidence of non zero fNL at more than 99% confidence level
(c.l.) with DESI imaging data. However, CMB and LSS measure local PNG on the same range of scales, which
suggests a non-cosmological origin for the signal reported in Rezaie et al. (2023).
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the two values of p mostly used in the literature, p = 1.0 and p = 1.6. The fact that the
bound on local PNG depends on p could raise some concern about the robustness of our
results. However, as we already pointed out, what matters is only a possible detection of
fNL, not what the actual value is. Moreover, galaxy selection based on luminosity, colour,
or magnitude, correlates reasonably well with host halo mass (Scoccimarro et al., 2001;
Yuan et al., 2022), therefore we do not expect a large deviation from the values used in
this work. Nevertheless, we will also show, in a novel application of our framework,
how optimal signal weights can be used to put a data-driven prior on the value of bϕ or
p. As mentioned above, the optimal weights w̃ are proportional to the response of the
galaxy number density to the presence of local PNG. This implies that if the input value
of bϕ we use for the weighting is very different from the true response, the optimal anal-
ysis will not improve the bound on fNL over the un-weighted case, or will even worsen
the constraints. As a first application of this idea, we will show in Sect. 6.4 that a large
value of p ≳ 3 for the response of the QSOs in DR16 is not favoured by the data, without
relying on any numerical simulations. We expect that as the uncertainty on fNL reduces
in the near future, our method will provide invaluable information on the most likely
value of p to use in the data analysis. It should, however, be kept in mind that assum-
ing a value of p implies that different data sets cannot be combined together or with the
CMB. For this reason, we will also show, in Appendix B, constraints for bϕfNL for all the
data sets used in this work.

Our strongest bounds read{
−4 < fNL < 27 , 68% c.l. ,
−18 < fNL < 42 , 95% c.l. ,

for p = 1.0 , (6.2)

and {
−23 < fNL < 21 , 68% c.l. ,
−43 < fNL < 44 , 95% c.l.

for p = 1.6 , (6.3)

which should be compared with a standard Feldman-Kaiser-Peacock (FKP; Feldman
et al., 1994) analysis, see Fig. 6.8 and Table 6.2 for the full results. The optimal anal-
ysis improves by 10% and 30% over the FKP one for the p = 1.0 and p = 1.6 cases
respectively. It is worth stressing that the power spectrum of DR16Q catalogue is, on all
scales, dominated by the shot-noise, and we therefore did not expect much larger gains
(Castorina et al., 2019). Our optimal constraints are robust to the treatment of systematic
effects. The bounds using a linear method to remove known foregrounds are statis-
tically indistinguishable from the ones obtained with a non-linear algorithm based on
Neural-Network (NN; Rezaie et al., 2021). However, compared to the previous eBOSS
data release (Castorina et al., 2019), the improvement in the constraint is smaller than
what was expected from the increase in volume, and it is most likely due to the presence
of residual foregrounds in the maps. This could also be the reason for the more limited
improvement of the optimal analysis with respect to the standard one in comparison to
the improvement found in DR14 (Castorina et al., 2019).

Our results are roughly comparable with the ones in Mueller et al. (2022), which also
used the DR16Q data set. However, there are a number of important differences with
our analysis. First, the weights employed in Mueller et al. (2022) are defined for pairs
of galaxies, and cannot be automatically applied to individual galaxies, as relevant for
a power spectrum analysis. To avoid imaginary weights for a single object, the Authors
of Mueller et al. (2022) imposed, by hand, the positivity of the weights, which is not by
itself an optimal procedure. In our case, the weights can very well be negative, precisely
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Figure 6.1: The quasar number density as a function of redshift for the DR16Q sample.
The dashed blue line corresponds to the NGC and the dotted red line to the SGC. The
SGC has a lower density in comparison to the NGC due to the difference in mean depth
in the two regions (Ross et al., 2020).

in the region where the signal is: in this way the product of the weights times the signal
contributes positively to the total signal-to-noise. More generally, cosmological infor-
mation is contained in the galaxy fields and not in its non-linear transformations, like
for example pairs of galaxies. The other main difference with the work of Mueller et al.
(2022) is in the modelling of the signal. As discussed in Sect. 6.2.4, we think the bound of
Mueller et al. (2022) is artificially tighter due to an incorrect choice for the effective red-
shift, zeff , at which the theoretical model is evaluated. For most applications the precise
definition of zeff does not matter, but it becomes important in searches for local PNG,
where the signal is proportional to bϕ(z) ∼ b(z) − p. For the DR16Q analysis in Mueller
et al. (2022), a too-high value of zeff results in a higher linear bias b(z), which artificially
reduces the uncertainty on fNL to keep the product bϕfNL ∼ constant. In Sect. 6.2.4 we
will also clarify on this issue and on what the more accurate definition of zeff is.

The rest of this chapter is organised as follows: in Sect. 6.2 we present the DR16Q data
set and the measurements of the power spectrum; in Sect. 6.3 we discuss the modelling of
the QSO power spectrum, its convolution with the window function and the definition of
the effective redshift; in Sect. 6.4 we present and discuss the constraints on fNL; Sect. 6.5
concludes and summarises our results.

All the codes, scripts, measurements and Monte Carlo Markov chains used in this
work are freely accessible at github.com/mcagliari/eBOSS-DR16-QSO-OQE.

6.2 Data

6.2.1 The eBOSS QSO sample

In this work, we use the eBOSS DR16Q sample (Ross et al., 2020; Lyke et al., 2020). As
part of the SDSS-IV experiment (Blanton et al., 2017), the eBOSS data were acquired at
the Apache Point Observatory in New Mexico.

https://github.com/mcagliari/eBOSS-DR16-QSO-OQE
github.com/mcagliari/eBOSS-DR16-QSO-OQE
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The DR16Q sample contains 343 708 quasars in the redshift range 0.8 < z < 2.2. The
sample is divided into two fields of view, the North Galactic cap (NGC), which covers
an area of 2924deg2, and the South Galactic cap (SGC), with an area of 1884deg2; in
comparison to Data Release 14 (DR14) the area is approximately doubled. The whole
sample has a volume of ∼ 20 (Gpc/h)3. The NGC has a mean density of n ≈ 1.8 ×
10−5 (Mpc/h)−3, while the SGC has a slightly lower density of n ≈ 1.6×10−5 (Mpc/h)−3.
The number densities as a function of the redshift of the NGC and the SGC quasars are
shown in Fig. 6.1. The number density of SGC is about 10% lower than the NGC number
density because of the lower mean depth of the survey in the SGC region. The data of the
North and South Galactic cap were released in two separate catalogues, each one with
the corresponding random catalogue. The random catalogues are 50 times more dense
than the data catalogues, and their redshift distributions are produced by sampling from
the observed data redshifts (Ross et al., 2020), a procedure known as shuffling. The use
of the shuffling scheme to produce the random catalogues introduces a systematic effect
called radial integral constraint (RIC; de Mattia & Ruhlmann-Kleider, 2019). We discuss
how to estimate and correct for the RIC effect in Sect. 6.3.2.

Both the data and random catalogues contain three weights for each data point. First,
there are the close pairs weights, wcp, which take into account fibre collisions. The second
weights are related to the spectroscopic completeness, wnoz, and correct for the expected
redshift failure rate. Third, there are the imaging systematic weights, wsys. These weights
correct for systematic effects at large angular scales, and they are therefore especially
important for fNL measurements. In the official data release of eBOSS DR16 (Ross et al.,
2020), these weights are computed with linear regression of the imaging properties and
Galactic foregrounds. Additional catalogues were released for the quasars (Rezaie et al.,
2021). In these catalogues, the imaging systematic weights were computed using neural
networks. Neural networks are able to approximate non-linear functions, hence they
could in principle produce a better correction than the weights computed with the linear
regression. NN methods will however remove part of the signal as well, and could
bias negative the constraint on local PNG. Hereafter we will refer to the official DR16Q
catalogues as the linear weight catalogue, and to the catalogues with NN systematic
weights as NN weight catalogue. The completeness weight contribution to any data
point is (Ross et al., 2020)

wc = wcp wnoz wsys , (6.4)

where wsys can either be from the linear weight catalogues or the NN weight catalogue.
The same weighting procedure of Eq. (6.4) applies to the objects in the random cata-
logues.

6.2.2 Mocks

A set of 1000 synthetic clustering catalogues for each Galactic cap (Zhao et al., 2021)
was simulated using the effective Zel’dovich approximation mock method (EZmock;
Chuang et al., 2015). The EZmock catalogues were produced assuming a flat ΛCDM
cosmology with Ωm = 0.307115, ΩΛ = 0.62885, Ωb = 0.048206, h = 0.6777, σ8 = 0.8225,
ns = 0.9611, and fNL = 0. The mocks reproduce the two and three-point clustering
statistics of DR16Q.

In the official release of the eBOSS DR16 EZmock catalogues, three sets of mock cat-
alogues are provided. Each set of EZmocks consists of 1000 pairs of data and random
catalogues. We refer to the first set of EZmocks as EZmock realistic, since the data and
random catalogues of this set contain all the known observational systematic effects.
Each data catalogue has a corresponding random catalogue, whose redshift distribution
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Figure 6.2: Weights as a function of redshift for the eBOSS DR16Q. The solid blue line
corresponds to the FKP weights, Eq. (6.6); its almost flat behaviour as a function of red-
shift is due to n(z)Pfid ≪ 1. The optimal weights to estimate fNL are shown in red and
dot-dashed green. The solid and dashed red lines respectively correspond to w̃(z) for
p = 1.0 and p = 1.6. These weights have a clear dependence on the quasar response to
the fNL signal.

is produced by shuffling the redshift of the data catalogues. The 1000 data-random pairs
of the EZmock realistic set are used to estimate the covariance matrix, Σ. The imaging
systematic weights of the realistic EZmock are computed only with the linear regression
method and not with the neural network. The covariance matrix will thus only contain
information about the linear imaging weights. The other two sets are the EZmocks com-
plete and the EZmocks shuffled. These two sets share the same data catalogues, which
do not have any observational systematic effect, while the random catalogues redshift
distributions were produced in different ways. In the EZmock shuffled set each data
catalogue has a corresponding random catalogue the redshift distribution of which is
produced with the shuffling scheme. The EZmock complete set only has two random
catalogues, one for each Galactic cap. The redshift distributions of these random cata-
logues were sampled from the same n(z) interpolation used for the EZmock data cata-
logues. We use the EZmock complete and shuffled sets to estimate the RIC effect.

