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Introduction

 Lukasiewicz logic was introduced in the early 1900s as a non-classical logic system. Unlike classi-

cal logic, which only has 0 and 1 as truth values,  Lukasiewicz logic is a many-valued logic system

that accepts any real number between 0 and 1 as truth value. It is especially helpful to formalize

situations where there is uncertainty or imprecision in statements, such as in natural language,

where statements may only be partially true or false. The algebraic models of  Lukasiewicz logic

are the MV-algebras. MV-algebras are a class of algebras that generalize Boolean algebras,

which are used to model classical logic. In particular, an MV-algebra is an algebraic structure

(A,⊕,¬, 0) where ⊕ is a binary operation which is both associative, commutative, with the con-

stant 0 as neutral element, and ¬ is a unary operation, such that the following equalities hold:

¬¬x = x, x ⊕ ¬0 = ¬0, and ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. The aim of these conditions is to

capture particular characteristics of the real unit interval [0, 1], equipped with two operations:

the negation ¬x := 1−x and the truncated addition x⊕y := min(1, x+y). It has been proved in

[44] that the variety MV of MV-algebras is equivalent to the category of lattice-ordered abelian

groups with fixed order-unit, denoted by uℓAb. A lattice-ordered group is an algebraic structure

of signature {+, 0,−,∨,∧} satisfying the axioms of groups, the axioms of lattices, and the axioms

related to the distributivity of the group operation over both the lattice operations. A lattice-

ordered group is abelian if the group operation is commutative. Given a lattice-ordered group

G we can define, for every element x of G, |x| := x ∨ −x. An order-unit u of G is an element

0 ≤ u ∈ G satisfying the following property: for every x ∈ G, there exists a natural number

n ∈ N such that |x| ≤ nu. Despite their importance in logic, MV-algebras and lattice-ordered

groups have been underexplored from a categorical-algebraic perspective. The goal of this thesis

is precisely to investigate the categorical properties of these structures.

The first chapter focuses on the category ℓGrp of lattice-ordered groups. Being a variety of uni-

versal algebras with a unique constant and a group operation, ℓGrp is a semi-abelian category.

Semi-abelian categories were introduced in [39] in order to capture the categorical properties

of groups, following the same idea that led to the notion of abelian category, which describes

very efficiently the properties of abelian groups and modules over a ring. Semi-abelian categories

are pointed, Barr-exact, finitely cocomplete category where the Split Short Five Lemma holds.
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However, the effectiveness of the notion of semi-abelian category in expressing the properties of

groups is weaker than the notion of abelian category in relation with abelian groups and modules.

For this reason, additional conditions have been considered in recent years to get a better ap-

proximation of the structural properties of the category of groups; among these, one can mention

representability of actions, algebraic coherence, and strong protomodularity. In the first chapter

of this thesis, we show that ℓGrp is strongly protomodular [8], fiber-wise algebraically cartesian

closed [15], and its full subcategory ℓAb of lattice-ordered abelian groups is algebraically coherent

[22]. Neither ℓGrp nor ℓAb is action accessible [18]; this observation answers an open question

presented in [22].

The second chapter of this thesis is dedicated to exploring various categorical properties of the

category of MV-algebras. Although the category of MV-algebras is not pointed and, as such,

not semi-abelian, it possesses several noteworthy categorical properties. For instance, MV is a

protomodular and arithmetical category, and we provide explicit examples of protomodularity

and arithmeticity terms. Additionally, using the categorical equivalence between MV and uℓAb,

it is proved that in every category of points on MV, subobjects have centralizers. A significant

portion of this chapter is focused on the study of idempotent elements in MV-algebras. Given an

MV-algebra A, an element e ∈ A is idempotent if it satisfies the identity e ⊕ e = e. The subset

Idem(A) of idempotent elements of A is a subalgebra in which all elements are idempotent. In

other words, Idem(A) is a Boolean algebra with respect to the inherited operations from A. This

assignment establishes an adjunction: the functor Idem: MV → Boole is the right adjoint of the

inclusion functor i : Boole → MV. By exploiting the adjunction just introduced and the classical

results of Stone Duality, we define the Pierce structural space relative to the idempotents of an

MV-algebra. The study of this structural space leads to similar results to those obtained for

unitary rings and presented in [4]. Thus, this chapter provides a framework for studying the ad-

junction between MV-algebras and Boolean algebras from the perspective of categorical Galois

theory, offering valuable insights for future research in this area.

In the third chapter, we investigate the relationship between the category of MV-algebras and

two of its full subcategories: the subcategory pMV of perfect MV-algebras and the subcategory

sMV of semisimple MV-algebras. For a given MV-algebra A, its radical, denoted by Rad(A), is

the intersection of all maximal ideals of A. The radical of A can be characterized as follows:

an element a belongs to Rad(A) if and only if na ≤ ¬a for every natural number n, where na

denotes the iterated sum of the element a with itself n times. An MV-algebra is perfect if it can

be expressed as the union of its radical and the negation of it. An MV-algebra is semisimple

if its radical is trivial, i.e. it consists only of 0. This pair of subcategories of MV defines a pre-

torsion theory. The definition of pretorsion theory [30] was introduced to generalize the notion

of torsion theory to the non-pointed case. In this chapter we also prove that the reflection of

semisimple MV-algebras gives rise to an admissible adjunction for the categorical Galois theory.
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In particular, we provide an explicit description of central extensions with respect to this Galois

structure. These central extensions are exactly the surjective morphisms of MV-algebras whose

restriction to the torsion part is either injective or the unique arrow from the initial object to the

terminal one. Furthermore, this pretorsion theory induces a stable factorization system (E ,M )

on the category MV, where E consists of all surjective morphisms of MV-algebras whose kernel is

contained in the radical of the domain, while M is given by all morphisms of MV-algebras whose

kernel has trivial intersection with the radical of the domain. Finally, by observing that central

extensions form a reflective subcategory in the category of regular epimorphisms and that also

the adjunction induced by this reflection is admissible for categorical Galois theory, it is possible

to study and characterize higher-order central extensions. Using this characterization, we can

provide a notion of commutator, in the non-pointed case, between two ideal subalgebras of an

MV-algebra, with respect to this Galois structure.

The good properties of the reflection of semisimple MV-algebras have led us to generalize the

results obtained in [27] to the non-pointed case, highlighting the connection between pretorsion

theories, Galois structures, and stable factorization systems. Specifically, we work in protomod-

ular, Barr-exact and finitely cocomplete categories C, satisfying the following conditions: the

initial object 2 and the terminal object 1 are not isomorphic; every arrow with domain 2 and

codomain a non-terminal object is a monomorphism; and the terminal object is strict, meaning

that every morphism from 1 is an isomorphism.

In [26], the authors introduced the notion of a protoadditive functor: a functor between pointed

protomodular categories is protoadditive if it preserves split short exact sequences. Moreover, the

authors of [27] show that a zero-preserving functor between pointed protomodular categories is

protoadditive if and only if it preserves pullbacks along split epimorphisms. This characterization

allows us to extend this notion to our framework: we define a functor to be protoadditive if it

preserves the terminal object, the initial object, and the pullbacks along split epimorphisms.

In the fourth chapter, our attention is devoted to the study of pretorsion theories (T ,F ) defined

in categories which satisfy the properties described above, such that T ∩ F = {1,2}. While

exploring this setting, we encounter a class of torsion objects that exhibit anomalous behavior.

Namely, the class of objects B ∈ C such that F (B) = 1, where F denotes the reflector onto the

subcategory F . In order to handle such objects and obtain results analogous to those presented

in [27], we introduce new conditions for a pretorsion theory to satisfy with respect to any objects

A,B ∈ C:

(P1) if F (B) = 1, then F (A×B) ∼= F (A);

(P2) if F (B) = 1 and A ̸= 1, then the sequence 2×B ιA×idB−−−−−→ A × B
πA−−→ A is pre-exact, and

2×B belongs to T .

The conditions described above enable us to define both a Galois structure and a stable factor-

ization system starting from a pretorsion theory.
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Specifically, with a pretorsion theory that satisfies (P1) and has a protoadditive reflector onto

the subcategory of torsion-free objects, we can construct an admissible adjunction for categorical

Galois theory. For this Galois structure, the following fact holds: an effective descent morphism

f is a central extension if and only if the domain of the prekernel of f , defined up to isomorphism,

is a torsion-free object.

Furthermore, we can define a stable factorization system (E ,M ) on the category C from a pretor-

sion theory that satisfies condition (P2) and where, for every arrow f : A→ B, the composition

T (K[f ])
εK[f]−−−→ K[f ]

k−→ A is the prekernel of an arrow with domain A (k represents the prekernel

of f , and T is the coreflector on the subcategory T ). Specifically, E consists of all precokernels

e with K[e] ∈ T , while M consists of all arrows m with K[m] ∈ F .

In conclusion, we present some examples of pretorsion theories that satisfy our properties, in

addition to our guiding example for MV-algebras. In the dual of the category of M -sets (where

M is a fixed monoid), we can consider the pretorsion theory whose torsion objects are the M -sets

with at most one fixed point, while the torsion-free objects are the M -sets consisting only of fixed

points. In the category Heyt of Heyting algebras, we study the pretorsion theory whose torsion

objects are the Heyting algebras in which the negation of each element is either 0 or 1, and the

torsion-free objects are the Boolean algebras. Finally, we present a pretorsion theory in the dual

of the category of simplicial sets, where the torsion objects are the simplicial sets with at most

one vertex, and the torsion-free objects are the simplicial sets consisting only of vertices.



Chapter 1

Categorical-Algebraic Properties

of Lattice-ordered Groups

A lattice-ordered group is a set endowed with both a group structure and a lattice structure

such that the underlying order relation is invariant under translations. In other words, a lattice-

ordered group can be defined as an algebraic structure of signature {·, e,−1 ,∨,∧} satisfying the

axioms of groups, the axioms of lattices, and the axioms related to the distributivity of the

group product over both the lattice operations. Therefore, the category of lattice-ordered groups

(denoted by ℓGrp) can be presented as the variety of models associated with the equational

theory just described.

Recently, lattice-ordered groups have emerged in many areas of mathematics. For instance, in

the study of many-valued logic (as shown in [44], the category of lattice-ordered abelian groups

with a distinguished order-unit is equivalent to the one of MV-algebras, which provides algebraic

semantics for  Lukasiewicz many-valued propositional logic [21]), in the theory of Bézout domains,

in complex intuitionistic fuzzy soft set theory, and in varietal questions in universal algebra.

Although the notion of lattice-ordered groups is as natural as that of rings or partially ordered

groups (it suffices to say that examples of lattice-ordered groups include the set of integers Z,

the set of rational numbers Q, and the set of real numbers R with the usual group sum and the

usual order structure), there are currently no studies about this variety from a categorical point

of view. The purpose of this work is precisely to explore these aspects.

A first observation is that the category of lattice-ordered groups is semi-abelian. In the same

spirit of how abelian categories describe the properties of the categories of abelian groups and

of modules over a ring, the notion of semi-abelian category is aimed to capture the homological

properties of the category of groups. In short, a semi-abelian category [39] is a pointed finitely

cocomplete category which is Barr-exact and protomodular (i.e. the Split Short Five Lemma

holds). Examples of semi-abelian categories include, for instance, groups, rings without unit,

1
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loops, Lie algebras, Heyting semilattices, etc. However, the notion of semi-abelian category

is not as efficient in capturing the properties of groups as the one of abelian category is with

respect to abelian groups and modules. Therefore, additional categorical-algebraic conditions

have been introduced over the years to get closer to a characterization of the structural properties

of the category of groups; among these, one can mention representability of actions [5], algebraic

coherence [22], and strong protomodularity [9]. The first chapter of this thesis is aimed to study

which of these properties hold in the category of lattice-ordered groups.

In Section 1.1 we recall some classical facts about lattice-ordered groups and we focus on the

notion of semi-direct product in ℓGrp.

In Section 1.2 we study the nature of commutators in ℓGrp and we show that every subobject

admits a centralizer, which coincides with the classical notion of polar; moreover, we prove that

ℓGrp is algebraically cartesian closed.

In Section 1.3 we give an alternative proof of the known fact that ℓGrp is arithmetical using the

observation that the only internal group object is the trivial one.

In Section 1.4 we show that ℓGrp is strongly protomodular; this property implies that, among

other things, the commutativity of internal equivalence relations in the Smith-Pedicchio sense [46]

is equivalent to the commutativity in the Huq sense [36] of their associated normal subobjects.

Moreover, we prove that in ℓGrp every internal equivalence relation admits a centralizer and we

provide a description of it.

Section 1.5 is devoted to the study of action accessibility, a property related to the existence

of centralizers of internal equivalence relations; here we observe that, despite ℓGrp is not action

accessible, there is a construction of centralizers which is very close to the one developed in [18]

for the action accessible category of rings without unit.

Section 1.6 is aimed to prove that the category of lattice-ordered groups is fiber-wise algebraically

cartesian closed (i.e. each category of points in ℓGrp is algebraically cartesian closed); in detail,

we show that in each category of points in ℓGrp every subobject admits a centralizer, and we

provide a description of it.

In Section 1.7 we study the properties of the Higgins commutator in ℓGrp; in particular, we prove

that ℓGrp satisfies the condition of normality of the Higgins commutators showing that the Huq

commutator of a pair of ideals (i.e. kernels of some arrows) is nothing more than the intersection

of the two ideals.

Finally, in Section 1.8, we focus our attention on the study of the categorical-algebraic properties

of the variety of lattice-ordered abelian groups (denoted by ℓAb). To be precise, we show that ℓAb

is algebraically coherent; this condition implies several algebraic properties (such as, for example,

strong protomodularity, normality of the Higgins commutator, and the so-called “Smith is Huq”

condition). Furthermore, we observe that the category of lattice-ordered abelian groups provides

an example of an algebraically coherent category that is not action accessible (thus solving the

Open Problem 6.28 presented in [22]).
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1.1 Preliminaries

In this section, we recall the notion of lattice-ordered group. Roughly speaking, a lattice-ordered

group is a set endowed with a group structure and a lattice structure such that the group

operation is distributive with respect to the lattice operations.

Definition 1.1.1. A lattice-ordered group is an algebra (X, ·, e,−1 ,∨) where:

LG1) (X, ·, e,−1 ) is a group,

LG2) (X,∨) is a semilattice (i.e. ∨ is a binary, associative, commutative and idempotent opera-

tion on X) and

LG3) for every x, y, z ∈ X the following equalities hold

x · (y ∨ z) = (x · y) ∨ (x · z) and

(x ∨ y) · z = (x · z) ∨ (y · z).

A morphism between two lattice-ordered groups (X, ·, e,−1 ,∨) and (Y, ·, e,−1 ,∨) is a map f : X →
Y such that f is both a group homomorphism between (X, ·, e,−1 ) and (Y, ·, e,−1 ) and a semilattice

homomorphism between (X,∨) and (Y,∨).

The category ℓGrp is the category whose objects are the lattice-ordered groups and whose arrows

are the morphisms between them.

Lattice-ordered groups appear in many different fields of mathematics. The set of integers

Z, the set of rational numbers Q, and the set of real numbers R with the usual group sum

and the usual order structure are lattice-ordered groups. Moreover, given a totally ordered

set Γ we can provide a lattice-ordered group structure on the set of order automorphisms

Aut(Γ): for every f, g ∈ Aut(Γ) the group product is defined as the composition f ◦ g, and

(f ∨ g)(x) := max(f(x), g(x)) for all x ∈ Γ. These and other examples can be found in any

textbook on lattice-ordered groups, as for instance [40] and [1].

We will often denote a model of an algebraic theory (A,O) (where O is the set of internal

operations) with the underlying set A. So, for instance, we will indicate a lattice-ordered group

(X, ·, e,−1 ,∨) simply with X.

Given a lattice-ordered group X we will assume that the product precedes the lattice operation,

i.e.

x · y ∨ z stands for (x · y) ∨ z.

Finally, when we work with group operations we will concatenate the elements to indicate the

product between them, i.e.

xy stands for x · y.
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In the literature, lattice-ordered groups are usually presented as algebras on the set of operations

{·, e,−1 ,∨,∧} satisfying the group axioms, the lattice axioms and the axioms related to the left

and right distributivity of the group operation over both lattice operations. However, in this

thesis, we have preferred a presentation that does not directly involve the meet operation in

order to facilitate the description of the semi-direct products (topic that will be covered in the

final part of this section). In fact, starting from Definition 1.1.1 it is always possible to define,

in a unique way, the meet operation. Explicitly, given a lattice-ordered group X we can define

x ∧ y := (x−1 ∨ y−1)−1 for every x, y ∈ X.

Clearly, the new binary operation is associative and commutative (it is, moreover, idempotent).

We observe that for all x, y ∈ X

x ∧ (x ∨ y) = (x−1 ∨ (x ∨ y)−1)−1 = (x−1)−1 = x;

in fact x ≤ x ∨ y implies (x ∨ y)−1 ≤ x−1, and hence x−1 ∨ (x ∨ y)−1 = x−1.

Furthermore, for every x, y ∈ X, we have

x ∨ (x ∧ y) = x ∨ (x−1 ∨ y−1)−1 = x

since x−1 ≤ x−1 ∨ y−1 implies (x−1 ∨ y−1)−1 ≤ x. Therefore, (X,∨,∧) is a lattice.

Now, we have to prove that the group product distributes also over the meet operation; in other

words, we want to show that

x(y ∧ z) = xy ∧ xz and (x ∧ y)z = xz ∧ yz

for all x, y, z ∈ X. We have that

x(y ∧ z) = x(y−1 ∨ z−1)−1 = ((y−1 ∨ z−1)x−1)−1

= ((y−1x−1) ∨ (z−1x−1))−1 = ((xy)−1 ∨ (xz)−1)−1 = (xy) ∧ (xz).

The proof of the other equality is similar. Therefore, also (X, ·, e,−1 ,∧) is a lattice-ordered

group.

Moreover, it is easy to show that every morphism in ℓGrp preserves also the meet operation

defined above.

Finally, it is a known fact that the lattice (X,∨,∧) is distributive; a proof of this last result can

be found e.g. in [40] and [1].

Definition 1.1.2 ([40, 1]). Let X be an object of ℓGrp. For every x ∈ X we define

x+ := x ∨ e, x− := x ∧ e and |x| := x ∨ x−1;
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x+ is called the positive part of x, x− the negative part of x, and |x| the absolute value of x.

The previous definition is useful in order to show that in a lattice-ordered group every element

can be seen as the product between a positive element and a negative one. In fact, given an

object X of ℓGrp, we define the positive cone of X as

P := {x ∈ X |x ≥ e}.

So, for every x ∈ X, it can be shown that

x = x+x− and |x| = x+(x−)−1.

Therefore, X is generated by its positive cone (i.e. X = PP−1) and, moreover, |x| ≥ e holds for

every x ∈ X. A proof of these facts can be found, for example, in [40] and [1].

Furthermore, the notion of positive part is extremely useful in order to characterize group homo-

morphisms between lattice-ordered groups which are, in addition, morphisms of ℓGrp. In fact,

the following holds:

Lemma 1.1.3. Let X,Y be two objects of ℓGrp. A map f : X → Y is a morphism of ℓGrp if

and only if f preserves the group product and

f(x ∨ e) = f(x) ∨ e, for all x ∈ X.

Proof. One implication is trivial. So, let us suppose that f preserves the group product (i.e. is

a group homomorphism) and f(x ∨ e) = f(x) ∨ e for every x ∈ X. We have to prove that

f(x ∨ y) = f(x) ∨ f(y), for all x, y ∈ X.

We have x ∨ y = (xy−1 ∨ e)y, hence f(x ∨ y) = f(xy−1 ∨ e)f(y) and, by assumption,

f(xy−1 ∨ e)f(y) = (f(xy−1) ∨ e)f(y) = (f(x)f(y)−1 ∨ e)f(y) = f(x) ∨ f(y).

Now, we want to provide a description of the ideals (or normal subobject) in the variety ℓGrp. In

a category where it makes sense to speak of a kernel of a morphism (for example a pointed finitely

complete category), a subobject of X is called an ideal if it is the kernel of some morphism. A

detailed study of the notion of an ideal in the variety ℓGrp can be found in [40] and [1].

First of all, we have to recall the definition of a convex subset. Given an object X of ℓGrp and

a subset S ⊆ X, S is said to be convex if for every a, b ∈ S and every x ∈ X, if a ≤ x ≤ b then

x ∈ S.

A subobject A ≤ X is an ideal if and only if it is normal (in the classical sense) as a subgroup

and it is a convex subset.
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The aim of the following proposition is to describe the notion of convexity only with terms. This

characterization will be crucial for the purpose of working with semi-direct products.

Proposition 1.1.4. Let X be an object of ℓGrp and A ≤ X a subalgebra. A is convex if and

only if for every a1, a2 ∈ A and x, y ∈ X one has

(a1x ∨ a2y)(x ∨ y)−1 ∈ A.

Proof. Let us suppose that A is convex. We consider the following inequalities:

((a1 ∧ a2)x) ∨ ((a1 ∧ a2)y) ≤ a1x ∨ a2y ≤ ((a1 ∨ a2)x) ∨ ((a1 ∨ a2)y),

hence

(a1 ∧ a2)(x ∨ y) ≤ a1x ∨ a2y ≤ (a1 ∨ a2)(x ∨ y),

and so

(a1 ∧ a2) ≤ (a1x ∨ a2y)(x ∨ y)−1 ≤ (a1 ∨ a2).

Thus, since A is convex, we deduce (a1x ∨ a2y)(x ∨ y)−1 ∈ A.

Conversely, let us suppose that for every a1, a2 ∈ A and x, y ∈ X one has (a1x∨a2y)(x∨y)−1 ∈ A.

Let us take an element x ∈ X and two elements a1, a2 ∈ A such that a1 ≤ x ≤ a2. In particular,

a1 ∨ x = x; therefore, by assumption,

(a1e ∨ ex)(e ∨ x)−1 ∈ A

and so

x(e ∧ x−1) = x ∧ e = x− ∈ A.

With a similar argument, from a−1
2 ≤ x−1 ≤ a−1

1 , we can deduce e ∧ x−1 ∈ A and, since A is a

subalgebra, we have x ∨ e = x+ ∈ A. Finally, we get x = x+x− ∈ A, i.e. A is convex.

To conclude, we can say that a subobject A ≤ X in ℓGrp is an ideal if and only if for every

a1, a2, a ∈ A and x, y, z ∈ X one has (a1x ∨ a2y)(x ∨ y)−1 ∈ A and z−1az ∈ A.

In the following part of this section, we will deal with the notion of a semi-abelian category. The

main idea behind this notion is to capture some of the homological properties of the category of

groups; among the examples of semi-abelian category we can find those of groups, rings without

unit, Lie algebras, and Heyting semilattices.

Definition 1.1.5 ([39]). A pointed category (i.e. a category with a zero object) C is semi-abelian

if:

• it is Barr-exact [2] (which means that C is a regular category in which every internal

equivalence relation is a kernel pair);
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• it has finite coproducts;

• it is protomodular [6] (i.e. the Split Short Five Lemma holds in C).

In Theorem 1.1 of [17] the authors provided, in the case of a variety V of universal algebras,

a characterization for protomodularity depending on terms. In fact, the authors proved that a

variety V is protomodular if and only if it has 0-ary terms e1, . . . , en, binary terms t1, . . . , tn and

an (n+ 1)-ary term t satisfying the identities

t(x, t1(x, y), . . . , tn(x, y)) = y and ti(x, x) = ei

for all i = 1, . . . , n.

Proposition 1.1.6. ℓGrp is a semi-abelian category.

