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Abstract

After decades of successes, the ACDM standard cosmological model is facing the first
cracks in its structure. The nature of the two most abundant components of the Universe,
namely dark energy and dark matter, still eludes our understanding and we started ob-
serving consistent discrepancies between the early and late-time measurements of some
cosmological parameters. To clarify if these tensions are indicating a deeper problem in
the ACDM model and hopefully understand the meaning of its key ingredients, a new
generation of cosmological surveys has just started. A key probe of the cosmological
model is provided by the large-scale distribution of structures in the Universe. The cos-
mic web contains information related to late-time parameters, such as the cosmological
constant or the equation of state of dark energy, and gives means to determine, among
others, the fraction of matter in the Universe, the linear matter power spectrum ampli-
tude, or the neutrino mass.

For this reason, starting from the 80s of last century, the amount of data available for
large-scale structure studies has steadily increased. It is now about to make a further
leap forward thanks to the fourth-generation galaxy surveys, such as Euclid, the dark
energy spectroscopic instrument (DESI), or the Vera C. Rubin Observatory legacy survey
of space and time (LSST). In comparison to previous surveys, these experiments will
observe larger volumes and will measure photometric and spectroscopic information
for an unprecedented number of galaxies. Standard analysis methods will become sub-
optimal in terms of data management, both memory and time-wise, data modelling, and
information extraction capabilities.

To achieve such ambitious goals, it is mandatory to develop new methods to study
the data and improve their management at all levels of the analysis pipelines. In order
to meet the requirements on the precision and accuracy of cosmological parameters, we
need, in particular, to efficiently select the samples to be analysed, to measure redshifts
with high confidence, and to correctly model summary statistics at all scales. The pri-
mary interest of my work is the development of alternative algorithms to improve the
extraction of scientific information from large-scale galaxy surveys. The focus is on ma-
chine learning-based models, but I also study the potential of more standard methods,
such as optimal quadratic estimators.

In the first part of this thesis, I develop and discuss two algorithms that exploit galaxy
photometric information to measure redshifts and select samples for clustering analy-
ses. First, I present a novel method that exploits the angular correlation of galaxies to
improve photometric redshift measurements. We worked on a graph neural network
that classifies angular close pairs of galaxies based on their photometric properties as



vi Thesis overview

true or false physical neighbours. The algorithm is especially useful when the spectro-
scopic information of one of the galaxies in the pair is known. In this case, the graph
neural network helps identify catastrophic errors in the redshift measurements reducing
the dispersion of the final photometric sample by a factor of 2 and the fraction of catas-
trophic errors by a factor of ~ 4. This method is complementary to traditional techniques
based on spectral energy distribution fitting and it also helps break the degeneracies in
colour-redshift space the standard algorithms are prone to.

Secondly, I explore the efficiency of machine learning classifiers for galaxy photomet-
ric selection tasks. The aim of this work is to improve the purity and completeness of the
Euclid galaxy clustering spectroscopic sample using photometric information. I conduct
a performance comparison among six machine learning classifiers and traditional pho-
tometric selection methods based on colour and magnitude cuts. The results reveal that
machine learning algorithms, especially neural networks and support vector classifiers,
can identify more intricate boundaries in the multidimensional colour-magnitude space
compared to standard techniques. Demonstrating the efficacy of combining spectro-
scopic selection with neural network photometric selection, I observe an improvement
in the redshift purity of the final sample by approximately 20% and 50% when using
Euclid photometry alone and Euclid in combination with ground-based photometry, re-
spectively.

In the second part of the thesis, I report my work on cosmological parameter mea-
surements with galaxy clustering data. I present two alternatives to traditional ap-
proaches. I first illustrate my work with the optimal quadratic estimator of the signal
of local primordial non-Gaussianities (PNG), parameterised by fni, from the large-scale
structure of the Universe. The analysis makes use of optimal redshift weights that max-
imise the response of the tracers to the possible presence of non-zero PNG. Analysing
the power spectrum monopole of the quasar sample of the latest data release of the ex-
tended baryon oscillation spectroscopic survey (eBOSS), I obtain one of the most strin-
gent constraints on local PNG from large-scale structure data up to date. This method
not only mitigates the bias in the results, but also yields more precise bounds, with an
estimated error on fxi of o4, ~ 16. This corresponds to an improvement of approxi-
mately 13% compared to the standard approach. In scenarios where quasars exhibit a
lower response to local PNG, the optimal constraint gives oy, ~ 21, representing an
improvement of around 30% over standard analyses. This work is a first step in the di-
rection of high-precision fni measurements from large-scale structure data, which will
enable us to better understand the dynamics of inflation.

Finally, I discuss a preliminary study on the application of convolutional neural net-
works for a field-level analysis of large-scale structure data. This investigation is cur-
rently confined to the analysis of dark matter halo distributions. However, it applies
a realistic survey geometry to generate training data and utilises observational infor-
mation, such as halo angular positions and redshifts, to construct the network inputs. A
novelty is that the training data for the convolutional neural network are generated using
a third-order Lagrangian perturbation theory (3LPT) code, which is faster in producing
halo catalogues than an N-body simulation. I assess the neural network performance
on both 3LPT and N-body simulations to determine its generalisation ability across sim-
ulation types. Preliminary findings indicate that, in both real and redshift space, with
a field pixelisation of approximately ~10Mpch ™!, the convolutional neural network
consistently produces comparable results for both 3LPT and N-body simulations. The
possibility to train machine learning algorithms for field-level analyses with fast simu-
lations is of major importance. It would greatly reduce the computational costs of these
methods making them a competitive alternative to traditional approaches.
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Organisational note

The present thesis consists of seven chapters divided into two main parts. The second
and third chapters of Parts I and the first chapter of Part II have appeared as refereed
publications in scientific journals or have been submitted for publication; the co-authors
of the relevant articles are mentioned below. Some variations have been made in the
presentation of previously published results, to maintain consistency of style and content
structure throughout the manuscript.

Chapter 1. Modern cosmology: introduction to the most important concepts of
modern cosmological theory.

Chapter 2. Machine learning: introduction to machine learning and neural net-
works.

Chapter 3. Galaxy distances and redshifts in cosmology: description of the dif-
ferent methods used to measure distances in cosmology.

Chapter 4. Augmenting photometric redshift estimates using spectroscopic near-
est neighbours: development and testing of a graph neural network that classifies
pairs of angular neighbour galaxies as true or false redshift neighbours. This work
has been completed in collaboration with F. Tosone, L. Guzzo, B. R. Granett, and A.
Crespi and has been published as an article in Astronomy & Astrophysics (Tosone
et al., 2023), on which the Chapter is based.

Chapter 5. Euclid: Testing photometric selection of emission-line galaxy targets:
detailed study of applications of photometric machine learning classifiers for the
selection of Euclid spectroscopic galaxy clustering sample. This work has been
completed in collaboration with B. R. Granett, L. Guzzo, M. Bertermin, M. Bol-
zonella, S. de la Torre, P. Monaco, M. Moresco, W. ]. Percival, C. Scarlata, Y. Wang,
M. Ezziati, O. Ilber, V. Le Brun et al., the paper will be submitted to Astronomy &
Astrophysics on behalf of the Euclid Collaboration and is currently under review
by the Euclid Consortium Publication Board.

Chapter 6. Optimal constraints on Primordial non-Gaussianity with the eBOSS
DR16 quasars in Fourier space: power-spectrum analysis of the latest eBOSS quasar
sample to measure local primordial non-Gaussianities using a cosmological signal
optimal quadratic estimator. This work has been completed in collaboration with
E. Castorina, M. Bonici, and D. Bianchi and has been accepted for publication as an
article in the Journal of Cosmology and Astroparticle Physics (Cagliari et al., 2023),
on which the Chapter is based.

Chapter 7. Preliminary applications of machine learning to LSS analysis: first
results of a field level machine learning algorithm applied to dark matter halo sim-
ulated catalogues.

Appendix A. Photometric selection additional tests: additional plots and discus-
sion related to Chapt. 5.

Appendix B. Fitting b, fniL: appendices related to Chapt. 6. Results of the analyses
that fit the product by fnr.
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Introduction






CHAPTER 1

Modern cosmology

Cosmology is the subject that studies the Universe as its whole. It aims to understand
the physics, the dynamics, and the evolution of the Universe and its content. Cosmology
is a relatively new branch of physics for its development started in the second decade
of the last century after the publication of Einstein’s General Theory of Relativity (GR,
Einstein, 1915).

1.1 A homogeneous Universe

Cosmology pioneers, such as Friedmann and Lemaitre, took as an assumption that the
Universe is isotropic and homogeneous. This axiom is known as the cosmological prin-
ciple. Nowadays, the idea of the homogeneity and isotropy of the Universe is based
on strong observational evidence, which includes the isotropy of the cosmic microwave
background (CMB, Planck Collaboration et al., 2020a) radiation and the distribution of
galaxies on large scales measured in galaxy surveys (Gongalves et al., 2021).

Another observational fact that is fundamental in cosmology is the expansion of the
Universe. In 1929 Hubble published the evidence of a relation between the distance of
the galaxies and their radial velocity (Hubble, 1929). This was just the proof of what was
independently derived by Friedmann (Friedmann, 1922) and Lemaitre (Lemaitre, 1927)
starting from the metric of an expanding Universe.

1.1.1 The Friedmann-Lemaitre-Robertson-Walker Universe

The cosmological principle and the expansion of the Universe are backed by observa-
tional evidence, while the underlying assumption of cosmology is that the Universe dy-
namics are described by the General Theory of Relativity. The fundamental equations of
GR link the curvature of space-time, which is encoded in the metric g,,,, and its content,
which is described by the energy-momentum tensor 7},,. Einstein’s equations read as

follows
1 8 G

G;u/ = R;w - 5 Guv R= CT Tuu - Aguu ) (11)
where G, is the Einstein tensor, R, and R are the Ricci tensor and Ricci scalar, G is the
Newton's gravitational constant, and c is the speed of light. Equation (1.1) also features
the cosmological constant A, which was originally introduced by Einstein in the equa-
tions to obtain a static solution (Einstein, 1917). Nowadays, we know that the cosmo-
logical constant can explain the accelerated expansion of the late Universe (Riess et al.,
1998).



4 1.1 A homogeneous Universe

The metric that describes a homogeneous, isotropic, and expanding Universe is the
Friedman-Lemaitre-Robertson-Walker metric (FLRW),

ds® = —dt® + () [dr +R2 sin (%) (d192+sin219d902)} . 1.2)

The time coordinate ¢ that appears in Eq. (1.2) is the cosmic time. In the spatial term of
the right-hand side of the equation, a(t) is the scale factor, which describes the expansion
of the Universe and is normalised to 1 at the present epoch ¢y, R is the spatial curvature
of the Universe at the present epoch, and r is the comoving radial distance, which is the
proper distance of a galaxy at the present epoch. Then, the proper distance at epoch ¢ is

r(t) =a(t)r. (1.3)

With a change of coordinate, r; = R sin(r/R), Eq. (1.2) becomes

ds? = —dt? + % drkl 3 i (407 4 sin 0 dgt) | (14)

where £ is a real number that encodes the spatial curvature of the Universe. If k = 0 the
Universe is flat, if it is positive the Universe is close with a spherical geometry, and if it
is negative the Universe is open and the geometry is hyperbolic.

As mentioned above, Hubble’s law

v=Hyr, (1.5)

which is an observational relation, can be also derived from the expansion of the Uni-
verse as it is described in Eq. (1.3). If we derive this equation with respect to time and
substitute it again we obtain

H(t) = alt)r = S0 (t) — v(t) = H(t)r(t), (1.6)

where H(t) = aEt% , usually called Hubble parameter, is a measure of the expansion rate of

the Universe at a given epoch ¢. Therefore, the Hubble constant represents the expansion
rate at the present epoch, Hy = H(ty), and H(t) defines a Hubble parameter for each
epoch. The Hubble constant has the dimension of the inverse of a time, but it is usually
measured in kms~! Mpc ™. It is also useful to define the dimensionless Hubble constant

~ 100kms—!Mpc

1.7)

In cosmology, we usually model the different Universe components as non-interacting
perfect fluids that are at rest, in thermodynamical equilibrium, and have energy density
pi and pressure F;. Given their energy-momentum tensor, 7}, we can derive the Ein-
stein’s equations for the FLRW metric (see Eq. 1.4) and obtain

SN 2 2
(a> _ G kA (18)

a 3 £ a? 3’

:_m;z(m 3p) = (19)
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These two equations are also known as the first and second Friedmann’s equations and
describe the dynamics of the Universe expansion. An additional equation is the local
conservation of energy,

. »
p‘i+3% (pi+62> ~0, (1.10)

which is derived from the local conservation of the energy-momentum tensor.

1.1.2 The Universe bricks

To close the equation system of Egs. (1.8), (1.9), and (1.10) we need a link between the
pressure and the energy density, which is given by the equation of state,

b

Substituting Eq. (1.11) in Eq. (1.10) we obtain an expression that can be integrated

fi==3= (L+w) pi, (1.12)

da’ ,
pi x exp |—3 o 14 w; (a)]| - (1.13)
If w; is time-independent, Eq. (1.13) becomes
pi = piga 2T (1.14)

where p; o is the value of the energy density at the present epoch. Then, to describe
the Universe expansion we need to know its content and the equation of state of its
components.

First, there is the cold matter, which is how we refer to all the non-relativistic compo-
nents of the Universe. Cold matter includes cold dark matter (CDM) and baryons and is
pressureless. Therefore, w,, = 0 and

P = Pmoa®. (1.15)

Equation (1.15) translates in the fact that the matter-energy density scales as the particle
density if their number is conserved in a comoving volume. As second comes radiation,
which comprises all the relativistic components of the Universe such as photons and
relativistic particles. The relativistic equation of state reads

Wy =

1
5 (1.16)

and corresponds to
pr=proat. (1.17)

Radiation gets diluted faster than matter because of the cosmological redshift. This effect
corresponds to a stretch of the particle wavelengths by a factor !, which, combined
with the volume dilution (x a~?), leads to the dependence in Eq. (1.17). Equations (1.15)
and (1.17) describe the evolution of the matter and radiation density as functions of the
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Universe expansion. Itis possible to identify a time when matter density equals radiation
density. This epoch is called matter-radiation equality and reads

eq = 220 (1.18)
pm,O

Before a.q the Universe dynamic is dominated by radiation after it is dominated by mat-
ter. We refer to these two eras as radiation or matter domination. As we will see in
Sect. 1.2.1, aeq marks a transition in the rate of the large-scale structure evolution in the
Universe.

Equation (1.8) suggests that also the curvature and the cosmological constant are part of
the cosmic inventory. The curvature energy density is defined as follows

3k _,
P (1.19)
which means that 1
wp =3 (1.20)
Analogously, we can define the cosmological constant energy density
A
= 1.21
PA StC’ ( )
and its equation of state
wp = —1. (1.22)

Equation (1.22) implies that the pressure of the cosmological constant is negative. Orig-
inally, the fact that the cosmological constant energy density does not vary with the
Universe expansion (Eq. 1.21) led to the idea that A was related to the vacuum energy.
However, that is not the case as the measured value of the cosmological constant is be-
tween 50 and 120 order of magnitude lower than expected if it was to be related to the
energy of vacuum (e.g., Adler et al., 1995). Nowadays it is believed that the cosmological
constant is related to the so called dark energy (DE), which is one of the biggest puzzles
of modern physics.