6.2.3 Power spectrum estimation

As shown in Castorina et al. (2019), the optimal power spectrum is the cross-correlation
of two different fields produced by weighting the underlying catalogues. To arrive at the
power spectrum estimator we start with the two quasar density fields (Feldman et al.,
1994),

F̃ (r) = w̃tot
[
w

qso
c nqso(r)− αsw

s
c ns(r)

]
,

F0(r) = wtot, 0
[
w

qso
c nqso(r)− αsw

s
c ns(r)

]
,

(6.5)

where nqso and ns respectively are the number density of the quasar sample and the cor-
responding random catalogues, wqso

c and ws
c are the completeness weights from Eq. (6.4)
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for the quasars and the randoms. The total weights, w̃tot and wtot, 0, are the product of
the FKP weights (Feldman et al., 1994),

wFKP(z) =
1

1 + n̄(z)Pfid
, (6.6)

and the optimal weights for a fNL measurements with power spectrum data (Castorina
et al., 2019),

w̃(z) = b(z)− p , w0(z) = D(z)

(
b(z) +

f(z)

3

)
. (6.7)

Therefore the total weights read (Castorina et al., 2019)

w̃tot(z) = wFKP(z) w̃(z) , wtot, 0(z) = wFKP(z)w0(z) . (6.8)

In Eq. (6.6), n̄(z) is the mean density as a function of redshift, and Pfid = 3×104 (Mpc/h)3,
which corresponds to the expected power on the scales affected by PNG in the sample.
In Eq. (6.7), b(z) is the fiducial value of the QSO bias model (Laurent et al., 2017),

b(z) = 0.278
(
(1 + z)2 − 6.565

)
+ 2.393 , (6.9)

and D(z) and f(z) are respectively the growth factor and growth rate as functions of
redshift. As mentioned in Sect. 6.1, in this work we use p = 1.0 and p = 1.6. The
dependence on the redshift of the weights defined in Eq. (6.6) and Eq. (6.7) is plotted
in Fig. 6.2. It shows the difference between the FKP weighting scheme, which is almost
constant in redshift, as n(z)Pfid ≪ 1, and the optimal weights, which have a strong
dependence on redshift. Finally, the factor αs in Eq. (6.6) is defined as

αs =

∑qso
wc∑s
wc

, (6.10)

and it properly normalises the number density of the random catalogues.
Following ref. (Yamamoto et al., 2006), we write the monopole of the cross-correlation

between the two weighted fields in Eq. (6.5) as

P̃0(k) = A−1
0

∫
dΩk

4π

[∫
dr1 F̃ (r1) e

ik·r1
∫

dr2 F0(r2) e
−ik·r2L0(k̂ · r̂2)

]
− S0 , (6.11)

where L0 is the first Legendre polynomial. The normalisation factor A0 and the shot
noise contribution, S0, are respectively defined as

A0 =

∫
drwtot, 0(r) w̃(r)

[
wc nqso(r)

]2
, (6.12)

S0 = A−1
0

∫
drw2

c (r)nqso(r) (1 + αs) wtot, 0(r) w̃(r)L0(k̂ · r̂) . (6.13)

We calculate the monopole of the power spectrum using nbodykit (Hand et al.,
2018), which implements Eq. (6.11) as follows (Bianchi et al., 2015; Hand et al., 2017),

P̃0(k) = A−1
0

∫
dΩk

4π
F̃ (k)F0(−k) , (6.14)
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with

F0(k) =

∫
drF0(r) e

ik·rL0(k̂ · r̂)

= 4π Y00(k̂)

∫
drF0(r)Y

∗
00(r̂) e

ik·r , (6.15)

where Y00 is the first spherical harmonic. The normalisation and the shot noise are com-
puted as discrete sums over the quasars and the randoms. The normalisation is (Feld-
man et al., 1994)

A0 = αs

Ns∑
i

ns(ri)wc(ri)wtot,0(ri) w̃tot(ri) , (6.16)

while the shot noise contribution becomes (Feldman et al., 1994)

S0 = A−1
0

Nqso∑
i

w2
c (ri)wtot,0(ri) w̃tot(ri) + α2

s

Ns∑
i

w2
c (ri)wtot,0(ri) w̃tot(ri)

 . (6.17)

To compute the power spectrum estimator in Eq. (6.14) we use a mesh of 5123 cells.
The quasars and the random objects are projected onto the mesh using a triangular-
shaped cloud interpolation (Hockney & Eastwood, 1981). In this interpolation each
quasar and random is weighted by both its completeness and total weight and we as-
sume Planck (Planck Collaboration et al., 2020a) as fiducial cosmology. The power spec-
trum is estimated on a logarithmic grid from kmin = 3.75 × 10−3 (Mpc/h)−1 to kmax =
2.23× 10−1 (Mpc/h)−1 for NGC, and kmax = 2.78× 10−1 (Mpc/h)−1 for SGC.

A final remark about the normalisation of the power spectrum estimator in Eq. (6.14)
and the shot noise contribution in Eq. (6.17). Since Eq. (6.16) is just an approximation of
the exact definition in Eq. (6.12), it has been pointed out that this could lead to biased
constraints on cosmological parameters (de Mattia et al., 2021). We, therefore, decided
to re-normalise the measured power spectra by the limit, at small separation, of the
monopole of the window function, Q0(0), see Sect. 6.2.4. The final estimator of the power
spectrum is

P̂0(k) =
A0

Q0(0)

(
P̃0(k)− S0

)
. (6.18)

We note that we used, both for the linear and NN catalogues, the value of Q0(0) com-
puted from the randoms of the linear catalogues, since the two catalogues are expected
to have the same response at small scales.

In Fig. 6.3 we show the NGC and SGC (left and right columns) observed power spec-
tra of the linear and NN catalogues (dots and squares). The three rows correspond to the
different weights used to estimate the P̂0(k), from top to bottom the rows correspond to
the FKP weights, the optimal weight with p = 1.0, and with p = 1.6. We also plotted
the best-fit model for the linear (dashed line) and NN (dash-dotted line) catalogues (see
Sect. 6.4). The best fit of the FKP weight case is for the model with p = 1.6. For the NN
catalogues power spectra, the band powers have been shifted by 5% along the k-axis
for better visualisation of the corresponding error bars. The observed power spectra es-
timated from the two catalogues differ only in the first two bins. The NN catalogues’
power spectra have less power in the first bin than their linear counterparts. The excess
of power in the linear catalogues’ power spectra is expected to be related to large-scale
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Figure 6.3: Observed power spectra and best-fit model for the NGC (right column), and
SGC (left column), and for the three weighting scheme: FKP (top row), optimal weights
with p = 1.0 (middle row), and with p = 1.6 (bottom row). For the NGC (SGC) blue
(green) dots and the dashed line correspond to the linear catalogues results, red (yellow)
squares and dash-dotted line to the NN catalogues. The horizontal grey line marks the
turn-around point in the power spectrum. To better visualise the power spectra error
bars, the NN P (k) was shifted by 5%.
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systematic effects that the linear regression weights are not able to correct. The solid hor-
izontal line in each panel shows the amplitude of the power spectrum at its peak, and
it serves to guide the eye to the fact that the optimal weighted measurements are larger
than the corresponding FKP ones. This was expected because the optimal weights up-
weight high redshift galaxies (see Fig. 6.2), which have a higher bias and therefore a
larger clustering amplitude.

6.2.4 Window functions

The window function, W (s), represents the footprint on the sky and the redshift selection
function of the survey. It is an essential ingredient to compare a power spectrum model
with the observed power spectrum.

In order to evaluate the model of the observed power spectrum we need the multi-
poles of the window function (see Sect. 6.3.2), defined as follows,

Qℓ(s) ≡ (2ℓ+ 1)

∫
dΩs

∫
d3s1 W (s1)W (s+ s1)Lℓ(ŝ1 · ŝ) ≡

∫
ds1 s21 Qℓ(s; s1) . (6.19)

To compute the window function multipoles we use the pair-counting approach intro-
duced in Wilson et al. (2017). First, with nbodykit we calculate the weighted pair
counts of the random catalogues as a function of the three-dimensional separation and
the cosine of the line-of-sight angle, RRw(s, µ). That is done by cross-correlating the ran-
dom catalogues weighted by wc w̃tot, and the random catalogues weighted by wc wtot, 0.
Second, we compute its multipoles,

RRw
ℓ (s) = (2ℓ+ 1)

∫
dµRRw(s, µ)Lℓ(µ) . (6.20)

Finally, in order to obtain the window function multipoles the quantity above needs to
be normalised to take into account the width of the shell over which the pair counting
is performed and the density of the random catalogues in comparison to the data cata-
logues. The window function multipole ℓ is finally defined as

Qℓ(s) =
RRw

ℓ (s)

4π s3 d ln s

(∑qso
wc
)2 −∑qso

w2
c(∑s

wc
)2 −∑s

w2
c

, (6.21)

with d ln s = sn+1−sn
s , where s is the centre of the n-th separation bin. We stress that each

set of optimal weights requires its own multipoles of the window function Qℓ(s).
To reduce the computational time of the pair counting algorithm we divided the ran-

dom catalogues into five subsets and computed RRw(s, µ) for each of them. These sub-
sets are 10 times denser than the data catalogues. We calculated the window function
multipoles of each random subset using Eq. (6.21), with the caveat that the sum over the
random

∑s is now over the subset. The final Qℓ(s) is the mean of the five subsets.

6.3 Analysis methods

6.3.1 The power spectrum Model

To model the quasar power spectrum in redshift-space we use linear theory. Linear
theory is enough to make the prediction for two reasons: first, the local fNL signal is at
low k, where structures are still growing with a linear regime. Second, the smaller scales
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of this sample are dominated by redshift errors, which dominate over the non-linearities.
We write the power spectrum model as follows (?),

Pqso(k, µ; z) = G(k, µ;σFoG)
2
[
btot(k; z) + f(z)µ2

]2
Pm(k; z) +N , (6.22)

where Pm is the matter power spectrum in real-space, N is the residual shot noise free
parameter, and f(z) is the growth rate. The total quasar bias includes PNG contribution
(Dalal et al., 2008; Slosar et al., 2008),

btot(k; z) = b1 +∆b = b1 + fNL (b1 − p) α̃(k; z) , (6.23)

where b1 is the quasar linear bias, and α̃(k; z) is

α̃(k; z) =
3Ωm H2

0 δc

c2 k2 T (k)D(z)
. (6.24)

In Eq. (6.24), δc = 1.686 is the critical density in the spherical collapse in an Einstein-
De Sitter Universe, Ωm is the matter density parameter, and H0 the Hubble parameter,
both at z = 0, and c is the speed of light. Then, T (k) is the matter transfer function
normalised to 1 at low-k, and D(z) is the growth factor normalised to (1 + z)−1 in the
matter-dominated era. Finally, the damping of the power spectrum due to nonlinear
redshift-space distortions is included with a Lorentzian function,

G(k, µ;σFoG) =

[
1 +

(k µσFoG)
2

2

]−1

, (6.25)

where σFoG accounts for both the typical velocity dispersion of QSOs, as well as their
redshift error, which is estimated to be σz = 300km s−1 for DR16Q, with no significant
dependence on the redshift (Lyke et al., 2020).

The quasar power spectrum multipoles are then easily computed

Pℓ, qso(k; z) =
2ℓ+ 1

2

∫ 1

−1

dµPqso(k, µ; z)Lℓ(µ) . (6.26)

To evaluate the cosmological quantities in Eq. (6.22) and Eq. (6.24) we assume a Planck
fiducial cosmology (Planck Collaboration et al., 2020a), and fix the redshift to an effective
value. In the following section, we discuss how the effective redshift is defined and
computed. We calculate the cosmological functions with classy, the Python wrapper
of the CLASS CMB Boltzmann solver (Blas et al., 2011).

6.3.2 Convolution with the window function and the effective redshift

The ensemble average of the power spectrum estimator in Eq. (6.11) is (Wilson et al.,
2017; Beutler et al., 2019)

⟨P̂0(k)⟩ =
∑
ℓ, L

(
ℓ L 0
0 0 0

)2 ∫
ds s2j0(ks)

∫
ds1 s21 ξℓ(s; s1(z))QL(s; s1(z)) , (6.27)

where QL(s; s1) is defined in Eq. (6.19), ξℓ(s; s1) is the multipole ℓ of the QSO correlation
function, jA(ks) is the spherical Bessel function of order A, and

(
ℓ L 0
0 0 0

)
is a Wigner 3-j

symbol.
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Figure 6.4: The accuracy of the effective redshift approximation. In red, and for two dif-
ferent values of fNL, the plot shows the ratio between the theoretical model integrated
over the full radial selection function of the DR16Q sample and the same model evalu-
ated at a zeff defined in Eq. (6.30), see Table 6.1. The accuracy of the other most common
definition of zeff in the literature is shown with blue lines. The black points correspond
to the effective wavenumbers of the measurements of the QSO power spectrum.