Proof. Clearly, ℓGrp is Barr-exact and it has finite coproducts since it is a variety. Moreover,

the trivial lattice-ordered group {e} is a zero object. Finally, to show that ℓGrp is protomodular

we can take as set of 0-ary terms just e1 := e, as set of binary terms just t1(x, y) := x−1y and as

(n+1)-ary term (in this case n = 1) t(x, y) := xy.

As shown in [16], in every semi-abelian category there exist semi-direct products in a categorical

sense. In the category of groups, the categorical semi-direct product coincides with the classical

one. Now we can describe semi-direct products in the category ℓGrp. In order to do this we will

apply, in the next proposition, the results provided in [24].

Proposition 1.1.7. Let p : A→ B be a split epimorphism in ℓGrp with fixed section s : B → A,

and k : K → A a kernel of p. Without loss of generality let us suppose that K,B are subalgebras

of A and k, s are the inclusions of subalgebras. Then A is isomorphic (as a lattice-ordered group)

to the set K ×B endowed with the operations

• (k1, b1)(k2, b2) = (k1b1k2b
−1
1 , b1b2),

• (k1, b1) ∨ (k2, b2) = ((k1b1 ∨ k2b2)(b1 ∨ b2)−1, b1 ∨ b2),

(which takes the name of semi-direct product and is indicated as K ⋊B) via the morphism

φ : K ⋊B → A

(k, b) 7→ kb.

Moreover, considering the following diagram in ℓGrp:

K K ⋊B B

K A Bk
p

s

pB

iB

iK

φ
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where iK(k) = (k, e), iB(b) = (e, b) and pB(k, b) = b, we have φiK = k, pφ = pB and φiB = s.

1.2 Centralizers and Algebraic Cartesian Closedness

In this section we study, from a categorical point of view, the commutativity of subobjects in

the variety ℓGrp.

In order to introduce the topic, we mention some known results related to the category of groups.

Given a group G and two subgroups A,B ≤ G, the condition that, for every a ∈ A and b ∈ B,

ab = ba can be reformulated in the following equivalent way: there exists a group homomorphism

φ : A×B → G making the following diagram commutative:

A B

A×B

G.

(idA,0) (0,idB)

φ

Moreover, it is easy to show that φ must be the group product and, therefore, it is necessarily

unique. Hence, with the aim of generalising the notion of commutativity, we must place ourselves

in a context in which a morphism φ of this type is unique. This reasoning justifies the following

definition:

Definition 1.2.1 ([7]). A pointed category C with finite products is unital if, for X and Y objects

of C, the pair of morphisms (idX , 0) : X → X × Y , (0, idY ) : Y → X × Y is jointly extremally

epimorphic.

To be more explicit, a pair of arrows f : A → B and g : C → B of a category C is said to be

jointly extremally epimorphic when for each commutative diagram

M

A B C
f g

f ′ g′
m

if m is a monomorphism, then m is an isomorphism.

It has been shown in [3] that every semi-abelian category is unital.

We are ready to mention the generalized notion of commutativity between subobjects.

Definition 1.2.2 ([11]). Let C be a unital category. Two subobjects a : A ↣ X and b : B ↣ X

of X are said to cooperate (or commute in the sense of Huq [36], and we write [a, b] = 0) if
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there exists a (necessarily unique) morphism φ : A × B → X (called cooperator) such that the

following diagram commutes:

A B

A×B

X.

a b

(idA,0) (0,idB)

∃φ

Given a subobject a : A ↣ X, the centralizer of a in X, if it exists, is the greatest subobject of

X that cooperates with a.

Now, let us recall the definition of orthogonal subobjects of a lattice-ordered group. This concept

will be essential in order to study the condition of cooperation.

Definition 1.2.3 ([40]). Let X be an object of ℓGrp. Two elements a, b ∈ X are called orthogonal

if

|a| ∧ |b| = e.

Two subsets A,B ⊆ X are called orthogonal (and one writes A ⊥ B) if, for every a ∈ A and for

every b ∈ B, a and b are orthogonal as elements.

It is a known fact that two orthogonal subobjects of a lattice-ordered group commute as sub-

groups. More generally, if a and b are orthogonal then ab = ba. A proof of this can be found, for

instance, in Proposition 2.2.10 of [40].

Proposition 1.2.4. Let X be an object of ℓGrp and A,B ≤ X two subobjects. Then A and B

cooperate if and only if A ⊥ B.

Proof. (⇒) The cooperator φ : A × B → X is given by φ(a, b) = ab. In fact, since φ preserves

the group operation, we have

φ(a, b) = φ(a, e)φ(e, b) = φ(iA(a))φ(iB(b)) = ab.

We observe that, for every a ∈ A and b ∈ B, (|a|, e)∧ (e, |b|) = (e, e) holds. So, since φ preserves

the lattice operations, we get

e = φ(e, e) = φ((|a|, e) ∧ (e, |b|)) = φ(|a|, e) ∧ φ(e, |b|) = |a| ∧ |b|.

(⇐) If a cooperator φ exists then it must be the group multiplication because of what we observed

at the beginning of the proof. Therefore, we have to show

ab = ba and (ab)+ = a+b+
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for all a ∈ A and b ∈ B. In fact, if ab = ba for every a ∈ A and b ∈ B, then φ((a, b)(c, d)) =

φ(ac, bd) = acbd = abcd = φ(a, b)φ(c, d) since, by assumption, cb = bc; furthermore, if (ab)+ =

a+b+ for every a ∈ A and b ∈ B, then φ((a, b)+) = φ((a, b) ∨ (e, e)) = φ(a+, b+) = a+b+ =

(ab)+ = φ(a, b)+ = φ(a, b) ∨ e, and thus we can apply Lemma 1.1.3 to say that φ is a morphism

of lattice-ordered groups. The first equality holds trivially since A ⊥ B. Let us deal with the

second one: a+b+ = (a ∨ e)(b ∨ e) = ab ∨ a ∨ b ∨ e and (ab)+ = ab ∨ e; so we have to prove

a∨ b ≤ ab∨ e. Since |a| ∧ |b| = e, we have (a∨ a−1)∧ (b∨ b−1) = e and, by distributivity, we get

(a ∧ b) ∨ (a ∧ b−1) ∨ (a−1 ∧ b) ∨ (a−1 ∧ b−1) = e.

Hence, a−1 ∧ b ≤ e implies a ∨ b−1 ≥ e and, multiplying by b on the right, we obtain ab ∨ e ≥ b;

with a similar argument we get ab ∨ e ≥ a. Finally, considering the last two inequalities, we

conclude that ab ∨ e ≥ a ∨ b.

The following lemma, related to the properties of orthogonal subobjects, will be of fundamental

importance in the next sections.

Lemma 1.2.5. Let X be an object of ℓGrp and A,B ≤ X two orthogonal subobjects. Then, for

every a ∈ A and b ∈ B, the following equality holds:

(ab) ∨ e = (a ∨ e)(b ∨ e).

Proof. Since A and B are orthogonal, then there exists a cooperator φ : A × B → X given by

the group product. Therefore (ab) ∨ e = φ(a, b) ∨ φ(e, e) = φ((a, b) ∨ (e, e)) = φ(a ∨ e, b ∨ e) =

(a ∨ e)(b ∨ e) for all a ∈ A and b ∈ B.

We, therefore, recall the notion of polar of a subset S of a lattice-ordered group (i.e. the set of

elements orthogonal to each element of S). We will show that the polar of a subobject is nothing

but the centralizer of the subobject. Hence, we will exhibit some properties of centralizers related

to being ideals.

Proposition 1.2.6 ([40], Proposition 1.2.6). Let X be an object of ℓGrp and S ⊆ X a non-empty

subset. Then the set S⊥ := {x ∈ X | for each s ∈ S |x| ∧ |s| = e} (called the polar of S) is a

convex subalgebra of X.

Lemma 1.2.7. Let X be an object of ℓGrp and S ⊆ X a non-empty subset of X closed under

conjugation. Then S⊥ is an ideal of X.

Proof. First of all we observe that, for all x, y ∈ X, one has

|x−1yx| = x−1yx ∨ x−1y−1x = x−1(y ∨ y−1)x = x−1|y|x.
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We want to show that one has |x−1yx|∧ |s| = e, for every x ∈ X, y ∈ S⊥, and s ∈ S. We observe

that |x−1yx|∧|s| = x−1|y|x∧|s| = x−1(|y|∧x|s|x−1)x = x−1(|y|∧|xsx−1|)x = x−1(|y|∧|s|)x = e,

where xsx−1 = s ∈ S because S is closed under conjugation, and |y|∧ |s| = e (since y ∈ S⊥).

Corollary 1.2.8. Let X be an object of ℓGrp and A,B ≤ X two subobjects. A and B cooperate

if and only if B ⊆ A⊥. Therefore, A⊥ ≤ X is the centralizer of A ≤ X.

Finally, we recall a property that is strictly related to the existence of centralizers. It is well

known that a category E with finite products is cartesian closed if and only if for every object Y

of E the change-of-base functor τ∗Y : E → E/Y along the terminal arrow τY : Y → 1 has a right

adjoint. For algebraic categories, such adjoints rarely exist, but it turns out to be of interest to

consider a variation of this notion; this leads to:

Definition 1.2.9 ([15]). A category C is algebraically cartesian closed (a.c.c.) if for every object

X of C the change-of-base functor τ∗X : Pt1C → PtXC has a right adjoint, where τX : X → 1 is

the unique arrow from X to the terminal object.

In [15] the authors show that the existence of such adjoints is related to the existence of cofree

structures for the split epimorphisms pY : Y ×X → Y in PtY E with fixed section (idY , u), where

u : Y → X can be chosen to be a monomorphism.

Proposition 1.2.10 ([15], Proposition 1.2). A unital category C is algebraically cartesian closed

if and only if, for every X object of C, each subobject of X has a centralizer.

Corollary 1.2.11. The category ℓGrp is algebraically cartesian closed.

1.3 Congruence Distributivity and Arithmeticity

It is a widely known fact that in the category ℓGrp the lattice of congruences on any object

is distributive. In this section we provide an alternative proof of this fact based on categorical

tools. We recall that a category is a Mal’tsev category [19] if it is finitely complete and if every

internal reflexive relation is an internal equivalence relation. If the category is regular, this

notion is equivalent to the following property: for every object X and for every pair of internal

equivalence relations (s1, s2) : S ↣ X ×X and (r1, r2) : R ↣ X ×X one has R ◦ S = S ◦ R; in

detail, R ◦S : ↣ X ×X is defined as the regular image of (p1, p3), where (p1, p3) is given by the

following diagram:

R×X S S X

R X

X.

πS

πR

r2

s1

r1

s2
⌟

p1

p3
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The composite S ◦ R can be defined in a similar way. Moreover, if the category is a variety of

universal algebras, the property of being a Mal’tsev category is equivalent to the existence of a

ternary term p(x, y, z) (called Mal’tsev term) satisfying the axioms

p(x, x, z) = z and p(x, y, y) = x

for every object X and for every x, y, z ∈ X. Therefore, if the theory contains a group operation,

the associated variety is a Mal’tsev category: in fact, a Mal’tsev ternary term is p(x, y, z) :=

xy−1z.

Then we immediately get the following result:

Corollary 1.3.1. The category ℓGrp is a Mal’tsev category.

If C is a Barr-exact category with coequalizers then, for every object X of C, the set Eq(X)

of internal equivalence relations on X is a lattice; given two internal equivalence relations

(s1, s2) : S ↣ X × X and (r1, r2) : R ↣ X × X, the meet S ∧ R is defined as the meet of

subobjects of X × X, and the join (t1, t2) : S ∨ R ↣ X × X is defined as the kernel pair of

q = coeq(v1, v2), where (v1, v2) : V ↣ X × X is the join of S and R as subobjects of X × X

(we recall that the join, as subobjects, of two internal equivalence relations is not, in general,

an internal equivalence relation). Thanks to the previous observations, the classical notion of

arithmetical variety of universal algebras can be extended to a categorical context as follows:

Definition 1.3.2 ([47]). A Barr-exact category with coequalizers C is arithmetical if it is a

Mal’tsev category and, for any object X of C, the lattice Eq(X) of internal equivalence relations

on X is distributive.

It is a known fact (a proof of this can be found in [3]) that the property of being an arithmetical

category is related to the absence of non-trivial internal group objects in the category. In fact,

the following holds:

Proposition 1.3.3 ([3], Proposition 2.9.9). Let C be a semi-abelian category. If in C the only

internal group object is the zero object then C is arithmetical.

Proposition 1.3.4. The only internal group object in ℓGrp is the zero object.

Proof. Given an internal group X in ℓGrp, with multiplication µ : X × X → X and neutral

element η : {∗} → X, we want to show that X ≃ {e}. It is not difficult to see that η(∗) = e and

µ(x, y) = xy for all x, y ∈ X. Therefore, since µ is a morphism of lattice-ordered groups, for all

a, b, c, d ∈ X the following equality holds

µ((a, b) ∨ (c, d)) = µ(a, b) ∨ µ(c, d).
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Hence, µ being the group multiplication, we obtain

ab ∨ ad ∨ cb ∨ cd = ab ∨ cd.

We deduce that the following inequality holds:

ad ∨ cb ≤ ab ∨ cd.

Now, if we consider a = d and c = b = e, we get a2 ≤ a2 ∨ e ≤ ae ∨ ea = a; multiplying by a−1

we have a ≤ e for each a ∈ X and, by replacing a with a−1, we get e ≤ a. In other words, we

have proved X = {e}.

Corollary 1.3.5. ℓGrp is an arithmetical category.

1.4 Strong Protomodularity

Given a category C, we denote by Pt(C) the category whose objects are the diagrams in C of the

form

A B
p

s

where ps = idB , and whose arrows are the pairs (f, g) of arrows of C

A B

C D

p

s

q

r

f g

such that qf = gp and fs = rg. We denote by π : Pt(C) → C the functor that associates to

every split extension (i.e. an object of Pt(C)) (p, s) the codomain of p.

Definition 1.4.1 ([8]). A finitely complete category C is strongly protomodular when all the

change-of-base functors of π : Pt(C) → C reflect both isomorphisms and normal monomorphisms

(in the semi-abelian case a monomorphism is normal if and only if it is the kernel of some arrow).

In [9] the author shows that, if C is a pointed protomodular category, there is a characterization

of strong protomodularity related to the stability of kernels. Let us consider a diagram in C of

the form

X A B

Y C B
l

m

k

f

p

s

q

r

where k = ker(p), ps = idB , l = ker(q), qr = idB , m is a normal monomorphism and the right-

rightward square, the right-leftward square, and the left square commute. Then C is strongly
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protomodular if and only if the composite lm is a normal monomorphism for every diagram of

this form.

Proposition 1.4.2. ℓGrp is a strongly protomodular category.

Proof. Let us consider the following commutative diagram (without loss of generality we can

assume that the monomorphisms are inclusions):

X A B

Y C B

f

p

s

q

r

where ps = idB , qr = idB , X is the ideal of A determined by ker(p), Y is the ideal of C determined

by ker(q), X is an ideal of Y and the right-rightward square, the right-leftward square, and the

left square commute. We want to show that X is an ideal of C, too.

• X is a normal subgroup of C. This is a known fact about the category of groups (but we

give the proof anyway). Let us fix an element x ∈ X and an element c ∈ C. Then there

exist y ∈ Y and b ∈ B such that c = yr(b), so c−1xc = r(b)−1y−1xyr(b) = r(b)−1xr(b) with

x ∈ X (since X is closed under conjugation with the elements of Y ). Hence, f(x) = x and

r(b) = fs(b). Thus, r(b)−1xr(b) = f(s(b)−1xs(b)) = f(x̃) = x̃ with x̃ ∈ X, since s(b) ∈ A

and X is closed under conjugation with the elements of A.

• X is a convex subset of C. We know that, for every y ∈ Y , if x1 ≤ y ≤ x2, with x1, x2 ∈ X,

then y ∈ X and, for every c ∈ C, if y1 ≤ c ≤ y2, with y1, y2 ∈ Y , then c ∈ Y . So, given an

element c ∈ C such that x1 ≤ c ≤ x2, with x1, x2 ∈ X, we have c ∈ Y (since x1, x2 ∈ Y )

and thus c ∈ X.

In the final part of this section we study, in the case of ℓGrp, the consequences of strong proto-

modularity relatively to the commutativity, in the Smith-Pedicchio sense, of internal equivalence

relations. In particular, we show that every internal equivalence relation admits a centralizer.

Let us begin by recalling the necessary notions to deal with this subject.

Definition 1.4.3 ([46], [13]). Let C be a Mal’tsev category and

R X, S X

r1

r2

δR

s1

s2

δS

a pair of internal equivalence relations on an object X of C. We say that (R, r1, r2) and (S, s1, s2)

commute in the Smith-Pedicchio sense (and we write [R,S] = 0) if, given the following diagram:

R×X S S

R X

s1

r2

δS

δR

πR

πS

τR

τS⌟
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where R×X S is the pullback of r2 through s1, τR = (idR, δSr2) and τS = (δRs1, idS) are induced

by the universal property, there exists a unique morphism p : R ×X S → X (called connector

between R and S) such that pτS = s2 and pτR = r1. The centralizer of an internal equivalence

relation (R, r1, r2) on X, if it exists, is the greatest internal equivalence relation on X which

commutes with (R, r1, r2).

It has been shown in Proposition 3.2 of [14] that, in a pointed Mal’tsev category, if two in-

ternal equivalence relations (R, r1, r2) and (S, s1, s2) commute in the Smith-Pedicchio sense,

then necessarily their associated normal subobjects jR and jS commute in the Huq sense, where

jR := ker(qR) and jS := ker(qS), with qR := coeq(r1, r2) and qS := coeq(s1, s2). Briefly, [R,S] = 0

implies [jR, jS ] = 0. The converse is not true in general. We say that a pointed Mal’tsev category

satisfies the so-called Smith is Huq condition (SH) if [jR, jS ] = 0 implies [R,S] = 0. It has been

proved in Theorem 6.1 of [14] that in every pointed strongly protomodular category the Smith

is Huq condition holds.

Finally, we are ready to prove the following:

Proposition 1.4.4. In ℓGrp internal equivalence relations admit centralizers.

Proof. Since ℓGrp is a semi-abelian category we have, for every object X, an order-preserving

bijection φ between Eq(X) and the lattice Ideals(X) of ideals of X, where φ(R) := IR, with

IR := {x ∈ X | (x, e) ∈ R}. Given two internal equivalence relations R ≤ X×X and S ≤ X×X,

we know that [R,S] = 0 if and only if [φ(R), φ(S)] = 0 (ℓGrp is a strongly protomodular

category, hence (SH) holds). Moreover, given an internal equivalence relation R on X, we recall

from Lemma 1.2.7 that the centralizer I⊥R ≤ X of the ideal IR associated with R is an ideal.

Therefore, since φ is an order-preserving bijection and ℓGrp satisfies (SH), the centralizer of R

in X is φ−1(I⊥R ).

1.5 Action Accessibility

To approach the topic covered in this section, let us first review some known properties of the

category Grp of groups. First of all, we recall the general notion of split extension.

Definition 1.5.1. Let C be a pointed protomodular category. A split extension of C is a diagram

of the form

X A B,k s

p

where k = ker(p) and ps = idB.

We denote by SplExtC(X) the category whose objects are the split extensions of C with the same
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fixed kernel object X and whose arrows are the pairs (g, f) of arrows in C

X A B

X C D

g f

k

l

p

s

q

r

such that gk = l,fp = qg and gs = rf .

Given a group X, we can define a functor

Grpop Set

B {X → A⇆ B}/ ∼

B′ {X → A′ ⇆ B′}/ ∼

Act(−,X)

f Act(f,X)

where {X → A⇆ B} is the set of split extensions with fixed kernel object X and fixed quotient

object B; two split extensions X → A ⇆ B and X → A ⇆ B are equivalent (under the

equivalence relation ∼) if there exists an arrow g : A→ A such that gk = k, gs = s and pg = p

X A B

X A B
k

k

g
p

s

p

s

(hence, thanks to the Split Short Five Lemma, g is an isomorphism). Finally, Act(f,X) sends

the class of a split extension X → A′ ⇆ B′ to the class of the split extension defined via the

following diagram, where the right-rightward square is a pullback:

X A′ ×B′ B B

X A′ B′.
k′ p′

s′

f

πB

πA′

(s′f,idB)(k′,0)

⌟

It is a known fact that, in Grp, there is a one-to-one correspondence between the set {X →
A ⇆ B}/ ∼ and the set of group homomorphisms with domain B and codomain the group

Aut(X) of automorphisms of X. In other words, the functor Act(−, X) is representable and a

representing object is Aut(X). A pointed protomodular category in which the functor Act(−, X)

is representable for every object X is called action representable [5]. However, this condition is

extremely strong: there are, in fact, very few examples of action representable categories (for

instance, the category of groups and the category of Lie algebras over a commutative ring with

unit). It appears therefore legitimate to try to weaken such condition. In order to do this, it
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is easy to observe that, in Grp, the property of being an action representable category can be

restated in the following way: the split extension

X X ⋊ Aut(X) Aut(X),
(idX ,0) πAut(X)

(0,idAut(X))

(1)

corresponding to the action idAut(X) : Aut(X) → Aut(X), is a terminal object of SplExtGrp(X).

Therefore, in Grp, for each object of SplExtGrp(X) there exists a unique morphism into (1).

In light of this, the authors of [18] have weakened the notion of action representable category in

the following way:

Definition 1.5.2 ([18]). An object F of SplExtC(X) is said to be faithful if for each object E

of SplExtC(X) there is at most one arrow from E to F .

Definition 1.5.3 ([18]). Let C be a pointed protomodular category. An object in SplExtC(X)

is said to be accessible if it admits a morphism into a faithful object. We say that C is action

accessible if, for every object X of C, every object in SplExtC(X) is accessible.

Actually, the notion of action accessible category appears as a generalization of the one of action

representable category: in fact, if there is a terminal object T of SplExtC(X), this object is also

faithful and each object of SplExtC(X) admits a unique morphism into T . Examples of action

accessible categories include, for instance, not necessarily unitary rings (as shown in [18]) and all

categories of interest in the sense of [45] (as shown in [43]).

One of the interesting properties, among other things, implied by action accessibility is the ex-

istence of centralizers of internal equivalence relations (see Theorem 4.1 in [18]). The converse

implication, in general, is not true. In fact, in the next part of this section we show that the

category ℓGrp is not action accessible despite the existence of centralizers of internal equivalence

relations (as shown in Proposition 1.4.4).

Proposition 1.5.4. ℓGrp is not action accessible.