The two Friedmann’s equations (Eqgs. 1.8 and 1.9) can be rewritten in terms of Hub-
ble’s parameter and the energy densities defined above becoming

81 G
H(t) = == > i (1.23)

K2

and .
H(t) =47 G > (1 +w;) p;. (1.24)

The equations can be further simplified by defining the density parameters. First we in-
troduce the critical density,
3H?
Per = 5~
8r G
which corresponds to the present epoch energy density of a flat Universe. The density
parameter of the Universe i-th species is its energy density normalised by the critical
density,

(1.25)

Q= 2L = L0 =3 (14w = g3 (w0 | (1.26)
Pecr Per



Modern cosmology 7

In Eq. (1.26) €; ¢ is the density parameter evaluated at the present epoch. Combining
Egs. (1.23) and (1.26) we obtain a relation for the Hubble parameter as a function of the
scale factor,

H?(a) = H3 Y Qi =Hj (Qmoa+ Qoa ™+ Qoa > +Qy) . (1.27)

If we evaluate Eq. (1.27) at the present epoch, ty, it becomes

> Qio=1. (1.28)

1.1.3 Distances in an expanding Universe

As the majority of information on astrophysical objects comes from their electromagnetic
radiation we need to understand how the expansion of the Universe affects travelling
light waves. In Sect. 1.1.2 I already introduced the concept of cosmological redshift, here
I am going to describe the origin of this effect. In general, we define the redshift, z, as the
relative difference between the emitted wavelength, A;, and the observed one, \¢:
Ao — M1
= . 1.29

z= (129)
If we consider a wave packet, which travels along null cones, ds* = 0, that is moving
radially (d¢ = 0 and dy = 0), Eq. (1.2) becomes:

cdt
@ = —dr. (1.30)

Let us say that this wave packet was emitted between time ¢; and ¢; +At; with frequency

v1, and received by an observer at present time in an interval between time ¢( and ¢+ Aty
and frequency . The leading edge of the wave packet travels the comoving distance, r,

between time t; and g,
t1 0
/ C—dtz—/ ar, (1.31)
to a(t) r

while its end must travel the same comoving distance from time ¢; + Aty and o + Atg

t1+At 0
/ cdt [ (1.32)
to+Ato a(t) r

Combining Egs. (1.31) and (1.32) we obtain

Boedt  cAty  cAfy /tl cdt
n o fed 1.33
[+ =L (1339
Knowing that a(ty) = 1, Eq. (1.33) becomes
Aty
Atg = ——. 1.34
to o(tr) (1.34)

This result, known as time dilation, can be reduced to a relation between the redshift and
the Universe expansion. If the emission interval is At; = v; ' and the observed one is
Ato = vy ', Eq. (1.34) can be rewritten as

vo = a(ty)vy . (1.35)
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Substituting this expression in the redshift definition, Eq. (1.29) becomes

)\() %1 1 1
=4 1= —  —1-—at)= .
Al 12 a(tl) a< 1) z+1

(1.36)

The redshifting effect is only related to the expansion of the Universe and not to the
relative velocity between the source and the observer, thus it is known as cosmological
redshift. Cosmological redshift is a measure of the scale factor of the Universe at the
epoch in which the radiation was emitted.

Now, combining Eq. (1.30) and the definition of the Hubble parameter we find a
relation between the radial comoving distance of a source at scale factor ¢ and the scale

factor itself \ ) . )
0 dt da

— . - - 1.37

r=cf =] wHw (37

From this expression, we understand that the comoving distance is the maximum dis-
tance light can travel between the time of emission ¢(a) and the time of observation ¢.
We call the comoving horizon the distance light could have travelled from ¢ = 0. Since no
information can travel faster than light, events that are further than the comoving hori-
zon are causally disconnected. Alternatively, combining Egs. (1.36) and (1.37) we can
write a relation between the comoving distance and the redshift of the source,

. z dZ/
o H(z')

r(z) =

(1.38)

At the end of the previous section, I presented a relation between the Hubble parameter
and the scale factor (Eq. 1.27). With the change of coordinate of Eq. (1.36), we can write a
relation between the Hubble parameter as a function of the cosmological redshift. There-
fore, given a cosmological model, we can solve the integral of Eq. (1.38) and measure the
radial comoving distance of an object starting from its redshift. This makes the redshift
one of the primary pieces of information we want to measure in any cosmological obser-
vation.

We can define two additional distances. From the FLRW metric, Eq. (1.2), it is straight-
forward to obtain the angular size of a source with proper length Al perpendicular to
the radial coordinate and at redshift z. The relevant spatial component in the metric is
the angular term in dv,

1 AV

1+z°
I already introduced the distance measure 7 in Eq. (1.4). Now, we can give a physical
interpretation of this definition. Let us consider an object that is expanding with the

Universe. Its proper dimension at epoch ¢ is Al(t) = a(t) Al = Alp (1+ z)"" and it
subtends an angle

Al = a(t)R sin (%)M = a(t)r AY = (1.39)

Al(t) (1+2) _ Al

T1 1

AY = (1.40)

The distance measure r; is the distance of a source with angular dimension A9 that is
expanding with the Universe and is called comoving angular diameter distance. We can

also define the angular diameter distance 1o = r (1+z)” " and reduce Eq. (1.40) to the
standard Euclidean relation between distance and angle at any epoch ¢,

Al

TA

AY (1.41)
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Finally, we can tackle the problem of the relation between the observed flux density
S(vp), which is the energy per unit of time, area, and bandwidth, and the source lu-
minosity L(v7) that is the total energy emitted over 47 steradians per unit of time and
bandwidth. The luminosity of a source that emits N(v;) photons with energy hp v,
where hp is the Planck constant, in a bandwidth Ay, and in a proper time interval A¢;
is
N (Vl) hp %1

Atl Al/l

The photons travel on the surface of a sphere centred on the source. The number of
photons an observer will see depends on their telescope angular dimension with respect
to the source, while the observed frequency and the observed time interval are related
to the emitted ones by Egs. (1.34) and (1.35). Let us say that the telescope, which is in
the present epoch ¢y, has a diameter Al and it subtends an angular diameter A¢ for the
source in epoch ¢1, then

L(m) = (1.42)

Al =AY, (1.43)

The area of this telescope is m Al?/4, the solid angle it subtends is AQ = 7AY?/4 =
7 Al% (4r3)~1, and the number of photons it observes is N (1) AQ/(4r). These photons
are observed in a time interval At at frequency vy, thus the flux density of the source is

_ 4N(V1)hp 1% AQ

S(VO) o 47 Ato AV() WAIQ '

(1.44)

Substituting in this expression the luminosity at the source, Eq. (1.42), the relation be-

tween times and frequencies at different epochs, Egs. (1.34) and (1.35), and rewriting AQ

as above Eq. (1.44) reads

L)

S =— . 1.45
(vo) A3 (1 + 2) (145)

If we consider the case of bolometric luminosities and flux densities we can define a new

distance measure called luminosity distance, r1,, as follows

Ly _ Lpa

= 1.46
drr(1+2)2  drri’ (1.46)

Sbol =
where ri, =1 (1 + 2).

1.2 The large-scale structure of the Universe

In the previous section, I discussed the dynamic of a homogeneous and isotropic Uni-
verse. However, nowadays we observe a Universe that has very strong anisotropies on
small scales and contains stars, galaxies, and clusters of galaxies. We observe the seeds
of these same anisotropies in the CMB radiation, which have a very small amplitude
(~107°K). The top panel of Fig. 1.1 shows the map of the CMB anisotropies, the bot-
tom panel presents their temperature power spectrum and the outstanding match of the
ACDM model with the observed data. The CMB anisotropies evolved into the Universe
we observe now. Figure 1.2 shows the cosmic web in the near Universe.

The theory of structure evolution describes how the present large-scale structure
(LSS) of the Universe formed starting from the CMB anisotropies. In principle, we need
to solve Einstein’s equations (Eq. 1.1) in the case of a perturbed metric, where the pertur-
bation fields are ¥(«,t) for the time component of the metric and ®(x,t) for the space



10 1.2 The large-scale structure of the Universe

6000 T T T T T T T

5000

4000

[1K?]

3000

T

4

2000

1000

J

i

600
300

h + + “ MOMM 9400000 850002044 bud i idbL
i MO

ﬁ| - S
|+|1 H{ A MY

2 10 30 500 1000 1500 2000 2500
4

-300
-600

1

'
2]
o

ADIT
o

Figure 1.1: The cosmic microwave background radiation as it was observed by the ESA
Planck satellite (top) and the power spectrum of its temperature anisotropies (bottom). In
the bottom panel, the points correspond to Planck observations, while the blue solid line
is the ACDM prediction. Figures credits to ESA and Planck Collaboration et al. (2020a).
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Figure 1.2: A slice through the distribution of the main galaxy sample in the northern
part of the Sloan Digital Sky Survey (SDSS; York et al., 2000). Each dot depicts the posi-
tion of a galaxy, with colour chosen to represent the actual colour of the galaxy. Figure
credits to Michael Blanton and the SDSS Collaboration.

Dark Energy

Pt "No perturbations

Gravity
(metric)

Compton
scattering

Coulomb
scattering

Baryons

Figure 1.3: A schematic description of the interaction between the different components
of the Universe. Figure credits to Dodelson & Schmidt (2020).
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part, and an inhomogeneous energy-momentum tensor. Then, combining this with the
Boltzman’s equation we can derive the evolution of the perturbation for each component
of the cosmic inventory. Boltzmann's equation gives the evolution of the distribution func-
tion f of a species in phase-space given its particle-particle interactions encoded in the
collision term. Figure 1.3 schematically shows the possible interactions between the uni-
verse components. All of them interact through gravity. Additionally, electrons interact
with nuclei and protons via Coulomb scattering and with photons via Compton scattering.
It is important to note that in the case that dark energy is a cosmological constant it does
not have any perturbations and contributes only to the background homogeneous part
of the metric.

Ultimately, in LSS studies we observe the distribution of baryonic matter, which, in
first approximation, is only determined by the dark matter distribution. For this reason,
we are mainly interested in the evolution of the CDM perturbations and their distribu-
tion. We use a statistical description of random fields to analyse the matter distribution
(Peebles, 1980) and we start defining the matter density field,

o(r) ==L with (p(e) = p, (1.47)
where the symbol (-) corresponds to the ensemble average. This average should be
computed over different realisations of the Universe, but in practice we we use a large
enough volume assuming ergodicity. The density field, as defined in Eq. (1.47), has
(6(r)) = 0. To describe this random field we use its correlation functions

@y, .. xn) = (0g, .- 0, (1.48)

where the superscript (n) refers to the n-th order correlation function. In a Universe
that is isotropic and homogeneous, the correlation functions only depend on the relative
distance between points. Therefore ¢(™) only depends on n — 1 spatial coordinates. Then,
the two-point correlation function of the density field reads as follows

E(r)={6(x)dé(x+ 7)), (1.49)

and depends only on the modulus of the distance of two points, r. The two-point corre-
lation function represents the excess probability of finding two points at distance r and,
if the random field is Gaussian, is the only non-null correlation function.

It can also be useful to work in Fourier space. The Fourier transform of the overden-
sity is

S(k) = / A3z () e*® (1.50)
while its inverse reads ™
§(x) = / EIse S(k)e ke (1.51)

where k-x denotes the scalar product between the two vectors. Analogously to Eq. (1.48)
we can define the correlation between the Fourier transform of the density field. The
two-point function in Fourier space is the power spectrum

(6(k)S(K")) = (2m)? 6750 P(k) (1.52)

where §¥ is the Kronecker delta. The two-point correlation function as defined in Eq. (1.49)
and the power spectrum form a Hankel pair

o sinkr

P(k):47r/ooodr§(r)r e (1.53)
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Figure 1.4: Evolution of the gravitational potential ® and the dark matter density per-
turbation for modes of different wavenumber in the fiducial ACDM cosmology. The
curves are normalised to the value of the potential at early times. Left: evolution of the
gravitational potential perturbations. Right: evolution of the density perturbations. The
amplitude of each mode starts to grow upon horizon entry. Well after a., all sub-horizon
modes evolve identically, and scale as the growth factor D, (a), see Eq. (1.55). During
matter domination, before A becomes relevant, D (a) = a. At the very latest times, we
can see a slight suppression from this linear trend due to the onset of accelerated expan-
sion. Figure credits to Dodelson & Schmidt (2020).

1.2.1 The large-scale structure evolution

The density contrast and its momenta either in configuration or Fourier space gives us
a means to describe the matter field. Now, we would like to understand how this field,
which is embedded in an expanding background, evolved with time.

When the perturbations are small (§(x) < 1) we can use linear theory to describe
the evolution and, in Fourier space, different k scales evolve independently. Figure 1.4
left panel shows the evolution of the gravitational perturbation at different scales as a
function of the scale factor, while the right panel shows the evolution of the density
contrast. From these plots, we can see that there are different evolution regimes for the
perturbation. First, all the modes are outside of the horizon and the potential is constant.
Later on, the modes start entering the horizon, from small to large scales. The scales
that cross the horizon during the radiation domination era have a very sharp decay in
comparison to the modes that enter the horizon after the epoch of equality. In late times,
during the matter domination era, all the modes have entered the horizon and evolve
identically remaining constant.

Given the primordial potential ®p(k) we divide its evolution in a scale-dependent
part and in a time-dependent part as follows

wk, )= S0 ) T Y 0> ) (159
where ajate is an epoch in the late matter domination era, T'(k) is the transfer function, and
D_ (a) is the growth factor. The transfer function encodes the evolution through the epoch
of horizon crossing and the transition between radiation and matter domination eras and
conventionally is normalised to be 1 for large scales. The growth factor describes the
scale-independent evolution at late times. When the potential is constant in the matter-
dominated era D (a) ~ a and describes the growth of the matter density perturbation
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Figure 1.5: The linear matter power spectrum in the fiducial ACDM cosmology at differ-
ent redshifts. Scales to the left of the vertical lines, which indicate kn1,(z) for each of the
redshifts shown, are still evolving approximately linearly at each redshift. Figure credits
to Dodelson & Schmidt (2020).

in time as depicted in the right panel of Fig. 1.4. We obtain this same result by relating
the matter density and the potential through the Poisson equation in the large k¥ and no
radiation limit. Then, we can write the late time density evolution with respect to the
primordial potential

2 k2c?