FKP p = 1.0 p = 1.6

NGC 1.49 1.65 1.76
SGC 1.50 1.66 1.76

Table 6.1: The effective redshift for the different weights and the two sky regions. The
optimal weights increase the zeff of the sample for p = 1.0 and p = 1.6.

In Eq. (6.27) the redshift evolution of the signal is taken into account by s1(z) in
ξℓ(s; s1), which should be integrated against the QL(s; s1) for a proper model compari-
son. This could be a time-consuming step if repeated for every point in the parameter
space exploration, and it is therefore often approximated. Noticing that in most appli-
cations the correlation function is factorisable in time and space, ξ(s, z) ∼ g(s)h(z), a
possible way to speed up the computation of the theoretical model is to separate the in-
tegrals over s and s1. An even more useful approximation is to assume that the model
can be evaluated only at some effective redshift, zeff , defined by the radial selection func-
tion. The expression for the power spectrum then simplifies to

P0(k; zeff) =
∑
ℓ, L

(
ℓ L 0
0 0 0

)2 ∫
ds s2 j0(ks) ξℓ(s; zeff)QL(s) , (6.28)

with the multipole of the correlation function of the random catalogues QL(s) defined
in Eq. (6.19). The final integral is a simple Hankel transform that can be computed quite
efficiently Wilson et al. (2017).

The question becomes, then, what is the most accurate definition of zeff . The esti-
mator of the power spectrum in Eq. (6.11), and therefore the multiples of the window
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functions as well, contains two powers of the radial selection function, which suggests
the following definition of zeff for a sample with given n(z) and weights w(z),

zeff =

∫
dz n(z)2 [χ(z)2/H(z)]w(z)2 z∫
dz n(z)2 [χ(z)2/H(z)]w(z)2

, (6.29)

where χ(z) is the comoving distance and H(z) is the Hubble parameter. In practice, the
integral above can be estimated via Monte Carlo methods as

zeff =

∑qso
z n(z)w2

c wFKP(z)
2 w̃(z)w0(z)∑qso

n(z)w2
c wFKP(z)2 w̃(z)w0(z)

, (6.30)

or with the analogous expression written in terms of the random catalogues. The values
of zeff for the samples used in this work are shown in Table 6.1. We see that the optimal
weighting scheme increases zeff , since it up weights high redshift objects, which have a
higher response to the presence of PNG.

The accuracy of our definition of zeff is presented in Fig. 6.4, with the blue lines show-
ing the ratio between the power spectrum model fully integrated over redshift and the
monopole evaluated at zeff . The dashed line corresponds to fNL = 10, while the contin-
uous one to fNL = −30, with p = 1.6 in both cases. The black points on the horizontal
axis show the effective values of the wavenumbers of the measurements. We find that
our approximation is sub-percent accurate at high-k, and better than 2.5% accurate on
very large scales, thus much smaller than the sample variance of the measurements.

On the other hand, the DR16Q analysis of Mueller et al. (2022) adopts a definition
of zeff with one less power of n(z) than Eq. (6.30).3 This choice produces the red set of
curves in Fig. 6.4, which we find are more than a per cent off at high-k, a number that
could become significant over many data points, and more than 10% inaccurate at large
scales. In particular, Mueller et al. (2022) reports zeff = 1.83 for the weights optimised
with p = 1.6, a number significantly higher than our zeff = 1.76. At fixed value of fNL,
the product bϕ fNL is 10% larger at z = 1.83 than at z = 1.76. This suggests that the
authors of Mueller et al. (2022) would have at least gotten a 10% weaker constraint on
fNL, had they used the more accurate definition of zeff in Eq. (6.29).

Finally, we write the convolution of the window function in the more convenient
form

P0(k; zeff) =
∑
ℓ, L

iℓ
(
ℓ L 0
0 0 0

)2 ∫ dq
2π2

q2 Pℓ, qso(q; zeff)

∫
ds s2j0(ks) jℓ(qs)QL(s) (6.31)

=
∑
ℓ, L

iℓ
(
ℓ L 0
0 0 0

)2 ∫ dq
2π2

q2 Pℓ, qso(q; zeff)Qℓ, L(k, q) , (6.32)

where we defined
Qℓ, L(k, q) =

∫
ds s2j0(ks) jℓ(qs)QL(s) . (6.33)

The integral in Eq. (6.32) is then evaluated as a simple matrix multiplication. This choice
allows us to never compute the correlation function multipoles, which are formally di-
vergent in the presence of local PNG.

3The published version of Mueller et al. (2022) contains the following definition of the effective redshift,
right below their Eq. (11), zeff =

∑
i zi wtot/

∑
i wtot, where w2

tot = w2
FKP w2

c |w̃ w0|. This is a typo, as the
analysis of Mueller et al. (2022) actually used zeff =

∑
i zi w

2
tot/

∑
i w

2
tot, corresponding to the red set of

curves in fig. 6.4. We thank Eva-Maria Mueller for the correspondence about this point.
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The multipoles of the window function corresponding to the optimal weights with
p = 1.0 are shown in Fig. 6.5, top panel. In our model, we use only the even multipoles
up to ℓ = 4, and neglect possible odd ones (Beutler et al., 2019).4

6.3.3 The integral constraint

The final step to model the observed power spectrum is to correct the convolved power
spectrum with the integral constraint effects. Integral constraint effects arise when the
survey selection function is estimated from the data themselves (de Mattia & Ruhlmann-
Kleider, 2019). Fluctuations over the whole survey average to zero when the observed
galaxy mean density is used as the true cosmological mean. This causes a suppression of
power at large scales, which we call global integral constraint (GIC; Peacock & Nichol-
son, 1991; Wilson et al., 2017). On the other hand, an additional radial integral constraint
is produced when the radial n(z) is inferred from the data (de Mattia & Ruhlmann-
Kleider, 2019). That is the case for eBOSS data, where the random catalogues redshift
distribution is obtained by shuffling the data redshift distribution. The RIC causes a
suppression of the large-scale fluctuations along the line-of-sight.

The global integral constraint depends on the Hankel transform, |W̃ℓ(k)|2, of the win-
dow function multipole Qℓ(s). The Hankel transforms are normalised so that |W̃0(0)|2 =
1 (Wilson et al., 2017). To correct for the RIC we need to estimate the effect that the shuf-
fling of the random produces on the measured power spectrum. To do so we used both
the complete and shuffled EZmocks. First, we compute the mean of the power spec-
tra of the complete EZmocks, P̄c(k), and the mean of the power spectra of the shuffled
EZmock, P̄r(k). Then, the radial integral constraint correction is defined via

WRIC(k) =
P̄c(k)− P̄r(k)

P̄c(k)
. (6.34)

Given |W (k)|2 and WRIC(k) the final expression for the power spectrum is (Wilson et al.,
2017; Mueller et al., 2022)

P IC
0 (k) = P0(k)− P0(0) |W (k)|2 − P0(k)WRIC(k) , (6.35)

where we dropped the dependence on the effective redshift for brevity. In Fig. 6.5 bottom
panel we present the effect of the different components of the observed power spectrum
model and compare it with the mean power spectrum of the EZmock realistic catalogues.
First, the plot shows the importance of the window convolution (dotted red line), which
removes power at k ≲ 5 × 10−2 (Mpc/h)−1. Second, the integral constraint correction
(dash-dotted green line) only affects the first bin, but it is well within the 68% error bars.

6.3.4 Parameter estimation

To estimate the posterior distribution of the parameters θ of our model, T(θ), given our
data vector D, we assume a multi-variate Gaussian likelihood,

L(D|θ,Σ) ∝ exp

−1

2

∑
ij

(Di − Ti(θ)) Σ
−1
ij (Dj − Tj(θ))

 . (6.36)

4Wide angle effects and other projection effects are negligible for the DR16Q volume (Castorina & White,
2018a,b; Castorina & Di Dio, 2022; Beutler et al., 2019).
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Figure 6.5: Top: multipoles of the window function in configuration space. The blue
solid line, red dashed, and dotted green respectively are the monopole, quadrupole, and
hexadecapole of the window function. Bottom: the effect of the different components
of the observed power spectrum model compared to the mean power spectrum of the
EZmock realistic catalogues (black circles with error bars). The blue dashed line is the
monopole of the best-fit model, the dotted red line is the best-fit model convolved with
the window function, and the dash-dotted green line is the observed power spectrum
corrected with the integral constraint as in Eq. (6.35).
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The model parameters θ are three for each field of view: σFoG, b1 and N (see Sect. 6.3.1),
and fNL. The rest of the cosmology is fixed to the Planck best-fit values (Planck Col-
laboration et al., 2020a). Therefore, when fitting the data of one sky patch (single field
analysis) the total number of free parameters is four, and when fitting the two fields of
view data (joint analysis) the free parameters are seven. In the case of the joint analy-
sis fNL is common for the two fields, while the other three parameters of the model are
unique for each field of view, for a total of six parameters. We assume a uniform prior
distribution for all the parameters, with the following bounds

fNL ∈ [−500, 500] ,

b1 ∈ [0.1, 6] ,

σFoG ∈ [0, 20] ,

N ∈ [−5000, 5000] .

(6.37)

In Eq. (6.36), Σ−1 is the inverse of the covariance matrix estimated with the EZmock
realistic catalogues (see Sect. 6.2.2). As a finite number of mocks, Nm = 1000, is used to
estimate the covariance matrix, its inverse, the precision matrix, is biased (Hartlap et al.,
2007). This bias is corrected by re-scaling the covariance matrix with the inverse of the
Hartlap factor,

Σ′ =
Nm − 1

Nm −Nb − 2
Σ , (6.38)

where Nb is the number of k-bins in the observed power spectrum. This correction is
∼ 5% for the NGC and ∼ 6% for the SGC.

The Monte Carlo Markov chain (MCMC) algorithm employed in this analysis is
the Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal, 2011; Betancourt, 2017).
HMC is a sampling technique that combines principles from Hamiltonian mechanics
and MCMC methods to efficiently explore high-dimensional parameter spaces. Unlike
traditional methods, HMC employs a dynamic integration of the target probability dis-
tribution. By introducing auxiliary momentum variables, HMC maps the trajectory of
the walkers, which explore the posterior distribution, into a Hamiltonian system, whose
potential energy is given by minus the logarithm of the joint-likelihood. Then, HMC
exploits the gradients of the distribution to follow the Hamiltonian trajectories and effi-
ciently sample the posterior even in a high-dimensional space. In this work, we use the
no-U-turn sampler (NUTS; Hoffman & Gelman, 2011; Ge et al., 2018) implementation
of HMC, which is able to automatically adapt critical parameters like the step size and
the trajectory length. By setting the acceptance rate to 0.9, the chains quickly converge,
within a few thousand steps, to R − 1 ≲ 10−3, where R is the Gelman-Rubin statistics
(Gelman & Rubin, 1992).

6.4 Constraints and discussion

In this section we present and discuss the constraints on fNL we obtained with the analy-
ses of DR16Q. Figure 6.3 shows the measured data points and error bars of the monopole
of the power spectrum with the best-fit model of the joint analyses. The plots are pre-
sented for the two sky regions, NGC (left column) and SGC (right column), and the
three weighting schemes, the standard FKP with a model assuming p = 1.6 (top row),
the optimal weights for p = 1.0 (middle row) and p = 1.6 (bottom row).