Proof. Consider the lexicographic product Z ⃗×Z of the group of integers Z (with the usual order)

with itself. The underlying set is the product, and in terms of structure the group operations are

defined component-wise, while the order is defined as follows: (a, b) ≤ (c, d) if and only if b < d,

or b = d and a ≤ c. We consider the following split extension

Z Z ⃗×Z Z
i1

p2

i2
(2)

where i1 = (idZ, 0), i2 = (0, idZ) and p2 is the projection on the second component. Now, for

every n ∈ N>0 we can consider the morphism of lattice-ordered groups fn : Z → Z given by
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fn(x) := nx. This morphism induces the following morphism in SplExtℓGrp(Z):

Z Z ⃗×Z Z

Z Z ⃗×Z Z

i1

p2

i2

i1 p2

i2

fngn

where gn(x, y) := (x, ny). Thus we can deduce that (2) is not faithful. So, if ℓGrp were action

accessible then there should exist a faithful object

X A B
k p

s

and a morphism

Z Z ⃗×Z Z

Z A B.
k p

s

i1

p2

i2

g f

Then, if we consider the (regular epimorphism, monomorphism)-factorization of (g, f) we get:

Z Z ⃗×Z Z

Z Im(g) Im(f)

Z A B.
k p

s

i1

p2

i2

g f

k p

s (3)

Therefore, Im(f) is a quotient (in ℓGrp) of Z. However, Z has only two ideals: {0} and Z. Hence

we have two possibilities: Im(f) ∼= Z or Im(f) ∼= {e}. If Im(f) ∼= Z then f is injective and so

the split extension

Z Z ⃗×Z Z
i1

p2

i2

has to be a faithful object, and this is a contradiction. Alternatively, if Im(f) ∼= {e}, f has to be

the trivial morphism, and so Im(g) ∼= Z. Therefore, recalling that the top right-rightward square

of (3) is a pullback, we get a contradiction since Z ⃗×Z is not isomorphic, as a lattice-ordered

group, to Z × Z.

In [18] the authors show that, in the case of the variety Rng of not necessarily unitary rings, given

a split extension there is a procedure, based on centralizers of subobjects, to build a morphism

from it into a faithful split extension. This same argument has also been extended in [43] to

categories of interest in the sense of [45]. We recall here a sketch of the proof present in [18].

Given an object A of Rng, two subobjects X,Y ≤ A cooperate if and only if for every x ∈ X
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and for every y ∈ Y

xy = 0 = yx.

Hence, it can be shown that the centralizer of X in A is the subobject

ZA(X) := {a ∈ A | ax = 0 = xa for all x ∈ X}.

Given an object of SplExtRng(X)

X A B,k
p

s
(4)

they define I := {b ∈ B | s(b)k(x) = 0 = k(x)s(b) for all x ∈ X}; they prove that I is an ideal of

B and s(I) = ZA(k(X)) ∩ s(B) is an ideal of A. Thus, they show that the split extension

X A/s(I) B/I,k
p

s
(5)

where the morphisms are induced by the universal property of the quotient, is a faithful object of

SplExtRng(X) and the pair (πs(I), πI), obtained by the quotient projections πs(I) : A → A/s(I)

and πI : B → B/I, is a morphism between (4) and (5). Therefore, in the case of rings, there is

a canonical way to construct an arrow of SplExtRng(X) into a faithful object making use of the

notion of centralizer.

Although the category ℓGrp is not action accessible, it is possible to emulate the previous con-

struction in this case. This shows that in ℓGrp centralizers of subobjects have a good behaviour

even though the category is not action accessible.

Let us fix a split extension in ℓGrp:

X A B.k
p

s

We want to show that the intersection between s(B) and the centralizer of k(X) in A is an ideal

of A. In other words, we need to prove that k(X)⊥∩S(B) is convex and closed under conjugation

in A.

• Convexity: let us consider s(b1) ≤ a ≤ s(b2) where s(b1), s(b2) ∈ k(X)⊥ ∩ s(B) and a ∈ A.

We recall that for all a ∈ A there exist x ∈ k(X) and b ∈ B such that a = k(x)s(b) (see

Proposition 1.1.7). Then, applying p to the inequalities, we obtain b1 ≤ b ≤ b2 and thus

s(b1) ≤ s(b) ≤ s(b2).

Therefore, since k(X)⊥ is a convex subobject of A, we get s(b) ∈ k(X)⊥ ∩ s(B). Hence,
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from s(b1) ≤ a ≤ s(b2) multiplying on the right by s(b−1), we obtain

s(b1b
−1) ≤ k(x) ≤ s(b2b

−1).

So, since s(b1b
−1), s(b2b

−1) ∈ k(X)⊥∩s(B) (because k(X)⊥∩s(B) is a subalgebra of A and

s(b), s(b1), s(b2) ∈ k(X)⊥ ∩ s(B)), we get k(x) ∈ k(X)⊥ (k(X)⊥ is a convex subalgebra).

Therefore, k(x) = e and then we obtain a = k(x)s(b) = s(b) ∈ k(X)⊥ ∩ s(B).

• Closedness under conjugation: let us consider s(c) ∈ k(X)⊥ ∩ s(B) (where c ∈ B) and

a = k(x)s(b) ∈ A. Then, we have

as(c)a−1 = k(x)s(b)s(c)s(b−1)k(x)−1 = k(x)s(d)k(x)−1

where s(d) = s(b)s(c)s(b−1) ∈ k(X)⊥ ∩ s(B) since k(X)⊥ is closed under conjugation and,

clearly, s(d) ∈ s(B). Therefore, we get

as(c)a−1 = k(x)s(d)k(x)−1 = s(d)

since s(d) ∈ k(X)⊥ and the elements of k(X)⊥ commute with the ones of k(X).

1.6 Fiber-wise Algebraic Cartesian Closedness

In this section we deal with a stronger version of the notion of algebraically cartesian closed

category:

Definition 1.6.1 ([15]). A category C is fiber-wise algebraically cartesian closed if for every

split epimorphism

A B
p

s

the change-of-base functor

p∗ : PtBC → PtAC

has a right adjoint.

It is not difficult to see that this condition holds for a category C if and only if every category

of points over C is algebraically cartesian closed. First of all, we observe that the category

PtA⇆BPtBC is isomorphic to PtAC: an object of PtA⇆BPtBC can be seen as a diagram of type

C B

A B

q

r

p

s

h t
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where ps = idB , qr = idB , ht = idA, ph = q, and ts = r; therefore, q and r are uniquely

determined by h and t. Hence, each category of points is algebraically cartesian closed if and

only if the functor

τ∗ : PtB=BPtBC PtA⇆BPtBC

has a right adjoint; thanks to the isomorphism shown above between PtAC and PtA⇆BPtBC

and recalling that τ = p, we get that τ∗ has a right adjoint if and only if p∗ has a right adjoint.

Therefore, C is fiber-wise algebraically cartesian closed if and only if every category of points

over C is algebraically cartesian closed.

Our aim is to show, thanks to the previous observations, that ℓGrp is fiber-wise algebraically

cartesian closed. In order to do this we will prove that, in every category of points over ℓGrp, sub-

objects have centralizers. As a preliminary remark, we recall that an arrow (A⇆ B)
f→ (C ⇆ B)

of PtBC is a monomorphism if and only if f : A→ C is a monomorphism of C.

We are ready to show the existence of centralizers in every category of points over ℓGrp and to

provide an explicit description of them.

Definition 1.6.2. Let X be an object of ℓGrp and B a subalgebra of X. A subalgebra L of X is

closed under the action of B if

blb−1 ∈ L and (l1b1 ∨ l2b2)(b1 ∨ b2)−1 ∈ L

for every l, l1, l2 ∈ L and b, b1, b2 ∈ B.

Proposition 1.6.3. Let B be an object of ℓGrp. In the category PtBℓGrp subobjects have

centralizers.

Proof. Let us consider an object (A, p, s) of PtBℓGrp, i.e. a diagram of the form

K A B
p

sk

where ps = idB and k = ker(p). For simplicity, let us suppose that k is the inclusion of K ≤ A

and s is the inclusion of B ≤ A. Therefore, by Proposition 1.1.7, we know that A is isomorphic

as a lattice-ordered group to K ⋊B, whose operations are defined by

(k1, b1)(k2, b2) = (k1b1k2b
−1
1 , b1b2)

and

(k1, b1) ∨ (k2, b2) = ((k1b1 ∨ k2b2)(b1 ∨ b2)−1, b1 ∨ b2).
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In other words, the object (A, p, s) is isomorphic to

K K ⋊B B
pB

iBik

where pB(k, b) = b, iB(b) = (e, b) and iK(k) = (k, e). A subobject (X, q, r) of (K ⋊B, pB , iB) in

PtBℓGrp is a subalgebra X ≤ K ⋊B in ℓGrp such that, referring to the following diagram,

X

K ⋊B B
pB

iB

q

r

q is the restriction of pB to X and r(b) = (e, b) for every b ∈ B (in particular {e} ×B ≤ X).

Given two subobjects (X, p|X , rX) and (Y, p|Y , rY ) of (A, p, s) and the product between them in

PtBℓGrp, we need to describe the arrows iX : X → X ×B Y and iY : Y → X ×B Y induced by

the universal property (we recall that the product in PtBℓGrp is the pullback of p|X along p|Y ).

Then, if we consider the following diagram

X B

X ×B Y Y

X B

p|Y

p|X

πX

πY

⌟
idX

iX

p|X
s

we get iX(x) = (x, sp(x)); in a similar way iY : Y → X ×B Y is given by iY (y) = (sp(y), y).

We know that (x, y) ∈ X×BY if and only if p(x) = p(y). Moreover, given (x, y) ∈ X×BY we have

(x, y) = (x, sp(x))(sp(y), sp(x))−1(sp(y), y) where (x, sp(x)) ∈ X×B Y , (sp(y), y) ∈ X×B Y and,

since psp(x) = p(x) = p(y) = psp(y), we get (sp(y), sp(x)) = (sp(x), sp(x)) = (sp(y), sp(y)) ∈
X ×B Y .

Hence, if there exists a cooperator φ : X ×B Y → A, then

φ(x, y) = φ(x, sp(x))φ(sp(y), sp(x))−1φ(sp(y), y) = xsp(x)−1y = xsp(y)−1y,

since

φ(x, sp(x))φ(sp(y), sp(x))−1φ(sp(y), y) = φ(iX(x))φ(iX(sp(x)))−1φ(iY (y))

X Y

X ×B Y

A.

iYiX

φ
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Given a subobject (X, q, r) of (K ×B, pB , iB) we define

X := {x ∈ K | there exists b ∈ B s.t. (x, b) ∈ X}.

We want to show that X = X × B as sets. Clearly X ⊆ X × B. Conversely, let us take an

element (k, b) ∈ X × B. Then k ∈ X, and so there exists b1 ∈ B such that (k, b1) ∈ X; but

(e, b), (e, b1) ∈ X, therefore (k, b) = (k, b1)(e, b1)−1(e, b) ∈ X. In general, we have a one-to-one

correspondence between the subobjects of (A, p, s) and the subalgebras of K closed under the

action of B. Hence, under our assumptions, we have X = X ×B and Y = Y ×B. Thus,

X ×B Y = {((x, b1), (y, b2)) ∈ X × Y | b1 = b2}

and φ : X ×B Y → K ×B is such that

φ((x, b), (y, b)) = (x, b)(e, b)−1(y, b) = (x y, b).

Let us show that φ is a group homomorphism if and only if xy = yx for all x ∈ X and y ∈ Y .

Given an element ((x, b), (y, b)), ((z, c), (w, c)) ∈ (X ×B) ×B (Y ×B) one has

((x, b), (y, b))((z, c), (w, c)) = ((x, b)(z, c), (y, b)(w, c)) = ((xbzb−1, bc), (ybwb−1, bc)).

Therefore,

φ((x, b), (y, b))φ((z, c), (w, c)) = (xy, b)(zw, c) = (xybzwb−1, bc)

and, since ((x, b), (y, b))((z, c), (w, c)) = ((xbzb−1, bc), (ybwb−1, bc)), we get

φ((xbzb−1, bc), (ybwb−1, bc)) = (xbzb−1ybwb−1, bc).

So, φ is a group homomorphism if and only if bzb−1y = ybzb−1 for all z ∈ X, y ∈ Y and b ∈ B.

Then, setting b = e, we get zy = yz for all z ∈ X and y ∈ Y . Moreover, since X is closed under

the action of B and since the conjugation is a bijection, we get that every element of X can be

seen as bzb−1 for appropriate b ∈ B and z ∈ X; thus, if zy = yz for all z ∈ X and y ∈ Y then

bzb−1y = ybzb−1 for all z ∈ X, y ∈ Y and b ∈ B. Now, let us deal with the order structure. We

know that φ is a morphism of lattice-ordered groups if and only if φ is a group homomorphism

and for all ((x, b), (y, b)) ∈ (X ×B) ×B (Y ×B)

φ(((x, b), (y, b)) ∨ ((e, e), (e, e))) = φ(((x, b), (y, b))) ∨ (e, e). (1.1)
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We know that

((x, b), (y, b)) ∨ ((e, e), (e, e)) = ((x, b) ∨ (e, e), (y, b) ∨ (e, e))

= (((xb ∨ e)(b ∨ e)−1, b ∨ e), ((yb ∨ e)(b ∨ e)−1, b ∨ e))

= (((xb)+(b+)−1, b+), ((yb)+(b+)−1, b+)),

hence one has

φ(((x, b), (y, b)) ∨ ((e, e), (e, e))) = ((xb)+(b+)−1(yb)+(b+)−1, b+).

Considering the right term of (1.1), we obtain

φ(((x, b), (y, b))) ∨ (e, e) = (xy, b) ∨ (e, e) = ((xyb)+(b+)−1, b+).

We want to show that φ is a lattice-ordered group morphism if and only if X ⊥ Y .

If φ is a lattice-ordered group morphism, then

(xb)+(b+)−1(yb)+(b+)−1 = (xyb)+(b+)−1

for each x ∈ X, y ∈ Y and b ∈ B; therefore, setting b = e, we get

(xy)+ = x+y+ for every x ∈ X and y ∈ Y

and so X and Y are orthogonal (see the proof of Proposition 1.2.4).

Conversely, let us suppose X ⊥ Y . We want to show that, for all x ∈ X, y ∈ Y and b ∈ B,

(xb)+(b+)−1(yb)+(b+)−1 = (xyb)+(b+)−1

and so we have to prove that (xb ∨ e)(b ∨ e)−1(yb ∨ e) = xyb ∨ e. We start with the first term:

(xb ∨ e)(b ∨ e)−1(yb ∨ e) = (xb(b−1 ∧ e) ∨ (b−1 ∧ e))(yb ∨ e)

= xb(b−1 ∧ e)(yb ∨ e) ∨ (b−1 ∧ e)(yb ∨ e)

= xb(b−1 ∧ e)yb ∨ xb(b−1 ∧ e) ∨ (b−1 ∧ e)yb ∨ (b−1 ∧ e).

Now, we know that there exists an element y1 ∈ Y such that yb = by1 (since Y is closed under

the action of B and the conjugation is an automorphism of Y ), hence the last term is equal to

xb(b−1 ∧ e)by1 ∨ xb(b−1 ∧ e) ∨ (b−1 ∧ e)by1 ∨ (b−1 ∧ e)

= x(b ∧ b2)y1 ∨ x(b ∧ e) ∨ (b ∧ e)y1 ∨ (b−1 ∧ e).
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Moreover, we observe that there exists an element y2 ∈ Y such that (b ∧ e)y1 = y2(b ∧ e), thus

x(b ∧ e) ∨ (b ∧ e)y1 = x(b ∧ e) ∨ y2(b ∧ e) = (x ∨ y2)(b ∧ e)

= (xy2 ∨ e)(b ∧ e) = xy2(b ∧ e) ∨ (b ∧ e) = x(b ∧ e)y1 ∨ (b ∧ e)

(since X ⊥ Y , by Lemma 1.2.5 we know that x ∨ y2 = xy2 ∨ e). Then, one has

x(b ∧ b2)y1 ∨ x(b ∧ e) ∨ (b ∧ e)y1 ∨ (b−1 ∧ e)

= x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ (b ∧ e) ∨ (b−1 ∧ e).

We recall that (b ∧ e) ∨ (b−1 ∧ e) = (b ∨ b−1) ∧ e = |b| ∧ e = e, so we finally get

x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ (b ∧ e) ∨ (b−1 ∧ e) = x(b ∧ b2)y1 ∨ x(b ∧ e)y1 ∨ e

= x[(b ∧ b2) ∨ (b ∧ e)]y1 ∨ e = xby1 ∨ e = xyb ∨ e

since (b ∧ b2) ∨ (b ∧ e) = b(b ∧ e) ∨ e(b ∧ e) = (b ∨ e)(b ∧ e) = b+b− = b.

To conclude, we have to prove that, if we take a subalgebra X ≤ K closed under the action of

B, then also X
⊥ ≤ K is closed under the action of B (and so the centralizer of X = X × B is

X
⊥ ×B endowed with the semi-direct product structure). Let us consider two elements y ∈ X

⊥

and b ∈ B; we want to show that byb−1 ∈ X
⊥

. We know that

byb−1 ∈ X
⊥

if and only if |byb−1| ∧ |x| = e for all x ∈ X if and only if

|y| ∧ |b−1xb| = e for all x ∈ X if and only if |y| ∧ |x| = e for all x ∈ X

because the conjugation is an automorphism of X; the last assertion holds since y ∈ X
⊥

. We

recall that X
⊥

is a convex subalgebra of K. For every y1, y2 ∈ X
⊥

and b1, b2 ∈ B we have

y1b1 ≤ (y1 ∨ y2)(b1 ∨ b2) and y2b2 ≤ (y1 ∨ y2)(b1 ∨ b2); we also observe that (y1 ∧ y2)b1 ≤ y1b1

and (y1 ∧ y2)b2 ≤ y2b2. So one has

y1b1 ∨ y2b2 ≤ (y1 ∨ y2)(b1 ∨ b2)

and

(y1 ∧ y2)(b1 ∨ b2) = (y1 ∧ y2)b1 ∨ (y1 ∧ y2)b2 ≤ y1b1 ∨ y2b2.

Therefore, for all y1, y2 ∈ X
⊥

and b1, b2 ∈ B we obtain

y1 ∧ y2 ≤ (y1b1 ∨ y2b2)(b1 ∨ b2)−1 ≤ y1 ∨ y2;

then, since X
⊥

is convex in K, we get (y1b1 ∨ y2b2)(b1 ∨ b2)−1 ∈ X
⊥

for all y1, y2 ∈ X
⊥

and

b1, b2 ∈ B.
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Corollary 1.6.4. For every object B of ℓGrp, in the category PtBℓGrp subobjects have central-

izers, therefore PtBℓGrp is algebraically cartesian closed. Hence, the category ℓGrp is fiber-wise

algebraically cartesian closed.

1.7 Normality of the Higgins Commutator

The aim of this section is to propose a further study regarding the properties of commutators in

the category of lattice-ordered groups.

We recall a first notion of categorical commutator strongly linked to the concept of cooperation.

Definition 1.7.1 ([36],[11]). Let C be a unital category. For a pair of subobjects a : A ↣ X

and b : B ↣ X of an object X in C, the Huq commutator is the smallest normal subobject

[A,B]X ↣ X such that the images of a and b cooperate in the quotient X/[A,B]X .

Then, we remind here the notion of Higgins commutator. In a pointed category C with binary

products and coproducts, for each pair of objects H and K we have the following canonical

arrows:

H H ×K K

H H +K K;

(idH ,0) (0,idK)

[0,idK ][idH ,0]

combining them we get a canonical arrow

Σ =
(
idH 0
0 idK

)
: H +K → H ×K.

For instance, in the case of the variety of groups, the morphism Σ associates to each word

h1k1h2k2 . . . hnkn, where hi ∈ H and ki ∈ K for i = 1, . . . , n, the pair (h1h2 . . . hn, k1k2 . . . kn) ∈
H ×K. It is easy to see that a category with binary products and coproducts is unital if and

only if, for every pair of objects H and K, Σ is a strong epimorphism. Hence, again in the case

of groups, the kernel of Σ, denoted by H ⋄K and called the cosmash product of H and K, can

be described as the subgroup of H + K generated by the elements of the form hkh−1k−1 with

h ∈ H and k ∈ K. In the light of the above, we are ready to recall the following:

Definition 1.7.2 ([42]). Let C be a semi-abelian category. Given a pair of subobjects a : A↣ X

and b : B ↣ X of an object X in C, the Higgins commutator of A and B is the subobject

[A,B] ↣ X constructed, via the (regular epimorphism, monomorphism)-factorization, as in

diagram
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A ⋄B A+B

[A,B] X,

[a,b]

kA,B

where kA,B is the kernel of Σ =
(
idA 0
0 idB

)
: A+B → A×B.

In general, the Higgins commutator of two normal subobjects is not normal. Therefore, it makes

sense to mention the following definition:

Definition 1.7.3 ([23]). A semi-abelian category C satisfies the condition of normality of Higgins

commutators (NH) when, for every pair of normal subobjects H ↣ X, K ↣ X where X is an

object of C, the Higgins commutator [H,K] ↣ X is a normal subobject of X.

We have everything we need to prove that that the category of lattice-ordered groups satisfies

(NH) (recalling that in ℓGrp the notion of normal subobject coincide with the one of ideal).

Lemma 1.7.4. Let H,K ≤ X be two convex subalgebras of X in ℓGrp. Then H and K cooperate

if and only if H ∩K = {e}.

Proof. (⇒) Trivial since H ⊥ K (thanks to Proposition 1.2.4).

(⇐) We want to show that H ⊥ K: let us consider two elements h ∈ H and k ∈ K; then

e ≤ |h| ∧ |k| ≤ |h| and e ≤ |h| ∧ |k| ≤ |k|. Therefore, since H and K are convex, we have

|h| ∧ |k| ∈ H ∩K = {e}.

Notation 1.7.5. We will write [H,K] for the Higgins commutator of H ↣ X and K ↣ X,

and [H,K]Y for the Huq commutator of H ↣ X and K ↣ X in the subobject Y of X, where H

and K are subobjects of Y .

Proposition 1.7.6. Let X be an object of ℓGrp and H,K ideals of X. Then, [H,K]X = H ∩K.

Proof. Let us prove the inclusion H ∩K ⊆ [H,K]X . Consider the following diagram:

H K

H ×K

X/[H,K]X

φ
q|H q|K

iH iK

where q : X ↠ X/[H,K]X is the canonical projection. Then, by Lemma 1.7.4, we know that

q(H) ∩ q(K) = {e}. So, since q(H ∩K) ⊆ q(H) ∩ q(K) = {e} we get H ∩K ⊆ [H,K]X . The

other inclusion holds in every semi-abelian category (see Theorem 3.9 in [29]).

Proposition 1.7.7. The category ℓGrp satisfies (NH).
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Proof. Thanks to Theorem 2.8 of [23], it suffices to prove that, given an ideal H of X and an

ideal K of Y such that H,K ≤ Y , then [H,K]X = [H,K]Y . Thus the statement follows from

the previous proposition, since [H,K]X = [H,K]Y = H ∩K.

1.8 Algebraic Coherence for ℓAb

In the last part of the chapter we focus on the notion of algebraically coherent category. This

concept has an important algebraic meaning: an algebraically coherent category satisfies a large

set of properties related to the good behaviour of commutators (such as, for example, strong

protomodularity); moreover, in the case of the varieties of universal algebra, the property of

being fiber-wise algebraically cartesian closed is implied by algebraic coherence.

Definition 1.8.1 ([22]). A category C with finite limits is algebraically coherent if, for every

morphism f : X → Y in C, the change-of-base functor

f∗ : PtY C → PtXC

is coherent: a functor between categories with finite limits is coherent if it preserves finite limits

and jointly extremally epimorphic pairs.

Since in the semi-abelian case the split extensions with fixed splitting can be totally described

in terms of semi-direct products, the authors in [22] proved the following result:

Proposition 1.8.2 ([22], Theorem 3.21). Suppose C is a semi-abelian category. The following

are equivalent:

• C is algebraically coherent;

• given K ↣ X and H ↣ X in C, any action ξ : B♭X → X which restricts to K and H

also restricts to K ∨H.