5(’{7, a) = g m @P(k) T(k) D+ (a) (CL > Qlates k > GJH) . (155)

Equation (1.55) holds for any adiabatic perturbation. Finally, we can write the power
spectrum of matter at late times in the case of linear evolution

8772 As 2 2 ks
Pr(k,a) = %5 02, Dy (a) T7(k) Bk (1.56)
where the power spectrum of the primordial perturbation is
Py, (k) =272 k=3 A, (k/kp)" ! (1.57)

as a consequence of inflation (Baumann, 2011). In Eq. (1.56), ns is the scalar spectral
index, k;, is the pivot scale, and A, is the scalar amplitude of the fluctuation. In the case
of a galaxy survey og usually substitutes the amplitude A;. This parameter corresponds
to the amplitude of the linear matter power spectrum at the present epoch and at the
scale of 8 h~'Mpc. Figure 1.5 shows the matter linear power spectrum as a function of
the scale k£ and the redshift z. At large scales, where T'(k) = 1, the power spectrum is
proportional to k"¢, while at small scales we observe a turnover. In Fig. 1.4 left panel
we see that when a mode enters the horizon before the matter/radiation equality epoch
its potential decays and its density (right panel) will start increasing again only after
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matter/radiation equality. All the scales that enter the horizon before a., undergo a
suppression leading to a decreasing power spectrum up to the scale k., that entered the
horizon during matter/radiation equality. The value of this scale depends on 2y, o.

In the case of a linear perturbation, it is possible to write the equation that describes
the evolution of the matter density contrast, ¢,

d?6  d(Ina®H(a)) d5 3 Qo H3
a (na® H(a) d5 _ 3 Qo H s (1.58)
da? da da 2 a® H?(a)

In general, this differential equation has to be solved numerically. In the late Universe,
where matter and the cosmological constant are dominant, we can write an integral so-
lution for Eq. (1.58), which reads

_ 5Quo H(a) [ da’
Do) =250 0 [ (159

Equation (1.59) is not a solution to Eq. (1.58) if dark energy is not a cosmological constant.
In this case, Eq. (1.58) needs to be solved numerically. However, for the logarithmic
derivative of the growth factor, which is the growth rate f, an empirical fit exists and
takes the following form in GR

dIn D, (a)

T = [ (a)]”5° . (1.60)

fla) =
Figure 1.5 shows some additional features. First, at each redshift, the dashed verti-
cal lines mark the nonlinear scale, kx1,. For k£ < kni, the linear approximation solution
discussed above breaks as §(x) ~ 1. A first approximation to analytically describe the
nonlinear regime is the spherical collapse. Second, starting from k ~ 0.1 hMpc ™' there is
an oscillation in the power spectrum. At early times, before the emission of the CMB ra-
diation baryons and photons were coupled by the Compton interaction. Acoustic plasma
waves travelled through the baryon-photon fluid and left a footprint in the baryon distri-
bution, which subsequently affect the matter distribution. These oscillations we observe
in the matter power spectrum are known as baryon acoustic oscillations (BAO) and have
been detected in the clustering of galaxies (Eisenstein et al., 2005).

1.3 The concordance model of cosmology: ACDM

Starting from the theory that describes the homogeneous Universe and the formation
of structure together with observation, the cosmological community has developed a
concordance model. Nowadays the Universe is considered to be Euclidean, dominated
by non-baryonic cold dark matter, and a cosmological constant (Planck Collaboration
et al., 2020a). This standard cosmological model is usually referred to as flat ACDM and
it only requires six parameters to describe the Universe with its content and its evolu-
tion. These primary six parameters are the baryon density parameter, (2,12, the cold
dark matter density parameter, Q.h?, the Hubble parameter, h, the scalar spectral index,
ns, the scalar power spectrum primordial amplitude, A,, and the re-ionisation optical
depth, 7. We can compute all the other parameters introduced in the previous sections
starting from the six primary parameters. An additional ingredient to the standard cos-
mological model is inflation, which is the most accredited mechanism to generate the
initial conditions of the Universe.
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We can also expand the ACDM model with some additional parameters. We can re-
move the assumption of the Universe flatness and add the curvature density as a free
parameter of the model ;h? as well as the one on the total neutrino mass, m,. Ad-
ditionally, we can drop the idea of a cosmological constant in favour of a dark energy
component with a time-dependent equation of state (Linder, 2003)

wpr(z) = wo + w, (L61)

z
1+z°
Such a model is referred to as dynamical dark energy. The measurement of a possible
dependence with time of the dark energy equation of state is one of the key objectives
of all the next-generation cosmological surveys (e.g., LSST Science Collaboration et al.,
2009; Laureijs et al., 2011; DESI Collaboration et al., 2016).

The standard cosmological model is extremely successful in its description of the
Universe and an alternative model that is able to survive all the tests the ACDM model
has overcome is yet to be developed. However, in the last years, the cosmological com-
munity is starting to see cracks in it. First, the nature of the two main components of the
model, dark energy and dark matter, is still unknown and dark matter is still eluding
a direct detection or description on the particle physics side. Moreover, there are ten-
sions in the measurement of some cosmological parameters between early and late time
observation. These tensions may be related to our ignorance of the physical processes
that produce the observed data or related to new physics beyond the standard model.
The most concerning discrepancies in the model are related to the measurements of Hy
(e.g., Verde et al., 2019) and Ss = 05 /21 /0.3 (e.g., Abbott et al., 2022). The H, tension
is particularly disconcerting as the measurements of this parameter from supernovae of
type Ia (Riess et al., 2021) and the CMB (Planck Collaboration et al., 2020a) show a 4.20
discrepancy.

1.4 Galaxy redshift surveys

In the previous section, I discussed the evolution of the overdensity of dark matter. How-
ever, what we observe is the distribution of the galaxies, which is a mapping of the un-
derlying dark matter distribution. In first approximation, we expect the two density
fields to be linearly related as follows

dg(x) ~ b1 dm (), (1.62)

where 0,(x) and §,,(z) are the density field respectively of galaxies and matter. In
Eq. (1.62), b; is the linear bias and represents the response of the galaxy (or any other
tracer) density field to the matter density field. The bias describes the fact that we expect
galaxies to form in dark matter overdensities.

Given Eq. (1.62) and the definition of the correlation function and the power spec-
trum (Egs. 1.49 and 1.52), the relation between the galaxy and matter correlation function
or power spectrum reads

Eg(r) ~ b7 Em(r) (1.63)

Py(k) ~ b7 Pp(k). (1.64)
From the theory of structure formation, we know how the linear matter power spectrum,
P,,(k), evolves.

An additional complication in the analysis of the galaxy density distribution is that
galaxies can have a peculiar velocity, which is a motion with respect to the background
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evolution of the matter perturbation. Therefore, the redshift distance, s, of an object,
which is
s=cz (1.65)

in velocity units, differs from the true distance v = Hj r expressed in velocity units and
defined by Hubble’s law (Eq. 1.5). A galaxy appears displaced by the projection of its
peculiar velocity, u, along the line-of-sight 7 (Kaiser, 1986; Hamilton, 1998)

s=v+u-T. (1.66)

As a consequence of Eq.(1.66) the distribution of galaxies in redshift space, which is
what we observe, is a distortion of the real distribution. This effect is called redshift space
distortions (RSD). Kaiser (1986) showed that in linear theory RSD change the amplitude
of the observed power spectrum,

P =12 (14 L) Puth). (1.67)
where 1 is the cosine of the angle between the line-of-sight and the object.

Despite all the complications, the measurement of the galaxy distribution still re-
mains one of the best ways to map the matter density field and we can actually exploit
RSD to indirectly measure the growth rate and test GR (Guzzo et al., 2008). The sur-
veys that measure the galaxy angular positions and their redshift to map their three-
dimensional distribution in the Universe are called galaxy redshift surveys. They are di-
vided into two categories, spectroscopic and photometric redshift survey, and differ in
the method used to measure the redshifts of the galaxies (see Chapt. 3). The first sys-
tematic redshift survey was the Center for Astrophysics redshift survey (CfA; Tonry &
Davis, 1979), which was followed by the Sloan Digital Sky Survey (SDSS York et al.,
2000) and the Two-degree-Field galaxy redshift survey (2dF; Colless et al., 2003).

1.4.1 Modern redshift surveys

After the pioneering work of the SDSS and 2dF galaxy redshift surveys many other
projects mapped the galaxy distribution in the last two decades. In this section, I will
introduce the three surveys I used during my thesis work.

The first survey is the VIMOS Public Extragalactic Redshift Survey (VIPERS; Guzzo
et al., 2014). This survey is based on observation performed with the Visible MultiOb-
ject Spectrograph (VIMOS; Le Fevre et al., 2003) mounted on the Very Large Telescope
(VLT) of the European Southern Observatory (ESO) at Cerro Paranal in Chile. VIPERS
consists in a spectroscopic sample of ~ 90000 galaxies with ia5 < 22.5 and in the red-
shift range 0.5 < z < 1.5. The spectroscopic targets of the survey were selected from the
two fields W1 and W4 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)
Wide photometric catalogue.! In addition to the magnitude cut the targets were selected
from the colour-colour plane (r—i) vs (u—g), where it was possible to identify a very effi-
cient cut to select galaxies within the redshift range of interest. The two fields of VIPERS
cover an area of ~ 24 deg” and the survey has a total volume of ~5 x 107 h=3 Mpc®. 1
used VIPERS data for the work presented in Chapts. 4 and 7.

The second catalogue is the extended Baryon Oscillation Spectroscopic Survey Data
Release 16 quasar sample (eBOSS DR16Q); Lyke et al., 2020). The eBOSS survey is part of
SDSS phase IV (SDSS-1V; Blanton et al., 2017) and is based on the observation of the Sloan

Thttps://www.cfht.hawaii.edu/Science/CFHTLS/
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Foundation 2.5 m telescope at the Apache Point Observatory in New Mexico (Gunn et al.,
2006). The eBOSS DR16Q sample contains a total of ~ 350000 quasars in the redshift
range 0.8 < z < 2.2. The sample is divided into two fields of view, the North and South
Galactic cap, and covers an area of ~ 4800 deg” and a volume of ~20%~3 Gpc®. T used
the eBOSS DR16Q sample in the work presented in Chapt. 6.

Finally, I worked with mock data that simulates Euclid observations. Euclid is a Euro-
pean Space Agency’s medium-class mission (ESA), which was conceived to probe the na-
ture of dark matter and dark energy by measuring the expansion of the Universe history
and the growth of large-scale structures (Laureijs et al., 2011).> Euclid was successfully
launched from Cape Canaveral, Florida, on July 1st 2023 on board of the SpaceX Falcon
9 launcher. It is now in the second Sun-Earth Lagrangian point at ~ 1.5 x 10° km from
Earth and has started observations. Euclid is a 1.2 m Korsch telescope with two mounted
instruments, the Near-Infrared Spectrograph and Photometer (NISP; Maciaszek et al.,
2022) and the VISual instrument (VIS; Cropper et al., 2016). NISP has three broadband
near-infrared filters (Euclid Collaboration: Schirmer et al., 2022) and a set of grisms for
slitless spectroscopy; VIS is a single optical broadband filter with high spatial resolution.
The large field of view of Euclid (~ 0.5 deg”) was specifically designed to observe one-
third of the sky (~ 15000 deg®) over the six years of its operations. Euclid will combine
an imaging and a spectroscopic survey, with which the Euclid Consortium will respec-
tively perform weak lensing and galaxy clustering analyses. The weak lensing survey
will cover the redshift range 0.2 < z < 0.8 and contain ~ 1.5 x 10 galaxies, while the
galaxy clustering analyses will interest ~ 50 x 10° Ha emitters within 0.9 < z < 1.8. In
Chapt. 5 I will discuss my work with Euclid mock data.

1.4.2 Analysis pipeline

The extraction of cosmological information from the raw observation of a redshift sur-
vey is a complex process. In this section, I will schematically describe this pipeline as
the main topic of this thesis is the management and analysis of redshift survey data at
different stages of data processing.

In the case of traditional spectroscopic redshift survey the spectroscopic targets are
selected beforehand from a parent photometric catalogue, e.g., the spectroscopic targets
of VIPERS were selected from the CFHTLS Wide photometric catalogue. Then, we can
define the sample completeness and its purity with respect to the parent sample. Slitless
spectroscopic surveys, e.g., Euclid, miss this pre-selection step and the sample complete-
ness and purity have a less straightforward definition (see Sect. 5.1). In the case of a
slitless survey, in order to improve these metrics we can apply a target post-selection,
which is applied to the already observed data.

After their acquisition, the data undergo a first reduction, e.g., one-dimensional spec-
tra are extracted from the two-dimensional observation and spurious objects, such as
stars, are identified, then the redshifts of the objects are measured. Potentially we now
have all the information needed to measure the galaxy field summary statistics. How-
ever, when analysing real data a few additional steps are required. First, we need to
identify any systematic effects related to observation, such as the redshift rate failure, the
fibre collision in the case of spectroscopic surveys, or imaging inhomogeneities. Second,
we need to determine the window function of the survey, which represents its footprint
on the sky. The window function has an angular component, which is determined by the
peculiar shape of the survey on the sky surface, and a radial component, which depends

2https://www.esa.int/Science_Exploration/Space_Science/Euclid
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on the radial selection of the survey.

Starting from the survey footprint the random catalogue and mock catalogues are built.
The random catalogue traces the mean density of the observed galaxy sample in the
case of no clustering. The random catalogue is required to estimate the field summary
statistics (e.g., Landy & Szalay, 1993; Yamamoto et al., 2006). The mocks are simulated
catalogues that represent different realisations of the Universe and are used to determine
the covariance of the summary statistics. Finally, the cosmological parameters of interest
are measured with a Bayesian analysis.

The first half of this thesis (Chapts. 4 and 5) is related to photometric redshift mea-
surements and sample selection, while in the second half (Chapts. 6 and 7) I will discuss
optimal methods to extract cosmological information from the galaxy density field.






CHAPTER 2

Machine learning

Machine learning (ML) is a branch of the broader field of artificial intelligence. We call ar-
tificial intelligence any software that automates routine labour starting from the simplest
repetitive task to the understanding of speech and figures. Computers can easily solve
and perform problems that we describe with a list of mathematical rules and usually
prove to be challenging tasks for human beings. On the other hand, computers strug-
gle to solve tasks that are difficult to describe formally, but that are performed daily by
humans, such as recognising faces, animals, and words. To solve these tasks a computer
should learn from experience rather than use a set of mathematical rules or hard-coded
knowledge.

Machine learning and deep learning are the branch of artificial intelligence in which a
computer gathers its own experience by directly extracting patterns from raw (or semi-
raw) data. Figure 2.1 describes the hierarchy inside the field of artificial intelligence
and what characterises each of its branches. As described above, the simplest artificial
intelligence algorithm is a rule-based system, where we feed the inputs to and hand-
designed program. In the case of classic machine learning, the algorithm is ‘free’ to find
the mapping between a representation of the data and the output. The representation of
the data contains features, which summarise pieces of information.

An example of a classic machine learning algorithm is logistic regression, which is a
simple model that usually gives binary answers. Logistic regression is widely used in
medicine to predict, e.g., mortality in patients or the probability of developing specific
diseases (e.g., Boyd et al., 1987; Biondo et al., 2000). These algorithms take as input
a representation of the data previously determined and synthesised by the doctor, who
directly analyses the patient. Then, we can say that these features are hand-designed and
the algorithm does not have any control over their definition. The representation of the
data can heavily influence the performance of an algorithm: for example, for humans, it
is easier to count using Arabic numbers rather than Roman numbers.