Figures 6.6 and 6.7 show the two-dimensional posterior of the joint analyses for the
linear and NN catalogue, respectively. Both figures are organised as follows: the left
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Figure 6.6: Two-dimensional posterior distributions for fNL and the quasar bias, b1, of
NGC and SGC from the joint analysis of the linear catalogues. The plots on the top
correspond to p = 1.0, and the bottom plots to p = 1.6. On the left are the results for the
FKP weighting scheme and on the right for the optimal weights.
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Figure 6.7: Same as figure 6.6, but for the NN catalogues.
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p C.L. Linear NN eBOSS DR14Q

joint

1.0
FKP 68% 19 < fNL < 53 0 < fNL < 36

95% 4 < fNL < 71 −16 < fNL < 54 −39 < fNL < 41

Optimal 68% −4 < fNL < 27 −14 < fNL < 19

95% −18 < fNL < 42 −30 < fNL < 34 −51 < fNL < 21

1.6
FKP 68% 34 < fNL < 97 0 < fNL < 66

95% 6 < fNL < 129 −32 < fNL < 98 −74 < fNL < 81

Optimal 68% −23 < fNL < 21 −33 < fNL < 15

95% −43 < fNL < 44 −54 < fNL < 40 −81 < fNL < 26

NGC

1.0
FKP 68% 26 < fNL < 67 1 < fNL < 44

95% 6 < fNL < 87 −23 < fNL < 63 −34 < fNL < 61

Optimal 68% −6 < fNL < 34 −20 < fNL < 21

95% −27 < fNL < 52 −42 < fNL < 41 −56 < fNL < 38

1.6
FKP 68% 49 < fNL < 125 −2 < fNL < 78

95% 10 < fNL < 159 −38 < fNL < 121 −67 < fNL < 112

Optimal 68% −39 < fNL < 28 −53 < fNL < 17

95% −80 < fNL < 54 −95 < fNL < 47 −87 < fNL < 42

SGC

1.0
FKP 68% −15 < fNL < 41 −17 < fNL < 45

95% −36 < fNL < 72 −43 < fNL < 78 −64 < fNL < 31

Optimal 68% −17 < fNL < 29 −21 < fNL < 32

95% −35 < fNL < 55 −40 < fNL < 63 −61 < fNL < 26

1.6
FKP 68% −22 < fNL < 78 −34 < fNL < 81

95% −61 < fNL < 135 −82 < fNL < 146 −122 < fNL < 63

Optimal 68% −28 < fNL < 36 −37 < fNL < 40

95% −51 < fNL < 74 −66 < fNL < 84 −92 < fNL < 42

Table 6.2: Summary of the fNL 68% and 95% constraints of this work. The results for
NGC, SGC and the joint analysis are presented, and compared with the eBOSS DR14Q
constraints (Castorina et al., 2019).
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Figure 6.8: One dimensional posterior distribution for fNL for the joint analysis of the
linear catalogues. The dashed red curve is the posterior distribution obtained with the
FKP weight analysis and the dotted blue curve with the optimal weights analysis. The
vertical lines mark the corresponding 95% constraints. On the left, the results for p = 1.0,
and on the right for p = 1.6.

column corresponds to the analysis of the power spectrum monopoles measured with
the standard FKP weights and the right column to the analysis of the optimally weighted
power spectrum; the top row presents the results for p = 1.0, and the bottom row to
p = 1.6. In the plots, we show three of the seven fit parameters: fNL, and the linear bias b1
of the two sky caps. In all the analyses there is almost no correlation between the biases
of the two sky regions, which was expected as they correspond to independent fields of
view. Moreover, the linear biases of the two Galactic caps are always consistent with each
other, and the bias estimated with the optimal weights is larger than the bias estimated
using the standard FKP weights. The reason behind the latter behaviour is the higher
effective redshift of the sample when using the optimal weighting scheme, as discussed
in Sect. 6.2.3. Another effect visible in Figs. 6.6 and 6.7 is how the correlation between
the linear bias and fNL changes between the FKP weights and the optimal weights. Even
though this effect is present for both p values it is more evident in the case with p = 1.6.
The optimal weights reduce the correlation between fNL and the linear bias. We observe
this same behaviour for the other fit parameters.

Figure 6.8 presents the comparison of the one-dimensional fNL posterior distribu-
tions obtained with the joint analyses of the linear catalogues. The left panel corresponds
to the case with p = 1.0 and the right panel to p = 1.6. In both panels, the red dashed
line is the fNL posterior of the FKP analysis and the dotted blue line represents the pos-
terior of the optimal weight analysis. The corresponding vertical lines mark the 95%
constraints. For both values of p the 95% constraints estimated with the standard FKP
weights do not contain fNL = 0. Given that CMB, which measures fNL = 0.8±5, and LSS
probe the primordial power spectrum over the same range of scales, the results suggest
the presence of residual contamination in the FKP catalogues produced with the linear
systematic weights. The optimal weights shift the posterior to values more consistent
with fNL = 0. Serendipitously, this suggests that higher redshifts QSOs in the samples
might be less affected by systematic effects. Nevertheless, the most important differ-
ence between the standard FKP and optimal weights is that the optimal weights give
tighter constraints. For p = 1.0 the optimal weights improve the 95% constraint of about
10%, for p = 1.6 this improvement is a little less than 30%. The comparison between
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the optimally weighted and the unweighted constraints is difficult, due to the large sys-
tematic effects still present in the FKP catalogues, especially the NGC ones. At 95% c.l.
the joint analysis for p = 1.0 does not contain fNL = 0 for the linear catalogues, and it
barely contains it at the 68% c.l. for the NN ones, see Table 6.2. Nevertheless, the larger
improvements with p = 1.6 than with p = 1.0 point in the direction of bϕ ∼ b1 − 1.6.

The 68% and 95% constraints on fNL are written down in Table 6.2, where we also
make a comparison with the results of Castorina et al. (2019) on the eBOSS DR14Q data.
We always get tighter constraints with the linear catalogues rather than with the NN cat-
alogues. The improvement in the constraints using the optimal weights in comparison
to the standard FKP ones is the same for the two Galactic caps. On the other hand, the
improvements with respect to the eBOSS DR14Q analysis are between 10% and 20% for
the two catalogues and are smaller than the one expected by the doubling of the survey
volume. This can be attributed to large-scale systematic effects that are still present in
the sample. In particular, the constraints from the single field analyses show smaller
improvements with respect to the eBOSS DR14Q sample than the joint analysis. In the
case of SGC, the constraints are even worse than in the older ones. Nevertheless, the
single-field analyses give posterior distributions consistent with each other and their
combination in the joint analysis produces the tightest bounds. The best constraints of
this work are from the joint analysis of the linear catalogues with the optimal weights.
The 95% constraints for p = 1.0 are −18 < fNL < 42 corresponding to σfNL ∼ 15 and for
p = 1.6 they are −43 < fNL < 44 with σfNL ∼ 22.

We also repeated the parameters estimation assuming a value of p = 3.0 in the opti-
mal weights. In this case, we expect a worse constraint on fNL from both the FKP and
the optimal analysis compared to the cases discussed above. However, as discussed in
Sect. 6.1, we can use these constraints to show how the optimal analysis can provide a
data-driven estimate of the value of p. If the value of p used in the optimal weights is
not close to the true one, then the optimal analysis will not improve over the standard
case or will improve less than an analysis with a value of w̃ ∼ bϕ closer to the actual
response. Note that this approach assumes that the local PNG signal we are looking for
is non-zero. In the case of p = 3.0, the NGC analysis always shows evidence for non-zero
fNL at the 95% c.l., thus we focus on SGC. For the linear catalogue, the constraints are
−140 < fNL < 81 for the FKP weights and −129 < fNL < 76 for the optimal analysis.
This improvement by 8% should be compared to the 20% and 56% reduction of the error
bar for p = 1.0 and p = 1.6 respectively in the SGC analysis. This implies that larger
values of p ≳ 3 are disfavoured for this sample.

6.5 Conclusions

In this work, we presented the most stringent constraint on the amplitude of local Pri-
mordial Non-Gaussianities with Large-Scale Structure data, in particular with the eBOSS
DR16Q data set. Assuming the QSOs response to fNL is proportional to b1 − p, where b1
is the linear bias, our strongest bounds read

−4 < fNL < 27 , for p = 1.0 ,

−23 < fNL < 21 , for p = 1.6 ,
(6.39)

at 68% c.l..
Our goal was to show that the optimal signal weighting reduces the error bars on

fNL compared to standard analysis, and we robustly find improvement between 10-30%
depending on the analysis setup. While our optimal constraints are always consistent
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with no local PNG, the comparison with previous eBOSS data releases does not allow
us to exclude the presence of residual systematic effects in the data. Nevertheless, the
DR16Q catalogues and the analysis presented here represent an important step forward
in the direction of robust and optimal analysis of PNG with LSS data. We have also
shown how optimal weights could provide a data-driven prior on the largely unknown
value of p, and we were able to exclude p ≳ 3.

This work can be extended in several directions. First, we have not attempted an
optimal noise weighting of the power spectrum data. This could be done using optimal
quadratic estimators (Tegmark et al., 1998), for which new algorithms have been recently
presented (Philcox, 2021b). A fully optimal analysis will allow us to get closer to the full
Fisher information contained in the power spectrum. Secondly, it is well known that
the Bispectrum is the most sensitive probe to local PNG. A careful study of the optimal
weights for higher-point statistics is still missing and could revolutionise the way we
constrain fNL. We intend to return to these interesting problems in future work.



CHAPTER 7

Preliminary applications of machine learning to LSS
analysis

7.1 Introduction

Next-generation redshift surveys aim to measure late-time cosmological parameters with
unprecedented precision (LSST Science Collaboration et al., 2009; Laureijs et al., 2011;
DESI Collaboration et al., 2016; Akeson et al., 2019). To reach this goal successfully these
experiments were designed to rapidly acquire data for a large number of objects. How-
ever, the increment of galaxies with a known redshift and the larger volumes of these
surveys will also pose new challenges to cosmological analyses. In particular, the com-
bination of the field two-point statistics with higher-order statistics is of key importance
to extract all the information from LSS data (e.g., Gil-Marı́n et al., 2015; Agarwal et al.,
2021).

The measurement of these statistics has high computational requirements and their
modelling is a non-trivial task as well (e.g., Scoccimarro, 2015; Philcox, 2021a; Pardede
et al., 2022). In the last years, the cosmological community has been trying to under-
stand how to solve these problems and many machine learning-based solutions have
been proposed. A first solution that has the potential to solve both problems is field level
analysis. In this kind of analysis, we do not need to extract any summary statistics from
the galaxy field as the algorithms directly analyse the three-dimensional distribution of
the galaxies. Jasche et al. (2010) and Jasche & Wandelt (2012) proposed the first field-
level algorithms that reconstruct the initial conditions of the Universe to recover the
cosmological parameters. Another very popular solution is the use of convolutional or
graph neural networks (e.g., Ravanbakhsh et al., 2017; Villaescusa-Navarro et al., 2021;
Villanueva-Domingo & Villaescusa-Navarro, 2022) to directly analyse the galaxy field.
A priori, this second class of algorithms can directly output the cosmological parameters
and does not require the modelling of any summary statistics. In this case, we talk about
likelihood-free analysis, which is a solution to the modelling problem.

In a likelihood-free analysis, the approach involves training a neural network to es-
tablish the relationship between a compression of the data and the corresponding cos-
mological parameters. The neural network effectively serves as an approximation of
the posterior distribution for the parameters based on the given data compression. This
methodology is versatile and can be applied to various data compression of the field.
For instance, it can be utilised for analysing conventional summary statistics of the field,
such as the power spectrum or the bispectrum (Hahn et al., 2023a,b) or it can be ex-
tended to handle more unconventional compression, such as the scattering transform
(Cheng et al., 2020; Valogiannis et al., 2023; Régaldo-Saint Blancard et al., 2023), or even
the output of a field-level algorithm (Lemos et al., 2023).