Let us now try to understand how this result can be interpreted in the category of lattice-ordered

groups. We know (see [16]) that, in the semi-abelian case, for each internal action ξ : B♭X → X

there exists a unique (up to isomorphism) split extension

X A B
p

sk

making, in the following diagram, the right-rightward square, the right-leftward square and the

left square commute:

B♭X X +B B

X A B.

k0

[0,idB ]

ιB

ξ

k

[k,s]

p

s
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Therefore, in ℓGrp, ξ restricts to a subalgebra L ≤ X if and only if L is closed under the corre-

sponding action of B (in the sense of Definition 1.6.2).

In the next proposition we will deal with the category of lattice-ordered abelian groups. A lattice-

ordered abelian group is a lattice-ordered group in which the group operation is commutative.

The category ℓAb is the full subcategory of ℓGrp whose objects are lattice-ordered abelian groups.

Proposition 1.8.3. ℓAb is algebraically coherent.

Proof. Let us consider an object (A, p, s) of PtBℓAb i.e. a diagram of the form

X A B
p

sk

where ps = idB and k = ker(p). For simplicity, let us suppose that k is the inclusion of X ≤ A

and s is the inclusion of B ≤ A. Given two subalgebras K,H ≤ X closed under the action of B,

we want to show that also K ∨H is closed under the action of B.

First of all, let us observe that, given a subalgebra L ≤ X, the following equality holds for every

l1, l2 ∈ L and b1, b2 ∈ B:

(l1b1 ∨ l2b2)(b1 ∨ b2)−1 = l2(l−1
2 l1b1b

−1
2 ∨ e)(b1b−1

2 ∨ e)−1.

Therefore, L is closed under the action of B if and only if for all l ∈ L and b ∈ B

(lb ∨ e)(b ∨ e)−1 belongs to L.

Now, in a lattice-ordered abelian group A, the equation

xy = (x ∨ y)(x ∧ y)

holds for all x, y ∈ A; in fact, x(x∧ y)−1y = x(x−1 ∨ y−1)y = x∨ y and thus xy = (x∨ y)(x∧ y).

Finally, it is easy to see that every element of K ∨H can be written as

∨
i∈I

∧
j∈J

ki,jhi,j

where I, J are finite sets of indices and ki,j ∈ K,hi,j ∈ H for all i ∈ I, j ∈ J . This statement

can be proved by iteratively applying the distributive properties of the lattice operations, the

distributivity property of the group product over the lattice operations, and the commutative
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property of the group product. Therefore, given an element b ∈ B, one has((∨
i∈I

∧
j∈J

ki,jhi,j

)
b ∨ e

)
=

(∨
i∈I

∧
j∈J

ki,jhi,jb

)
∨ e

=
∨
i∈I

( ∧
j∈J

ki,jhi,jb ∨ e

)
=
∨
i∈I

∧
j∈J

(ki,jhi,jb ∨ e)

where the first equality holds thanks to the distributivity of the group operation over the lat-

tice operations, the second thanks to the idempotence of the join, and the third thanks to the

distributivity of the join over the meet. Therefore((∨
i∈I

∧
j∈J

ki,jhi,j

)
b ∨ e

)
(b ∨ e)−1 =

∨
i∈I

∧
j∈J

(ki,jhi,jb ∨ e)(b ∨ e)−1

and hence, in order to prove that if K and H are closed under the action of B then also K ∨H
is closed under the action of B, it suffices to prove that for every k ∈ K, h ∈ H and b ∈ B

(khb ∨ e)(b ∨ e)−1 ∈ K ∨H.

We need to take care of an intermediate step: we want to show that, for all k ∈ K, h ∈ H and

b ∈ B,

((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 belongs to K ∨H.

To do this we observe that

((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 = (kb ∨ hb ∨ k−1 ∨ h−1)(b ∨ e)−1

= (kb ∨ k−1)(b ∨ e)−1 ∨ (hb ∨ h−1)(b ∨ e)−1

= k−1(k2b ∨ e)(b ∨ e)−1 ∨ h−1(h2b ∨ e)(b ∨ e)−1.

So, since K is closed under the action of B, we have (k2b ∨ e)(b ∨ e)−1 ∈ K and then we obtain

k−1(k2b ∨ e)(b ∨ e)−1 ∈ K; similarly h−1(h2b ∨ e)(b ∨ e)−1 ∈ H. Therefore, taking the join of

these two terms, we get ((k∨h)b∨ (k∧h)−1)(b∨e)−1 ∈ K∨H. To conclude, since k∧h ∈ K∨H,

the product

(k ∧ h)((k ∨ h)b ∨ (k ∧ h)−1)(b ∨ e)−1 belongs to K ∨H;

then we get

(khb ∨ e)(b ∨ e)−1 ∈ H ∨K

applying the distributivity property of the group product over the lattice join and recalling that

(k ∧ h)(k ∨ h) = kh.

This conclusive result answers the Open Problem 6.28 presented in [22]. In fact, the category ℓAb
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is algebraically coherent, as just shown, however it is not action accessible: the example provided

in 1.5.4 exclusively involves lattice-ordered groups whose group operations are commutative.





Chapter 2

Categorical-Algebraic Properties

of MV-Algebras

MV-algebras are a class of algebraic structures used in mathematics to study non-classical logic.

They generalize the notion of Boolean algebras, which are used to model classical logic, and can

be seen as a mathematical system for reasoning under uncertainty. MV-algebras have applica-

tions in various areas of mathematics, such as logic, algebra, topology, and computer science,

and can be used to model fuzzy logic, intuitionistic logic, and quantum logic.

More specifically, an MV-algebra A is a set equipped with an operation ⊕, which is both asso-

ciative, commutative, and has a neutral element 0, and an operation ¬, such that the following

equalities hold: ¬¬x = x, x ⊕ ¬0 = ¬0, and ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. These conditions

are intended to capture some properties of the real unit interval [0, 1] equipped with negation

¬x = 1 − x and truncated addition x⊕ y = min(1, x+ y).

MV-algebras are a powerful tool to model  Lukasiewicz calculus mathematically. In fact, in

 Lukasiewicz calculus, which is a type of many-valued logic, the truth values are not limited to

just “true” or “false”. Instead, they can take on any value from a continuous interval, typically

[0, 1]. In this sense, MV-algebras provide a natural framework for modeling  Lukasiewicz calculus,

as they can represent the truth values as elements in the interval [0, 1], and develop an algebraic

structure that can naturally manipulate these values.

In this chapter, we will investigate the categorical-algebraic properties of the variety of MV-

algebras, denoted by MV. Although MV is not a semi-abelian category, it possesses many impor-

tant properties. Recall that a category is semi-abelian [39] if it is a pointed finitely cocomplete

category which is Barr-exact and protomodular. However, MV fails to satisfy the condition of

having isomorphic initial and terminal objects; the initial object is the algebra {0, 1}, while the

terminal object is the algebra {0 = 1}. Nonetheless, being a variety of universal algebra, MV is

complete, cocomplete, and Barr-exact. Furthermore, we will show that MV is also a protomod-

33
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ular category. To summarize, even though MV is not a semi-abelian category, it still possesses

many important algebraic-categorical properties, making it an interesting object of study in its

own right.

The structure of the chapter is organized as follows.

In Section 2.1 we recall some classical facts about MV-algebras and we focus on the notion of

ideal of an MV-algebra.

In Section 2.2 we investigate the properties of idempotent elements in an MV-algebra. An ele-

ment a in an MV-algebra is said to be idempotent if the equation a⊕a = a holds. We will review

some known results concerning idempotents and prove some additional properties. The content

presented in this part of the chapter will be fundamental for the following sections.

In Section 2.3 we review Stone Duality Theorem for Boolean algebras [49] and establish the

notation that will be used in the subsequent parts of the chapter.

In Section 2.4 we deal with extending the construction of the Stone space for Boolean algebras

to the case of MV-algebras. In addition, in this section, we will provide an in-depth study of

the Pierce spectrum for MV-algebras, obtaining results similar to those known for the case of

unitary rings, as presented e.g. in [4].

In Section 2.5 we show that the category of MV-algebras is a protomodular and arithmeti-

cal category, by providing explicit descriptions of the protomodularity and arithmeticity terms.

Moreover, we prove that subobjects in the category PtBMV = (MV/B)\idB (i.e. the coslice over

idB of the slice of MV over B) have centralizers.

2.1 Preliminaries

In this section, we will recall the fundamental properties of MV-algebras, starting from their

definition. We will examine how new operations can be derived from those introduced in the

definition. Additionally, we will recall how a partial order can be naturally defined on any

MV-algebra. Finally, we will focus on the concept of an ideal in an MV-algebra.

Definition 2.1.1. An MV-algebra is an algebra (A,⊕,¬, 0) with a binary operation ⊕, a unary

operation ¬ and a constant 0 satisfying the following equations:

M1) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z;

M2) x⊕ y = y ⊕ x;

M3) x⊕ 0 = x;

M4) ¬¬x = x;

M5) x⊕ ¬0 = ¬0;
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M6) ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x.

A morphism between two MV-algebras (A,⊕,¬, 0) and (B,⊕,¬, 0) is a map f : A→ B satisfying

the following conditions, for each x, y ∈ A:

H1) f(0) = 0;

H2) f(x⊕ y) = f(x) ⊕ f(y);

H3) f(¬x) = ¬f(x).

The category MV is the category whose objects are the MV-algebras and whose arrows are the

morphisms between them.

As in the case of ℓGrp, we will indicate an MV-algebra (A,⊕,¬, 0) simply with A. Moreover, we

will consider the ¬ operation more binding than the ⊕ operation.

Given an MV-algebra A, we define the constant 1 and the binary operations ⊙, ⊖, →, and d as

follows:

• 1 := ¬0;

• x⊙ y := ¬(¬x⊕ ¬y);

• x→ y := ¬x⊕ y;

• x⊖ y := ¬(¬x⊕ y) = ¬(x→ y) = x⊙ (¬y);

• d(x, y) := (x⊖ y) ⊕ (y ⊖ x) (called distance)

We will consider the ¬ operation more binding than the ⊙, ⊖, and → operations.

With respect to the new operations, we get

• ¬1 = 0;

• x⊕ y = ¬(¬x⊙ ¬y);

• x⊕ 1 = 1;

• (x⊖ y) ⊕ y = (y ⊖ x) ⊕ x;

• x→ x = ¬x⊕ x = 1;

• x = y if and only if d(x, y) = 0 (see [21], Proposition 1.2.5).

We recall now some known facts that will be useful in the next sections.
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Lemma 2.1.2 ([21], Lemma 1.1.3). Let A be an MV-algebra. For every x ∈ A, ¬x is the unique

solution of the simultaneous equations:x⊕ ¬x = 1

x⊙ ¬x = 0.

Lemma 2.1.3 ([21], Lemma 1.1.2). Let A be an MV-algebra and x, y ∈ A. Then the following

conditions are equivalent:

• ¬x⊕ y = 1;

• x⊙ ¬y = 0;

• y = (y ⊖ x) ⊕ x;

• there exists an element z ∈ A such that y = x⊕ z.

Given an MV-algebra A and two elements x, y ∈ A, we write

x ≤ y

if and only if x and y satisfy one of the above equivalent conditions. It can be shown that the

relation ≤ defines a partial order on A (a proof of this fact can be found in [21]). It is clear that

every morphism of MV-algebras preserves the partial order defined above.

Lemma 2.1.4 ([21], Lemma 1.1.4). In every MV-algebra A the natural order ≤ has the following

properties:

• x ≤ y if and only if ¬y ≤ ¬x;

• if x ≤ y then, for all z ∈ A, x⊕ z ≤ y ⊕ z and x⊙ z ≤ y ⊙ z;

• x⊙ y ≤ z if and only iff x ≤ ¬y ⊕ z.

Proposition 2.1.5 ([21], Proposition 1.1.5, Proposition 1.1.6, and Proposition 1.5.1). On every

MV-algebra A the natural order determines a lattice structure. Specifically, for every x, y ∈ A,

the join x ∨ y and the meet x ∧ y are given by

x ∨ y := (x⊖ y) ⊕ y and x ∧ y := x⊙ (¬x⊕ y).

Moreover, the underlying lattice structure on A is distributive.

Finally, the following equations hold:

• x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z);

• x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z);
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• x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z);

• x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z).

Given a morphism of MV-algebras h : A→ B, one can define the kernel of h as

ker(h) := {x ∈ A |h(x) = 0}.

Kernels of morphisms can be characterized as ideals. A subset I ⊆ A of an MV-algebra A is an

ideal if and only if for every x, y ∈ A:

• 0 ∈ I;

• x, y ∈ I implies x⊕ y ∈ I;

• x ∈ I and y ≤ x implies y ∈ I.

An ideal I is said to be proper if I ̸= A.

The dual notion of an ideal is the one of a filter. A subset F ⊆ A of an MV-algebra A is a filter

if and only if for every x, y ∈ A:

• 1 ∈ F ;

• x, y ∈ F implies x⊙ y ∈ F ;

• x ∈ F and x ≤ y implies y ∈ F .

A filter F is said to be proper if F ̸= A. One can easily prove that F is a filter of A if and only

if ¬F := {a ∈ A | ¬a ∈ F} is an ideal of A.

It is known that every kernel is an ideal (we recall that every morphism preserves the order).

Given an ideal I ⊆ A we can define a congruence ∼I on A in the following way: for every

x, y ∈ A, x ∼I y if and only if d(x, y) ∈ I. One can show that the kernel of the quotient

projection π : A → A/ ∼I is exactly I. This procedure establishes a one-to-one correspondence

between kernels of morphisms with domain A and ideals of A. Additionally, it is not difficult to

see that a morphism of MV-algebras h is injective if and only if ker(h) = {0}.

Finally, given an MV-algebra A and a non-empty subset S ⊆ A, the ideal generated by S (i.e.

the smallest ideal containing S) exists and it is

⟨S⟩ = {x ∈ A | ∃s1, . . . , sn ∈ S s.t. x ≤ s1 ⊕ · · · ⊕ sn}.

Lemma 2.1.6. Let f : A→ B be a morphism of MV-algebras and I ⊆ A an ideal. The restriction

of f to I is injective if and only if ker(f) ∩ I = {0}.

Proof. If the restriction of f is injective and we take an element a ∈ ker(f) ∩ I, we get f(a) =

0 = f(0) and, since 0 ∈ I, we obtain a = 0. Conversely, if ker(f) ∩ I = {0} and we consider

two elements a, b ∈ I such that f(a) = f(b), we get that f(d(a, b)) = d(f(a), f(b)) = 0 and so

d(a, b) ∈ ker(f) ∩ I = {0} i.e. a = b; thus the restriction of f is injective.
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2.2 Properties of Idempotents

In this section, we will examine some properties of idempotent elements in an MV-algebra. Given

an MV-algebra A, we denote the set of idempotent elements of A with Idem(A). We will prove

that the assignment defined by A 7→ Idem(A) constitutes a functor Idem: MV → Boole, which

is right adjoint to the inclusion functor i : Boole ↪→ MV. Finally, in the second part of this

section, we will investigate fundamental properties of idempotent elements that are relevant for

the subsequent sections.

Definition 2.2.1 ([21]). Let A be an MV-algebra. An element x ∈ A is an idempotent (or

Boolean) element if

x⊕ x = x.

The set of idempotent elements of A is called Boolean skeleton of A and it is denoted by

Idem(A).

Given an MV-algebra (A,⊕,¬, 0), it is a known fact that A is a Boolean algebra with respect to

its operations if and only if ⊕ is an idempotent operation.

Theorem 2.2.2 ([21], Theorem 1.5.3). For every element x in an MV-algebra A the following

conditions are equivalent:

• x ∈ Idem(A);

• x ∨ ¬x = 1;

• x ∧ ¬x = 0;

• x⊙ ¬x = 0;

• x⊕ y = x ∨ y, for all y ∈ A;

• x⊙ y = x ∧ y, for all y ∈ A.

Therefore, for every MV-algebra A, Idem(A) is a subalgebra of A. Additionally, the MV-algebra

A is a Boolean algebra with respect to its operations if and only if A = Idem(A).

Remark 2.2.3. The assignment introduced in Definition 2.2.1 can be extended to a functor

MV Boole

A Idem(A)

B Idem(B),

Idem

f Idem(f)
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where Idem(f) is the restriction of f to Idem(A). In fact, fixed an element x ∈ Idem(A) one has

f(x) ⊕ f(x) = f(x⊕ x) = f(x) (i.e. f(x) ∈ Idem(B)).

Proposition 2.2.4. The inclusion functor i : Boole ↪→ MV is both a left and a right adjoint.

Proof. We start showing that i ⊣ Idem. We do this proving the existence of a counit ε : i Idem →
IdMV. For every object A of MV, we define εA as the inclusion Idem(A) ⊆ A; clearly the following

diagram commutes for all morphisms f , and so ε is a natural transformation:

i Idem(A) A

i Idem(B) B.

fi Idem(f)

εA

εB

Moreover, ε satisfies the universal property of the counit: given a morphism of MV-algebras

g : i(B) → A, where B is an object of Boole, we want to prove that there exists a unique

morphism of Boolean algebras g : B → Idem(A) such that the following diagram commutes

i(B)

i Idem(A) A.εA

gi(g)

Since B is a Boolean algebra, g(b) ∈ Idem(A) for every b ∈ B and so g is defined as the restriction

of g.

Now, we construct the functor

MV Boole

A A/ρA

B B/ρB ,

Q

f f̃

where we define, for every MV-algebra A, the congruence ρA := ⟨{(x, x⊕ x) ∈ A×A |x ∈ A}⟩ ⊆
A × A; since each element of A/ρA is idempotent, then A/ρA is a Boolean algebra. Moreover,

for every morphism of MV-algebras f : A → B, f̃ : A/ρA → B/ρB is given by f̃([a]) := [f(a)].

We prove that Q ⊣ i by showing the existence of a unit η : IdMV → iQ. For every object A of

MV, we define ηA as the quotient projection on the congruence ρA. Easy computations show that

following diagram is commutative, so η is a natural transformation:

A i(A/ρA)

B i(B/ρB).

f

ηA

ηB

i(f̃)

Moreover, η satisfies the universal property of the unit: consider a morphism of MV-algebras
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h : A→ i(B), where B is an object of Boole, we want to prove that there exists a unique morphism

of Boolean algebras ĥ : A/ρA → B such that the following diagram commutes

A A/ρA

i(B).

h i(ĥ)

ηA

Since B is a Boolean algebra, we observe that h(x) = h(x) ⊕ h(x) = h(x ⊕ x) for every x ∈ A;

hence, we have ρA ⊆ K[h] where K[h] := {(x, y) ∈ A × A |h(x) = h(y)}. So, by the universal

property of the quotient, we can define a unique morphism of MV-algebras (actually, of Boolean

algebras) ĥ : A/ρA → B making the above diagram commutative.

Proposition 2.2.5 ([21], Proposition 6.4.1). Given an MV-algebra A, for every element e ∈
Idem(A) \ {0}, (↓ e,⊕,¬e, 0) is an MV-algebra (where ↓ e := {x ∈ A |x ≤ e} and ¬ex := ¬x∧ e).
Moreover, the map

he : A→↓ e

x 7→ x ∧ e

is a morphism of the MV-algebra A onto the MV-algebra ↓ e, with ker(he) =↓ ¬e.

Given an MV-algebra A and an element e ∈ Idem(A), as a consequence of the previous proposi-

tion, the following equalities holds for every x, y ∈ A:

• e ∧ (x⊙ y) = (e ∧ x) ⊙ (e ∧ y);

• e ∨ (x⊙ y) = (e ∨ x) ⊙ (e ∨ y);

• e ∧ (x⊕ y) = (e ∧ x) ⊕ (e ∧ y);

• e ∨ (x⊕ y) = (e ∨ x) ⊕ (e ∨ y).

Proposition 2.2.6 ([21], Lemma 6.4.5). Let A be an MV-algebra and e1, . . . , ek elements of

Idem(A) such that

• e1 ∨ · · · ∨ ek = 1,

• ei ∧ ej = 0 for i ̸= j, i, j = 1, . . . k.

Then there exists an isomorphism of MV-algebras

h : A→
k∏
i=1

↓ ei

such that, for every x ∈ A,

h(x) := (x ∧ ei)ki=1.



Categorical-Algebraic Properties of MV-Algebras 41

Lemma 2.2.7. Let A be an MV-algebra and e1, . . . , ek elements of Idem(A) such that

• e1 ∨ · · · ∨ ek = 1,

• ei ∧ ej = 0 for i ̸= j, i, j = 1, . . . k.

Then, for every x1, . . . , xk ∈ A, the following equality holds

¬
( k⊕
i=1

xi ⊙ ei

)
=

k⊕
i=1

(¬xi ⊙ ei).

Proof. First of all, we observe that ¬ei =
⊕

i ̸=j ej , in fact the following equalities hold simulta-

neously: ei ⊕
(⊕

j ̸=i ej
)

=
⊕k

i=1 ei = 1

ei ⊙
(⊕

j ̸=i ej
)

=
⊕

j ̸=i(ei ⊙ ej) = 0;

hence, applying Lemma 2.1.2, we get ¬ei =
⊕

i ̸=j ej .

We are ready to prove our claim; on the one hand we have

( k⊕
i=1

(xi ⊙ ei)

)
⊕
( k⊕
i=1

(¬xi ⊙ ei)

)
=

k⊕
i=1

(xi ⊙ ei) ⊕ (¬xi ⊙ ei)

=

k⊕
i=1

(xi ⊕ ¬xi) ⊙ ei =

k⊕
i=1

ei = 1.

On the other hand, since xi ⊙ ei ≤ xi and xi ⊙ ei ≤ ei for i = 1, . . . k, we obtain

( k⊕
i=1

(xi ⊙ ei)

)
⊙
( k⊕
i=1

(¬xi ⊙ ei)

)
≤
(
xi ⊕

⊕
j ̸=i

ej

)
⊙
(
¬xi ⊕

⊕
j ̸=i

ej

)
= (xi ⊕ ¬ei) ⊙ (¬xi ⊕ ¬ei)

= (xi ⊙ ¬xi) ⊕ ¬ei = ¬ei;

therefore, for every i = 1 . . . k, we get

( k⊕
i=1

(xi ⊙ ei)

)
⊙
( k⊕
i=1

(¬xi ⊙ ei)

)
≤ ¬ei.

So, we deduce

( k⊕
i=1

(xi ⊙ ei)

)
⊙
( k⊕
i=1

(¬xi ⊙ ei)

)
≤

k∧
i=1

¬ei = ¬
k∨
i=1

ei = ¬1 = 0

and, applying again Lemma 2.1.2, the statement follows.
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Lemma 2.2.8. Let A be an MV-algebra and e1, . . . , ek elements of Idem(A) such that ei⊙ej = 0

for i ̸= j, i, j = 1, . . . k. Then, for every x ∈ A, the following equality holds:

x⊙ (e1 ⊕ · · · ⊕ en) = (x⊙ e1) ⊕ · · · ⊕ (x⊙ en).

Proof. Let us consider two idempotent elements e, f ∈ Idem(A) such that e ⊙ f = 0. Given an

element x ∈ A, since e⊕ f ∈ Idem(A), we get

x⊙ (e⊕ f) = x ∧ (e ∨ f) = (x ∧ e) ∨ (x ∧ f) = (x⊙ e) ∨ (x⊙ f) ≤ (x⊙ e) ⊕ (x⊙ f).

Now, we want to show the converse inequality

(x⊙ e) ⊕ (x⊙ f) ≤ (x⊙ e) ∨ (x⊙ f).