There are tasks in which it is difficult to understand the best representation of the
data. In cosmology, for example, we usually describe the galaxy field with its power
spectrum, but we know that the field is non-Gaussian on small scales (and also on large
scales, in the case of primordial non-Gaussianities). Thus, the power spectrum represen-
tation of the data is sub-optimal. A solution to this representation problem is not only to
have the algorithm find the mapping from a representation to output, but also to have it
find the representation itself. This is what is usually called representation learning. When
the representation learning algorithm is able to express features in terms of simpler rep-
resentations we talk about deep learning. An example is a model that analyses images.
Given, e.g., the image of a house, a deep learning algorithm will represent it in terms of
the simpler shapes by which it is composed, which in turn can be represented by straight
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Figure 2.1: Flowcharts showing how the different parts of an artificial intelligence sys-
tem relate to each other within different artificial intelligence disciplines. The shaded
boxes indicate components that are capable of learning from the data. Figure from Good-
fellow et al. (2016).
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or curved lines. The most famous example of a deep learning model is the neural net-
work (NN). Neural networks will be the most used algorithm in this thesis work (see
Chapts. 4, 5, and 7) and I will discuss them in more detail in the next section.

Finally, machine learning algorithms can be supervised or unsupervised. Supervised
learning works with labelled data, where the algorithm learns to make predictions based
on the provided examples. The goal of a supervised algorithm is to find a mapping be-
tween the input and the output based on the labelled data. During the training, the al-
gorithm adjusts its internal parameters to minimise the loss function, which depends on
the difference between the prediction and the label. Supervised learning is usually em-
ployed in regression and classification problems. We evaluate a supervised algorithm’s
performance from its ability to accurately predict target values of previously unseen
data. On the other hand, unsupervised learning deals with unlabelled data and aims to
discover patterns or structures within data without explicit guidance. Unsupervised al-
gorithms are used in clustering, dimensionality reduction, and anomaly detection tasks.
As they do not deal with labelled data what is minimised during the training process
is not the loss function, but, depending on the task, other functions are minimised. For
example, in clustering algorithms what is minimised is the distance between the features
or metrics of cluster quality.

2.1 Neural networks

A neural network is a computational model inspired by the human brain, consisting of
interconnected nodes, also known as neurons, organised in layers, with the ability to learn
patterns and make predictions from data through iterative training processes (LeCun
etal., 2015).

In a feed-forward neural network, the information flows in only one direction, from
one layer to the following, and there are no connections between neurons of the same
layer. Each layer is characterised by the activation function, h(¥), its neurons apply to
their input features. These activation functions can be distinct for each layer or uniform
throughout the entire network, but they must be nonlinear functions. Given the input
data, z, the output of the network is

y=h(x;9) = R (h(”_l) ( .. (h(l) (w;ﬂ(l)) ,) ;19("71)) ;19(")> , (2.1)

where 9" are the free parameters of the i-th layer. The length of the chain of Eq. (2.1)
is equivalent to the number of layers n and represents the depth of the network. We call
the first layer input layer and the last one is the output layer. All the other layers, those
with which the user has no direct interaction, are the hidden layers.

As information progresses from one layer to the next, it undergoes a linear transfor-
mation. We can reorganise the parameter vector 9 of a layer into an n x m matrix
W@, where n is the number of neurons in the layer and m is the number of neurons in
the previous layer, and an n-component vector b known as bias. The input on the i-th
layer is

2@ — W@ -1 (w(i—n) + b 2.2)

where h(i~ (2(i=1)) is the m-component output of the previous layer. The components

of W and b(") are referred as weights. To summarise, the features first undergo a lin-
ear transformation (see Eq. 2.2) and then a nonlinear one through the neuron activation
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Figure 2.2: Schematic representation of the training process. First, the inputs are forward
propagated to the output; then, the model prediction is compared to the label through
the loss function. Finally, in the backward propagation, the gradients of the loss function
with respect to the outputs of the network are computed. These gradients are used by
the optimiser to update the model weights. This process is a training iteration and is
repeated until the loss function is minimised.

function. This simple scheme is repeated for each layer and thanks to it neural networks
have the potential of fitting any nonlinear function (LeCun et al., 2015).

211 Training

During the training process, the network weights are iteratively adjusted to minimise
the difference between the predicted and real outputs. This process enables the model
to learn and generalise patterns from the training data. More rigorously, the objective of
the training of a neural network is to approximate its output y = h(z; W, b) to the real
relation between the input  and the label y = h*(x) by optimising the weights W and
b. Figure 2.2 schematically presents the steps that take place during the training process.
In this section, I will discuss in detail all these steps.

When a neural network is initialised its weights are just random numbers and the
network output will be completely uncorrelated to the real value of the label. The train-
ing of a neural network can be divided into three main steps: the forward propagation,
the loss computation, and the backward propagation. The sequence of these three steps is a
training iteration. During the forward propagation input data pass through the network
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as described in the previous section (see Egs. 2.1 and 2.2) and predictions are calculated
using the current weights.

The next step is the loss computation. The loss function compares the prediction y
with the label y and outputs a loss score. The loss function quantifies in the loss score the
distance between the prediction and the label. Different problems require different loss
functions, e.g., classification and regression tasks need different loss functions. The most
diffuse loss function for classification is the cross-entropy loss function, which, in the case
of binary classification, reads as follows

L @p)=—@np)+(1-7) In(1-p)), (2.3)

where ¥ is the label, which can either be 0 or 1, and p is the predicted probability of
belonging to class 1. The cross-entropy penalises the model more heavily for making
confident incorrect predictions and encourages it to be confident in the correct predic-
tions. Many other loss functions exist for classification, but they usually are modified
versions of this cross-entropy loss. For regression tasks, the most diffuse loss functions
are the mean root squared error, the mean squared error, and the mean absolute error.
In my work, I mainly use the mean squared error loss function or loss functions derived
from it. The mean squared error loss function reads as follows

1 m
LMSE(g = > (v , (2.4)

i=1

where 7; and y; are the label and the prediction of the i-th input and m is the number
of samples observed during a training iteration. Equation (2.4) is valid for a model that
outputs one value for each input. In the case of regression over multiple parameters, we
usually take either the sum or the mean of the mean squared error of each parameter as
the loss score.

Backward propagation is the last and arguably the most important step of the train-
ing iteration. It is an optimisation algorithm used to adjust the model weights based on
the computed gradients of the loss function with respect to these parameters. The objec-
tive is to minimise the loss, improving the model’s ability to make accurate predictions.
Backward propagation starts by calculating the gradient of the loss with respect to the
output of the neural network. The computed gradients from the backward pass are used
to update the model weights. This is part of the gradient descent optimisation algorithm
and the algorithm that performs it is also called the optimiser. The weights are updated
based on the gradients and shifted in the direction that minimises the loss. After this
first weight update, the gradients are also propagated backward through the layers of
the network and they are used to calculate the local gradients with respect to the layer
inputs and outputs. These local gradients are used to update the weights of each layer
individually. The general formula for the weight update is

Whew = Wold — I OwL ) (25)

where wpew is the updated weight, weq is the current weight, [, is the learning rate,
which determines the step size in the weight update, and 0,, L is the gradient of the loss
function with respect to the corresponding weight wyq. The update of Eq. (2.5) can be
modified by more complex optimiser algorithms, which are used in the gradient descent
phase; however, for the second update of the weights the standard update formula is
used. One of the most common optimisers is the Adaptive moment estimator (Adam;
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Figure 2.3: Example of the loss score as a function of the training epoch. The solid line
represents the loss of the training set, while the dashed curve is the loss of the validation
set. In the first phase of the training the model is underfitting the data, but as training
goes on the model starts to overfit the training set. It is important to identify the model
that minimises the validation loss and it is possible to stop the training when this model
has been selected.

Kingma & Ba, 2014), which adjusts the learning rate for each parameter based on both
the first and second moments of the gradients. In all my work I used the Adam optimiser.

With the layer-wise weight update, the training iteration is concluded. This process
should be repeated until the loss function is minimised. During a training iteration, the
model does not necessarily see the whole training data set. We say that the training has
completed an epoch when the entire training set has passed through the network. An
epoch can be composed of more than one training iteration. This happens when the
batch size is smaller than the number of data points in the training sample. The batch size
refers to the number of training examples utilised in one training iteration. Larger batch
sizes may provide more accurate gradient estimates but require more memory. Smaller
batch sizes introduce more noise but may lead to faster convergence. The number of
epochs and the batch size are hyper-parameters of the model.

As discussed above, to train a network we use a fraining set of data points, however,
the performance of a network is determined by its ability to make correct predictions
for unseen data. We say that a data point is unseen if it is not part of the training set
and has not had any role in the optimisation of the network weights. We can use un-
seen data not only to determine the performance of a model after the training, but also
to monitor the network performance during the training itself. In the former case, we
call the set of unseen data the test set, while in the latter case, we talk about validation
set. The validation set has a critical role in the training of machine learning models and
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acts as an essential benchmark to evaluate the model performance on unseen data (see
Fig. 2.3). As models train, they face the risk of overfitting, capturing noise and details
from the training set that do not generalise well. Conversely, underfitting arises when
a model is too simplistic and fails to grasp the underlying patterns in the data. The use
of the validation set can prevent these issues. By evaluating the model on data it has
not encountered during training, we can discern whether the network strikes the right
balance between complexity and generalisation. Additionally, we can also exploit the
validation set to determine when we can stop the training of the network, this practice is
called early stopping, and to select the best weights of the model. Early stopping consists
of monitoring the model performance on the validation set and halting training when
further iterations produce diminishing returns or risk overfitting. Moreover, the valida-
tion set helps in selecting the best weights for the network. We usually say that the best
model is the one that minimises the loss evaluated over the validation set rather than the
training set, doing so we select a model that not only fits the training data well but also
exhibits robustness and effectiveness on new and unseen examples.

2.1.2 Data structures and neural network architectures

The neural network described in Sect. 2.1 is usually referred to as a dense neural network.
The name remarks the fact that all the neurons of a layer are connected to the neurons of
the following layer through the linear transformation of Eq. (2.2). To summarise the lay-
ers are densely connected. As mentioned in the previous sections, this structure has the
potential of fitting any nonlinear function y = h*(x). However, this statement, broadly
known as universal approximation theorem (e.g., Hornik et al., 1989), is based on a number
of assumptions that cannot be met in real-life models, e.g., arbitrary width of the layer
or arbitrary depth of the network. To actually reach a good approximation of the func-
tion h*(x) it is important to identify the appropriate hyper-parameters of the model. In
Sect. 2.1.1 I mentioned the batch size and the number of epochs for the training as hyper-
parameters, but the loss function, the optimiser, and the neurons” activation functions
are hyper-parameters as well. Broadly speaking any choice we make when building the
network is a hyper-parameter that could be optimised for the problem at hand.

Arguably, the most important hyper-parameter is the architecture of the network. By
network architecture, we refer to the overall design and structure of the neural network.
The arrangement, connectivity, and number of components, such as layers and neurons,
are part of the network architecture and determine how the information flows through
the network. In particular, some architectures are specifically designed to manage dif-
ferent types of data structures. In the case of data with a grid-like topology, such as
pixelised images or time series, an optimal architecture is the convolutional neural network
(CNN; LeCun, 1989; Goodfellow et al., 2016). A network is called convolutional if at
least one of its layers employs convolution instead of the general matrix multiplication
described in Eq. (2.2).

Figure 2.4 represents a two-dimensional convolution. Rigorously, this operation is a
cross-correlation and reads as follows

S(i,§) = (K *I)(i,5) = > > I(i+m,j+n)K(m,n), (2.6)

where [ is the input two-dimensional grid and K is the m x n two-dimensional convolu-
tion kernel, also known as filter. Many machine learning libraries (e.g., PyTorch; Paszke
et al., 2017) implement the cross-correlation of Eq. (2.6) and call it convolution. Convo-
lution has three main advantages over a dense neural network: it has sparse interaction,
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Figure 2.4: A schematic representation of a 2-dimensional convolution. For this example,
the output is restricted to only positions where the kernel lies entirely within the image.
The green boxes with arrows indicate how by applying the kernel to the upper-left region
of the input produces the upper-left element of the output. Figure from Goodfellow et al.

(2016).
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parameter sharing, and an equivariant representation. As mentioned above in dense neural
networks a neuron is connected to all the neurons of the previous and following layer,
so every output unit interacts with every input unit. However, if the kernel is smaller
than the image the CNN is processing, the interactions between input and output units
are sparse. In Fig. 2.4, since we apply a 2 x 2 filter to a 3 x 4 input, the outputs only
depend on four of the input units. This is a sparse interaction. This does not necessarily
mean that there is no interaction between input neurons far from one another, e.g., ¢ and
l. If the convolutional neural network is deep enough the deeper outputs can indirectly
interact with a larger portion of the input image, if not the whole image.

The convolution operation also enforces parameter sharing, which corresponds to
the fact that it uses the same parameter for more than one operation in the model. In
Eq. (2.2) the weight matrix W has n x m different parameters, where m and n are the
numbers of neurons in the input and output layer respectively. As a consequence of
this, there are n x m weights to be stored and n x m operations to be performed. On
the other hand, the convolution applies more than once the same weights. In Fig. 2.4
we see that the same 4 elements of the kernel appear in each output unit. This greatly
reduces the memory requirements and the number of operations the model performs.
Finally, convolution is also equivariant to translation. It means that if a specific feature
in the input is shifted the corresponding representation in the output is shifted in the
same way. This means that the network is able to identify the same pattern in different
regions of an image.

In general, we build a convolutional neural network as a sequence of convolutional
layers whose output is flattened and processed by a dense neural network into the out-
put neurons. Each convolutional layer enforces Eq. (2.6) multiple times with different
filters. Therefore, with each convolution the input is compressed and its information
content is divided into multiple outputs. In this process, each filter learns a specific
feature of the input. We can also combine convolutional layers with normalisation or
pooling operations, but I will discuss each one of these solutions in the description of
the specific CNNs I designed for this thesis work (see Chapt. 7). Finally, the dense layers
post-process the convolutional layers output. This output is a (N + 1)-dimensional ten-
sor, where N is the original dimension of the input (e.g., 2 for a one-colour image), and
the additional dimension is introduced by the use of more than one filter in each con-
volutional layer. Potentially, we could use only one dense layer to map the convolution
output to the final output of the network. However, as I just described, the convolution
can output a very large data vector. In these cases, it is more efficient to compress the
information not with one layer, but with a sequence of dense layers.