111
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This chapter introduces preliminary results from a field-level analysis algorithm in-
tended for application to VIPERS (Guzzo et al., 2014; Scodeggio et al., 2018). The unique
pencil beam geometry of VIPERS allows for flattening it in one direction, generating im-
ages that serve as input for a two-dimensional convolutional neural network. The choice
of two-dimensional CNNs is strategic, as they exhibit lower memory requirements and
faster training times compared to their three-dimensional counterparts or graph neural
networks, which are typically employed for larger surveys. This optimisation is par-
ticularly advantageous for efficiently handling the characteristics of the VIPERS survey.
We build the CNN to analyse simultaneously the two fields of view of VIPERS and to
measure the matter density parameter, Ωm, and the amplitude of the linear matter power
spectrum at 8Mpch−1, σ8.

This work is still limited to the analysis of dark matter halo distributions generated
with dark matter simulations. Its novelty lies in the use of Lagrangian perturbation the-
ory simulation for the training of the algorithm, in the application of the survey mask
to the simulated light cones in order to reproduce the survey geometry, and in the use
of only observational information to build the model inputs, such as the halos positions
in the sky (right ascension and declination) together with their redshifts. Additionally,
we test the algorithm with halos produced with an N-body simulation in order to un-
derstand if it generalises over different simulation types. We train and test the algorithm
both in real and redshift space.

The chapter is organised as follows: Section 7.2 describes the CNN architecture and
Sect. 7.3 the data used for the training and testing. In Sect. 7.4 we present the results of
the different analyses. We conclude in Sect. 7.5.

7.2 Model

We say that a neural network is convolutional if at least one of its layers applies a convo-
lution to the neuron features (see Eq. 2.6) instead of the standard linear transformation
(see Eq. 2.2). Convolution can be easily defined for any N -dimensional tensor and it is a
very efficient operation whenever the data have a grid-like structure. For this work, we
make use of two-dimensional CNNs.

We build a CNN model that takes as input the two VIPERS fields of view, W1 and W4,
simultaneously. We sketch the architecture of the CNN in Fig. 7.1. The first section of the
CNN consists of two parallel convolutional models that respectively take as input W1
and W4. The first convolutional operation has a kernel specifically designed to output a
square image starting from each one of the pixelised fields. Given the kernel dimension
ki along axis i, its stride si, which corresponds to the shift of the kernel between two
convolutions, and the padding pi, which is the number of null pixels we add around
the input tensor before the convolution, we can determine the final dimension of the
convolutional layer output along axis i as follows

douti =

⌊
dini + 2 pi − ki

si
+ 1

⌋
. (7.1)

Conversely, we can exploit Eq. (7.1) to determine the convolution parameters given the
input image shape and an output required dimension. The first convolution reduces
the two pixelised fields to squares with the same dimension divided in 8 filters, which
undergo a batch normalisation (Ioffe & Szegedy, 2015). The following three layers are a
repetition of the convolution operation and the batch normalisation. After each convo-
lution, the dimensions of the images are halved in both directions, while the number of
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Figure 7.1: Schematic representation of the CNN architecture. The network takes as in-
put the two fields of view, which are pixelised in right ascension and redshift and cut
into three declination slices. The images undergo a sequence of convolutional layers
separately. For visualisation purposes, we represent only one filter out of four for the
hidden convolutional layers. The outputs of the last convolution are flattened and con-
catenated. Finally, the hidden features are compressed into the output through a series
of dense layers. The network outputs either the mean value of the cosmological param-
eters of interest or their first and second moments.
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filters is doubled. The final convolutional output for each VIPERS field is a tensor with
dimension 4×4×64. These outputs are flattened and concatenated before the final dense
layers of the network, which compress the convolutional output into the cosmological
parameters. All the neurons of the CNN, except for the outputs, use a rectified linear
unit as activation function (ReLU; Agarap, 2018).

For this work, we developed two different CNNs, which differ in their outputs and
loss functions. The first CNN is a regression network that simply outputs the value of the
cosmological parameters and uses as loss function the mean square error loss (Eq. 2.4),

LMSE(ŷ,y) =
∑
a

1

nb

∑
i∈batch

(yi, a − ŷi, a)
2
, (7.2)

where nb is the batch size and a indexes the regression parameters. On the other hand,
the second network performs inference in the sense that it outputs both the first and
second moment, ya = [µa, σa], of the a-th cosmological parameter distribution. In cos-
mology, this method, which is also known as moment network, was originally proposed
by Jeffrey & Wandelt (2020) and developed further by Villaescusa-Navarro et al. (2022).
The loss function of this model reads as follows

Lm(ŷ,y) = ln

(∑
a

1

nb

∑
i∈batch

(ŷi, a − µi, a)
2

)

+ ln

(∑
a

1

nb

∑
i∈batch

(
(ŷi, a − µi, a)

2 − σ2
i, a

)2)
.

(7.3)

If we assume that the posterior distribution of the parameters is Gaussian the output of
the moment network completely defines it. Conversely, if the posterior is not Gaussian
we are approximating it to a normal distribution with this parameterisation. In this
case, a better solution would be a neural density estimator (Hahn et al., 2023a), but we
postpone to future work the study of this model. Finally, we use Adam (Kingma & Ba,
2014) as the CNN optimiser.

7.3 Data

Even though this work is entirely based on simulation data, broadly speaking it also
makes use of VIPERS data (Guzzo et al., 2014). As mentioned above the final objective
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Figure 7.3: Sky footprint of VIPERS W4.

of this project is to apply the developed ML algorithm to VIPERS and make a field-level
analysis. VIPERS is a spectroscopic survey with a magnitude limit of iAB < 22.5 that
covers the redshift range 0.5 < z < 1.5. For this work, we limit the redshift range to
0.6 < z < 1.0, as it corresponds to the region with the highest density and completeness.
The survey is divided into two fields of view, W1 and W4, which are based on the cor-
responding wide fields of the CFHTLS photometric catalogue. The two fields cover an
area of ∼24deg2 and we show their footprints on the sky in Figs. 7.2 and 7.3.

As a first step in the direction of real data analysis, we use these same footprints to
cut VIPERS-like light cones from the simulated data. By applying the two field masks we
impose to the simulations the same angular selection of VIPERS and the corresponding
angular component of the window function.

7.3.1 Lagrangian perturbation theory simulations

The CNN training data are produced using the PINpointing Orbit-Crossing Collapsed
HIerarchical Objects code (PINOCCHIO; Monaco et al., 2002). PINOCCHIO traces the
progression of a group of particles arranged on a uniform grid, employing an ellipsoidal
model for calculating collapse times and recognising dark matter halos. Additionally, it
uses third-order Lagrangian perturbation theory (3LPT; Munari et al., 2017) to displace
the halos from their initial positions. The 3LPT version of the code recovers the halo
power spectrum of an N-body simulation within 10% up to a scale of k ∼ 0.5hMpc−1

in real space. The loss in accuracy with respect to an N-body simulation corresponds
to a faster generation of the halo catalogues, possibly making PINOCCHIO a cheaper
alternative to generate catalogues for ML applications.

Using PINOCCHIO we generate a set of 2500 simulated cosmologies. All the sim-
ulations have a flat ΛCDM cosmology with h = 0.6777 and ns = 0.96. Between the
simulations we vary the matter density parameter, Ωm, the baryon density parameter,
Ωb, and the matter power spectrum amplitude at 8h−1 Mpc, σ8. The 2500 different cos-
mologies are extracted from a Latin hypercube with Ωm ∈ [0.1, 0.5], Ωb ∈ [0.03, 0.07],
and σ8 ∈ [0.6, 1.0]. We compute the initial power spectrum of the simulation with the
cosmic linear anisotropy solving system (CLASS; Lesgourgues, 2011) as the linear matter
power spectrum at z = 0. We run the simulations with a box size of 400Mpch−1 and a
grid size of 600. The output of a simulation consists of a light cone in the redshift range
0.6 < z < 1.0 and an aperture of 5deg. The minimum halo mass is Mmin ≃ 1011 M⊙ h−1.
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From each light cone, we cut 32 realisations of the two VIPERS fields. To reduce the
overlap of the realisation we cut them displaced from the centre of the cone, which we
rotate and mirror to augment the number of data. At the end of the process, we have
80 000 simulations in 2500 cosmologies for training, testing, and validation of the CNN.

7.3.2 N-body simulations

We test the ML model trained with the fast Lagrangian simulation with the Dark Energy
and Massive Neutrino Universe simulations (DEMNUni; Carbone et al., 2016). DEM-
NUni is a set of high-resolution N-body simulations in four different cosmologies: a
standard flat ΛCDM simulation and three νΛCDM generalisation to universes with dif-
ferent total masses for neutrinos. For this work, we are only interested in the standard
ΛCDM realisation, which is characterised by a Planck 2013 cosmology (Planck Collabo-
ration et al., 2014).

The DEMNUni simulations were produced using the tree particle mesh-smoothed
particle hydrodynamics algorithm (TreePM-SPH) implemented in GADGET-3 (Springel,
2005). Viel et al. (2010) modified the original GADGET-3 code to include massive neu-
trinos. The simulations have Zel’dovich initial conditions at zin = 99. They cover a
comoving volume of

(
2Gpch−1

)3, which contains 20483 dark matter particles and the
same number of neutrinos when present. Each simulation contains 62 snapshots in
the range 0 < z < 99 logarithmically spaced in the scale factor a. From each snap-
shot, a halo catalogue was extracted using the GADGET-3 friends-of-friends algorithm
(FoF; Springel et al., 2001; Dolag et al., 2009). The minimum halo mass was set to
MFoF ≃ 2.5 × 1012 M⊙ h−1 (Castorina et al., 2015). The DEMNUni halo catalogues are
full-sky light cones from which we cut 100 realisations of each VIPERS field within the
redshift range of interest.

7.3.3 Pixelisation and pre-processing

For the analysis, we adopted a two-dimensional CNN. Therefore, we need to produce
two-dimensional images as input for the network starting from the three-dimensional
VIPERS-like simulations. Figures 7.2 and 7.3 show that both VIPERS fields are very
thin in the declination direction. This suggests flattening the field in this direction to
produce an image in right ascension and redshift. However, such a choice would wash
out the three-dimensional information of the survey. The solution we adopted is to cut
declination slices from the field and flatten those to produce the right ascension and
redshift images. Analogously to RGB images, which are the combination of the three
primary-colour images, the VIPERS field corresponds to a series of two-dimensional
images at different declinations.

We cut both the fields in three declination slices, which we then pixelise in the two
remaining directions. The pixelisation is uniform in each one of the two directions. We
chose the bin width to correspond to ∼10Mpch−1 at the mean redshift of the field. This
corresponds to ∆z = 0.005, which results in 80 redshift bins, and ∆RA = 0.3deg, which
produces 30 and 20 right ascension bins respectively for W1 and W4. The halo field is
pixelised with a simple nearest-grid-point method and the halo masses are ignored in
this process. Finally, the three images corresponding to each realisation are normalised
by the maximum pixel value between them. This normalisation choice has two advan-
tages, first, it removes the absolute value information making the analysis more realistic
as for real data we do not know the true number density of objects. Second, it normalises
the pixel values between 0 and 1 making CNN processing easier and faster. If the pixel
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Figure 7.4: Un-normalised two-dimensional pixel power spectrum in redshift (top) and
real (bottom) space. The left panels present the power spectrum for W1, while the right
panels for W4. The red solid line represents the mean power spectrum of the 96 PINOC-
CHIO realisations and the shaded area corresponds to the 1σ error of their distribution.
The dashed blue line is the mean power spectrum of the 100 DEMNUni VIPERS realisa-
tions.

values cover many orders of magnitude, a better solution would be to take the logarithm
of the normalised values. However, that is not the case for this work.