First of all, we observe that the equality e⊙ f = 0 implies the inequalities e ≤ ¬f and f ≤ ¬e.
Hence, we obtain

(x⊙ e) ⊕ (x⊙ f) ≤ (x⊙ e) ⊕ (x⊙ ¬e) ≤ e⊕ (x⊙ ¬e) = x ∨ e,

(x⊙ e) ⊕ (x⊙ f) ≤ (x⊙ ¬f) ⊕ (x⊙ f) ≤ (x⊙ ¬f) ⊕ f = x ∨ f.

Therefore, we have

(x⊙ e) ⊕ (x⊙ f) ≤ (x ∨ e) ∧ (x ∨ f) = x ∨ (e ∧ f) = x

and, moreover,

(x⊙ e) ⊕ (x⊙ f) ≤ e⊕ f.

Considering the meet of the last two inequalities, we get

(x⊙ e) ⊕ (x⊙ f) ≤ x ∧ (e⊕ f) = x⊙ (e⊕ f)

since e⊕ f ∈ Idem(A). Finally, the statement follows by induction.

Lemma 2.2.9. Let A be an MV-algebra. For every e ∈ Idem(A) and x, y ∈ A,

(x⊖ y) ⊙ e = 0 and (y ⊖ x) ⊙ e = 0 implies x⊙ e = y ⊙ e.

Proof. If e = 0 the statement follows trivially. Hence, suppose e ̸= 0. From (x ⊖ y) ⊙ e =

0 and (y ⊖ x) ⊙ e = 0 we get

((x⊖ y) ⊙ e) ⊕ ((y ⊖ x) ⊙ e) = 0
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and so

d(x, y) ∧ e = 0.

We know that he : A→↓ e is a morphism of MV-algebras (see Proposition 2.2.5), where he(z) =

z ∧ e = z ⊙ e. Therefore, from

0 = d(x, y) ⊙ e = he(d(x, y)) = de(he(x), he(y))

we get he(x) = he(y), and so x⊙e = y⊙e (where de is the distance operation of the MV-algebra

↓ e).

2.3 Boolean Algebras and Stone Duality

Stone Duality is a mathematical result that connects two seemingly unrelated areas of mathemat-

ics: topology and algebra. It provides a powerful tool for studying the structure and behavior of

various mathematical objects, such as Boolean algebras, topological spaces, and lattice-ordered

groups. Stone Duality was introduced by Stone [49]. The purpose of this section is to provide a

concise overview of Stone Duality. To accomplish this objective, we will present a summarised

version of the discussion presented in [4].

In the first part of this section, we will recall the concepts of filters and ideals in Boolean algebras,

and explore some of their key properties and applications.

Definition 2.3.1. Let B be a Boolean algebra. A subset F ⊆ B is a filter if

• 1 ∈ F ;

• x, y ∈ F implies x ∧ y ∈ F ;

• x ∈ F and x ≤ y implies y ∈ F .

The set of filters of B is denoted by Filters(B).

A filter F is proper if 0 /∈ F . An ultrafilter is a maximal element in the poset of proper filters

ordered by inclusion.

Definition 2.3.2. Let B be a Boolean algebra. A subset I ⊆ B is an ideal if

• 0 ∈ I;

• x, y ∈ I implies x ∨ y ∈ I;

• x ∈ I and y ≤ x implies y ∈ I.

The set of ideals of B is denoted by Ideals(B).

An ideal I is proper if 1 /∈ I. A maximal ideal is a maximal element in the poset of proper ideals

ordered by inclusion.
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Proposition 2.3.3. Consider a filter F of a Boolean algebra B. The following are equivalent:

• F is an ultrafilter;

• for all x ∈ X, x ∈ F or ¬x ∈ F ;

• for all x, y ∈ B, x ∨ y ∈ F implies x ∈ F or y ∈ F ;

• there exists a morphism of Boolean algebras f : B → 2 = {0 < 1} such that f−1(1) = F .

Proposition 2.3.4. Let B be a Boolean algebra:

• every proper filter is contained in an ultrafilter;

• every non-zero element of B is contained in an ultrafilter;

• for every x, y ∈ B, if x ≰ y then there exists an ultrafilter F such that x ∈ F and y /∈ F ;

• every filter is the intersection of the ultrafilters containing it.

For every Boolean algebra B, we define the set Spec(B) as the set of ultrafilters of B and, for

every filter H of B, the set

OH := {F ∈ Spec(B) |H ⊈ F}.

Our aim is to recall the definition of the two functors that establish the duality between the

category of Boolean algebras and the one of Stone spaces.

Definition 2.3.5. A topological space (X, τ) is a Stone space if (X, τ) is compact, T2 and has

a base of clopens. The category Stone is the full subcategory of the category of topological spaces

which objects are precisely the Stone spaces.

The first functor, denoted by Spec, maps a Boolean algebra B to the set of ultrafilters on B.

More specifically, the set Spec(B) is equipped with the Stone topology

τ := {OH ⊆ Spec(B) |H ∈ Filters(B)}.

Proposition 2.3.6. Let B be a Boolean algebra. The map

O : (Filters(B),⊆) → (τ,⊆)

H 7→ OH

is an isomorphism of partially ordered sets.

As a consequence of this proposition we have the following:

Corollary 2.3.7. Let B be a Boolean algebra. Then

• O{1} = ∅ and OB = Spec(B);
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• OH1∩H2
= OH1

∩OH2
;

• O⟨
⋃

i∈I Hi⟩ =
⋃
i∈I OHi

, where, given a subset S ⊆ B, ⟨S⟩ is the filter generated by S.

Furthermore, since the following lemma holds, the set Spec(B) equipped with the topology just

defined turns out to be a Stone space.

Lemma 2.3.8. Let B be a Boolean algebra. For every b ∈ B the set

Ob := O↑b = {F ∈ Spec(B) | b /∈ F}

is a clopen for τ . Moreover, the set {Ob | b ∈ B} is a base for τ .

The behavior of Spec on arrows is contravariant. That is, if f : A→ B is a morphism of Boolean

algebras, then Spec(f) : Spec(B) → Spec(A) is a continuous map between the associated Stone

spaces, defined by

Spec(f)(F ) := f−1(F )

for every ultrafilter F ⊆ B.

The second functor is the clopen algebra functor Clopen, which assigns to each Stone space X

its Boolean algebra Clopen(X) of clopen subsets (where the Boolean algebra operations are the

ones induced by 2Spec(B)), and, to each continuous map g : X → Y between Stone spaces, it

assigns the morphism Clopen(g) : Clopen(Y ) → Clopen(X) given by

Clopen(g)(V ) := g−1(V )

for every clopen subset V ⊆ Y .

To conclude, the result of Stone Duality precisely states that the following hold:

Proposition 2.3.9. Let B be a Boolean algebra. B is isomorphic as a Boolean algebra to

Clopen(Spec(B)) := {U ⊆ Spec(B) |U is a clopen for τ}.

Proposition 2.3.10. Let (X, τ) be a Stone space. (X, τ) is homeomorphic to the topological

space (Spec(Clopen(X)), τ).

Theorem 2.3.11. The category of Boolean algebras is dually equivalent to the category of Stone

spaces. The equivalence is given by

Booleop Stone .
Spec

Clopen

Finally, we mention the following results, consequences of Stone Duality, that will be indispens-

able for tackling the next section.
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Lemma 2.3.12. Let B be a Boolean algebra and b, c ∈ B. For every a ∈ B, we define Ua := O¬a.

Then, the following hold:

• If b ≤ c then Ob ⊇ Oc, and Ub ⊆ Uc;

• if b ̸= c then Ob ̸= Oc;

• Ob∧c = Ob ∩Oc;

• Ob∨c = Ob ∪Oc;

• O1 = ∅, Oo = B, U1 = B, and U0 = ∅;

• O¬b = (Ob)
c.

Corollary 2.3.13. Let B be a Boolean algebra. U ⊆ Spec(B) is a clopen if and only if there

exists an element b ∈ B such that U = Ub.

2.4 Pierce Spectrum for MV-Algebras

In this section we will introduce the Pierce spectrum of an MV-algebra based on its idempotent

elements, and explore some of its key properties. We will see that the Pierce spectrum allows us

to classify MV-algebras in terms of their idempotent elements. This part of the thesis is heavily

influenced by the results obtained from the study of the Pierce spectrum for unitary rings, which

can be found presented in [4].

We begin by proving some properties related to ideals and idempotent elements.

Definition 2.4.1. Let A be an MV-algebra. An ideal I of A is regular if

I = ⟨Idem(I)⟩,

where Idem(I) := {x ∈ I |x⊕ x = x}.

Lemma 2.4.2. Let A be an MV-algebra. Given an ideal I of A the following are equivalent:

i) I is regular;

ii) for every i ∈ I there exists an element e ∈ Idem(I) such that i = i⊙ e.

Proof. ii) ⇒ i) Since i = i⊙ e ≤ e we conclude that I = ⟨Idem(I)⟩.
i) ⇒ ii) Given an element i ∈ I we know that i ≤ e1 ⊕ e2 ⊕ · · · ⊕ en with ei ∈ Idem(I) for every

i = 1, . . . , n. Furthermore, e = e1 ⊕ e2 ⊕ · · · ⊕ en is an element of Idem(I), therefore there exists

an element z ∈ A such that i = z ⊙ e; so i⊙ e = z ⊙ e⊙ e = z ⊙ e = i (since e⊙ e = e).
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Proposition 2.4.3. Let A be an MV-algebra and I and ideal of A. Idem(I) is an ideal of the

Boolean algebra Idem(A).

Proof.

• 0 ∈ Idem(I), since 0 ∈ I and 0 ⊕ 0 = 0;

• if x ∈ Idem(I) and y ≤ x with y ∈ Idem(A), then y ∈ I ∩ Idem(A) = Idem(I);

• if x, y ∈ Idem(I), then x ∨ y = x⊕ y ∈ I ∩ Idem(A) = Idem(I).

Definition 2.4.4. We define the Pierce Spectrum functor

Sp: MVop → Stone

as the composite

MVop
Idemop

−−−−→ Booleop
Spec−−−→ Stone .

Lemma 2.4.5. Let A be an MV-algebra. Every partition in non-empty clopens of a clopen Ue

of Sp(A) has the form

Ue = Ue1 ∪ Ue2 ∪ · · · ∪ Uen ,

where

• each ei is a non-zero element of Idem(A),

• e1 ⊕ e2 ⊕ · · · ⊕ en = e,

• ei ⊙ ej = 0 for every i ̸= j.

Proof. First of all, we observe that Ue can be presented as a finite union of clopens since it is

compact (it is a close subset of a compact space). Thanks to Lemma 2.3.12 we get

Ue = Ue1 ∪ Ue2 ∪ · · · ∪ Uen = Ue1∨e2∨···∨en

and so e = e1 ∨ e2 ∨ · · · ∨ en; we recall that, for every x ∈ A, f ⊕ x = f ∨ x if f ∈ Idem(A). So,

we obtain e1 ⊕ e2 ⊕ · · · ⊕ en = e. In a similar way, from Uei ∩ Uej = ∅ (with i ̸= j) we conclude

that ei ⊙ ej = 0.

Lemma 2.4.6.

i) Every MV-Algebra A is a regular ideal of itself;

ii) a finite intersection of regular ideals is a regular ideal;

iii) an arbitrary join of regular ideals (which is computed as the join of ideals) is a regular

ideal.
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Proof. i) A = ⟨{1}⟩.
ii) Consider two regular ideals I, J of A and fix an element x ∈ I ∩ J . We know that there exist

e1 ∈ Idem(I) and e2 ∈ Idem(J) such that

x = x⊙ e1 = x⊙ e2;

therefore we obtain x = x⊙ e2 = (x⊙ e1) ⊙ e2 = x⊙ (e1 ⊙ e2). Since e1 ⊙ e2 ∈ I ∩ J , we deduce

that I ∩ J is a regular ideal.

iii) Consider a family {Ik}k∈K of regular ideals. We show that

∨
k∈K

Ik = ⟨S⟩

where S = Idem(
∨
k∈K Ik). Clearly, one has ⟨S⟩ ⊆

∨
k∈K Ik. Conversely, if we take an element

x ∈
∨
k∈K Ik, then there exist iki ∈ Iki , with ki ∈ K for i = 1, . . . , n, such that

x ≤ ik1 ⊕ · · · ⊕ ikn .

Since iki is an element of the regular ideal Iki , we know that there exists an element ei ∈ Iki

such that iki = iki ⊙ ei. Hence, one has

x ≤ ik1 ⊕ · · · ⊕ ikn = (ik1 ⊙ e1) ⊕ · · · ⊕ (ikn ⊙ en) ≤ e1 ⊕ · · · ⊕ en ∈ S,

and so x ∈ ⟨S⟩.

Now, we will provide an in-depth analysis about the relationship between the set of idempotent

ideals of an MV-algebra A and the set of open subsets of the topological space Sp(A). To do

this, it is necessary to recall the notion of a locale.

Definition 2.4.7. A locale L is a complete lattice such that the equality

a ∧
(∨
i∈I

bi

)
=
∨
i∈I

(a ∧ bi)

holds for every a ∈ L and {bi}i∈I ⊆ L. A function between two locales is a morphism of locales if

it preserves arbitrary joins and finite meets. An isomorphism of locales is a bijective morphism

of locales.

Proposition 2.4.8. Let A be an MV-algebra. The set of regular ideals of A (denoted by

RegIdeals(A)), endowed with the intersection as meet and the join of ideals as join, is a lo-

cale isomorphic to the one of open subsets of (Sp(A), τ).

Proof. We know, from Proposition 2.3.6, that τ is isomorphic as a locale to Filters(Idem(A))

which is, in turn, isomorphic as a locale to Ideals(Idem(A)) (we recall that, given an ideal I of
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a Boolean algebra B, the set ¬I = {x ∈ B | ¬x ∈ I} is a filter and this assignment establishes a

bijection, which preserves and reflects the order, between the set Ideals(B) and Filters(B)). So,

we can restate our claim: the locale RegIdeals(A) is isomorphic to the locale Ideals(Idem(A)).

We define the map

φ : RegIdeals(A) → Ideals(Idem(A))

I 7→ Idem(I) = I ∩ Idem(A).

We prove that φ is an isomorphism of locales.

• φ is injective: if φ(I) = φ(J), then I = ⟨φ(I)⟩ = ⟨φ(J)⟩ = J .

• φ is surjective: let us consider an ideal J ∈ Ideals(Idem(A)), and define I := ⟨J⟩. Clearly,

one has J ⊆ Idem(I). Conversely, if we consider an element e ∈ Idem(I) = ⟨J⟩ ∩ Idem(A),

there exist e1, . . . , en ∈ J such that e ≤ e1 ⊕ · · · ⊕ en (we recall that the elements of J are

idempotent). But e ≤ e1 ⊕ · · · ⊕ en = e1 ∨ · · · ∨ en, hence e ∈ Idem(A) and e ∈ J ; therefore

Idem(I) ⊆ J .

• φ preserves and reflects the order: if we consider two elements I1 ⊆ I2 of RegIdeals(A) we

have Idem(I1) ⊆ Idem(I2); conversely, if we take J1 ⊆ J2, then ⟨J1⟩ ⊆ ⟨J2⟩.

Thanks to the above observation, it is possible to translate the topology of Sp(A) making use of

regular ideals. We have shown, in fact, that the following sets are isomorphic as partially ordered

sets

Filters(Idem(A))
∼−→ Ideals(Idem(A))

∼−→ RegIdeals(A).

Therefore, we deduce that

Sp(A) ∼= {M ∈ RegIdeals(A) |M is a maximal element of (RegIdeals(A),⊆)},

and so, if we consider the last bijection as a definition of Sp(A) (and we will do that from here

on), we have to translate the topology in the following way:

τ = {OI | I ∈ RegIdeals(A)}

where

OI := {M ∈ Sp(A) | I ⊈M}.

Definition 2.4.9. The structural Pierce space of an MV-algebra A is

∐
M∈Sp(A)

A/M
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endowed with the final topology for which the following maps are continuous

sIX : OI →
∐

M∈Sp(A)

A/M

N 7→ [x]N ∈ A/N

for every I ∈ RegIdeals(A) and x ∈ A (where on OI we are considering the subspace topology

induced by OI ⊆ Sp(A)). In other words, a subset U ⊆
∐
M∈Sp(A)A/M is open if and only if

(sIx)−1(U) is open for every I ∈ RegIdeals(A) and x ∈ A.

Notation 2.4.10. Let A be an MV-algebra. For every e ∈ Idem(A) we define Oe := O↓e where

↓ e := {x ∈ A |x ≤ e}, therefore

Oe = {M ∈ Sp(A) | e /∈M}.

Definition 2.4.11. A map f : X → Y between two topological spaces (X, τX) and (Y, τy) is étale

if for every x ∈ X there exist two open subsets U ⊆ X, and V ⊆ Y such that x ∈ U , f(x) ∈ V

and

f|U : U → V

is an homeomorphism.

An étale map is both continuous and open.

Theorem 2.4.12. Let A be an MV-algebra. The map

p :
∐

M∈Sp(A)

A/M → Sp(A)

[x]N ∈ A/N 7→ N

is étale.

Proof. First of all, let us show that

Ux := {M ∈ Sp(A) |x ∈M}

is an open subset of Sp(A) for every x ∈ A.

We define

J := {e ∈ Idem(A) | for every N ∈ Sp(A) such that x /∈ N =⇒ e ∈ N}

=
⋂

{Idem(N) |N ∈ Sp(A), x /∈ N},

then J can be seen as an intersection of ideals of Idem(A) and so there exists a regular ideal
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I ∈ RegIdeals(A) such that

J = Idem(I).

We observe that, for every N ∈ Sp(A), the following chain of equivalences holds: N ∈ OI if

and only if I ⊈ N if and only if (since I and N are regular and, therefore, generated by their

idempotents) there exists an element e ∈ Idem(A) such that e ∈ I (and so e ∈ J) and e /∈ N .

This last statement implies that x ∈ N : in fact, if we suppose x /∈ N then, since Idem(N) appears

in the intersection above and since e /∈ Idem(A), we conclude that e /∈ J . Conversely, if x ∈ N

then there exists an element e ∈ Idem(A) such that e ∈ J and e /∈ N . In fact, if x ∈ N then,

since N ∈ RegIdeals(A), there exists e′ ∈ Idem(N) such that x = x ⊙ e′. Now, if we consider

M ∈ Sp(A), if x /∈ M then e′ /∈ M (in fact e′ ∈ M implies x ∈ M , since x ≤ e′). But we know

that Idem(M) is maximal as ideal of Idem(A); therefore e′ /∈ M implies ¬e′ ∈ M ⊆ M . Hence,

for every m ∈ Sp(A) if x /∈M then ¬e′ ∈M , and so ¬e′ ∈ J and ¬e′ /∈ Idem(N) (since e′ ∈ N).

Then we have N ∈ OI if and only if x ∈ N , which is equivalent to saying N ∈ Ux; hence Ux is

open. Let us consider sIx and sJy ,

(sJy )−1(sIx(OI)) = {M ∈ OJ | sJy (M) ∈ sIx(OI)}

= {M ∈ OJ | ∃N ∈ OI and [y]M = [x]N};

then we conclude that M = N and we have

(sJy )−1(sIx(OI)) = {M ∈ OI ∩OJ | [y]M = [x]M}.

Since the equality [y]M = [x]M holds if and only if d(x, y) ∈M , we obtain

(sJy )−1(sIx(OI)) = OJ ∩OI ∩ Ud(x,y)

which is a finite intersection of open subsets and, therefore, it is open. Thanks to the definition

of final topology we know that sIx is open in
∐
M∈Sp(A)A/M for every I ∈ RegIdeals(A) and

x ∈ A. We observe that OA = Sp(A) and so sAx (Sp(A)) is open for every x ∈ A. Moreover, if we

consider an element [x]M ∈
∐
M∈Sp(A)A/M we have [x]M ∈ sAx (Sp(A)) (in this set we have all

the quotient classes of x). So, we get

sAx (Sp(A)) OA = Sp(A)
p

sAx

where sAx and p are continuous. We observe that for every I ∈ RegIdeals(A) one has psIx(N) =

p([x]N ) = N , hence

psIx : OI ↪→ Sp(A)

is continuous. Then, if we fix an open subset O ⊆ Sp(A), we know that p−1(O) is open if and
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only if (sIx)−1(p−1(O)) is open for every sIx, which means that (psIx)−1(O) is open for every

sIx; therefore, since psIx is continuous, we deduce that p−1(O) is open, too. Finally, we observe

that psAx (N) = p([x]N ) = N for every N ∈ Sp(A), and sAx p([x]N ) = sAx (N) = [x]N for every

[x]N ∈ sAx (Sp(A)). Therefore, p is étale.

Theorem 2.4.13. Every MV-algebra A is isomorphic to the MV-algebra of continuous sections

of

p :
∐

M∈Sp(A)

A/M → Sp(A)

[x]N ∈ A/N 7→ N.

More generally, the MV-algebra of continuous sections defined on Oe, with e ∈ Idem(A), is

isomorphic as an MV-algebra to ↓ e (introduced in Proposition 2.2.5).

Proof. Clearly, from the second statement we can deduce the first one putting e = 1. So let us

prove the second one. Fix an element e ∈ Idem(A), for every x ∈ A we have

sex := s↓ex : Oe →
∐

M∈Sp(A)

A/M

N 7→ [x]N .

We define

Sece(p) := {s : Oe →
∐

M∈Sp(A)

A/M | s continuous and ps = idOe
}

(i.e. the set of continuous sections of p defined on Oe) and

φe : A→ Sece(p)

x 7→ sex;

clearly, φe(A) inherits the MV-algebra structure from A and, in this setting, φe is a morphism

of MV-algebras.

We observe that se¬e = 0: in fact, if we consider an element N ∈ Oe we have e /∈ N and, by

maximality, we get ¬e ∈ N ; so se¬e(N) = [¬e]N = 0. Therefore, the kernel ker(φe) of

φe : A→ φe(A)

contains ↓ ¬e. So, thanks to the universal property of the quotient, we define ψe

A φe(A)

A/ ↓ ¬e.

φe

π↓¬e

ψe
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We prove that ψe is injective: let us consider an element [x] ∈ A/ ↓ ¬e; then ψe([x]) = 0 implies

sex = 0 and so sex(N) = 0 for every N ∈ Oe. Therefore, [x]N = 0 for every N ∈ Oe; hence, we

have x ∈
⋂
N∈Oe

=
⋂
e/∈N N =

⋂
↓¬e⊆N N =↓ ¬e (the last equality holds observing that, in a

Boolean algebra, every ideal can be seen as the intersection of the maximal ideals containing it).

So we get [x] = 0, i.e. ψe injective.

To conclude, we have to prove that φe(A) = Sece(p) (i.e. φe is surjective). We consider an

element σ ∈ Sece(p); given M ∈ Oe, we know that σ(M) = [xM ]M ∈ A/M . Now, σ−1(sexM
(Oe))

is an open subset of Oe (in the proof of the previous proposition we have seen that the subsets

of the form σ−1(sIx(OI)) are open). Therefore

WM := {N ∈ Oe |σ(N) = [xM ]N ∈ A/N}

is an open subset of Oe. Since σ(M) = [xM ]M , we obtain M ∈WM . We observe that

WM =
⋃
i∈I

Oei

with ei ∈ Idem(A) (we know that the set {Oe | e ∈ Idem(A)} is a base for the topology on Sp(A)).

Hence, there exists an eM ∈ {ei ∈ Idem(A) | i ∈ I} such that M ∈ OeM ⊆ WM ⊆ Oe. So, we

have ⋃
M∈Oe

OeM

and, since Oe is compact,

Oe =

n⋃
i=1

OeMi

for an appropriate finite set {M1, . . . ,Mn} ⊆ Oe. We define

Oe1 := OeM1
,

Oe2 := OeM2
\Oe1 ,

...