Another data type that can be interesting in LSS studies is the graph. Graphs are
used to represent interaction-based data, e.g., friend and citation networks or molecular
structures. Graphs can be an alternative way to represent the cosmic web and we can
exploit their versatility for any type of unstructured data. Mathematically, a graph G =
(V,€) is a set of nodes V and edges £. We denote a node with v; € V and the edge from
node v; tonode v; as e;; = (v;,v;) € €. Edges normally have a direction. In the definition
above e;; goes from v; to v;, while ej; goes from v; to v;. Additionally, we can define the
node v € V neighbourhood as N (v) = {u € V|(u,v) € £}, which corresponds to the set of
nodes that have an edge going to v. We collect all the edge information in the adjacency
matrix A. This is a n x n matrix, where n is the number of nodes in the graph, with
A;; = life;; € £and A;; = 0 otherwise. As edges are directed, the adjacency matrix
is not symmetric a priori. It becomes symmetric in the case of an undirected graph. In
this case, if two nodes are connected there is a pair of edges with opposite directions
between them. Finally, both nodes and edges in a graph may have attributes. The node
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attributes are collected in X € R™*?, where d is the number of attributes the nodes have.
Analogously, we define an edge attribute matrix X¢ € R™*/, where m is the number of
edges in the graph and f the number of their attributes.

Graphs are extremely flexible in comparison to grid-structured data and can easily
represent irregular data sets. This comes at the cost of complexity in the application of
deep learning to graphs (Hamilton, 2020). The networks designed to manage graphs are
called graph neural networks (GNNs). Graph neural networks are designed to manage
inputs with varying dimensions as graphs representing the same type of object, e.g., a
molecule, can have a different number of nodes and edges. Under the name of GNNs
goes a large number of deep learning models that solve many different tasks (Wu et al.,
2019). Graph neural networks can perform node classification, node regression, or pre-
dict missing node attributes. We can also use GNNs for relation prediction or graph
classification and regression. These last two tasks consist of the extraction of graph-level
information and are the most similar to standard deep-learning methods.

What makes all these graph neural networks very efficient is the ability to share infor-
mation between node neighbourhoods. In comparison to the grid convolution defined
for CNNSs (see Eq. 2.6) the information sharing in GNNs is based on the concept of mes-
sage passing. Many GNN models implement and exploit message passing in different
ways, but this mechanism is always characterised by a series of defined steps. The three
main phases of message passing are message generation, message aggregation and update.
During message generation nodes send messages to their neighbours. These messages
are generated by combining the sender node’s attributes with edge-specific information.
After receiving the messages from the neighbourhood a node aggregates them before
updating its representation by combining its current attribute with the aggregated mes-
sage. The most general way to describe the message passing operation that transforms
the i-th node attributes x; into the updated attributes «/ is as follows (Gilmer et al., 2017)

z; =7 (i, Bjenih (@i, 25, 25,) ) 27)

where 7(:) is a differentiable update function, O;¢ n(;) is a permutation-invariant ag-
gregation function, e.g., a summation or an average over the neighbourhood messages,
and h(-) is the differentiable message function. The j-th neighbour attributes are «; and
x$,; are the attributes of edge e;;, which sometimes undergo a transformation before the
message creation (e.g., Gong & Cheng, 2018). We update the attributes of all the nodes
in the graph sharing the same message, aggregation, and update functions. Therefore,
message passing itself is a form of parameter sharing. Note that the update and message
functions can also be dense neural networks. This choice makes the message-passing op-
eration extremely general, but it also makes a GNN complex to manage memory-wise.

Similarly to convolutional neural networks, where there can be a sequence of convo-
lutional layers, in graph neural networks, we can build a sequence of message-passing
layers. Each time we repeat a message passing operation the information is propagated
further away from the node it originated from. Finally, when the graph neural network
performs a graph regression or classification we aggregate the information from all the
nodes and usually pass it through a sequence of dense layers (as we do for CNNs) to
obtain the final output.

In summary, each task requires an attentive design of the deep learning model used
to tackle it. In this section, I specifically discussed convolutional and graph neural net-
works as I used them during my thesis work. However, other neural network archi-
tectures exist that can be used to manage different data types or tasks, e.g., recursive
neural networks for sequence-like data or generative adversarial networks to generate
new synthetic data sets from existing ones.
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CHAPTER 3

Galaxy distances and redshifts in cosmology

Measuring distances in astrophysics is no trivial task. We can not use the same method
for all the distance scales. Therefore, over the years, astronomers and astrophysicists
developed different methods to measure the distances of increasingly distant objects.
These methods overlap on some distance scales so that their precision can be tested.
Therefore, the precision of each step of this ‘distance ladder” depends on the precision of
the previous one until the first step is reached. The first step must be model-independent
in order to make the whole ladder coherent.

This first method is parallax. Parallax is the measure of the maximum angular annual
displacement of nearby stars due to the revolution of Earth around the Sun. Knowing a
star’s parallax and the Earth-Sun distance we can measure the distance of the star from
the Sun. We can measure the parallax of stars as far as 1 kpc, which are galactic objects.
However, now, thanks to the new astrometric data acquired with the ESA satellite Gaia,
it is possible to reach distances up to 10 kpc using the parallax method.

The following step is the so called spectroscopic parallax. This method measures the
distance of a star confronting its apparent magnitude, which is what we measure, with
its absolute magnitude extrapolated from its temperature using the Hertzsprung-Russel
(HR) diagram. The temperature of the star is measured with spectroscopy and the HR
diagram is built from stars whose distances were measured with parallax. Spectroscopic
parallax reaches stars as far as 10 kpc, which are still galactic objects.

Next, there are some methods based on variable stars, the most famous of which
are the variable Cepheids.! From parallax and spectroscopic parallax measurements we
were able to understand the relation between the absolute magnitude and the period of
luminosity variation for Cepheid stars. Therefore, by measuring the variation period of
a distant variable star and its apparent magnitude we can estimate its distance. With
variable star methods, we can measure the distance of every galaxy in which we can
resolve single objects (in particular variable stars). Variable stars are used to measure
distance up to ~ 10 Mpc, which is the distance of the Virgo cluster, one of the nearest
galaxy clusters.

At further distances, we can not resolve single objects in a galaxy except for masers
and supernovae. Masers are monochromatic point sources in the microwave wave-
lengths. They are produced by specific quantum transitions in non-thermal gas pop-
ulations and they can occur in gas accretion disks around the black holes in the centre
of galaxies. These masers are produced by transitions of water molecules and are also
known as water masers. Knowing the rest-frame wavelength of the transition, assum-
ing a Keplerian rotation of the maser around the central black hole, and measuring the
angular distance of the maser from the centre of its orbit, its velocity, and its accelera-
tion, we can estimate the physical distance of the maser from the black hole and have a

IThe variable Cepheids method was used by Hubble to measure the distance of the nearest galaxies.
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direct measurement of the distance of the maser from the Sun. The most distant maser
is at ~ 150 Mpc. However, masers are rare, up to date there are only six masers with a
distance measurement obtained with this method. For this reason, we mainly use them
to make an additional calibration of other extra-galactic methods.

The other type of objects that we can resolve within other galaxies are supernovae.
Supernovae are explosions during which the luminosity of a star can exceed the lumi-
nosity of a whole galaxy. A supernova is a very complicated phenomenon. However, su-
pernovae type Ia, which are the explosion of white dwarfs that reach the Chandrasekhar
mass, have a very peculiar characteristic: their peak absolute luminosity is constant and
correlates with the peak width. Therefore, if a supernova la explodes in a far galaxy we
can observe it and, knowing its absolute luminosity, we can measure its distance.

However, also supernovae are rare phenomenons, thus for the majority of the fur-
thest galaxies the only information we receive is the electromagnetic spectral energy
distribution (SED) of the whole galaxy which, on first approximation, is the sum of the
spectra of the galaxy stars. Due to the expansion of the Universe the galaxy SEDs are
stretched toward longer wavelengths and appear redshifted. As shown in Sect. 1.1.3, a
wave packet wavelength is red-shifted and its flux density is dimmed by a factor (1 + z).
Moreover, from Eq. (1.38) we are able to calculate distances from redshifts given a set of
cosmological parameters. Thus, in observational cosmology, redshift measurements are
distance measurements once we assume a cosmological model.

Before we start to describe in detail the methods used to measure cosmological red-
shifts we need to mention that baryon acoustic oscillations can be used to measure cos-
mological distances as well. From structure formation theory we know that the physical
dimension of the BAO is fixed by the sound horizon at recombination and its angular di-
mension can be measured using the angular correlation function for a sample of galaxies
measured in a survey (see Sect. 1.2.1). Having this information provides the relationship
between redshift and angular diameter distance from which we can constrain the pa-
rameters of the cosmological model.

3.1 Spectroscopic redshift

There are two different methods used to measure redshifts on cosmological scales, both
with advantages and flaws. They both aim to identify characteristic features in the
galaxy’s spectral energy distributions and measure how much they were redshifted. Let
us start our description from the more straightforward one which is spectroscopy:.

Spectroscopy provides a measure of the SED with high wavelength resolution. Galaxy
spectra are the sum of the spectra of their content. Galaxies have different spectra de-
pending if their stellar population is young or old and if they are rich or poor in inter-
stellar medium. However, all galaxy spectra have in common two features: the Lyman
break and the Balmer break. Any photon with a wavelength shorter than 912 A, Lyman
continuum, will be absorbed by neutral hydrogen gas, both in the galaxy itself and in
the intergalactic medium. Not only will these photons be absorbed, but also any with
a wavelength corresponding to the line in the Lyman series. Consequently, we do not
receive light with a wavelength shorter than the Lyman-« line at 1216 A. Hence, a step
is produced in the galaxy SED at 1216 A, this feature is known as Lyman break and it is
marked by the black solid line on the left in Fig. 3.1.

Analogously, the Balmer break can be explained. This spectral feature is related to
the hydrogen Balmer series from 3646 A t0 4000 A and is seen in stellar spectra. Photons
with wavelengths less than 3646 A have sufficient energy to excite the Balmer transition
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Figure 3.1: Spectroscopic and photometric redshifts. Top: The SEDs at z = 0 of a Star-
burst galaxy (SB). The solid vertical lines indicate the Lyman and the Balmer breaks in
the galaxy rest frame. The dashed line is the Starburst galaxy SED shifted at z ~ 1.1,
while the dashed vertical lines indicate the Lyman and the Balmer breaks shifted at that
same redshift. The shown SED is from the COSMOS templates (Ilbert et al., 2009). Bot-
tom: Observed Y, — Ji colour as a function of redshift for the starburst galaxy plotted
above and an elliptical galaxy (Ell). The dashed horizontal line indicates Y, — J; = 0.8
and shows the photo-z degeneracy.
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and are thus absorbed by hydrogen atoms in stars. The step we observe in the SED at

4000 A is therefore called Balmer break. It is the excited hydrogen to produce this feature,
therefore the Balmer break is more visible in galaxies with a higher star-formation rate.
In Fig. 3.1 the Balmer break is marked by the solid line on the right.

Observing the spectrum of a far galaxy enables us to measure with high precision
how much these features, with other characteristic emission or absorption lines, were
redshifted, and infer the cosmological redshift z of the galaxy (see Fig. 3.1). With this
method, redshifts are measured with high precision with an error lower than 5-1073(1+
z) for resolution R > 200 (e.g. Guzzo & Vipers Team, 2017). One of the first spectroscopic
redshift surveys with a high number of objects (~ 10°) is the Sloan Digital Sky Survey
(York et al., 2000), which enabled cosmologists to study the three-dimensional structure
of the Universe, the properties of galaxies and their scaling in redshift and much more
(see Sect. 1.4.1).

However, measuring spectroscopic redshifts is time and resource-consuming. Ob-
serving the spectra of distant faint objects, which are affected by cosmological dimming,
requires large telescopes and long-time exposure in order to be able to decompose the
light signal into the spectrum. The faint object signal-to-noise ratio is often too low for
redshift measurements. In addition, for a solid spectroscopic redshift measurement, at
least two spectral features are needed, which means a wide wavelength coverage is es-
sential. Therefore, even if spectroscopy is the best method to probe the local and near
Universe it becomes less suitable for this task the farther we want to study:.

3.2 Photometric redshift

An alternative to spectroscopic redshifts is the so called photometric redshift, known as
photo-z. This method was first proposed by Baum (1957). Photometric redshift is based
on the idea that we can constrain the SED shape with wide band flux measurements
and infer the redshift of the object from its observed colour, which is the difference in
magnitudes of two bands, that is related to SED broad features such as the Lyman and
Balmer breaks. The breaks are steep changes in the SED, therefore we should be able to
detect gradients between observed fluxes in adjacent filters, which are the colours, and
identify the position of a break.

Figure 3.1 bottom panel shows how the colour of a galaxy depends on its redshift.
The first thing we notice from Fig. 3.1 is that the colour has a maximum at a given redshift
that depends on the galaxy type. When designing a photometric redshift survey, the
filters must be chosen in order to observe key features of the redshift and objects of
interest. Second, we see that there is a degeneracy for the redshift solution in the colour
space. This degeneracy, known as photo-z degeneracy, can be broken by combining
several colours. Therefore, also a photo-z survey must have a wavelength coverage as
broad as possible with multiple filters.

In principle, if we follow these prescriptions, we can derive the redshift of every
source in an imaging survey. The price we must pay for this surveying completeness is
the redshift precision, which decreases by one or two orders of magnitude compared to
spectroscopic measurements. Photo-z popularity has increased in the last two decades.
If well calibrated with spectroscopy, the photometric redshifts enable us to make sta-
tistical analyses of larger samples than spectroscopic redshifts do. Moreover, it makes
it possible to infer redshifts for very faint objects. This means that we simultaneously
have a more complete observation of the region than spectroscopy probes and the pos-
sibility to study regions with higher redshifts than spectroscopy does. Photo-z preci-
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sion is enough to study galaxy evolution, formation and properties with cosmic time,
to search primordial galaxies (e.g., Dunlop et al., 2012), to identify galaxy clusters (e.g.,
Finoguenov et al., 2007) and limited precision analyses of galaxy environment (Ethering-
ton & Thomas, 2015; Malavasi et al., 2016). In addition, photo-z has recently become a
tool to probe large-scale clustering (e.g., Abbott et al., 2022), measure the galaxy bias and
cosmological parameters and study properties of dark energy (e.g., Abbott et al., 2018).

All photo-z techniques have in common the aim to build a map between the colour
(or flux) space and the redshift one (Salvato et al., 2019; Newman & Gruen, 2022). When
the map is ready we can obtain by comparison the redshift of a source and the redshift
probability distribution function, hereafter redshift distribution. The photo-z techniques
can be divided into two macro groups: the physical methods and the data-driven meth-
ods. The physical, or template-fitting, methods start from a set of theoretical or empirical
SED templates. Theoretical templates are built from stellar emission models, empiri-
cal ones are based on observed spectra sometimes extended over broader wavelength
ranges. Then, all the physical processes light undergoes travelling from the source to
the observer are taken into account to build the colour-redshift map. For example, two
processes the accounting of which greatly improves the photo-z measurements, are neb-
ular emission lines and dust absorption and extinction. Most of all dust extinction needs
to be modelled because it reddens light and normally it is most efficient in the ultravio-
let (UV) band. The galaxy rest frame UV part of the SED, where the Lyman break lies,
is what optical and NIR data observe for galaxies with z > 1. Extinction reddens the
light signal we observe and may cause an overestimation of the galaxy redshift if it is
not taken into account. Physical methods usually model dust as a free parameter, using
both interstellar attenuation laws (e.g., Calzetti et al., 2000) and intergalactic ones (e.g.,
Madau, 1995).