We use this procedure to pixelise both the PINOCCHIO simulations and the DEM-
NUni simulation. However, as the minimum halo mass of the two simulations is differ-
ent before pixelising the fields, we apply the same halo mass cut to both the simulation
types, Mhalo ≥ 3× 1012 M⊙ h−1.

We expect the field-level analysis to extract information from statistics higher than
the two-point. However, if the simulations already differ at the power spectrum level
we cannot expect the network to generalise over the simulation types. As a first test,
we compare the mean power spectra of the DEMNUni simulation and a PINOCCHIO
simulation in the same cosmology. We compute the power spectrum from the two-
dimensional images in right ascension and redshift that we feed to the CNN instead
of the traditional three-dimensional power spectrum. Even though the meaning of this
power spectrum is less intuitive it is helpful to understand the CNN input data. In the
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Figure 7.5: Un-normalised two-dimensional pixel power spectrum of the smoothed im-
ages in redshift (top) and real (bottom) space. Same as Fig. 7.4.

case of PINOCCHIO, we generated three simulations in the DEMNUni cosmology and
obtained 96 VIPERS realisations that we can compare with the 100 DEMNUni VIPERS
realisations. Figure 7.4 top panels show the mean of the un-normalised power spectra of
the 100 DEMNUni realisations (dashed blue line) for the two VIPERS field (left and right
respectively W1 and W4) and the mean of the un-normalised power spectra of PINOC-
CHIO (solid red line). The shaded area corresponds to the 1σ error in the PINOCCHIO
power spectrum. The plots show that at high ks, where the signal is dominated by the
redshift space distortion, the two power spectra diverge one from the other. In particular,
the absence of power loss in the PINOCCHIO power spectrum proves that the peculiar
velocities are not correctly simulated by the Lagrangian code.

A first solution is to remove the redshift space distortion by analysing the fields in
real space. Figure 7.4 bottom panels present the mean power spectra in real space. We do
not observe anymore the discrepancy at high ks. However, it seems that the DEMNUni
power spectrum systematically has less power than the PINOCCHIO power spectrum.
This is true for both fields, but the effect is more relevant for W4.

An alternative solution we adopted to solve the difference in the power spectra at
high ks is a smoothing of the field. We apply to the pixelised images a symmetric Gaus-
sian filter with σ = 1.7, which roughly corresponds to a minimum scale of ∼17Mpch−1.
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Figure 7.6: Measured and true values of the cosmological parameters for the CNN
trained in redshift space without smoothing. The test is performed with PINOCCHIO
simulations. The blue points correspond to the output of the regression CNN, while the
orange squares to the inference or moment network.

We present the mean power spectra of the smoothed images in Fig. 7.5 in redshift (top
panels) and real (bottom panels) space. In redshift space, thanks to the smoothing, the
differences related to the peculiar velocities are washed out and the power spectra of
the two simulations are more consistent. We note that both in the smoothed and non-
smoothed case there is a small discrepancy between the W4 power spectra at low ks. This
difference, which we observe also in real space, is within the 1σ error for both fields, but
may lead to biased CNN outputs.

7.4 Results

In the following section, we present the test results of the CNNs trained with various
input configurations. To summarise, all the CNNs are trained with 75% of the PINOC-
CHIO simulations, with an additional 15% reserved for validation to monitor perfor-
mance during training and identify the best model. Early stopping is implemented based
on the validation loss. The remaining 10% of the PINOCCHIO simulations is used for
testing. We remark that simulations for training, validation, and testing are selected to
ensure non-overlapping cosmologies.

Figure 7.6 illustrates the results of a PINOCCHIO self-test for the CNN trained in
redshift space without smoothing of the pixelised field. The results show that the CNN
is able to extract the two cosmological parameters of interest when tested on unseen
cosmologies produced with the same simulation code used for the training data. We
note that at the boundaries of the intervals slight biases in the outputs are observed,
which is a common behaviour for machine learning algorithms, attributed to reaching
the training prior limits (Villaescusa-Navarro et al., 2020).

We quantify the performance of the CNN PINOCCHIO self-test by computing the
mean squared relative error and the bias over the whole parameter range. The mean
squared relative error is consistent between the regression and inference CNNs, mea-
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suring ∼ 0.02 for Ωm and ∼ 0.007 for σ8. However, the bias tends to be higher for the
inference network compared to the regression network. Specifically, for the latter, it is
∼ 0.006 and ∼ 0.009 for Ωm and σ8 respectively, while for the inference network, it is
∼ 0.02 for both the parameters.

In the next two sections, we present the results of testing the CNNs trained in four
different configurations: with or without smoothing and in redshift or real space. We
compare the test results obtained with the DEMNUni realisations and with the PINOC-
CHIO realisations in the same cosmology.

7.4.1 Analyses without smoothing

Figure 7.7 presents the results of the regression CNN tested with both PINOCCHIO and
DEMNUni simulations (red and blue markers) in redshift and real space (top and bottom
panels). We observe similar behaviour in redshift and real space. In both analyses, the
distribution of σ8 is consistent with the true value, exhibiting no apparent bias. However,
for Ωm we note a bias towards higher matter density parameters. This is evident from
Table 7.1, where we summarise the results of all the analyses. The mean value of the
measured Ωm is consistently higher than the true value (Ωtrue

m = 0.27). Notably, the
distributions are more compact in redshift space compared to real space.

While the errors in the PINOCCHIO analysis are smaller than those in the DEMNUni
simulations, the similarities of the output distributions of the two simulation types, par-
ticularly for σ8, are still remarkable. The PINOCCHIO distributions have sharper fea-
tures than DEMNUni, but they tend to have the main peak in the same position. This
simple result is of utmost importance. It shows that the CNN performs a consistent
compression that maps both simulation types in a latent space where they have a similar
representation. This demonstrates the CNN ability to generalise across different simu-
lation scenarios to some extent. If the two distributions coincide it is possible to build a
model, e.g., a neural density estimator, that de-biases the results.

Figures 7.8 and 7.9 depict the output distributions of the inference CNNs in redshift
and real space, respectively. Notably, in the moment network analysis, the bias in mea-
suring Ωm is even more pronounced than in the regression CNN analyses, see Table 7.1.
In the redshift space analysis, the true combination of the two cosmological parameters
(green star) lies at the edge of the two-dimensional distribution, while in the real space
analysis, it is distinctively separated from the measured distribution (red dots and blue
squares). Nevertheless, the similarity in the output distributions of PINOCCHIO and
DEMNUni analyses, particularly in real space, suggests the generalisation power of the
CNN and the potential for de-biasing the results.

As for the width of the distributions, we observe that in redshift space the regression
CNN produces larger errors compared to the moment network and that the inference
CNN second moments are smaller than the actual width of the first moment distribu-
tions. This is particularly evident for DEMNUni, where the second-moment means are
about half the error in the first-moment distribution for both cosmological parameters. In
real space, the Ωm second moment provides a smaller estimate of the error, while for σ8,
it produces results comparable to the regression and first moment distributions. Given
the limited number of data points, the output distributions are highly non-Gaussian,
making the use of only the first and second moments insufficient to fully describe them.
Therefore, we cannot conclusively state that the inference network is unable to recover
the second moment of the distribution; however, the current results seem to point in that
direction.

Finally, returning to the power spectrum comparison (see Sect. 7.3.3) we note that the
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Figure 7.7: Two-dimensional output distributions of the regression CNN. The red dots
and solid distributions correspond to the PINOCCHIO test results without smoothing,
while the blue squares and dashed distributions to the DEMNUni results. The orange
diamonds and dash-dotted distributions are the PINOCCHIO results with smoothing in
the field, and the light blue triangles and dotted distributions are the DEMNUni results
in the same configuration. The green star with the green vertical lines represents the
true value of the cosmological parameter of the simulations. Top: redshift space analysis.
Bottom: real space analysis.
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Figure 7.8: Two-dimensional output distributions of the inference CNN in redshift space.
As in Fig. 7.7, the red dots (orange diamonds) and solid (dash-dotted) distributions cor-
respond to the outputs of the 96 PINOCCHIO realisations and the blue squares (light
blue triangles) and dashed (dotted) distributions to the 100 DEMNUni realisations in
the non-smoothed (smoothed) analysis. The green star and vertical lines represent the
true value of the parameters.
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Figure 7.9: Two-dimensional output distributions of the inference CNN in real space. As
in Fig. 7.8.
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bias in the matter density parameter estimation is almost the same in real and redshift
space. Moreover, while the bias is larger for DEMNUni, the results from the two simula-
tions align with each other. This behaviour implies that the bias may not originate from
the incorrect redshift space distortion modelling of PINOCCHIO or that the CNN has
the ability to marginalise over the smaller scales where the PINOCCHIO redshift space
clustering exhibits an excess of power compared to the N-body simulation (see Fig. 7.4
top panels).

7.4.2 Analyses with smoothing

In this section, we present the results from the CNN trained using the smoothed pix-
elised field. Figure 7.7 shows the output distributions of the regression networks trained
in redshift and real space (top and bottom panels) for PINOCCHIO (orange diamonds)
and DEMNUni (light blue triangles). The smoothing of the field de-biases the Ωm out-
puts in redshift space, but the issue remains in real space. Now, the distributions of
the PINOCCHIO and DEMNUni tests are less consistent, especially in real space. The
PINOCCHIO distribution appears more compact than the DEMNUni distribution, but
their means and standard deviations are still consistent, see Table 7.1. We note that the
smoothing removed the bias of the matter density parameter only in redshift space, but
it has reduced the estimated σ8 values both in real and redshift space.

We show the results of the inference CNNs in Figs. 7.8 and 7.9. Analogously to the re-
gression network, the smoothing removes the bias in redshift space but not in real space.
However, in redshift space, the distribution of the two simulation outputs differs, with
DEMNUni results exhibiting longer tails and more banana-shaped two-dimensional dis-
tribution compared to the PINOCCHIO ones. The differences in the distributions are
smaller in real space.

As for the estimates of the parameter second moments, the behaviour differs from
the non-smoothed analysis. In the case of PINOCCHIO, the inference second moment
is consistent, if not larger (especially in real space), with the error estimated from the
regression. However, the first moments of the parameters have more compact distri-
butions than the regression results and the error estimated from their second moment.
For DEMNUni, the situation is different, indicating that now the two simulation distri-
butions are less consistent. In redshift space, for both Ωm and σ8, the estimated second
moment is smaller than the observed error. In real space, the mean of the matter density
parameter second moment is consistent with the regression error and is larger than the
first moment error, while for σ8, the inference first-moment distribution is more compact
than the regression one and its width is consistent with the estimated second moment.

In redshift space, we observe a clear separation between the second-moment distri-
butions of the smoothed and non-smoothed analyses, while in real space they cover the
same parameter ranges. This seems to indicate that the CNN exploits the peculiar ve-
locity information, as its estimated error increases when we wash out this information
with the field smoothing. The idea that the CNN is actually exploiting the small-scale
peculiar velocity information is reinforced by the fact that we do not observe the shift
of the second moment estimated values in the smoothed and non-smoothed real space
analyses.

Even though it was expected from the behaviour of the power spectra after the
smoothing (see Figs. 7.4 and 7.5), we find very peculiar that the smoothing removes
the bias in redshift space, but it does not alleviate it in real space. This suggests again
that the bias is not solely due to incorrect modelling of halo peculiar velocities. At the
same time, the smoothing in redshift space reduces the overlap of the PINOCCHIO and
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DEMNUni results, indicating that it does not help the network in generalising over the
simulation types.