Oen := OeMn
\Oen−1

,

hence we obtain

Oe = Oe1 ∪ · · · ∪Oen ,

Oek ∩Oej = ∅ for every k ̸= j.

Moreover, we know that Oei ⊆ OeMi
⊆ WMi

and so σ(N) = [xMi
]N ∈ A/N for every N ∈ Oei .
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We define xk := xMk
for every k = 1, . . . , n and

x :=

n⊕
k=1

(xk ⊙ ek),

we prove that σ = sex. Let us consider an element M ∈ Oe; there exists an i ∈ {1, . . . , n} such

that M ∈ Oei (i.e. ei /∈ M) and for every j ̸= i, with j ∈ {1, . . . , n}, M /∈ Oej (i.e. ej ∈ M).

Then, recalling that σ(M) = [xi]M ∈ A/M , we get

sex(M) =

n⊕
k=1

([xk]M ⊙ [ek]M ) = [xi]M = σ(M),

since [ek]M = δk,i.

Proposition 2.4.14. Let A be an MV-algebra and M ∈ Sp(A), Then we have

Idem(A/M) = {[0], [1]}.

Proof. We know that the MV-algebra A/M is the filtered limit of the MV-algebras A/⟨e1, . . . , en⟩
where e1, . . . , en are idempotents of M . If [x] is an idempotent of A/M , then there exists an

MV-algebra A/⟨e1, . . . , en⟩ in which x and x⊕ x are identified. Moreover, the ideal ⟨e1, . . . , en⟩
is equal to ↓ ¬e, where ¬e := e1 ⊕ · · · ⊕ en (¬e is, therefore, an idempotent of A). We recall that

the assignment

h : A/ ↓ ¬e→↓ e

[y] 7→ y ∧ e

is an isomorphism of MV-algebras. Therefore x ∧ e is an idempotent of ↓ e, and hence of A

(since the operation ⊕ is defined in the same way). Let us say that x ∧ e = f ∈ Idem(A). We

observe that h([f ]) = f ∧ e = x ∧ e ∧ e = x ∧ e = f , so [x] = [f ] in A/ ↓ ¬e, and then the

same equality holds in A/M . Now, recalling that Idem(M) is a maximal ideal of Idem(A) and

f ∈ Idem(A), we encounter two possibilities: if f ∈ Idem(M) we get [x] = [0]; if f /∈ Idem(M)

then, by maximality, ¬f ∈ Idem(M) and so [x] = [1].

Given a Stone space X, an MV-algebra A, and a continuous map f : X → Sp(A), we define

C((X, f), (
∐
M∈Sp(A)A/M, p)) as the set of continuous functions g : X →

∐
M∈Sp(A)A/M making

the following diagram commutative:

X
∐
M∈Sp(A)A/M

Sp(A).

g

f p

The set C((X, f), (
∐
M∈Sp(A)A/M, p)) can be endowed with a structure of MV-algebra, via the
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structure of MV-algebra of each quotient A/M : given g, h ∈ C((X, f), (
∐
M∈Sp(A)A/M, p)),

(g⊕h)(x) := g(x)⊕h(x) (we know that g(x), h(x) ∈ A/f(x) and, therefore, they can be summed

in A/f(x)); in a similar way we can define 0 and ¬.

Theorem 2.4.15. Let R be an MV-algebra. The right adjoint of the functor

SpR : MVop/R→ Stone / Sp(R)

R
mA−−→ A 7→ Sp(A)

Sp(mA)−−−−−→ Sp(R)

is the functor

CR : Stone / Sp(R) → MVop/R

X
f−→ Sp(R) 7→ R

m−→ C((X, f), (
∐

M∈Sp(A)

A/M, p))

where m(r) : X →
∐
M∈Sp(A)A/M is defined by m(r)(x) := [r]f(x). Moreover, this right adjoint

is full and faithful.

Proof. Let us first prove that m(r) is a continuous function. Consider an open subset U ⊆∐
M∈Sp(A)A/M . Since sRr is a continuous function, we can deduce that its pre-image (sRr )−1(U) =

{N ∈ Sp(R) | [r]N ∈ U} is an open subset of Sp(R). Now, since f is also a continuous func-

tion, we can conclude that f−1((sRr )−1(U)) is an open subset of X. Specifically, we have

f−1((sRr )−1(U)) = {x ∈ X | f(x) ∈ (sRr )−1(U)} = {x ∈ X | f(x) = N, [r]N ∈ U} = {x ∈
X | [x]f(x) ∈ U} = (m(r))−1(U). Therefore, m(r) is a continuous map, as desired.

If R = 1 the result is trivial. So suppose R ̸= 1 and start from the last statement. An idempotent

of the MV-algebra C((X, f), (
∐
M∈Sp(A)A/M, p)) is a continuous map g : X →

∐
M∈Sp(A)A/M

such that pg = f and g(x) ∈ R/f(x) is an idempotent (and, thanks to Proposition 2.4.14,

g(x) is either 0 or 1). Moreover, the subsets s
Sp(R)
0 (Sp(R)) = {[0]M ∈ R/M |M ∈ Sp(R)} and

s
Sp(R)
1 (Sp(R)) = {[1]M ∈ R/M |M ∈ Sp(R)} are open and disjoint (since 1 /∈ M). Hence, the

idempotents of C((X, f), (
∐
M∈Sp(A)A/M, p)) are given by the set of continuous maps

C((X, f), ({0, 1} × Sp(R), p))

where p : {0, 1}×Sp(R) → Sp(R) is the projection on the second component and {0, 1} is provided

with the discrete topology. Clearly,

C((X, f), ({0, 1} × Sp(R), p))

is isomorphic, as a Boolean algebra, to Clopen(X) and, therefore, thanks to the Stone Duality,

we get

Sp(C((X, f), (
∐

M∈Sp(A)

A/M, p))) ∼= X.
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Moreover, since CR(f) := m is defined by the equality m(r)(x) = [r]f(x), Idem(m) : Idem(R) →
C((X, f), ({0, 1} × Sp(R), p)) is such that

Idem(m)(e)(x) =

(0, f(x)) e ∈ f(x)

(1, f(x)) e /∈ f(x).

So, we get that

X
f−→ Sp(R) ∼= Sp(C((X, f), (

∐
M∈Sp(A)

A/M, p)))
Sp(m)−−−−→ Sp(R).

We want to show the existence of a natural bijection

MV((C((X, f), (
∐

M∈Sp(A)

A/M, p)),m), (A,mA)) ∼= Stone((Sp(A), α), (X, f)),

where α = Sp(mA). We fix an element φ of

MV(C((X, f), (
∐

M∈Sp(A)

A/M, p)), (A,mA))

i.e. a morphism of MV-algebras φ : C((X, f), (
∐
M∈Sp(A)A/M, p)) → A such that φm = mA. So,

for every clopen U ⊆ X, we consider the continuous map χU : X →
∐
M∈Sp(A)A/M defined as

χU (x) :=

[1]f(x) ∈ R/f(x) x ∈ U

[0]f(x) ∈ R/f(x) x /∈ U.

Clearly χU is an idempotent of C((X, f), (
∐
M∈Sp(A)A/M, p)), and so φ(χU ) ∈ Idem(A). Hence,

we can define a morphism of Boolean algebras

φ′ : Clopen(X) → Idem(A)

U 7→ φ(χU )

and, thanks to the Stone Duality, we obtain a continuous map φ′′ : Sp(A) → X; we have to show

that fφ′′ = α. In other terms, we have to prove that φ′(f−1(Oe)) = mA(e). We observe that

χf−1(Oe)(x) =

[1]f(x) ∈ R/f(x) x ∈ f−1(Oe)

[0]f(x) ∈ R/f(x) x /∈ f−1(Oe).

If e /∈ f(x) then ¬e ∈ R/f(x), and so [1]f(x) = [e]f(x). Similarly, if e ∈ f(x) then [e]f(x) =

[0]f(x) ∈ R/f(x). Therefore, χf−1(Oe)(x) = [e]f(x) = m(e)(x), so we obtain χf−1(Oe) = m(e) and

φ(χf−1(Oe)) = φ(m(e)) = mA(e). This implies fφ′′ = α.
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Let us prove that the assignment φ → φ′′ is injective. First of all, we notice that for every

h ∈ C((X, f), (
∐
M∈Sp(A)A/M, p)) the collection

h−1(sSp(R)
r (Sp(R)))

is an open covering of X. Since X has a base of clopens, we can refine this covering with clopens

and, since X is compact, we can extract from it a finite covering U1, . . . , Un ⊆ X. Now, for every

x ∈ Ui we have an element ri ∈ R such that h(x) = [ri]f(x). So we obtain

h =

n⊕
i=1

mA(ri) ⊙ χUi
.

Hence, if we consider two morphisms of MV-algebras

φ,ψ : C((X, f), (
∐

M∈Sp(A)

A/M, p)) → A

such that φm = mA, we have ψm = mA and φ′′ = ψ′′. We observe that

φ(h) = φ(

n⊕
i=1

mA(ri) ⊙ χUi
) =

n⊕
i=1

φ(mA(ri)) ⊙ φ(χUi
)

=

n⊕
i=1

ψ(mA(ri)) ⊙ ψ(χUi
) = ψ(h)

since, by Stone Duality, φ′′ = ψ′′ implies φ′ = ψ′, and so φ(χU ) = φ′(U) = ψ′(U) = ψ(χU ) for

every clopen U of X.

It remains to prove the surjectivity. Let us consider a continuous map g : Sp(A) → X such that

fg = α. We have to construct a morphism of MV-algebras φ such that φ′′ = g. Thanks to the

Stone Duality, we can prove that φ′ = g where g : Clopen(X) → Idem(A) is the morphism of

Boolean algebras induced, by the Stone Duality, from g. We remind that g(f−1(Oe)) = mA(e).

Moreover, we know that every h ∈ C((X, f), (
∐
M∈Sp(A)A/M, p)) can be written as

h =

n⊕
i=1

mA(ri) ⊙ χUi
,

where {U1, . . . , Un} is a partition of X in clopens. Therefore, we can define

φ : C((X, f), (
∐

M∈Sp(A)

A/M, p)) → A

h 7→ φ(h) :=

n⊕
i=1

mA(ri) ⊙ g(Ui).
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If we show that φ is well defined (i.e. it does not depend on the partition) and it is a morphism

of MV-algebras, then we can conclude that g = φ′′, since φ(χU ) = g(U) for every clopen U of

X. Let us consider an other decomposition

h =

m⊕
j=1

mA(sj) ⊙ χVj
;

we define Wi,j := Ui ∩ Vj . For every x ∈Wi,j we have [ri]f(x) = h(x) = [sj ]f(x); observe that the

family {Wi,j}mj=1 is a partition in clopens of Ui, therefore

g(Ui) =

m⊕
j=1

g(Wi,j),

with g(Wi,j) ⊙ g(Wi,k) = 0 for every j ̸= k. Thanks to Lemma 2.2.8, we obtain

mA(ri) ⊙ g(Ui) =

m⊕
j=1

mA(ri) ⊙ g(Wi,j)

for every i = 1, . . . , n and

mA(sj) ⊙ g(Vj) =

n⊕
i=1

mA(sj) ⊙ g(Wi,j)

for every j = 1, . . . ,m. So, if we show that

mA(ri) ⊙ g(Wi,j) = mA(sj) ⊙ g(Wi,j)

we are done. We know that for every x ∈Wi,j we have [ri]f(x) = [sj ]f(x), and so d(ri, sj) ∈ f(x).

Hence, it suffices to show mA(r) ⊙ g(U) = 0 if r ∈ f(x) for every x ∈ U (where U is a clopen

of X). In fact, we know that d(ri, sj) ∈ f(x) for every x ∈ Wi,j . Therefore, if the previous

statement holds, we get d(ri, sj)⊙g(Wi,j) = 0 and so, thanks to Lemma 2.2.9, mA(ri)⊙g(Wi,j) =

mA(sj) ⊙ g(Wi,j). Let us prove that, if r ∈ f(x) for every x ∈ U (where U is a clopen of X),

then mA(r) ⊙ g(U) = 0. We observe that f(U) ⊆ {M ∈ Sp(R) | r ∈ M} = Ur. Recalling that

Ur is open, we can construct a covering {Oei}i∈I made by clopens of Ur (where ei ∈ Idem(R)

for every i ∈ I). Therefore, {f−1(Oei)}i∈I is a covering of the closed (and so compact) subset

U . Hence, we can extract a finite subcovering and we can modify this subcovering in order to

obtain a partition, let us say {Oj}nj=1. So, we have

U ⊆ f−1(O1) ∪ · · · ∪ f−1(Om),
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and then

mA(r) ⊙ g(U) = mA(r) ⊙ g(U ∩ (f−1(O1) ∪ · · · ∪ f−1(Om)))

= mA(r) ⊙
( m⊕
j=1

(
g(U) ⊙ g(f−1(Oej ))

))
=

m⊕
j=1

mA(r) ⊙ g(U) ⊙mA(ej)

where the last equality holds thanks to Lemma 2.2.8. Finally, let us show that

mA(r) ⊙mA(ei) = 0

for every i ∈ I:

r ∈
⋂

{M ∈ Sp(R) |M ∈ Oei} = {M ∈ Sp(R) | ei /∈M}

= {M ∈ Sp(R) | ¬ei ∈M} =↓ ¬ei,

then r ≤ ¬ei and so r ⊙ ei = 0.

It remains to prove that φ is a morphism of MV-algebras. Clearly φ(0) = 0. Let us consider

h1 and h2, and decompose them on the same partition (which can be done in light of what has

just been shown). Then h1 =
⊕n

i=1mA(ri) ⊙ χUi
and h2 =

⊕n
i=1mA(si) ⊙ χUi

. Now, recalling

that in every MV-algebra one has (x ⊙ e) ⊕ (y ⊙ e) = (x ⊕ y) ⊙ e for every idempotent e, we

get h1 ⊕ h2 =
⊕n

i=1mA(ri ⊕ si) ⊙ χUi and so φ(h1 ⊕ h2) = φ(h1) ⊕ φ(h2). Finally, thanks to

Lemma 2.2.7, we know that if h =
⊕n

i=1mA(ri) ⊙ χUi then ¬h =
⊕n

i=1mA(¬ri) ⊙ χUi and so

φ(¬h) = ¬φ(h).

In conclusion, our analysis has revealed that the counit of the adjunction, introduced in the

previous proposition, is a natural isomorphism. This crucial observation offers interesting pos-

sibilities for examining the adjunction between MV-algebras and Boolean algebras through the

lens of categorical Galois theory. This result provides a solid foundation for our future work,

which aims to explore and advance this idea.

2.5 Protomodularity, Arithmeticity, and Centralizers

In this section, we will study the categorical-algebraic properties of MV. Since MV is a variety

of universal algebras, we know that it is a Barr-exact category. It is known that MV is also

arithmetical and protomodular. We will give an explicit description of the terms of protomod-

ularity and arithmeticity for MV. We will then prove how protomodularity allows us to identify

the conditions under which certain commutative squares in MV are pullbacks. Finally, we will

provide a more detailed analysis of the properties of categories PtMVB, showing in particular

that in these categories every subobject has a centralizer.
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To determine whether a variety V is protomodular, we can use Theorem 1.1 of [17]. This theorem

states that V is protomodular if and only if it has 0-ary terms e1, . . . , en, binary terms t1, . . . , tn

and an (n+ 1)-ary term t satisfying the identities

t(x, t1(x, y), . . . , tn(x, y)) = y and ti(x, x) = ei

for all i = 1, . . . , n.

In the recent work [41], the authors make use of the results obtained for the variety of hoops to

prove, among other things, that the variety of MV-algebras is protomodular. Here, we present

an alternative proof of this fact by exhibiting different protomodularity terms compared to those

introduced in the aforementioned work.

Proposition 2.5.1. MV is a protomodular category.

Proof. We define t1(x, y) := x⊖ y, t2(x, y) := x⊕ ¬y, and t(x, y, z) := x⊕ (y ⊙ z). Clearly, one

has

t1(x, x) = x⊖ x = 0 and t2(x, x) = x⊕ ¬x = 1.

Moreover, the following equality holds

t(t1(x, y), t2(x, y), y) = (x⊖ y) ⊕ ((x⊕ ¬y) ⊙ y) = x;

a proof of the last equality can be found in Proposition 1.6.2 of [21].

In their work [41], the authors show that MV is a protomodular category by constructing two

binary terms, namely α1(x, y) and α2(x, y), as well as a ternary term, θ(x, y, z). However, we

observe that, in their case, the equalities s1(x, x) = 1 and s2(x, x) = 1 hold. Consequently, it is

clear that our own protomodularity terms differ from theirs, as anticipated earlier.

Lemma 2.5.2. Consider a commutative square in MV

A B

C D,

f

k

g

h

where the horizontal arrows are regular epimorphisms. Hence, denoting with ⟨h, f⟩ the unique
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arrow induced by the universal property of the pullback

A

P B

C D,

f

k

g

h πC

πB

⌟

⟨h,f⟩

we get:

i) ⟨h, f⟩ is injective if and only the restriction of h (considered as map) h : ker(f) → ker(g)

is injective;

ii) ⟨h, f⟩ is surjective if and only the restriction of h (considered as map) h : ker(f) → ker(g)

is surjective.

Proof. i) (⇒) By assumption ⟨h, f⟩ is injective, therefore {0} = ker(⟨h, f⟩) = ker(f)∩ker(h) and

so, thanks to Lemma 2.1.6, we conclude that the restriction of h is injective.

(⇐) Consider an element a ∈ A such that ⟨h, f⟩(a) = (0, 0); then a ∈ ker(f) ∩ ker(h) and so

a = 0, since the restriction of h is injective.

ii) (⇒) Fix an element c ∈ ker(g); we know that (c, 0) ∈ P since k(0) = 0 = g(c); hence, there

exists an element a ∈ A such that ⟨h, f⟩(a) = (c, 0) (⟨h, f⟩ is surjective). Therefore, a ∈ ker(f)

and h(a) = c, i.e. the restriction of h is surjective.

(⇐) Given an element (c, b) ∈ P (i.e. c ∈ C, b ∈ B, and g(c) = k(b)) there exists an element a ∈ A

such that f(a) = b (f is surjective). Now, we observe that gh(a) = kf(a) = k(b) = g(c), and so we

deduce c⊖h(a) ∈ ker(g) and h(a)⊖ c ∈ ker(g). Therefore, since the restriction of h is surjective,

there exist a1, a2 ∈ ker(f) such that h(a1) = c⊖h(a) ∈ ker(g) and h(a2) = h(a)⊖ c ∈ ker(g) (for

our aim, it is most useful to keep in mind that h(¬a2) = c⊕¬h(a)). We recall, from Proposition

1.6.2 of [21], that the following equality holds

(c⊖ h(a)) ⊕ ((c⊕ ¬h(a)) ⊙ h(a)) = c.

This equality can be reformulated as

h(a1) ⊕ (h(¬a2) ⊙ h(a)) = c,

so h(a1 ⊕ (¬a2 ⊙ a)) = c and f(a1 ⊕ (¬a2 ⊙ a)) = f(a1) ⊕ (¬f(a2) ⊙ f(a)) = 0 ⊕ (1 ⊙ f(a)) = b;

we have proved that ⟨h, f⟩ is surjective.

The previous lemma yields the following direct consequence:
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Corollary 2.5.3. A commutative square in MV

A B

C D,

f

k

g

h

where the horizontal arrows are regular epimorphism, is a pullback if and only if the restriction

of h (considered as map) h : ker(f) → ker(g) is bijective.

It is known that MV is an arithmetical variety, which means it both congruence distributive and

congruence permutable. As we said in the previous chapter, in Theorem 2 of [48] the author

proved that a variety V is arithmetical if and only if there exists a ternary term r(x, y, z) such

that

r(x, x, z) = z, r(x, y, y) = x, and r(x, y, x) = x

for every object X and for every x, y, z ∈ X. Here, we give a proof that MV is arithmetical by

exhibiting such a term:

Proposition 2.5.4. MV is an arithmetical category.

Proof. We define

p(x, y, z) := ((x→ y) → z) ∧ ((z → y) → x)

and

t(x, y, z) := (y → (x ∧ z)) ∧ (x ∨ z).

We observe that

p(x, x, z) = z ∧ ((z → x) → x) = z ∧ (¬(¬z ⊕ x) ⊕ x)

= z ∧ (¬(¬x⊕ z) ⊕ z) = z,

p(x, y, y) = ((x→ y) → y) ∧ x = (¬(¬x⊕ y) ⊕ y) ∧ x

= (¬(¬y ⊕ x) ⊕ x) ∧ x = x, and

p(x, y, x) = ((x→ y) → x) ∧ ((x→ y) → x)

= ((x→ y) → x) = ¬(¬x⊕ y) ⊕ x ≥ x.

Moreover, we have

t(x, x, z) = (x→ (x ∧ z)) ∧ (x ∨ z) = ((x→ x) ∧ (x→ z)) ∧ (x ∨ z)

= (x→ z) ∧ (x ∨ z) ≥ z,

t(x, y, y) = (y → (x ∧ y)) ∧ (x ∨ y) = (y → x) ∧ (x ∨ y) ≥ x, and

t(x, y, x) = (y → x) ∧ x = x.
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Therefore, the term

r(x, y, z) := p(x, y, z) ∧ t(x, y, z)

satisfies

r(x, x, z) = z, r(x, y, y) = x, and r(x, y, x) = x.

In the final part of this section we study, from a categorical point of view, the commutativity

of subobjects in the category PtBMV, for every MV-algebra B. In general, given an arbitrary

category C, the category PtBC (where B is an object of C) is the nothing more than (C/B)\idB
(i.e. the coslice over idB of the slice of C over B).

In order to show that in PtBMV there are centralizers of subobjects, we need to recall the notion

of lattice-ordered abelian group. As we seen in the previous chapter, a lattice-ordered abelian

group is an algebraic structure of signature {+, 0,−,∨,∧} satisfying the axioms of abelian groups,

the axioms of lattices, and the axioms related to the distributivity of the group operation over

both the lattice operations:

x+ (y ∨ z) = (x+ y) ∨ (x+ z) and x+ (y ∧ z) = (x+ y) ∧ (x+ z).

We denote by ℓAb the category whose objects are lattice-ordered abelian groups and whose arrows

are maps between lattice-ordered abelian groups which preserves the operations. Given a lattice-

ordered abelian group G we can define, for every element x of G, |x| := x ∨ −x. An order-unit

u of G is an element 0 ≤ u ∈ G satisfying the following property: for every x ∈ G, there exists a

natural number n ∈ N such that |x| ≤ nu. We denote by uℓAb the category whose object are the

pairs (G, u), where G is a lattice-ordered abelian group and u is an order-unit of G, and whose

arrows are the maps which preserve the operations and the distinguished order-unit. Given an

object (G, u) of uℓAb we recall from [44] the definition

[0, u] := {x ∈ G | 0 ≤ x ≤ u};

and on [0, u] the following new operations are introduced: x⊕ y := (x+ y) ∧ u and ¬x := u− x.

The structure ([0, u],⊕,¬, 0) is an MV-Algebra, denoted by Γ(G, u); moreover, for every arrow

h : (G, u) → (H, v) in uℓAb, the restriction of h to [0, u] (denoted by Γ(h)) is a morphism of

MV-algebras between [0, u] and [0, v].

Theorem 2.5.5 ([44], Theorem 3.9). The assignment defined by Γ establishes an equivalence of

categories between uℓAb and MV.