The most popular data-driven methods are machine learning algorithms. Starting
from a sample of data an ML algorithm learns the colour-redshift map during the train-
ing. ML algorithms can be supervised or unsupervised learning methods (see Chapt. 2).
Supervised learning needs labelled data, therefore galaxy redshifts have to be known as
well as photometry, during the training, while unsupervised learning needs only pho-
tometry in this phase. Supervised learning algorithms aim to approximate the function
between the multi-dimensional photometry space and the redshift space starting from
the training data. At the end of the training, the algorithm has built a function that maps
each point in flux space to a redshift, ideally, every galaxy has a different redshift from
the others. Therefore, to ensure a good interpolation of the mapping function the sam-
pling data set must be representative of the properties of the sample for which prediction
will be made, otherwise, accuracy will be lost. Moreover, supervised ML methods are
by nature limited to low redshift and bright objects because the redshift values used
during the training are obtained from spectroscopic redshift measurements. Two of the
most common supervised learning algorithms are random forest and neural networks
(see Sect. 2.1). On the other hand, unsupervised learning methods need only photome-
try for their training. Rather than a detailed approximation of the mapping function, as
supervised methods do, they aim to roughly describe this function assigning different
redshift values to galaxies that have been grouped. An unsupervised algorithm con-
structs the flux-redshift map in two steps. Firstly the training galaxies are divided into
groups based on their properties (e.g., k-means; MacQueen, 1967), usually their colours,
then, when the groups are fixed, another training sample of galaxies with known red-
shift is used to estimate the redshift of each group. Therefore, an unsupervised learning
method assigns a redshift value to each group of galaxies, not to each galaxy, and it is
as good as the groups it builds are compact in redshift space. Possibly the most popular
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unsupervised ML algorithm for photo-z measurements is the self-organising map (SOM;
Masters et al., 2015; Wilson et al., 2020).



CHAPTER 4

Augmenting photometric redshift estimates using
spectroscopic nearest neighbours

The present chapter is based on the paper 'Augmenting photometric redshift estimates using spec-
troscopic nearest neighbours’ by Federico Tosone, Marina S. Cagliari, Luigi Guzzo, Benjamin
R. Granett, and Andrea Crespi, published in Astronomy & Astrophysics in April 2023 (Tosone
etal., 2023).

41 Introduction

Knowledge of galaxy distances is of uttermost importance for cosmology, as to recon-
struct the underlying three-dimensional dark matter distribution that encapsulates key
information about the evolution and matter content of the Universe. On cosmological
scales, the most efficient method to estimate distances is through their cosmological red-
shift, which directly connects to the standard definitions of distance. Sufficiently precise
redshift measurements allow us to test the world model through the redshift-distance
relation, coupled with standard rulers and standard candles (e.g., Riess et al., 1998; Perl-
mutter et al., 1998).

Over the past 25 years, galaxy clustering measurements from large redshift surveys
have been able to quantify the universal expansion and growth histories, pinpointing
the value of cosmological parameters to high precision (e.g. Tegmark et al., 2006; Colless
et al., 2003; Blake et al., 2011; de la Torre et al., 2017; Alam et al., 2017, Pezzotta et al.,
2017; Bautista et al., 2021). Even larger redshift surveys are now ongoing (DESI; DESI
Collaboration et al., 2016), or soon to start (Euclid; Laureijs et al., 2011), with the goal of
further refining these measurements to exquisite precision and find clues on the poorly
understood ingredients of the remarkably successful standard model of cosmology.

The redshift is measured from the shift in the position of emission and absorption
features identified in galaxy spectra, typically through cross-correlation techniques with
reference templates, which capture the full information available (e.g., Tonry & Davis,
1979). Despite the considerable advances of multi-object spectrographs over the past
40 years, collecting spectra for large samples of galaxies, however, remains an expen-
sive task. A cheaper, lower-precision alternative is offered by photometric estimates, i.e.,
measurements based on multi-band imaging, in which integrated low-resolution spec-
tral information is collected at once, for large numbers of objects over large areas. The
price to be paid is that of larger measurement errors, together with a number of catas-
trophic failures, which limit the scientific usage of such photometric redshifts to specific
applications (e.g., Newman & Gruen, 2022). Still, when a sufficient number of photo-
metric bands is available, (Benitez et al., 2014; Laigle et al., 2016; Alarcon et al., 2021),
or even information about the ensemble mean spectrum can be obtained (Cagliari et al.,
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Figure 4.1: Correlation between a galaxy’s own redshift and that of its n'" nearest angu-
lar neighbour (n = {1, 2, 3,4}), as seen in the VIPERS redshift survey data, which cover
the range 0.5 < z < 1.2. Clearly, while a tight correlation exists for a number of objects,
many other angular pairs just correspond to chance superpositions.
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2022), these samples become highly valuable in many respects. Photo-zs are traditionally
estimated by fitting template spectral energy distributions to the measured photometric
fluxes (e.g., Bolzonella et al., 2000; Arnouts et al., 2002; Maraston, 2005; Ilbert et al., 2006).
Detailed reviews can be found in Salvato et al. (2019), Brescia et al. (2021), and Newman
& Gruen (2022).

Since the pioneering work of Collister & Lahav (2004, see also Lahav 1994), who
first used artificial neural networks (ANN) to obtain photo-z estimates, machine learn-
ing algorithms have seen many further applications in this context. These include ran-
dom forests (Carliles et al., 2010), self-organising maps (Masters et al., 2015), and advanced
ANNSs (Sadeh et al., 2016). A notable recent application uses the full images of galaxies
through convolutional neural networks (Pasquet et al., 2019; Henghes et al., 2022). All
these methods provide photo-z estimates by using information that is strictly local, i.e.,
the flux of each object measured in a number of photometric bands, independently of
correlations with the other galaxies in the sample.

In the specific case when a photometric survey includes spectroscopic redshifts for
a representative sub-sample spread over the same area, these represent extra informa-
tion, which can be exploited to obtain improved estimates of the missing redshifts. Since
galaxies are spatially clustered, angular neighbours on the sky preserve a degree of red-
shift correlation, depending on the depth of the catalogue. The deeper the catalogue,
the weaker the correlation, due to projection over a deeper baseline. Still, an angular
correlation remains, as can be seen explicitly in Fig. 4.1, in the data of the VIMOS Public
Extragalactic Redshift Survey (Guzzo et al., 2014).

Such a correlation was exploited, for example, to improve knowledge of the sample
overall redshift distribution (Newman, 2008), a fundamental quantity for many cosmo-
logical investigations, as, e.g., weak lensing tomography. With VIPERS, instead, it was
used in the estimate of the galaxy density field, to fill the gaps due to missing redshifts
(Cucciati et al., 2014). Even more finely, Aragon-Calvo et al. (2015) used the fact that
galaxies are typically confined within cosmic web structures to get a dramatic improve-
ment in the estimate of photo-zs for ~ 200 million Sloan Digital Sky Survey galaxies,
starting from only ~ 1 million spectroscopically measured redshifts.

Our goal with the work presented here has been to optimally retrieve such non-local
information from the neighbouring objects of a given galaxy building upon a specific
class of ML architectures, graph neural networks. The key property of this class is the
ability to combine information from unstructured data, based on our priors of the task
at hand (Bronstein et al., 2017). The end goal is to obtain an improved estimate of the
galaxy redshift.

As shown by Fig. 4.1, the existing correlation between angular neighbours is strongly
diluted by the sea of chance superpositions along the line of sight. Thus, the problem can
be more appropriately recast into quantifying the probability that a given angular neigh-
bour (with known redshift) is a physical companion for a given galaxy and thus closely
correlated in redshift as well. Our GNN model, dubbed NezNet, combines the intrinsic
features of a target galaxy and a neighbour, i.e., their multi-band fluxes, the spectroscopic
redshift of the neighbour and their relative angular distance, to output the probabil-
ity for the two galaxies to be spatially correlated. We train and test NezNet using the
spectroscopic sample of VIPERS. We show that discarding those targets for which no
real physical neighbour is identified with significant probability, improves the quality of
the associated photo-z catalogue obtained through classic SED-fitting, increasing preci-
sion and accuracy and reducing the fraction of catastrophic outliers. Moreover, when
real neighbours are identified, the redshift of the highest-probability one represents an
estimate for the redshift of the target that is typically more precise than that obtained
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Figure 4.2: Schematic architecture of NezNet: the input features are first processed by a
dense network; afterwards, message passing between the two layers through Eq. (4.1) is
applied, to take into account both relative differences and global values of the features
as well. Before the final dense layer, the features are summed and then reprocessed with
an MLP to output the score probability of two galaxies being actual neighbours.

through the classical SED fitting.

The idea of using GNNs to draw extra redshift information from neighbouring galax-
ies is not totally new. Beck & Sadowski (2019) present preliminary results of an approach
based on using only the photometry of a neighbourhood of galaxies, obtaining a 10%
improvement on the median absolute deviation of the photo-zs estimated via a single
object-based ML algorithm. We believe that the main shortcoming of methods based
on apparent neighbours lies in the large fraction of chance superpositions, evident in
Fig. 4.1. Here, we reformulate the problem as a detection task that identifies the physi-
cal neighbours of the surrounding spectroscopic objects, including also the neighbour’s
spectroscopic information, obtaining in this way a significant improvement.

The chapter is organised as follows. In Sect. 4.2 we give a brief description of how
GNNs work and specify the architecture of our model. In Sect. 4.3 we describe the prop-
erties of VIPERS data and the way we prepare the training set, in particular how we
define real or apparent neighbouring objects. Section 4.4 describes how the model is ap-
plied to the data and the metrics that we use to quantify the performance of the results.
Finally, in Sect. 4.5 we present and discuss our results, and conclude in Sect. 4.6.

4.2 Model

A neural network model can be summarised as a set of nonlinear functions applied to
a set of inputs which undergo a linear mapping. Each mapping has many parameters
that are optimised through a training process, which allows the network model to ap-
proximate a wide variety of almost arbitrary functions (LeCun et al., 2015). In its sim-
plest form, a neural network model corresponds to a multi-layer perceptron (MLP), also
known as a dense neural network (Murtagh, 1991). If one is dealing with images, neu-
ral architectures such as CNN are more suited, as they take into account our a priori
knowledge about the data structure (O’Shea & Nash, 2015).

This reasoning can be pushed further by introducing neural networks for graph rep-
resentations (Zhou et al., 2018). In this work, we make use of one key aspect of GNN,
i.e., message passing (Gilmer et al., 2017). To fix ideas, the problem we want to address is
the following: we need to find the spectroscopic galaxies with the highest probability of
being close to a galaxy for which only photometric information is available. This can be
recast as a classification task for each pair of galaxies, in which our aim is to distinguish
between apparent and real neighbours when projected on the plane of the sky.

Intuitively, a model to distinguish between apparent and real neighbours should be
based on the relative difference between galaxy features. Such a neural network can be
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designed by including a layer of the form
z, = Z h(z;,z; —x;), 4.1)

JEN ()

where z; refers to the array of input features of the node i-th, A/(7) is the neighbourhood
of the same node, > is the aggregation function which sums the outcomes from each pair
of nodes. The function h is an MLP that explicitly combines the value of the input feature
at the node and the relative difference of that feature with respect to the neighbour.
It is worth noting that such a GNN is both permutation equivariant and permutation
invariant, so that it is not affected by changing the order of the nodes, i.e. the input
galaxies.

The complete architecture of our model is illustrated in Fig. 4.2. Each node is a galaxy,
whose inputs (e.g. the photometric measurements) are pre-processed through a MLP,
before undergoing the message passing of Eq. (4.1). In our work, we restrict ourselves to
the case of pairs of galaxies, so that the neighbourhood N (j) includes one galaxy only,
and the aggregation function simply sums the features z} + z5. This model can be seen
as a trivial version of EdgeConv (Wang et al., 2018), where the adjacency matrixis a 2 x 2
matrix, with 0 entries for diagonal elements and 1 for the off-diagonal elements. Finally,
the summed features undergo a last dense layer with a scalar output. All the activation
functions are rectified linear units, with the exception of the final layer where we use a
sigmoid, as to represent a probability for our classification task.

We dub this classification model Nearest-z Network (NezNet). NezNet provides the
probability for a pair of galaxies to be real neighbours. The loss function adopted to train
NezNet is a standard binary cross-entropy

n

L= % D lyilogps + (1 — ;) log (1 —py)], (4.2)

3

where p; is the output probability of NezNet for each pair of galaxies, while y; = 0,1
is the corresponding training label, and the sum is averaged over the mini-batch. To
design our model we made use of the Spektral library (Grattarola & Alippi, 2020), where
the EdgeConv layer is conveniently already implemented.

4.3 Data

We train and test our approach on the final data release of VIPERS (Guzzo et al., 2014;
Scodeggio et al., 2018), for which the redshift correlation between angular neighbours
has been in Fig. 4.1. The survey used the VIMOS multi-object spectrograph at the ESO
Very Large Telescope to target galaxies brighter than isg = 22.5 in the Canada-France-
Hawaii Telescope Legacy Survey Wide (CFHTLS-Wide) catalogue, with an additional
(r —1i) vs (u — g) colour pre-selection to remove objects at z < 0.5. The resulting sample
covers the redshift range 0.5 < z < 1.2, with an effective sky coverage of 16.3 deg?, split
over the W1 and W4 fields of CFHTLS-Wide. We used only galaxies with secure redshift
measurements, as identified by their quality flag, corresponding to a 96.1% confidence
level (see Scodeggio et al. 2018).
For each galaxy in the catalogue the following information is considered:

* the spectroscopic redshift measurement zgpec,

Ihttps://graphneural .network
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¢ the 6 magnitudes u, g, r, i, z (not to be confused with redshift) and K,
¢ right ascension a (RA), in radians,
¢ declination § (Dec), in radians.

The angular separation on the sky between two objects with RA «; and as, and Dec
01 and J3, is given by the haversine formula

AO = arccos (sin d; sin d3 + cos §1 cos d2 cos (a1 — az)) . (4.3)

We select the parent photometric sample by applying the same VIPERS colour and
magnitude cuts defined above, to be fully coherent with the spectroscopic data.

4.4 Application

We set up a training set from the VIPERS W1 galaxy catalogue: we randomly select about
3 x 10* target galaxies, whose spectroscopic redshift during training is ignored. For each
of them, we identify the first nxn angular nearest neighbours as defined by Eq. (4.3),
which we dub spectroscopic galaxies, since their spectroscopic redshift information is used
in our model. Each of these spectroscopic neighbours is associated with the same target
galaxy, but the pairs can be considered independent from one another in our model.
Each angular pair is assigned label 1 if it is a real physical pair, otherwise, it is assigned
a 0. The training set is thus made of pairs of galaxies.

A target galaxy of a pair can also be the nearest neighbour of another target galaxy, in
another pair. We make this choice in order to maximise the number of training examples
available in W1. Our final tests on the W4 catalogue show that this does not lead to
any over-fitting of VIPERS data, as the model generalises well. We note that this setting
assumes a ratio of spectroscopic to photometric objects of 1 : 1. In the Conclusions
(Sect. 4.6) we also confirm these results in the more realistic case where the number
of spectroscopic redshifts used for training is a fraction of the number of photometric
objects.