7.5 Discussion and conclusions

In this study, we have presented preliminary results for a machine learning-based field-
level analysis of VIPERS, focusing on the measurement of the two cosmological param-
eters, Ωm and σ8. While the current investigation is confined to dark matter halos, it
already incorporates the survey geometry into the simulated data, using only observa-
tional information such as the halo right ascension, declination, and redshift, to con-
struct inputs for the convolutional neural network. Exploiting the pencil-like geometry
of the two VIPERS fields of view, we represent the inputs as two-dimensional images in
right ascension and redshift. To retain the three-dimensional information, we divide the
VIPERS fields into three declination slices before generating the images.

We trained the network with 3LPT simulations produced with PINOCCHIO and
tested it both with PINOCCHIO and an N-body simulation, DEMNUni. We devel-
oped two different CNNs: the first is a regression network that only outputs the pa-
rameter values, while the second network performs inference by measuring the first
and second moments of the parameter distributions. We make the analysis both in real
and redshift space, considering two minimum scales in pixalisation, ∼ 10Mpch−1 and
∼ 17Mpch−1, for the non-smoothed and smoothed fields, respectively. The results from
the non-smoothed field have a bias in the measurements of Ωm both in real and redshift
space. This effect is mitigated by the smoothing of the pixelised field in redshift space.

However, the most significant aspect of the results lies in the comparison of the
PINOCCHIO and DEMNUni output distributions, rather than the accurate estimation
of the cosmological parameters. If the distributions from the two simulations are consis-
tent, it indicates that the CNN compresses them in a latent parameter space where their
representation is equivalent. This opens the possibility of de-biasing the results using al-
ternative methods, such as neural density estimators. Furthermore, an overlap of these
distributions would suggest that the CNNs exhibit a degree of generalisation across dif-
ferent simulation types. We observe the highest overlap between the PINOCCHIO and
DEMNUni distributions in the analyses without pixelisation smoothing, especially for
the regression network. To quantitatively measure this overlap, we plan to employ dis-
tribution comparison statistics, e.g., as the Kolmogorov-Smirnov test (Kolmogorov, A.
L., 1933; Smirnov, 1948) or the Kullback-Leibler divergence (Kullback & Leibler, 1951).
Nevertheless, these first results point in the direction that the CNN can generalise over
the simulation types. If we were to confirm this preliminary finding it would make
machine learning-based algorithms very cost-efficient, as the use of approximate simu-
lations would make their training faster and cheaper.

Regarding the inference network, the results seem to indicate that the CNN may
struggle to provide robust predictions for the parameter second moments. In the non-
smoothed case, the second moments are consistently smaller than the actual standard
deviation of the parameter distributions (see Table 7.1). To make a conclusive statement
on this issue, we need a larger set of data points in the DEMNUni cosmology for both
simulations. Additionally, studying the behaviour of the inference CNN across the en-
tire parameter range would provide valuable insights. Another approach could involve
computing the χ2 statistics for the PINOCCHIO test set, either in parameter bins or over
the entire range (de Santi et al., 2023).

The next phase of the work will consist of quantifying the differences between the
PINOCCHIO and DEMNUni simulation distributions and understanding whether the



small variations observed in the means of the measured values are related to systematic
effects and if we can eventually mitigate them. We also plan to continue the testing with
other N-body simulations in different cosmologies, e.g., the MultiDark simulations,1 to
assess if the CNNs have consistent behaviour. If that is the case, it would be possible to
start implementing the neural density estimator to de-bias the results and extract poste-
rior distribution for the parameters.

The following step will involve introducing galaxies into the dark matter simulations.
We plan to use a standard halo occupation distribution algorithm (HOD; Zheng et al.,
2005, 2007) to populate the halos. A HOD model depends on a set of free parameters that
regulate the expected number of galaxies that will appear in a halo of a given mass. The
choice of these parameters is not trivial and we have at least two possibilities to generate
the training set for the galaxy field analysis.

The first solution is to fit the HOD parameters in each cosmology, ensuring that the
galaxy clustering reproduces the two-point correlation function of VIPERS. The alterna-
tive approach is to marginalise over these parameters by generating a training set with
different HOD parameters, enabling the network to learn them together with the cosmo-
logical parameters. Even though the second solution may prove less efficient due to de-
generacies between the HOD and cosmological parameters, we favour it. This approach
allows us to cross-check the network performance by using the measured HOD param-
eters to generate new mock catalogues and compare their standard clustering statistics
with the observed data. The final test will involve comparing the CNN results with the
official VIPERS analyses (Rota et al., 2017).

In conclusion, this work provides an initial glimpse into the potential of a machine
learning algorithm that uses observational information for field-level analysis. A signif-
icant outcome so far is the feasibility of training a network with fast simulations, such
as 3LPT simulations, and applying it to a completely different simulation like an N-
body simulation. While we are still working to conclusively determine this, the current
results suggest that training ML algorithms for field-level analysis can be more compu-
tationally efficient than expected, making them a competitive alternative to summary
statistics-based analyses.

1https://www.cosmosim.org/cms/data/projects/multidark-bolshoi-project/.

https://www.cosmosim.org/cms/data/projects/multidark-bolshoi-project/




Conclusions

The general goal of this thesis has been developing and testing improved methods to
analyse large-scale structures and extract cosmological information. In particular, I fo-
cused my work on novel machine learning-based algorithms to augment the scientific
information inferred from the observational data.

In Part I, I presented two studies related to the analysis of photometric data, with the
scope of improving the confidence of photometric redshift estimates and optimising the
selection from survey data of galaxy samples for clustering analyses. In Chapt. 4, I dis-
cussed a novel method that improves photometric redshift measurements by exploiting
the spectroscopic information of angular neighbours. This algorithm, which we dubbed
NezNet, is a graph neural network model that classifies angular galaxy pairs as true or
false redshift neighbours. The graph neural network helps identify catastrophic errors in
the photometric redshift measurements and effectively reduces the dispersion of the fi-
nal photometric sample by a factor of 2 and the fraction of catastrophic errors by a factor
of ∼ 4.

Chapter 5 reports the detailed study of photometric selection to improve the purity
and completeness of the Euclid galaxy clustering spectroscopic sample. In this work,
I compared the performance of six machine learning classifiers with standard photo-
metric selection based on colour and magnitude cuts. The results show that, compared
to standard methods, machine learning algorithms, particularly neural networks and
support vector classifiers, are capable of identifying more complex boundaries in the
colour-magnitude multidimensional space. I showed that the combination of the Euclid
spectroscopic selection with the neural network photometric selection improves the red-
shift purity of the final sample by ∼ 20% and ∼ 50% when using Euclid photometry and
Euclid with ground-based photometry, respectively.

Both these works open interesting perspectives and I plan to further improve them
for real data applications. Regarding NezNet, I intend to extend the architecture of the
graph neural network to analyse groups of angular neighbours, rather than just pairs,
and to directly estimate the redshift of a photometric galaxy given its spectroscopic
neighbours. Then, NezNet could be applied to slitless galaxy samples, such as Euclid
data, as, in this case, it would be possible to select samples where galaxies with only
photometric information and galaxies with spectroscopic information densely overlap.

As for the neural network photometric selection, the final aim is to implement it in
the Euclid galaxy clustering selection pipeline. We will start working on real Euclid data
as soon as they become available to verify the algorithm performance when using data
from the Euclid Deep Field for the training and accounting for realistic stellar contamina-
tion. For this additional selection, I expect that information on galaxy morphology will
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become more relevant than found in my current investigation. Another variable that
needs stricter control is the varying noise level of the ground-based data. Possible solu-
tions include reducing all the data to the same photometric noise during pre-processing
or teaching the network to marginalise over it.

In Part II of the thesis, I have discussed the measurement of cosmological parame-
ters from large-scale structure data, presenting two methods that are either alternative
to or improve over more standard approaches. In Chapt. 6, I illustrated my work ap-
plying an optimal quadratic estimator to measure local primordial non-Gaussianities
from the eBOSS QSO large-scale distribution. With this analysis, I obtained one of the
most stringent constraints on fNL from large-scale structure data up to date. The sig-
nal optimal quadratic estimator method reduces the bias in the results and gives tighter
bounds, σfNL ∼ 16, on the fNL parameter, with an improvement of ∼ 13% over the stan-
dard approach. In the case that quasars have a lower response to local primordial non-
Gaussianities, the optimal constraint becomes σfNL ∼ 21, with a ∼ 30% improvement
over standard analyses.

In Chapt. 7, I presented a preliminary application of convolutional neural networks
to a two-dimensional field-level analysis of large-scale structures. This study is still lim-
ited to the analysis of dark matter halo distributions derived from numerical simulations;
however, it uses a realistic survey geometry to generate the training data and it exploits
observational information, such as the halo angular position and redshift, to build the
network inputs. A major novelty of this work is that the convolutional neural network is
trained using samples built with a fast third-order Lagrangian perturbation theory code.
This is much faster than using an N-body simulation and allows for quickly building a
large training set. I tested the network performance using both the 3LPT and N-body
simulations in order to understand the ability of the algorithm to generalise between
these two types of simulation with different resolutions and details. I showed that, pix-
elising the data in cells of ∼ 10Mpch−1, the convolutional neural network trained with
the 3LPT simulations recovers consistent values for the parameters investigated, when
applied to either the 3LPT or the N-body halo catalogues.

Both these studies suggest interesting future developments. To improve even more
the constraints of fNL, I plan to perform a complete optimal analysis, which combines the
optimal quadratic estimator of the PNG signal with a full inverse-noise analysis. More-
over, a joint analysis of the power spectrum and bispectrum would allow us to break
some of the degeneracies in the inference parameters. Such improvements, combined
with the larger data sets that will soon become available, will help us reach the so-long
sought objective of σfNL ∼ 1 and distinguish between single and multi-field inflation
models.

Regarding my machine learning-based field-level analysis, a significant amount of
work is still needed. First, I intend to rigorously quantify the differences between the
results from the 3LPT and N-body simulations, as well as test the network on different
N-body simulations. Proving convincingly that we can use fast simulations to train ma-
chine learning algorithms would be a major result by itself, allowing us to reduce the
training cost of any field-level neural network. This will make them competitive alterna-
tives to future, more standard analyses that plan to combine two-point and higher-order
statistics to capture extra cosmological information at a significant computational cost.

In conclusion, my thesis has addressed the evolving landscape of cosmology, which
is currently facing challenges related to the established ΛCDM model and the advent of
next-generation cosmological surveys. With the start of a high-precision era for large-
scale structure cosmology, thanks to fourth-generation galaxy surveys like Euclid, DESI,
and LSST, the demand for novel analysis methods becomes imperative. Focusing on
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large-scale structure studies, this work explores alternative algorithms to analyse LSS
data at different stages of the process, with a primary emphasis on machine learning
models. Overall, this thesis contributes to the advancement of cosmological analyses
by introducing innovative methodologies to extract cosmological information from the
data, paving the way to more efficient and accurate large-scale structure studies in the
era of Euclid and DESI.
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APPENDIX A

Photometric selection additional tests

A.1 Colour-magnitude projection planes

We present in Fig. A.1 the colour-colour and colour-magnitude distributions for targets
and non-targets in the Flagship2 catalogue for three different combinations. The con-
tours contain 99%, 50%, and 25% of the samples. There is a nearly complete overlap of
the targets and non-targets in the colours.

A.2 Photo-z as input variables

As an additional test, we trained a neural network with Flagship2 data in the Euclid plus
ground-based configuration with the additional information of the measured photo-z.
In principle, the neural network can extrapolate the redshift from the photometric in-
formation. However, by directly providing the photo-z we may facilitate the selection
process as the network will expend less effort in extracting the redshift information.