We know that uℓAb is complete and cocomplete, since it is equivalent to a variety of universal

algebras. We want to describe finite limits in uℓAb. We prove that they are computed as in ℓAb.
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We start dealing with equalizers. Let us consider a diagram in uℓAb of the form

(X,u) (Y, v);
f

g

We define E := {x ∈ X | f(x) = g(x)}. We know that E inherits the lattice-ordered abelian

group operations from X (limits in ℓAb are computed as in Set since ℓAb is a variety). Moreover,

since f(u) = v = g(u), we have u ∈ E. So, given an arrow k : (H,h) → (X,u) of uℓAb such that

fk = gk, then, since E is the equalizer of f and g in ℓAb, k factors through the inclusion of E in

X; moreover, k(h) = u and so we can conclude that (E, u) ↪→ (X,u) is the equalizer of f and g

in uℓAb. Let us take a look at the products. We consider two objects (X,u) and (Y, v) of uℓAb.

We prove that (X × Y, (u, v)) is an object of uℓAb (where the operations on X × Y are defined

component-wise); in other terms, we have to show that (u, v) is an order-unit. So, fix an element

(x, y) ∈ X × Y . Then, there exist n1, n2 ∈ N such that |x| ≤ n1u and |y| ≤ n2v. Thus, taking

n as the maximum between n1 and n2, we get |(x, y)| = (|x|, |y|) ≤ (nu, nv) = n(u, v). Hence,

applying similar reasoning to the one seen for equalizers, we obtain that the products in uℓAb

are computed as in ℓAb.

Proposition 2.5.6. Pt(B,v)uℓAb is a unital category.

Proof. Since uℓAb is arithmetical it is also a Mal’tsev category, and so Pt(B,v)uℓAb is unital for

every object (B, v).

Proposition 2.5.7. Let (B, u) be an object of uℓAb. In the category Pt(B,u)uℓAb subobjects have

centralizers.

Proof. Let us consider an object of Pt(B,u)uℓAb ((A, u), p, s) and let us suppose, without loss

of generality, that s : (B, u) → (A, u) is the inclusion. We observe that (A, p, s) is an object of

PtBℓAb. We define K := {k ∈ A | p(k) = 0} and we observe that K is a subalgebra of A in

ℓAb. Hence, applying the results from Proposition 1.6.3, we obtain that A is isomorphic as a

lattice-ordered abelian group to K ⋊B, whose operations are defined by

(k1, b1) + (k2, b2) = (k1 + k2, b1 + b2)

and

(k1, b1) ∨ (k2, b2) = (((k1 + b1) ∨ (k2 + b2)) − (b1 ∨ b2), b1 ∨ b2).

In other words, the object (A, p, s) is isomorphic to

K ⋊B B
pB

iB

where pB(k, b) = b and iB(b) = (0, b). The isomorphism is given by the arrow of uℓAb φ : K⋊B →
A, where φ(x, b) := x+ b. Clearly φ induces an isomorphism in uℓAb between the lattice-ordered
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abelian groups with order-unit (A, u) and (K⋊B, (0, u)). Hence, we can apply the same argument

of Proposition 1.6.3 to establish the validity of the statement.





Chapter 3

A Galois Theory for MV-Algebras

Given an MV-algebra A, we define its radical, denoted by Rad(A), as the intersection of all

maximal ideals of A. It has been shown that Rad(A) consists precisely of those elements a ∈ A

that satisfy the inequality na ≤ ¬a for every natural number n. This notion of radical has

important implications in the study of MV-algebras. In particular, it naturally leads to the

definition of two important classes of MV-algebras: the perfect MV-algebras and the semisimple

MV-algebras. An MV-algebra A is said to be perfect if it can be expressed as the union of its

radical Rad(A) and the set ¬Rad(A), which consists of all elements whose negation belongs to

Rad(A). Interestingly, it has been shown (for a proof of this fact see [21]) that the category

of non-trivial perfect MV-algebras is equivalent to that of lattice-ordered abelian groups. An

MV-algebra is said to be semisimple if its radical is trivial. This notion of semisimplicity plays a

crucial role in the study of the structure of MV-algebras, and is intimately related to the notion

of simplicity in other areas of algebra.

We denote by pMV the full subcategory of MV whose objects are perfect MV-algebras, and by

sMV the full subcategory of MV whose objects are semisimple MV-algebras. Notably, we observe

that pMV ∩ sMV = {1,2}, and every morphism f from a perfect MV-algebra to a semisimple

MV-algebra factors through either 2 or 1. This consequently gives rise to the question of whether

these two categories form a non-pointed version of a torsion theory. The appropriate notion to

answer this question is that of a pretorsion theory, which was introduced in the recent work [30].

This concept provides a generalization of the classical torsion theory, and it has been successfully

applied in various areas of mathematics.

Additionally, we will prove that the subcategory sMV ⊆ MV is not only reflective but that the

adjunction S ⊣ i (with S representing the reflector and i the inclusion) is admissible for cate-

gorical Galois theory with respect to the class of all arrows (and also with respect to the class

of regular epimorphisms). By studying this Galois structure, we will be able to characterize the

trivial, normal, and central extensions related to it.

Finally, it should be noted that the subcategory of the category of regular epimorphisms in MV

67
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whose objects are the central extensions is reflective. The corresponding Galois structure is ad-

missible with respect to double extensions, which opens the way to studying higher-dimensional

central extensions.

In Section 3.1 we will review the necessary preliminary concepts required to understand the re-

maining part of the chapter. Specifically, we will focus on the concepts of pretorsion theories,

categorical Galois theory, and factorization systems.

In Section 3.2 we will delve into a detailed study of the adjunction determined by the reflective

subcategory sMV from the perspective of categorical Galois theory. Additionally, we will describe

the commutators defined by this Galois structure. Finally, we will investigate some properties of

the functor S and show how the Galois structure induces a stable factorization system on MV.

In Section 3.3 we will study the higher-dimensional normal and central extensions relative to

the Galois structure determined by the adjunction defined by the subcategory of regular epimor-

phisms whose objects are the central extensions. This in-depth analysis will allow us to define

the commutator of two ideal subalgebras with respect to this Galois structure.

3.1 Pretorsion Theories, Galois Theory, and Factorization

Systems

The aim of this section is to provide an introduction to the foundational concepts required

for studying pretorsion theories in general categories. Given two full replete subcategories of C

(T ,F ), the authors of [30] start by defining a new full subcategory Z := T ∩F of trivial objects

in the category C. A morphism is considered to be Z -trivial if it factors through an object of

Z . We denote the collection of Z -trivial (or simply trivial) morphisms as NZ . This allows

to define Z -prekernels, Z -precokernels, and short Z -pre-exact sequences (or simply prekernels,

precokernels, and pre-exact sequences).

Definition 3.1.1 ([30]). Let f : A→ B be a morphism in C. We say that a morphism k : K → A

in C is a Z -prekernel of f if the following properties are satisfied:

• fk is a morphism of NZ ;

• whenever e : E → A is a morphism in C and fe is in NZ , then there exists a unique

morphism φ : E → K in C such that kφ = e.

Dually, we have the definition of Z -precokernel.

In [30], the authors show that some properties known for kernels also hold for Z -prekernels.

They prove that every Z -prekernel is a monomorphism. Additionally, they show that for every

morphism f : A→ B in C, the Z -prekernel of f is unique up to unique isomorphism. This means

that if k : K → A and k′ : K ′ → A are Z -prekernels of the same arrow f , then there exists a

unique isomorphism φ : K ′ → K such that kφ = k′.

Clearly, the dual of the previous observations hold for Z -precokernels.
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Definition 3.1.2 ([30]). Let f : A→ B and g : B → C be morphisms in C. We say that

A B C
f g

is a short Z -pre-exact sequence in C if f is a Z -prekernel of g and g is a Z -precokernel of f .

A pretorsion theory [31] in a category C is defined as a pair (T ,F ) of full and replete subcate-

gories T and F of a category C, which satisfy certain conditions. Specifically, every morphism

from an object in T to an object in F must be trivial, and, for every object A in C, there

must exist a pre-exact sequence with a torsion object in T as its left endpoint and a torsion-free

object in F as its right endpoint. This broader view allows for more flexibility in the choice of

the category C and the subcategories T and F . The concept of pretorsion theory can be seen

as a generalization of the notion of torsion theory. In fact, when the category C is pointed, every

pretorsion theory such that T ∩ F reduces to the zero object is, actually, a torsion theory.

Definition 3.1.3 ([31]). Let C be an arbitrary category. A pretorsion theory (T ,F ) in C

consists of two replete (i.e. closed under isomorphism) full subcategories T ,F of C satisfying

the following two conditions. Set Z = T ∩ F :

• C(T, F ) ⊆ NZ for every object T ∈ T , F ∈ F ;

• for every object A of C there is a short Z -pre-exact sequence

T (A) A F (A)
εA ηA

with T (A) ∈ T and F (A) ∈ F . It has been shown that such a Z -pre-exact sequence is

unique up to isomorphism.

In [31], the authors prove that, by fixing for each object A a Z -pre-exact sequence as in 3.1.3,

every pretorsion theory defines two functors:

C F C T

A F (A) A T (A)

B F (B) B T (B)

F

f F (f)

T

f T (f)

where T (f) : T (A) → T (B) is the unique morphism such that fεA = εBT (f), and it exists

since ηBfεA ∈ NZ ; in a similar way, F (f) : F (A) → F (B) is the unique morphism such that

F (f)ηA = ηBf , and it exists since ηBfεA ∈ NZ

T (A) A F (A)

T (B) B F (B).

f

ηA

ηB

∃!F (f)

εA

εB

∃!T (f)
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Proposition 3.1.4 ([31], Proposition 3.3). Let (T ,F ) be a pretorsion theory in a category C.

Then:

• the functor F : C → F is a left inverse left adjoint of the inclusion functor iF : F ↪→ C

and the unit is given by η;

• the functor T : C → T is a left inverse right adjoint of the inclusion functor iT : T ↪→ C

and the counit is given by ε.

In the following pages, we will review several important definitions from categorical Galois theory.

Definition 3.1.5. Let C be a category with pullbacks. A class C of arrows in C is admissible

when:

• every isomorphism is in C ;

• C is closed under composition;

• C is closed under pullbacks, namely for every pullback

• •

• •

c

a

d b
⌟

if a and b are in C then c and d are in C .

Definition 3.1.6. Let C be an admissible class of morphisms in a category C. For an object C

of C, we write C /C for the following category:

• the objects are the pairs (X, f) where f : X → C in C ;

• the arrows h : (X, f) → (Y, g) are all arrows in C such that gh = f .

Definition 3.1.7 ([37]). A relatively admissible adjunction consists in an adjunction S ⊣
C : P → A (where A and P have pullbacks) and two admissible classes A ⊆ A, P ⊆ P of

arrows, such that

• S(A ) ⊆ P,

• C(P) ⊆ A ,

• for every object A of A the A-component ηA of the unit of the adjunction S ⊣ C is in A ,

• for every object P of P the P -component εP of the counit of the adjunction S ⊣ C is in P.

We denote a relatively admissible adjunction by (S,C,A ,P).
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In order to recall the notion of an admissible adjunction, remaining consistent with the notation

of previous definitions, we review the definition of the following functors: SA : A /A→ P/S(A)

and CA : P/S(A) → A /A, where A is an object of A. One has SA(f : B → A) = S(f) and

CA(g : P → S(A)) = πA, where the diagram

K A

C(P ) CS(A)
C(g)

ηA

πA

πC(P )

⌟

is a pullback (ηA is the A-component of the unit of the adjunction S ⊣ C). Moreover, SA is the

left adjoint of CA.

Definition 3.1.8 ([37]). A relatively admissible adjunction (S,C,A ,P) is admissible when the

functor CA is full and faithful for every object A of A.

Now, we recall the definition of effective descent morphism, as this concept will be of crucial

importance for the detailed analysis of admissible Galois structures.

Definition 3.1.9. Let A be an admissible class of arrows in a category A with pullbacks. An

arrow h : B → A is an effective descent morphism relatively to A if:

• h ∈ A ;

• the change-of-base functor h∗ : A /B → A /A is monadic.

It has been shown that, in Barr-exact categories, effective descent morphisms, w.r.t the class of

all morphisms, are precisely the regular epimorphisms.

Finally, we observe how the notion of effective descent morphism enables the study of specific

classes of arrows with respect to an admissible Galois structure.

Definition 3.1.10 ([37]). Given a relatively admissible adjunction (S,C,A ,P)

• a trivial extension is an arrow f : A→ B of A such that the square

A PS(A)

B PS(B)

f PS(f)

ηA

ηB

⌟

is a pullback (where η is the unit of the adjunction S ⊣ P );

• a normal extension is an arrow f of A such that it is an effective descent morphism

relatively to A and its kernel pair projections are trivial extensions;
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• a central extension is an arrow f of A such that there exists an effective descent morphism

g relatively to A and the pullback g∗(f) of f along g is a trivial extension.

Finally, we are ready to recall the notion of factorization system.

Definition 3.1.11. A factorization system for a category C is a pair of classes of arrows (E ,M )

such that:

• for every e ∈ E and m ∈ M one has e ↓ m, i.e. for every commutative square in C

A B

C D

e∈E

m∈M

g h∃!d

there exists a unique arrow d : B → C such that de = g and md = h;

• every arrow f in C factors as f = me, where m ∈ M and e ∈ E .

A factorization system (E ,M ) is stable if the pullback of every arrow of E along an arbitrary

arrow is, again, an arrow of E .

3.2 A Galois Theory for MV-Algebras

In this section, we will study the category of MV-algebras from the perspective of categorical

Galois theory. Given an MV-algebra A, we denote its radical, i.e. the intersection of its maximal

ideals, by Rad(A). An MV-algebra is said to be semisimple if its radical is trivial. It has been

shown (for a proof of this fact see [21]) that an MV-algebra is semisimple if and only if it is

a subdirect product of subalgebras of the MV-algebra [0,1]. We will also consider perfect MV-

algebras, which are defined as follows: an MV-algebra A is said to be perfect if A = Rad(A) ∪
¬Rad(A). We will show that the full subcategory of semisimple MV-algebras and the full

subcategory of perfect MV-algebras constitute the torsion-free and torsion parts, respectively, of

a pretorsion theory on MV. We will then study the Galois structure defined by the reflector of

the subcategory of semisimple MV-algebras.

Definition 3.2.1 ([21]). Given an MV-Algebra A, the radical of A is defined as

Rad(A) :=
⋂

{M ⊆ A | M is a maximal ideal}.

Let us consider an MV-algebra A. In Proposition 3.6.4 of [21] the authors show that

Rad(A) = Inf(A) ∪ {0},
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where a ∈ Inf(A) if and only if a ̸= 0 and na ≤ ¬a for every n ∈ N. Moreover, in Lemma 7.3.3

of [21], it is proved that

Rad(A) =
∨

{J ⊆ A | J is a nilpotent ideal of A},

where an ideal J is said to be nilpotent if, for every x, y ∈ J , one has x ⊙ y = 0 and the join is

computed in the poset Ideals(A) of ideals of A.

Definition 3.2.2 ([21]). Let A be an MV-algebra. A is semisimple if its radical Rad(A) is

trivial, i.e.

Rad(A) = {0}.

A is perfect if it can be expressed as the union of its radical Rad(A) and the negation of its

radical, i.e.

A = Rad(A) ∪ ¬Rad(A),

where ¬S := {x ∈ A | ¬x ∈ S}

Remark 3.2.3. Given an MV-algebra A, we define S(A) := A/Rad(A). Thanks to Lemma

3.6.6 of [21] we obtain that S(A) is semisimple.

Remark 3.2.4. Given an MV-algebra A, we define P (A) := Rad(A) ∪ ¬Rad(A). P (A) is a

subalgebra of A:

• 0 ∈ P (A);

• x ∈ P (A) implies ¬x ∈ P (A);

• if x, y ∈ P (A) then x⊕ y ∈ P (A). To show this, we work on cases: if x, y ∈ Rad(A) then

x ⊕ y ∈ Rad(A); if x ∈ Rad(A) and y ∈ ¬Rad(A) then, since ¬Rad(A) is a filter and

y ≤ x ⊕ y, we obtain x ⊕ y ∈ P (A); finally, if x, y ∈ ¬Rad(A), since ¬Rad(A) is a filter

and y ≤ x⊕ y, we get x⊕ y ∈ P (A).

Moreover, it is easy to see that P (A) is perfect.

It is straightforward to verify that the argument just presented holds for any arbitrary ideal I of

A. In other words, the set I ∪ ¬I always forms a subalgebra of A.

If we denote by sMV the full subcategory of MV whose objects are the semisimple MV-algebras,

we get a functor S described by the following assignment:

MV sMV

A S(A) = A/Rad(A)

B S(B) = B/Rad(B),

S

f S(f)=f
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where f([a]) := [f(a)], for every [a] ∈ S(A). We have to show that f is well defined: a ∈ Rad(A)

if and only if na ≤ ¬a for every n ∈ N, thus nf(a) = f(na) ≤ f(¬a) = ¬f(a) for every n ∈ N,

and so f(a) ∈ Rad(B).

Similarly, if we denote by pMV the full subcategory of MV whose objects are the perfect MV-

algebras, we get a functor P described by the following assignment:

MV pMV

A P (A) = Rad(A) ∪ ¬Rad(A)

B P (B) = Rad(B) ∪ ¬Rad(A),

f P (f)

P

where P (f)(a) = f(a) for every a ∈ P (A). We have to show that P (f) is well defined: as we saw

before, if a ∈ Rad(A) then f(a) ∈ Rad(B), and so f : A→ B restricts to P (f) : P (A) → P (B).

Proposition 3.2.5. The inclusion functor i : sMV ↪→ MV is right adjoint to S.

Proof. We construct the unit of the adjunction η : idMV → iS as the quotient projection ηA : A→
A/Rad(A), for every MV-algebra A. Clearly η is a natural transformation. Moreover, η satisfies

the universal property of the unit: given a morphism of MV-algebras g : A → i(B), where B is

semisimple, we want to prove that there exists a unique morphism of MV-algebras g̃ : S(A) → B

such that the following diagram commutes:

A iS(A)

i(B).

ηA

g
i(g̃)

Since B is semisimple, then if a ∈ Rad(A) we have g(a) = 0; therefore g induces a unique

morphism g̃ such that g̃([a]) = g(a), for every a ∈ A.

Proposition 3.2.6. The inclusion functor j : pMV ↪→ MV is left adjoint to P .

Proof. We construct the counit of the adjunction ε : jP → idMV as the inclusion εA : j(P (A)) →
A, for every MV-algebra A. Clearly ε is a natural transformation. Moreover, ε satisfies the

universal property of the counit: given a morphism of MV-algebras h : j(B) → A, where B is

perfect, we want to prove that there exists a unique morphism of MV-algebras h̃ : B → P (A)

such that the following diagram commutes

j(B)

j(P (A)) A.

h

εA

j(h̃)
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Since B is perfect, then, for every b ∈ B, b ∈ Rad(B) or b ∈ ¬Rad(B) and h(b) ∈ Rad(A) or

h(b) ∈ ¬Rad(A), i.e. h(b) ∈ P (A); therefore h defines a unique morphism h̃ such that h̃(b) = h(b),

for every b ∈ B.

More specifically, as anticipated at the beginning of this section, the pair of subcategories just

introduced allows us to define a pretorsion theory in MV. Therefore, we define the class of trivial

objects as

Z := {1,2},

where 1 indicates the terminal object of MV and 2 the initial object.

In the remaining part of the chapter, we will assume that the class of zero objects is {1,2};

therefore, we will write prekernel, precokernel, and pre-exact sequence to denote, respectively,

{1,2}-prekernel, {1,2}-precokernel, and {1,2}-pre-exact sequence.

Proposition 3.2.7. (pMV, sMV) is a pretorsion theory for MV.

Proof. First of all we observe that

pMV ∩ sMV = {1,2}.

We prove that, given two MV-algebras A,B, with A perfect and B semisimple, MV(A,B) ⊆ NZ .

Let us suppose B ̸= 1 (this implies A ̸= 1); then a morphism f : A→ B factors in the following

way:

A B

2,

f

χ¬Rad(A)

where

χ¬Rad(A)(a) =

0 a ∈ Rad(A)

1 a ∈ ¬Rad(A).

In fact, if a ∈ A then a ∈ Rad(A) or a ∈ ¬Rad(A), sinceA is perfect, and so f(a) ∈ Rad(B) = {0}
or f(a) ∈ ¬Rad(A) = {1}, because B is semisimple. If B = 1 we have

A 1

1 .

f

f

Now, we want to show that, for every MV-algebra B, we have a pre-exact sequence with B in

the middle. If B = 1 the sequence is given by B = B = B. Suppose B ̸= 1; we prove that

P (B) B S(B)εB ηB
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is a pre-exact sequence. Observe that, since ηB(b) = 0 for every b ∈ Rad(B), ηBεB ∈ NZ . We

prove that εB is a prekernel of ηB . Consider an arrow λB : C → B such that there exists an

arrow x : C → 2 making the diagram below commutative

B S(B)

C 2 .

ηB

λB

x

Notice that if ηBλB factored through 1, then we would have S(B) = 1; since S(B) = 1 implies

1 ∈ Rad(B), it would follow that B = 1. Now, for every c ∈ C, if x(c) = 0, then λB(c) ∈ Rad(B)

and, if x(c) = 1, then λB(c) ∈ ¬Rad(B); therefore, λB restricts to λ′B : C → P (B) and the

following diagram commutes

P (B) B S(B)

C 2 .x

λ′
B

λB

ηBεB

Therefore, εB is a prekernel of ηB .

Thus we focus on ηB : we want to show that it is a precokernel of εB . Fix an arrow θB : B → C

such that θBεB ∈ NZ . Now, if θBεB factors through 1, we can conclude that C = 1. Hence, the

claim becomes trivial. Then, suppose there exists an arrow y : P (B) → 2 making the following

diagram commutative:

P (B) B

2 C.

θB

εB

y

If b ∈ Rad(B), then θB(b) ∈ 2 ⊆ C; but, if θB(b) = 1, we get 1 ∈ Rad(C) and so C = 1 (we

are excluding this case). Hence, θB induces a unique morphism θ′B : S(B) → C such that the

diagram below is commutative

P (B) B S(B)

2 C.

εB ηB

y

θB

θ′B

Therefore, ηB is a precokernel of εB .

The purpose of the following part of the section is to examine the adjunction

S ⊣ i : sMV ↪→ MV

from the perspective of categorical Galois theory.
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In the literature, adjunctions studied through the lens of categorical Galois theory are frequently

adjunctions between semi-abelian categories. Additionally, in cases where the adjunction is

induced by the reflection of a reflective subcategory, it is often required that the subcategory is a

Birkhoff subcategory. A full and reflective subcategory D of a category C is considered a Birkhoff

subcategory if it is closed under subobjects and regular images. It is important to mention

that our work does not fall under the conditions specified above. Specifically, our category MV

is not semi-abelian (it is not pointed), and the full subcategory sMV ↪→ MV is not a Birkhoff

subcategory. In fact, let us consider the MV-algebra

A :=
∏
n≥2

Ln

where Ln := {0, 1
n , . . . ,

n−1
n , 1} ⊆ [0, 1] and the operations are the ones induced by [0, 1]. First

of all, let us show that A is semisimple. Given an element x = (xn)n≥2 ∈ A, with x ̸= 0, there

exists a natural number n ≥ 2 such that xn = k
n ̸= 0, hence (¬x)n = ¬xn = 1 − k

n = n−k
n ̸= 1.

Therefore, there must exist a natural number m such that mk > n − k and so mx ≰ ¬x, i.e.