The definition of a real neighbour is arbitrary; it is reasonable to consider that two
angular neighbours form a physical pair if their spectroscopic separation is smaller than
a given threshold

Az (1 + zspec)- (4.4)

This means that in setting up the training data there are two hyper-parameters, the num-
ber of nearest neighbours nnn to be considered, and the spectroscopic separation Az. As
we will show, these two hyper-parameters can affect the results significantly, and it is
thus relevant to set them up wisely, depending on the specific survey.

In NezNet, for each galaxy in the pairs, the input features of the nodes are the pho-
tometry, the spectroscopy and the angular position, listed in Sect. 4.3. For the target
galaxy, we always set zspec = 0, 50 to have the model consider it as a missing feature,
while providing its value for the neighbouring galaxy. Magnitudes are normalised to
the range [0, 1], as computed over the whole VIPERS dataset. The angular inputs are
provided in terms of relative distance with respect to the target galaxy, so that A® = 0
for the latter, while for the neighbour it corresponds to Eq. (4.3). By adopting this choice
we guarantee that the model has translational invariance.

Another tested option (see Sect. 4.6), is to use as input variables the relative distance
in the two sky coordinates RA and Dec, rather than the angular separation of the two
galaxies. This choice is due to the fact that the surface distribution of the sample is not
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rotationally invariant on the sky, due to the technical set-up of the slits in the VIMOS
focal plane, with the spectral dispersion oriented along the declination direction. As
spectra must not overlap on the detector, targets need to be separated in Dec much more
than in RA. As a result, the minimum separation is ~ 1.9 arcmin in Dec and 5 arcsec in
RA. More details can be found in Bottini et al. (2005) and Pezzotta et al. (2017, cf. their
Sect. 4.1). As a matter of fact, our experiments show that providing the model with the
angular separation A© introduces a bias in the redshift metrics, which is not observed
when the relative separations along RA and Dec are given. In general, however, we find
that the separation information does not significantly improve the classifier and, for this
reason, we do not use it in our final model. Rather, spatial information comes only from
the number of nearest neighbours considered.

The other hyper-parameters of the model, i.e. batch size, number of neurons and
learning rate, have a much lesser impact than Az and nyn and have been set to fiducial
values: a batch size of 32, a learning rate of 0.001, and a total number of parameters of
the order of a few thousand. We find little difference in the output metrics of the redshift
estimates when increasing the complexity of the model, or changing the batch size and
the learning rate around these fiducial values.

NezNet gives in output the probability for two galaxies to be real neighbours. As
each target galaxy corresponds to nyn independent pairs, we can select the neighbour
with the highest probability among them. If this probability is below the classification
threshold set to define a positive case, we conclude that in the catalogue there is no
physical neighbour for that target galaxy. This implies that the latter is to high proba-
bility an outlier in terms of its properties, when compared to its neighbours. Removing
such objects from the final catalogue significantly improves the metrics when comparing
photo-z and spectroscopic measurements. In particular, the reduction in the number of
catastrophic redshifts confirms our assumption. Finding a true neighbour, instead, re-
inforces the confidence in the photo-z. At the same time, in this case, the spectroscopic
redshift of the neighbour is typically an even better estimate of the target redshift, com-
pared to the SED-estimated photo-z. These tests are discussed in the following section.

The quantitative comparison between NezNet results, spectroscopic measurements
zs(f,)ec and SED-fitting estimated photo-zs is performed using the metrics defined in Sal-
vato et al. (2019). These are the precision, (i.e., the dispersion of the estimated values),

2
7= NZ(ZS"“ )>, (45)

1+ zspec
the bias
=~ Z zs(f,zgc — z( (4.6)
and the absolute bias N
b = % 3 el — 29, A7)

quantifying systematic deviations. Finally, the outliers are defined as those objects for
which

|zéee — 2D > 0.15(1 + 2pec) 4.8)
All the results presented in the following section have been obtained by applying the
trained NezNet to a test catalogue built in a similar fashion to W1, randomly selecting
about 2 x 10* galaxies from the twin W4 field of VIPERS.
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Finally, in the following discussion about our classifier, we will use the notion of true
positive rate (TPR), which is the fraction of correctly predicted positive examples with
respect to all the real positive examples, defined as

Ntp

TPR= — TP
Ntp + NpN

(4.9)

where Ntp stands for true positives and Ny stands for false negatives. Similarly, we can
define the false positive rate (FPR), which is the fraction of negative examples classified
as positives with respect to all the real negative examples, which reads

Nrp

FPR— —
Nrp + NN

(4.10)

where Npp stands for false positives and Ny stands for true negatives.

4.5 Results

As explained in the previous section, NezNet can be used to simply clean a photo-z
sample by discarding low-probability neighbours or to provide an alternative redshift
estimate derived from the highest probability neighbour. This is demonstrated on the
test catalogue in Fig. 4.3, for a model trained using the hyper-parameters Az = 0.08 and
nnn = 30. In addition to the VIPERS spectroscopic redshifts, this comparison includes
also the original photo-zs estimated by Moutard et al. (2016) using standard SED fitting.
For these and all following results, angular information (i.e., the separation of the two
objects on the sky) was not used as an input variable. The reason for this was already
mentioned in the previous section and is discussed again in more detail below.

From Fig. 4.3, we see that by simply dismissing the outliers as identified by NezNet,
all the metrics show significant improvements (top-right panel). Also, when the best
neighbour redshifts are adopted for the target galaxies (bottom panel), we obtain met-
rics that are comparable or even better than those of the cleaned photo-z sample. It is
worth noting that in this case the plot shows a characteristic checkerboard pattern due
to the reflection of the spectroscopic redshift striping, as spectroscopic redshifts are now
assigned to target photometric objects.

Figure 4.3 also shows the limits of the method. Comparing the left panel with the
other two, we can notice that NezNet tends to cut off the high redshift tail of the distribu-
tion. This is easily understood considering the magnitude-limited (iag < 22.5) character
of the sample used here, which becomes very sparse at z 22 1, where only rare luminous
galaxies are present. This means that the model becomes intrinsically less efficient, due
to the lower number of real physical neighbours available both for the training and for
inference, as also evident from the density of points at high redshift in Fig. 4.1. Devising
a different loss function to up-weight the few physical pairs in this regime could perhaps
improve the classification task, but an intrinsic limit to the method clearly exists when
the density of the sample decreases.

Figure 4.4 shows the same set of plots, but using in the training a larger value for the
spectroscopic separation, i.e., Az = 0.15. As expected, allowing for a larger separation in
the definition of real angular neighbours discards a smaller fraction of data. Conversely,
there is in general a lower precision and a small increase in the fraction of outliers.

In principle, using a stricter Az could remove even more outliers, retaining only pairs
that are closer in redshift and leading to a smaller, but more precise sub-sample. We
explore this dependence in Fig. 4.5. Overall, this method is always able to clean bad
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Figure 4.3: The top-left panel shows the distribution of photometric vs spectroscopic
estimates in the original data. In the top-right panel, we show the same distribution
after removing from the catalogue the galaxies with low score probability (fr stands for
the fraction of retained data). Finally, the bottom panel shows estimates of redshift by
assigning to the target galaxy the spectroscopic redshift of the neighbour with the highest
detection probability. The model was trained with nxy = 30 and Az = 0.08.
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Figure 4.4: Same as Fig. 4.3, but the model was trained with the higher Az = 0.15, while
nNN = 30 is the same as before. As we can see, increasing the error which defines a
neighbour retains more data points, but the precision decreases slightly.
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Figure 4.5: Redshift estimates derived from the best nearest neighbour, for various Az,
at fixed nnn = 30. Increasing the spectroscopic separation to define physical neighbours,
while diminishing the quality of the metrics, increases the fraction of data not dismissed

from the catalogue.
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Figure 4.6: The ROC curve varying the redshift threshold Az, at fixed nyn = 30. The
performance of our classifier (AUC) improves as we use a less strict definition of what
we define as a true neighbour. The probability that an angular neighbour is a physical
neighbour increases at larger Az, which is also reflected by the high detection threshold

(thr).

estimates off the sample, but at the price of discarding many data points. The minor
improvement in precision probably does not justify the use of Az < 0.08 in the case of
VIPERS, because more than half of the sample is excluded.

It is apparent that the hyper-parameter Az is very relevant for the quality of the clas-
sifier. This is made clear by the receiver operator characteristic (ROC) curve in Fig. 4.6,
which shows the TPR (Eq. 4.9) against the FPR (Eq. 4.10), and has been computed from
the target galaxies in the test catalogue by considering their neighbour with the highest
probability. In general, the area under the curve (AUC) is higher for the better classifier.
Increasing Az increases the AUC, which would tend to unity for very large values of
this parameter, as all galaxies would then be considered real neighbours. However, our
ultimate goal is not to increase the performance of the classifier per se, but to improve
the metrics of our redshift estimates. These show that Az 2 0.08 represents the best
choice for VIPERS.

The other hyper-parameter of NezNet, i.e., nyn, the number of nearest neighbours
considered in the training, has a lesser impact on the classifier. We show this in Fig. 4.7,
where each ROC curve corresponds to a model trained with a different nny, but all with
the same Az. Changing drastically nxn does not correspond to comparable changes in
the AUC. However, nyn has a large impact on the redshift estimates, as Fig. 4.8 makes
apparent. Considering a larger number of angular neighbours increases the probability
of finding a physical pair, as can be seen from the metrics in Fig. 4.7. We also experi-
mented with raising the value of nnn up to 50, but found no further gain with respect
to using nan = 30. Already above nyn = 10 the redshift metrics start to saturate to the
optimal values.

We also computed, as a further test, the gradients of the predictions with respect to
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Figure 4.7: The ROC curve varying the number of nearest neighbours nyn = 30, at fixed
Az = 0.08. Increasing the number of neighbours that are given in input to the training
seems to make the training more difficult. However, this test of the classifier does not
reflect the quality of the final redshift estimate, as Fig. 4.8 shows.

their input variables, to detect the most relevant ones, as shown in Fig. 4.9. It is inter-
esting to see that the neighbour’s redshift is a relevant input, as one would expect, and
some of the photometric bands are even more relevant. This confirms the intuition that
the photometric information of the neighbours does indeed provide additional informa-
tion about the relative distance from the target. In this plot, we also show results for the
case when the angular separation is considered as one of the input variables. These show
that the angular separation A® between the target and the neighbour does affect the pre-
dictions. This manifests itself as a bias in the redshift estimates, as visible in Fig. 4.10: in
this case NezNet systematically favours neighbours that are closer to us than the target,
increasing the value of the bias b (Eq. 4.6). We also tested what happens if the angular
separation information is rather given in terms of the relative difference in the angular
coordinates RA and Dec of the two galaxies. In this case, the bias disappears and the
results are comparable to the standard case in which no angle information is provided.
However, we see that in this case the two parameters have smaller gradients than when
A®O alone is considered, which suggests they are in fact not contributing to the predict-
ing power of the model. For these reasons, in our final results, the angular separation is
not considered as input variable.

One of the novelties of NezNet is the message passing between node features. This
is where GNNs differ from a standard ANN, where all input variables of both galaxies
would be provided directly to dense layers. We also experimented with a simpler graph
model, closely resembling the architecture of NezNet, but without message passing. The
input features are processed independently by MLP layers for each node (we tried using
either just one or several layers). The new architecture is as in Fig. 4.2, with the exception
of h function blocks which are now substituted with new MLP blocks, without applying
any message passing. The z/ features are summed by the aggregation function, and the



52 4.5 Results

1.2 nbrs = 1 =

o=0.047

out=1.02 %

|b] =0.050 .
b= —0.0092]| .

r=723% |-

1.0 1

0.6

0.4 0.6 OTS 1.0 1.2 0.4 0.6 0.8 1.0 1.2
best znN best znN

1a nbrs =10

0.4 AL . .
0.4 0.6 0.8 1.0 1.2

best znN

Figure 4.8: Redshift estimates based on the best nearest neighbour, for various nnn, at
fixed Az = 0.08. Increasing the number of nearest neighbours for each target improves
the performance of NezNet in estimating redshifts, as it increases the probability that
physical pairs are considered. .
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Figure 4.9: Average absolute values of the gradients of NezNet with respect to the input
features of the neighbours. For each target, we only considered the neighbour with the
highest probability. Despite the angular separation A® can be a relevant input, we do
not use it in our final results, because of the bias it introduces, apparent in Fig. 4.10.
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Figure 4.10: Results of redshift estimates for the target galaxies, in the case where the
angular separation Eq. (4.3) is an explicit input of the model. We can see that many
galaxies have slightly smaller values than the real spectroscopic value, resulting in a
large bias b. Currently, we do not have an explanation of this observed effect.
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Figure 4.11: Comparison of the redshift distribution for the predictions of NezNet, and
a simpler graph model without message passing. While the latter performs reasonably
well in general, it tends to cut the tail of the distribution.

summed features are mapped to the output probability through final dense layers with
sigmoid activation output, just like in the model with message passing. This kind of
model, which maintains the permutation invariance property of a graph, is often referred
to as a deep set (Zaheer et al., 2017). We find that this simple model still works remarkably
well and is in general comparable to NezNet. However, it systematically cuts off the
high-redshift tail of the catalogue (Fig. 4.11), despite the overall metrics remaining good.

4.6 Conclusions

We have presented a new ML model, dubbed NezNet, which for a pair of galaxies takes
in input their measured fluxes in a number of bands, together with the redshift of one of
the two. NezNet is capable of learning probabilistically whether their redshift distance
is below a given threshold Az, which is set as a hyper-parameter of the model. The
angular separation between the galaxies is implicit in the training set, as for every target
galaxy we select its first nyn angular neighbours (another hyper-parameter), but it can
be an explicit input variable of the model. The backbone of the model is a GNN, a class
of neural networks based on message passing and the aggregation of features (Fig. 4.2).
This message passing is explicitly performed as a relative difference between features
(Eq. 4.1).

NezNet outputs the score probability for a pair of galaxies to be real neighbours, an
information that can be used in two ways. On one side, if none of the nyn nearest neigh-
bours is identified as a physical one, the target galaxy can be considered an outlier in
terms of its properties. This may suggest it is an interloper, i.e., a foreground or back-
ground object with respect to the volume sampled by the spectroscopic sample we are
using for the comparison. As such, it should be discarded from any sample that aims at
covering the same redshift range of the spectroscopic catalogue, e.g., via photometrically
estimated redshifts. We have proved this to be true using the VIPERS catalogue. On the
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Figure 4.12: Redshift estimates based on the best nearest neighbour, obtained by uni-
formly subsampling the W1 catalogue, at fixed nyn = 30 and Az = 0.08. The titles of
the panels refer to the surface density of spectroscopic objects of W1 used for training,
with ¥ referring to the complete W1 sample. Apart from minor fluctuations in the red-
shift statistics, we see that NezNet maintains a performance similar to the case without
subsampling. The only noticeable trend is the fraction of central galaxies for which a
physical pair is found, which decreases for lower densities. This could be due to the de-
creasing number of training data available. The percentage of real physical neighbours
for a central galaxy, which decreases only slightly when going from X to ¥/8, remaining
around 40 %, explains why NezNet is still effective.
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other side, if a physical neighbour is identified, the target galaxy can be assigned the
spectroscopic redshift of the highest scoring galaxy among the nny angular neighbours,
providing in this way an independent estimate of its redshift.