The precision at 95% recall is 47.9% in the case without photo-z, as reported in Ta-
ble 5.3. When we add the photo-z of the galaxy as an input feature the precision rises
to 50.1%. Nevertheless, the addition of the photo-z to the input information makes the
classifier dependent on the redshift precision, on the assumptions in the photo-z estima-
tion algorithm, and finally on the photo-z estimation algorithm itself. We postpone to a
future work the detailed study of these dependencies.

A.3 Selection probability maps

Figure A.3 gives a visualisation of the selection probability for each classifier in planes
through the parameter space. We show the results from the Flagship2 catalogue for the
case when classifiers are trained with Euclid photometry alone. Each row shows the
colour-colour and colour-magnitude plots for a given algorithm. The parameter space
is four-dimensional, and the two-dimensional planes are made by fixing two of the pa-
rameters to their median values.

One notices that the different classifiers identify a similar region of maximum prob-
ability for a given pair of features. The shape and the gradients of these regions, how-
ever, vary for each algorithm. This is due to the differences in the selection algorithms
and possible projection effects when the boundaries are represented on the planes. In
the case of the single classifiers (top three rows: self-organising map, neural network,
and support vector classifier) they are compact and well-defined, unlike for the cases of
voting classifiers based on decision trees (bottom three rows). Also, the contours and
gradients are less smooth for self-organising map than for the neural network and the
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Figure A.1: Target and non-target distributions in colour-colour and colour-magnitudes
planes for the Flagship2 catalogue. The contours contain 99%, 50%, and 25% of the
samples.
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Figure A.2: Comparison of the precision versus recall curves of two neural networks
trained with and without photo-zs as an input feature. The two neural networks were
trained with Euclid and ground-based photometry, but, in the case of the solid blue line,
the algorithm takes the photo-z of the galaxy as an additional feature. The solid vertical
line corresponds to 95% recall.
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Figure A.3: Probability maps in colour-colour and colour-magnitude planes, for the six
classifiers tested in this paper, trained using Flagship2 Euclid photometry only. The thick
white contour marks the probability threshold that gives 95% recall.
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support vector classifier. The probability gradient of the support vector classifier is very
steep, especially in comparison to the neural network.

The probability maps for the voting classifiers (bottom three rows) show orthogonal
contours. This is due to the common base classifier of these algorithms, the decision
tree, which tends to produce decision rules orthogonal to one another. At the same
time, the three algorithms have very different probability contours. These differences are
related to the batch selection rule used to train the decision trees (see Sect. 5.2). We expect
that the algorithms that give a classification model with irregular and steep contours
(such as the self-organising map) or stepped contours (such as the decision trees) will
be prone to over-fitting and will show poorer performance than algorithms that give
smooth probability contours.





APPENDIX B

Fitting bϕ fNL

C.L. Linear NN

NGC

FKP 68% 131 < bϕ fNL < 310 2 < bϕ fNL < 192

95% 35 < bϕ fNL < 394 −102 < bϕ fNL < 280

Optimal
p = 1.0

68% −27 < bϕ fNL < 200 −115 < bϕ fNL < 123

95% −174 < bϕ fNL < 288 −255 < bϕ fNL < 227

Optimal
p = 1.6

68% −176 < bϕ fNL < 121 −222 < bϕ fNL < 76

95% −371 < bϕ fNL < 234 −409 < bϕ fNL < 192

SGC

FKP 68% −48 < bϕ fNL < 198 −83 < bϕ fNL < 188

95% −162 < bϕ fNL < 322 −207 < bϕ fNL < 323

Optimal
p = 1.0

68% −93 < bϕ fNL < 175 −129 < bϕ fNL < 174

95% −202 < bϕ fNL < 317 −230 < bϕ fNL < 349

Optimal
p = 1.6

68% −121 < bϕ fNL < 165 −144 < bϕ fNL < 182

95% −237 < bϕ fNL < 311 −265 < bϕ fNL < 354

Table B.1: Summary on the 68% and 95% constraints on bϕ fNL for the NGC and SGC.

Table B.1 summarises the constraint on bϕfNL for the different measurements of the
power spectrum. As in Chapt. 6, all bounds are compatible with zero PNG with the ex-
ception of the FKP analysis of NGC. Figure B.1 shows the 2D posterior of the parameters
in SGC.
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Figure B.1: Two dimensional posterior distributions for bϕ fNL and and the quasar linear
bias, b1, from the SGC linear catalogue analysis. The posterior distribution of the analysis
with the FKP weighting scheme, the optimal weights with p = 1.0, and p = 1.6 are shown
respectively on the top left, top right, and bottom panel.
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Gonçalves, R. S., Carvalho, G. C., Andrade, U., et al. 2021, JCAP, 2021, 029
Gong, L. & Cheng, Q. 2018, arXiv:1809.02709
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press), http://
www.deeplearningbook.org

Grattarola, D. & Alippi, C. 2020, arXiv:2006.12138
Gunn, J. E., Siegmund, W. A., Mannery, E. J., et al. 2006, Astron. J., 131, 2332
Guzzo, L., Pierleoni, M., Meneux, B., et al. 2008, Nature, 451, 541
Guzzo, L., Scodeggio, M., Garilli, B., et al. 2014, Astron. Astrophys., 566, A108
Guzzo, L. & Vipers Team. 2017, The Messenger, 168, 40
Hahn, C., Eickenberg, M., Ho, S., et al. 2023a, JCAP, 2023, 010
Hahn, C., Lemos, P., Parker, L., et al. 2023b, arXiv:2310.15246
Hamilton, A. J. S. 1998, in Astrophysics and Space Science Library, Vol. 231, The Evolving

Universe, ed. D. Hamilton, 185
Hamilton, W. L. 2020, Synthesis Lectures on Artificial Intelligence and Machine Learn-

ing, 14, 14
Hand, N., Feng, Y., Beutler, F., et al. 2018, Astron. J., 156, 160
Hand, N., Li, Y., Slepian, Z., & Seljak, U. 2017, JCAP, 2017, 002
Hartlap, J., Simon, P., & Schneider, P. 2007, Astron. Astrophys., 464, 399
Hastie, T., Tibshirani, R., & Friedman, J. 2001, The Elements of Statistical Learning,

Springer Series in Statistics (New York, NY, USA: Springer New York Inc.)
Henghes, B., Thiyagalingam, J., Pettitt, C., Hey, T., & Lahav, O. 2022, Mon. Not. R. Astron.

Soc., 512, 1696
Hockney, R. W. & Eastwood, J. W. 1981, Computer Simulation Using Particles
Hoffman, M. D. & Gelman, A. 2011, arXiv:1111.4246
Hornik, K., Stinchcombe, M., & White, H. 1989, Neural Networks, 2, 2
Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168
Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, Astron. Astrophys., 457, 841
Ilbert, O., Capak, P., Salvato, M., et al. 2009, Astrophys. J., 690, 1236
Ioffe, S. & Szegedy, C. 2015, arXiv:1502.03167
Jasche, J., Kitaura, F. S., Wandelt, B. D., & Enßlin, T. A. 2010, Mon. Not. R. Astron. Soc.,

406, 60
Jasche, J. & Wandelt, B. D. 2012, Mon. Not. R. Astron. Soc., 425, 1042
Jeffrey, N. & Wandelt, B. D. 2020, arXiv:2011.05991
Kaiser, N. 1986, in NATO Advanced Study Institute (ASI) Series C, Vol. 180, Galaxy

Distances and Deviations from Universal Expansion, ed. B. F. Madore & R. B. Tully,
271–272

Karagiannis, D., Lazanu, A., Liguori, M., et al. 2018, Mon. Not. R. Astron. Soc., 478, 1341

http://dx.doi.org/https://doi.org/10.1142/S0217751X05025917doi
https://doi.org/10.1142/S0217751X05025917doi
http://dx.doi.org/https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1007/BF01332580
https://ui.adsabs.harvard.edu/abs/1922ZPhy...10..377F
http://proceedings.mlr.press/v84/ge18b.html
http://dx.doi.org/10.1214/ss/1177011136
https://ui.adsabs.harvard.edu/abs/1992StaSc...7..457G
http://dx.doi.org/https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1093/mnras/stv961
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451..539G
https://ui.adsabs.harvard.edu/abs/2017arXiv170401212G
http://dx.doi.org/10.1088/1475-7516/2021/03/029
https://ui.adsabs.harvard.edu/abs/2021JCAP...03..029G
https://ui.adsabs.harvard.edu/abs/2018arXiv180902709G
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://ui.adsabs.harvard.edu/abs/2020arXiv200612138G
http://dx.doi.org/10.1086/500975
https://ui.adsabs.harvard.edu/abs/2006AJ....131.2332G
http://dx.doi.org/10.1038/nature06555
https://ui.adsabs.harvard.edu/abs/2008Natur.451..541G
http://dx.doi.org/10.1051/0004-6361/201321489
https://ui.adsabs.harvard.edu/abs/2014A&A...566A.108G
http://dx.doi.org/10.18727/0722-6691/5025
https://ui.adsabs.harvard.edu/abs/2017Msngr.168...40G
http://dx.doi.org/10.1088/1475-7516/2023/04/010
https://ui.adsabs.harvard.edu/abs/2023JCAP...04..010H
https://ui.adsabs.harvard.edu/abs/2023arXiv231015246H
https://ui.adsabs.harvard.edu/abs/1998ASSL..231..185H
http://dx.doi.org/10.3847/1538-3881/aadae0
https://ui.adsabs.harvard.edu/abs/2018AJ....156..160H
http://dx.doi.org/10.1088/1475-7516/2017/07/002
https://ui.adsabs.harvard.edu/abs/2017JCAP...07..002H
http://dx.doi.org/10.1051/0004-6361:20066170
https://ui.adsabs.harvard.edu/abs/2007A&A...464..399H
http://dx.doi.org/10.1093/mnras/stac480
http://dx.doi.org/10.1093/mnras/stac480
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.1696H
https://ui.adsabs.harvard.edu/abs/2011arXiv1111.4246H
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1073/pnas.15.3.168
https://ui.adsabs.harvard.edu/abs/1929PNAS...15..168H
http://dx.doi.org/10.1051/0004-6361:20065138
https://ui.adsabs.harvard.edu/abs/2006A&A...457..841I
http://dx.doi.org/10.1088/0004-637X/690/2/1236
https://ui.adsabs.harvard.edu/abs/2009ApJ...690.1236I
https://ui.adsabs.harvard.edu/abs/2015arXiv150203167I
http://dx.doi.org/10.1111/j.1365-2966.2010.16610.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.406...60J
http://dx.doi.org/10.1111/j.1365-2966.2012.21423.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.1042J
https://ui.adsabs.harvard.edu/abs/2020arXiv201105991J
https://ui.adsabs.harvard.edu/abs/1986ASIC..180..271K
http://dx.doi.org/10.1093/mnras/sty1029
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.1341K


Bibliography 147

Kingma, D. P. & Ba, J. 2014, arXiv:1412.6980
Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. 2017, arXiv:1706.02515
Kohonen, T. 1982, Biological Cybernetics, 43, 59
Kohonen, T. 1990, Proceedings of the IEEE, 78, 1464
Kolmogorov, A. L. 1933, G. Ist. Ital. Attuari, 4, 4
Kullback, S. & Leibler, R. A. 1951, The Annals of Mathematical Statistics, 22, 22
Lahav, O. 1994, Vistas in Astronomy, 38, 251
Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, Astrophys. J. Suppl., 224, 24
Landy, S. D. & Szalay, A. S. 1993, Astrophys. J., 412, 64
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv:1110.3193
Laurent, P., Eftekharzadeh, S., Le Goff, J.-M., et al. 2017, JCAP, 2017, 017
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