These results are summarised in Fig. 4.3 and Fig. 4.4: by simply discarding outliers
as detected by NezNet, all the metrics of the sample improve considerably. Moreover,
NezNet’s redshift estimates are comparable or superior in precision to SED-based pho-
tometric redshifts, depending on the values chosen for the hyper-parameters. Increasing
Az increases the goodness of the classifier (Fig. 4.6), as well as the fraction of retained
data (Fig. 4.5). Changing nnn has a smaller impact on the classifier (Fig. 4.7), although
it significantly affects the redshift quality metrics, since a large enough nxn improves
the probability of detecting a real neighbour; a value nxn ~ 30 is optimal in the case of
VIPERS (Fig. 4.8).

It is often the case that the fraction of the parent photometric sample without a spec-
troscopic measurement has a higher density than the spectroscopic sample. Indeed
VIPERS has a spectroscopic surface density of ¥ ~ 6 x 103 deg ™2, to compare against the
photometric surface density Yo, ~ 45 x 10° deg ™. For this reason, we tested NezNet
by varying the surface density of the spectroscopic sample used during training. We
achieve this by repeating the training procedure on a uniformly subsampled catalogue
extracted from W1. The test is performed on W4 without any subsampling, so that we
test for the effectiveness of NezNet trained on a lower-density catalogue. Figure 4.12
shows that NezNet keeps its effectiveness even when using a subsample of one eight
of the original spectroscopic density ¥, similar to the VIPERS ratio of spectroscopic to
photometric objects.

This suggests that NezNet could have an interesting potential also in the context of
future experiments, such as Euclid or the NASA Nancy Grace Roman mission (Akeson
et al., 2019). Indeed, such slitless spectroscopic surveys will naturally deliver overlap-
ping photometric and spectroscopic data, which can be combined using NezNet to im-
prove photometric redshift estimates.

It is worth stressing that some details of the results presented here depend on the spe-
cific features of VIPERS and its parent CFHTLS photometric sample. Some of these may
have been advantageous, but others could have penalised the success of the method. For
example, the slit-placement constraints in VIPERS limit the ability to target close pairs
of galaxies, which introduces a ‘shadow’ in the layout of a VIMOS pointing (see Fig. 6
of Guzzo et al.,, 2014), and forces a lower limit in the separation of observable galaxy
pairs (see Sect. 4.4). This means that, in fact, in the present analysis the training sample
of NezNet was not ideal, as surely many of the missed angular pairs were also physi-
cal pairs. This increases our confidence in the obtained results, as it shows that also for
samples characterised by small-scale incompleteness, as typical of surveys built using
fibre or multi-slit spectrographs, the method still delivers very useful results. In the case
of the VIPERS data, an interesting exercise in this respect would be to use as a training
sample the data from the VLT-VIMOS Deep Survey (VVDS) (Le Fevre et al., 2005), which
used the same spectrograph, but with repeated passes over the same area of 0.5 deg” that
substantially mitigate the proximity bias. We leave this exercise for future work.



CHAPTER 5

Euclid: Testing photometric selection of emission-line
galaxy targets

The present chapter is based on the paper in preparation 'Euclid: Testing photometric selection
of emission-line galaxy targets” by Marina S. Cagliari, Benjamin R. Granett, Luigi Guzzo,
Matthieu Bertermin, Micol Bolzonella, Sylvain de la Torre, Pierluigi Monaco, Michele Moresco,
Will J. Percival, Claudia Scarlata, Yun Wang, Meriam Ezziati, Olivier Ilber, Vincent Le Brun et
al., the paper will be submitted to Astronomy & Astrophysics on behalf of the Euclid Collabora-
tion.

5.1 Introduction

The ESA Euclid mission will carry out an imaging and spectroscopic survey over one-
third of the sky (Laureijs et al., 2011). The imaging channel will enable measurements of
cosmic shear providing a tomographic view of the matter distribution, while the spec-
troscopic redshift survey will map the large-scale structure in three dimensions. Jointly,
the two probes will yield unprecedented constraints on the cosmological model (Euclid
Collaboration: Blanchard et al., 2020).

The Euclid near-infrared spectrograph and photometer (Maciaszek et al., 2022) has
three broadband filters for imaging, Y, Js, and Hy (Euclid Collaboration: Schirmer
et al., 2022) and a set of grisms for spectroscopy, while the visual instrument (Cropper
et al., 2016) images through a single broad pass band, I, spanning the range [530, 920]
nm, with high spatial resolution of 0.1 arcsec/pixel. Jointly, these two instruments will
carry out the Euclid Wide and Deep Surveys (Euclid Collaboration: Scaramella et al.,
2022). The NISP instrument operates as a slitless spectrograph, to record the dispersed
light of all sources in the field of view to a nominal emission-line flux limit of 2 x
10—16 erg s~ em~—2, which corresponds to a 3.50 detection of a 0.5 arcsec diameter source
in the Wide survey as designed. The use of slitless spectroscopy makes the spectroscopic
survey highly efficient, since individual sources do not need to be targeted; however, re-
liable redshift measurements will only be secured for a fraction of the galaxies that are
detected photometrically. The Wide Survey will detect the most luminous Ho emit-
ters over the redshift range 0.9 < z < 1.8, with typical broadband flux corresponding
to Hy < 24; however, it will be sensitive to continuum emission only from the most
luminous galaxies and, so, the redshift estimation will be based primarily on the de-
tection of emission lines (Euclid Collaboration: Gabarra et al., 2023). The Wide Survey
will be complemented by the Deep Survey, which will reach 2 magnitudes deeper in
flux over an area of 50 deg” split over three separate fields. In the Deep Survey blue
grism ([926, 1366] nm) observations will complement those with the standard red grism
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Figure 5.1: Schematic description of the spectroscopic sample selection pipeline. The
flowchart shows where a photometric target selection would be inserted in the spec-
troscopic selection pipeline. The photometric classifier performance is quantified by its
precision and recall (defined in Sect. 5.2.1), while the final spectroscopic sample is char-
acterised by the redshift purity and sample completeness.

([1206,1892] nm). Both the grisms have a dispersion of 13 A/pixel. With greater sen-
sitivity and an extended wavelength range, the Deep Survey will be used to construct
a reference galaxy sample with secure spectroscopic redshift measurements, to charac-
terise the selection function and redshift error distribution of the Wide Survey.

The design of the Euclid spectroscopic survey poses a particular challenge for sample
selection: bright emission-line galaxies for which the redshift can be measured make up
a small fraction of all photometrically detected sources and this sample is not known
beforehand. We can illustrate our expectations of the Euclid spectroscopic sample us-
ing the Flagship2 mock galaxy catalogue, which was calibrated against the Ho lumi-
nosity function model 3 of Pozzetti et al. (2016). The mock catalogue contains approx-
imately 2 x 10° galaxies/ deg2 to the magnitude limit H, < 24. Out of this sample,
only 2% are in the redshift range 0.9 < z < 1.8 and have Ha emission-line flux greater
than 2 x 10716 ergs~! cm~2. The majority of the photometrically detected sources with
Hy; < 24 will leave no signal on the spectrograph, being either too faint in continuum
emission, or not having a detectable emission line in the wavelength range of the red
grism. When targeting galaxies at the low signal-to-noise limit, spurious noise features
can be mistaken for emission lines leading to wrong redshift measurements. Current
end-to-end tests of the data reduction pipeline suggest that the spurious detection rate
is even higher than the naive prediction based on Gaussian noise statistics due to arte-
facts from spectral contamination. If not appropriately treated, such wrong redshifts in
the galaxy catalogue degrade the cosmological constraints derived from the two-point
correlation function or power spectrum galaxy clustering statistics (Addison et al., 2019).

In principle, when selecting the sample for analysis all available information should
be used to minimise the fraction of spurious measurements, while at the same time,
maximising the number density of the sample, or other figure of merit. However, the
benefits from including additional constraints in the sample selection criteria must be
carefully weighed against potential systematic biases. In the case of Euclid, including
additional information from ground-based photometry modifies the selection function
of the survey and could couple the sample with unwanted systematic effects that arise
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from observations made through the Earth’s atmosphere (see, e.g., Ross et al., 2011, for
a quantitative discussion of the impact of angular systematics on the measured cluster-
ing). The trade off of adding ground-based information will clearly also depend on the
scientific analysis being considered. With slitless spectroscopy, since every galaxy in the
field is in any case observed, we shall have the important advantage of being able to test
a posteriori the impact of any chosen selection on the measured clustering, and evaluate
the robustness of the results.

Our aim with this work is to investigate photometric classification criteria that are
sensitive to both redshift and emission line flux, in order to identify the sources that
are likely to give successful spectroscopic redshift measurements in the Wide Survey.
This strategy is similar to the methods used in ground-based spectroscopic surveys that
make use of magnitude and colour selections to build the target sample for spectroscopy.
For example, colour selections were applied to build the SDSS Luminous Red Galaxy
sample (Eisenstein et al., 2001) and VIPERS (Guzzo et al., 2014). A sample of emission
line galaxies was targeted by eBOSS using a colour selection (Comparat et al., 2016), and
a similar approach was adopted for the emission line galaxy sample targeted by the dark
energy spectroscopic instrument (DESI; Raichoor et al., 2023).

As a generalisation of the conventional colour cuts that are made in a two-dimensional
colour-colour plane, we apply machine learning-based classification algorithms. These
algorithms are well suited to optimising classification tasks in a high-dimensional pa-
rameter space. Thus, we expect them to outperform simple selection rules.

An option that is immediately available for such a use are photometric redshifts.
Euclid will construct an unprecedented photometric redshift catalogue from the combi-
nation of ground-based and Euclid photometric bands. However, as we will discuss,
photometric redshifts alone do not solve the problem. Even if photometric redshifts al-
low us to select a sample of galaxies at the target redshift range, additional criteria on
galaxy physical properties, such as the star formation rate, will still be needed to identify
the population with bright emission lines (see Sect. 5.4.4).

A schematic representation of the Euclid spectroscopic sample selection pipeline is
shown in Fig. 5.1. A redshift measurement will be performed for all sources detected in
photometry, and will be accompanied by an assessment of its confidence level, as well
as the measurements of spectral features including emission line fluxes. Sources that do
not have a significant detection in spectroscopy should be assigned a low measurement
confidence. Additionally, Euclid will produce photometric catalogues based on the I,
Y5, Js and Hi-band images, which will be augmented with ground-based measurements
(u, g, r, i, z) needed particularly for photometric redshift estimation (Stanford et al.,
2021).

The photometric classification that we discuss enters as a second input to spectro-
scopic sample selection. The classifier can be trained on the Deep Field catalogues, which
is expected to give robust redshift measurements for the emission line target galaxies in
the Wide survey. The classifier will be applied to the photometric data of the Euclid
Wide Survey, and its results combined with the spectroscopic measurements to build the
final selected sample. This can be characterised in terms of its redshift purity and sample
completeness. Any photometric criteria will necessarily reduce the number density of the
sample; however, if emission line galaxy targets can be identified from the photometry,
this will increase the fraction of correctly-measured redshifts and improve the purity.

We use the terms sample completeness and redshift purity to characterise the quality
of the Euclid spectroscopic samples. We define completeness with respect to the Ha
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emission line galaxy sample that exists in the Universe, which we call the true targets.!
These are defined by a set of intrinsic properties, including angular position, redshift,
size and flux, that do not depend on the measurement process. Once the observations are
made, we construct the sample catalogue which contains the set of measured properties,
signal-to-noise estimates and quality flags for the detected sources. The completeness
tells us the fraction of the true targets that have a correct redshift measurement and
makes it into the sample for analysis,

Ntrue Targets & Sample & Correct-z

C = (5.1)

N True Targets

On the other hand, the redshift purity tells us the fraction of the sample that has a correct
redshift measurement,
p— NSample&Correct—z . (52)
N Sample
The redshift purity only makes reference to the sample selected for analysis and does
not depend on other intrinsic properties of the galaxies besides redshift.?

In this chapter, we focus on the photometric classification, which is one step of the
selection process illustrated in Fig. 5.1. We consider the potential gain from the pho-
tometric classification in terms of its precision and recall (defined in Sect. 5.2.1), which
will impact the final purity and completeness of the spectroscopic redshift sample. The
photometric selection reduces the size of the sample in the numerator of completeness
(Eq. 5.1) and thus leads to a lower value of completeness. However, it acts on both the
numerator and denominator of purity (Eq. 5.2), and so is a way to potentially boost the
purity. The propagation of the photometric classification to the spectroscopic sample se-
lection and the computation of purity and sample completeness requires full end-to-end
simulations of the Euclid reduction pipeline. In Sect. 5.5, we will present results from pre-
liminary simulations based on the Euclid spectroscopic pipeline, leaving a more detailed
investigation to follow-up work.

The chapter is organised as follows. In Sect. 5.2 we present the different algorithms
we tested, and introduce the metrics we used to quantify the classifier performance. In
Sect. 5.3 we discuss the mock catalogues, the noise model we apply to the photome-
try, and give the target definition. The results of the different analyses are presented
in Sect. 5.4 and discussed in Sect. 5.4.4. In Sect. 5.5 we discuss how the photometric
selection affects the spectroscopic sample. We conclude in Sect. 5.6.

5.2 Classification algorithms

A classifier is an algorithm that outputs the probability of an object of being an element of
a given class, or group. For the purpose of this work, which is to identify target galaxies
from their photometric properties, we use a binary classifier. In this case, the algorithm
simply outputs the probability p of the object being a target, and 1 — p the probability of
it being a non-target. A galaxy enters the target sample if p > Pinresh, Where Dinresh 1S @
threshold probability value. How the threshold is chosen is discussed in Sect. 5.2.1.

IThis definition differs from that typically used in ground-based multi-object spectroscopic surveys that
define completeness with respect to a known target sample constructed from photometric catalogues. Since
the detection in Euclid spectroscopy will depend primarily on the signal-to-noise ratio of the emission lines,
the sample with spectroscopic redshifts will not be representative of a simple photometric selection.

2We do not consider the sample purity, which can include other criteria such as flux, since our main objec-
tive is to select galaxies with good redshift measurements for the galaxy clustering analysis.
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Figure 5.2: Relationship between precision and recall of a classifier. The lines are colour-
coded as a function of the classification probability threshold. The solid and dotted lines
show the behaviour of two classifiers for illustration. The classifier represented by the
solid line performs better than the dotted line since it gives higher precision and recall.

In this work, we tested six different machine learning classifiers. The first three are
self-organising maps (SOMs), dense neural networks (NNs) and support vector machine
classifiers (SVCs). The other three are voting classifiers based on decision trees: the ran-
dom forest (RF), the adaptive boosting classifier, or AdaBoost (ADA), and the extremely
randomised tree classifier, or extra-tree classifier (ETC). These specific algorithms were
chosen for our tests as they are known to perform well in classification tasks and ar