Inf(A) = ∅ and Rad(A) = {0}. Next, we consider the relation ρ ⊆ A × A defined by (x, y) ∈ ρ

if and only if there exists a natural number N ≥ 2 such that xn = yn for every n ≥ N , where

x = (xn)n≥2 and y = (yn)n≥2. It is clear that ρ is a congruence. Let [z] ∈ A/ρ where z = (zn)n≥2

and zn = 1
n for every n ≥ 2. Our goal now is to show that [z] ∈ Inf(A/ρ). Fix a natural number

m ∈ N; clearly m
n ≤ n−1

n for every n > m, that is mzn ≤ ¬zn. We define y = (yn)n≥2 ∈ A such

that

yn :=

0 if n ≤ m

zn if n > m.

Then m[z] = m[y] ≤ ¬[y] = ¬[z] and so the radical Rad(A/ρ) is not trivial, i.e. A/ρ is not

semisimple.

Proposition 3.2.8. For every MV-algebra B the counit of the adjunction

SB ⊣ iB : sMV/s(B) → MV/B

is an isomorphism.

Proof. When B = 1 the assertion is trivial. Suppose B ̸= 1; we recall that, for every object

f : A → B of MV/B, SB(f : A → B) = (f : S(A) → S(B)) and, for every object φ : A → S(B),

iB(φ : A→ S(B)) = (φ′ : A′ → B) is defined by the following pullback:

A′ A

B S(B).ηB

φφ′

φ′′

⌟
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We want to prove that

(S(φ′) : S(A′) ↠ S(B)) ∼= (φ : A↠ S(B)).

Consider the following commutative diagram, where φ′′′ is induced by the universal property of

η:

A′ A′/Rad(A′)

A.

ηA′

φ′′
φ′′′

Clearly φ′′′ is surjective; let us show that it is also injective. Fix an element (b, a) ∈ A′, where

a ∈ A, b ∈ B and φ(a) = ηB(b) = [b]. If φ′′′([b, a]) = 0, we obtain φ′′′ηA′(b, a) = 0 and so

φ′′(b, a) = 0, i.e. a = 0. We want to prove that (b, 0) ∈ Rad(A′): since b ∈ Rad(B) we know

that nb ≤ ¬b for every n ∈ N; then n(b, 0) = (nb, 0) ≤ (¬b, 1) = ¬(b, 0) for every n ∈ N and so

(b, 0) ∈ Rad(A′). Therefore ker(φ′′′) is trivial, i.e. φ′′′ is injective. It remains to prove that the

following diagram is commutative:

A′/Rad(A′)

B/Rad(B)

A.

φ′′′

S(φ′)

φ

Take an element (b, a) ∈ A′. We know that φφ′′′([b, a]) = φ(a), φ(a) = [b], and S(φ′)([b, a]) =

[b].

We observe that, thanks to the previous proposition, the adjunction S ⊣ i is admissible with

respect to the class of all arrows in MV and the class of all arrows in sMV. We will denote this

Galois structure as Γ.

Proposition 3.2.9. Given an arrow f : A→ B in MV, the restriction of f (considered as map)

f : Rad(A) → Rad(B) is injective if and only if P (f) : P (A) → P (B) is injective, or P (A) = 2

and P (B) = 1.

Proof. Thanks to Lemma 2.1.6, we know that f : Rad(A) → Rad(B) is injective if and only if

ker(f) ∩ Rad(A) = {0}. Suppose first that B ̸= 1 (which implies A ̸= 1). If a ∈ ker(P (f)), then

we have a ∈ Rad(A): indeed, if a ∈ ¬Rad(A), then f(a) = 0 ∈ ¬Rad(B), which contradicts

our assumption that B ̸= 1. Hence, we have ker(P (f)) = ker(f) ∩ Rad(A), and so P (f) is

injective if and only if ker(f) ∩ Rad(A) = {0}. Now suppose that B = 1. Then the restriction

f : Rad(A) → Rad(B) = {0} is injective if and only if Rad(A) = {0}. Indeed, the condition

Rad(A) = {0} is equivalent to either P (A) = 2 or P (A) = 1.

Proposition 3.2.10. Given an arrow f : A→ B in MV, the following diagram is a pullback (i.e.
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f is a trivial extension for Γ)

A S(A) = A/Rad(A)

B S(B) = B/Rad(B)

ηA

ηB

f S(f)=f

if and only if P (f) : P (A) → P (B) is an isomorphism, or P (A) = 2 and P (B) = 1.

Proof. We apply Lemma 2.5.2 and we get that the above diagram is a pullback if and only if the

restriction f : Rad(A) → Rad(B) is bijective. Thanks to Proposition 3.2.9, this last statement

holds if and only if P (f) : P (A) → P (B) is an isomorphism, or P (A) = 2 and P (B) = 1.

Proposition 3.2.11. Given an effective descent morphism relatively to the class of all arrows

(i.e. a regular epimorphism) f : A ↠ B in MV, f is a normal extension for Γ if and only if

P (f) : P (A) → P (B) is injective, or P (A) = 2 and P (B) = 1.

Proof. Consider the kernel pair of f defined by the pullback

Eq(f) A

A B.
f

f

π2

π1

⌟

We want to prove that P (π1) is an isomorphism if and only if P (f) is injective, or P (A) = 2

and P (B) = 1. We start by assuming B ̸= 1. Suppose that P (f) : P (A) → P (B) is injective; we

observe that P (Eq(f)) = {(a1, a2) ∈ A × A | a1, a2 ∈ Rad(A) and f(a1) = f(a2)} ∪ {(a1, a2) ∈
A × A | a1, a2 ∈ ¬Rad(A) and f(a1) = f(a2)}. Therefore, since P (f) is injective and Rad(A) ∩
¬Rad(A) = ∅ (otherwise we would get A = 1), if (a1, a2) ∈ P (Eq(f)) then f(a1) = f(a2) and so

a1 = a2. Hence, P (Eq(f)) = {(a, a) ∈ A × A | a ∈ P (A)} and clearly P (π1) : P (Eq(f)) → P (A)

is an isomorphism. Conversely, if we assume that P (π1) is an isomorphism and we consider

an element a ∈ P (A) such that P (f)(a) = 0, then a ∈ Rad(A) (otherwise we would obtain

B = 1), and so (0, a) ∈ P (Eq(f)) (in fact, n(0, a) = (0, na) ≤ (1,¬a) = ¬(0, a) for every

n ∈ N). So, since P (π1) is an isomorphism and P (π1)(0, 0) = P (π1)(0, a), we get a = 0 and

then we deduce that P (f) is injective. Finally, let us handle the case B = 1. If A = 1,

then Eq(f) = 1 and so the assertion is trivial. If A ̸= 1 and B = 1 we have two possible

situations. If P (A) = 2, then P (Eq(f)) = 2 and so P (π1) is an isomorphism and P (f) : 2 → 1.

If P (A) ̸= 2, hence P (f) : P (A) → 1 is not injective and P (π1) is not an isomorphism. In fact,

by assumption, we have an element a ̸= 0 such that a ∈ Rad(A); therefore, we observe that

there exist two different elements (0, 0), (0, a) ∈ P (Eq(f)) (since f(a) ∈ Rad(B) = {0}) such

that P (π1)(0, 0) = P (π1)(0, a), and so P (π1) is not an isomorphism.
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Proposition 3.2.12. Given an effective descent morphism relatively to the class of all arrows

(i.e. a regular epimorphism) f : A ↠ B in MV, f is a central extension for Γ if and only if

P (f) : P (A) → P (B) is injective, or P (A) = 2 and P (B) = 1.

Proof. Consider the following pullback diagram:

A×B C C

A B.
f

πA

πC

g
⌟

Thanks to the previous proposition, if P (f) is injective or P (A) = 2 and P (B) = 1, then we can

choose g = f . Conversely, suppose that there exists a regular epimorphism g : C ↠ B such that

the restriction of πC (considered as a map) πC : Rad(A×BC) → Rad(C) is a bijection (i.e. πC is

a trivial extension). We will show that the restriction of f (considered as a map) f : Rad(A) →
Rad(B) is injective. Thanks to Proposition 3.2.9, this is precisely equivalent to stating that P (f)

is injective, or P (A) = 2 and P (B) = 1. So, it suffices to prove that ker(f) ∩ Rad(A) = {0}. To

do this, let us fix an element a ∈ ker(f)∩Rad(A). Then, f(a) = 0 = g(0), and thus (a, 0) belongs

to A×B C. Moreover, we observe that (a, 0) is an element of Rad(A×B C), since a ∈ Rad(A).

Therefore, recalling that, by assumption, πC restricted to Rad(A×B C) is an injective map and

observing that πC(a, 0) = πC(0, 0), we deduce that a = 0. Hence, the restriction of f to Rad(A)

is injective.

From the two previous propositions, it follows immediately that a regular epimorphism is a cen-

tral extension if and only if it is a normal extension. It is known that this situation always occurs

for Galois structures arising from reflections to a Birkhoff subcategory of a Goursat category, see

Theorem 4.8 of [38]. However, our case is not an instance of this general result, since sMV is not

a Birkhoff subcategory of MV.

We provide an example of a central extension which is not trivial. Consider the MV-algebra

A :=
∏
n≥2

Ln

and the congruence ρ ⊆ A×A defined by (x, y) ∈ ρ if and only if there exists a natural number

N ≥ 2 such that xn = yn for every n ≥ N , where x = (xn)n≥2 and y = (yn)n≥2. We prove that

the quotient projection

π : A↠ A/ρ

is central but not trivial. Recalling that A is semisimple, we immediately get that P (A) = 2 and

so the map

P (π) : P (A) = 2 → P (A/ρ)
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is injective (since P (A/ρ) is not trivial). However, the map P (π) is not surjective. To see this,

let [z] ∈ A/ρ be fixed, where z = (zn)n≥2 and zn = 1
n for every n ≥ 2. We have already shown

that [z] ∈ Inf(A/ρ), and it is clear that [z] is not the zero element of A/ρ. Therefore, [z] does

not lie in the image of P (π), and we conclude that P (π) is not surjective. This implies that the

morphism π is central but not trivial.

In [28], the authors show that, in the case of an adjunction between semi-abelian categories

induced by the reflection of a Birkhoff subcategory, the Galois structure determined by such an

adjunction allows for the introduction of a notion of commutator. The goal of this part of the

section is to present a construction similar to that of [28] for the case of MV-algebras. Specifi-

cally, given a regular epimorphism f : A↠ B, we seek to identify a subalgebra of A such that f

is a central morphism if and only if the subalgebra is trivial (which, in our case, means that it is

an element of the class Z ).

Recalling that every MV-algebra is a distributive lattice with respect to the operations defined

in 2.1.5, the result presented in Proposition 3.2.12 can be expressed in a different form: a regular

epimorphism f : A ↠ B is a central extension if and only if ker(f) ⊆ Rad(A)⊥. Here, for an

MV-algebra A and a non-empty subset S ⊆ A, we define the set

S⊥ := {x ∈ A |x ∧ s = 0 for every s ∈ S}.

It can be proved that S⊥ is an ideal of A.

Lemma 3.2.13. Consider a morphism f : A → B in MV. Then, ker(f) ∩ Rad(A) = {0} if and

only if K[f ] ∩ P (A) ∈ Z , where K[f ] := A if B = 1, otherwise K[f ] is given by the following

pullback:

K[f ] 2

A B.
f

k ιB
⌟

Proof. We notice that K[f ] is precisely given by the union of I with ¬I, where I = ker(f).

Therefore, we obtain

Rad(K[f ]) = Rad(A) ∩K[f ] = (Rad(A) ∩ ker(f)) ∪ (Rad(A) ∩ ¬ ker(f)).

If B ̸= 1, then 1 /∈ Rad(B) and so Rad(A) ∩ ¬ ker(f) = ∅. Hence ker(f) ∩ Rad(A) = {0} if and

only if Rad(K[f ]) = {0} (which means P (K[f ]) ∈ Z ). If B = 1, then ker(f) = A and K[f ] = A.

Hence, the equivalence we need to prove simplifies to: Rad(A) = {0} if and only if P (A) ∈ Z ;

this equivalence always holds, so the statement is trivial in this case.

To conclude, based on what has been proved so far, we observe that a regular epimorphism
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f : A ↠ B is central for Γ if and only if K[f ] ∩ P (A) ∈ Z . It therefore makes sense to define,

for a general regular epimorphism f , the following subalgebra of A:

[A,K[f ]]sMV := K[f ] ∩ P (A);

[A,K[f ]]sMV has the following property: it belongs to Z if and only if f is central.

In the final part of this section, we will focus on the study of the functor S : MV → sMV. The

authors of [26] introduce the concept of a protoadditive functor. A functor F between pointed

protomodular categories is protoadditive if it preserves split short exact sequences. Moreover,

in [27], the authors show that a functor between pointed protomodular categories that preserves

the zero object is protoadditive if and only if it preserves pullbacks along split epimorphisms.

This characterization enables the extension of the notion of protoadditivity to the non-pointed

case.

Definition 3.2.14. A functor S : C → D between protomodular categories that have both a

terminal and an initial object is protoadditive if it preserves the terminal object, the initial

object, and pullbacks along split epimorphisms.

Additionally, we will prove how the pretorsion theory in MV studied in this section induces a

stable factorization system. These observations will assist us in introducing the topics covered

in the next chapter.

Proposition 3.2.15. The functor S : MV → sMV is protoadditive.

Proof. It is clear that S(1) = 1 /1 = 1 and S(2) = 2 /{0} = 2. Moreover, since sMV is a full

reflective subcategory of MV, we know that sMV is closed under the formation of limits. We

consider, in MV, the pullback of a split epimorphism along an arbitrary morphism

A×B C C

A B.
p

s

g

πC

πA

⌟

We observe that

Rad(A×B C) = {(a, c) ∈ A× C | a ∈ Rad(A), c ∈ Rad(C), p(a) = g(c)}

= Rad(A× C) ∩ (A×B C).



A Galois Theory for MV-Algebras 83

We now proceed to compute the pullback of S(p) along S(g) in sMV

S(A×B C)

S(A) ×S(B) S(C) S(C)

S(A) S(B).
S(p)

S(s)

πS(A) S(g)

πS(C)

⌟
S(πA)

S(πC)

∃!φ

Using the fact that S(p)S(πA) = S(pπA) = S(gπC) = S(g)S(πC), the universal property of this

pullback defines an arrow φ : S(A×BC) → S(A)×S(B)S(C) such that φ([a, c]) = ([a], [c]). We will

prove that φ is an isomorphism. It is not difficult to see that φ is injective: if φ([a, c]) = ([0], [0]),

then we have (a, c) ∈ A×BC, a ∈ Rad(A), and c ∈ Rad(C). Thus, (a, c) ∈ Rad(A×C)∩A×BC,

and so [a, c] = [0, 0]. Now, let us show that φ is surjective. Let ([a], [c]) ∈ S(A) ×S(B) S(C).

Since S(p)([a]) = S(g)([c]), we have [p(a)] = [g(c)], and so [sp(a)] = [sg(c)]. Our goal is to

find a′ ∈ A and c′ ∈ C such that p(a′) = g(c′) and [a′] = [a], [c′] = [c]. First, we observe

that (sp(a) ⊖ a, 0) ∈ A ×B C and (a ⊖ sp(a), 0) ∈ A ×B C. By the definition of φ, we get

φ([sp(a) ⊖ a, 0]) = ([sp(a) ⊖ a], [0]) and φ([a ⊖ sp(a), 0]) = ([a ⊖ sp(a)], [0]). Additionally, we

obtain (sg(c), c) ∈ A×BC and φ([sg(c), c]) = ([sg(c)], [c]) = ([sp(a)], [c]) (since [sp(a)] = [sg(c)]).

Let us define x := [a ⊖ sp(a), 0], y := [sp(a) ⊖ a, 0], and z := [sg(c), c], for simplicity. Recalling

that

(a⊖ sp(a)) ⊕ ((a⊕ ¬sp(a)) ⊙ sp(a)) = a,

we get

φ(x⊕ (¬y ⊙ z)) = ([a], [c]).

Thus, φ is surjective, and since we have already shown that it is injective, we conclude that φ is

an isomorphism.

Lemma 3.2.16. Given a morphism f : A→ B in MV define

f : A/θf → B

[a] 7→ f(a),

where θf := ker(f) ∩ Rad(A) and f is well defined since θf ⊆ Rad(f). Then we have

ker(f) ∩ Rad(A/θf ) = {0}.

Proof. Fix an element [a] ∈ ker(f) ∩ Rad(A/θf ). Since f(a) = f([a]) = 0, we immediately get

a ∈ ker(f). We consider the quotient projection πf : A ↠ A/θf . Given that [a] = πf (a) ∈
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Rad(A/θf ) =
⋂
{M ⊆ A/θf |M is a maximal ideal} we deduce that a belongs to

⋂
{π−1

f (M) ⊆ A |M is a maximal ideal of A/θf}.

Thanks to Proposition 1.2.10 of [21], we know that π−1
f defines a bijection, which preserves and

reflects the order, between {I ⊆ A/θf | I is an ideal} and {J ⊆ A | J is an ideal and J ⊇ θf}.

We can observe that the maximal elements of the poset of ideals in A are precisely the maximal

elements of the poset {J ⊆ A | J is an ideal and J ⊇ θf}, as θf ⊆ Rad(A) and the radical is

contained in every maximal ideal. Thus, we have

⋂
{π−1

f (M) ⊆ A |M is a maximal ideal of A/θf} =⋂
{N ⊆ A |N is a maximal ideal of A and N ⊇ θf} = Rad(A).

Consequently, if [a] ∈ ker(f) ∩ Rad(A/θf ), then a ∈ ker(f) ∩ Rad(A) = θf , and therefore

[a] = 0.

Proposition 3.2.17. We define the two following classes of arrows in MV

E := {e : A→ B ∈ Arr(MV) | e is surjective and ker(e) ⊆ Rad(A)} and

M := {m : A→ B ∈ Arr(MV) | ker(m) ∩ Rad(A) = {0}}.

Then the pair (E ,M ) forms a stable factorization system for MV.

Proof. We start by considering a commutative square

A B

C D,

e∈E

m∈M

g h

and given that e is surjective, we assume B = A/ ker(e). We observe that for every element

a ∈ ker(e) ⊆ Rad(A), we have g(a) ∈ Rad(C) and, furthermore, mg(a) = he(a) = h(0) = 0.

Therefore, we get g(a) ∈ Rad(C)∩ ker(m) = {0} which implies that the arrow d : B → C, where

d([a]) := g(a), is well defined. Additionally, we can see that md([a]) = mg(a) = he(a) = h([a]).

Finally, d is unique since e is an epimorphism. Next, we consider an arbitrary arrow f : A → B

in MV and we construct the factorization

A B

A/ ker(f) ∩ Rad(A),

f

q i

where q is the quotient projection and i([a]) := f(a). Clearly, since ker(q) = ker(f) ∩ Rad(A) ⊆
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Rad(A), we have q ∈ E . Furthermore, thanks to Lemma 3.2.16, we get

ker(i) ∩ Rad(A/ ker(f) ∩ Rad(A)) = {0},

and so i ∈ M . To conclude, we need to show that the factorization system is stable. For this,

we consider the pullback

A×B C C

A B

πC

e∈E

πA g
⌟

and we observe that πC is surjective, since it is the pullback of a surjective map. Moreover,

ker(πC) = {(a, 0) ∈ A×C | e(a) = 0}, and so every element (a, 0) ∈ ker(πC) satisfies a ∈ Rad(A).

Hence we have ker(πC) ⊆ Rad(A×I C).

3.3 A Higher Galois Theory for MV-Algebras

In the final part of this chapter, we will explore the higher-order Galois structure determined

by the adjunction S ⊣ i. Additionally, we will use this analysis to define and examine the

commutator of ideal subalgebras in relation with this Galois structure. For an MV-algebra

A ̸= 1, a subalgebra S ⊆ A is said to be ideal if there is an ideal I of A such that S = I ∪¬I. If

A = 1, the only subalgebra is 1 itself, and we assume it is also ideal. To express the commutator

of ideal subalgebras, we only need to consider regular epimorphisms (i.e. surjective maps) of MV

and sMV, as we will see. In particular, to investigate commutators between ideal subalgebras,

we need to use the structure (S, i, |Ext MV|, |Ext sMV|), where |Ext sMV| denotes the class of

surjective maps of sMV, and |Ext MV| denotes the class of surjective maps of MV. Let us begin

by observing that this structure satisfies the necessary conditions to be considered an admissible

structure in Galois theory. We know that sMV is a full and reflective subcategory of MV, and

thus closed under limits. Therefore, the set of surjective maps of MV and sMV are admissible

classes of arrows. Additionally, it is evident that for every surjective map f of MV, S(f) is

also surjective. Finally, since every component of the unit of the adjunction S ⊣ i is surjective

(and the composition of surjective maps is surjective), we can conclude that the Galois structure

(S, i, |Ext MV|, |Ext sMV|) is admissible.

Definition 3.3.1 ([12]). Let C be a category with pullbacks. A commutative diagram of regular

epimorphism

A C

B D
h

kf

g

is a regular pushout if the morphism ⟨f, g⟩ : A → B ×D C defined by the universal property of
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the pullback

A

B ×D C C

B D
h

kπB

πC

f

g

⌟

⟨f,g⟩

is a regular epimorphism.

Applying Lemma 2.5.2 we immediately get the following characterization:

Proposition 3.3.2. A diagram of regular epimorphism

A B

C Dg

kh

f

in the category MV is a regular pushout if and only if h(ker(f)) = ker(g).

Let Ext MV be the category whose objects are the extensions (i.e. regular epimorphisms) of MV-

algebras and whose morphisms are the commutative diagrams between them; let CExtsMV MV be

the full subcategory of Ext MV determined by the central extensions. We define the functor S1

as follows:

Ext MV CExtsMV MV

A B A/θf B

C D C/θg D

h

S1

f

g

h k

f

g

k

where θf := ker(f) ∩ Rad(A) and θg := ker(g) ∩ Rad(C). Moreover, we define f([a]) := f(a),

g([c]) := g(c) and h([a]) := [h(a)]. Since θf ⊆ ker(f) we immediately get that f is well defined

(in a similar way one can show that also g is well defined). Let us consider an element a ∈ θf =

ker(f) ∩ Rad(A); then h(a) ∈ θg = ker(g) ∩ Rad(C) (from a ∈ Rad(A) we get h(a) ∈ Rad(C)

and from a ∈ ker(f) we obtain h(a) ∈ ker(g) because gh = kf); therefore, h is well defined. It

remains to prove that f : A/θf ↠ B and g : C/θg ↠ D are central extensions. In other words,

we have to show that

ker(f) ∩ Rad(A/θf ) = {0} and ker(g) ∩ Rad(C/θg) = {0}.

These equalities are a direct consequence of Lemma 3.2.16.
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Being MV a Mal’tsev variety, it was proved in [35] that the inclusion functor i1 : CExtsMV MV →
Ext MV has a left adjoint, which gives rise to an admissible Galois structure. We provide a

detailed proof of this result in our context.

Proposition 3.3.3. The inclusion functor i1 : CExtsMV MV → Ext MV is right adjoint to S1.

Proof. To build the unit of the adjunction, denoted by η1 : IdExt MV → i1S1, we need to define

η1f for each object f in Ext MV. Specifically, we define η1f as the pair of arrows (πf , idB) in MV,

where πf : A→ A/θf is the quotient projection. In other terms, η1f is given by the commutative

square

A B

A/θf B.

f

πf

f

Consider the commutative square in MV below:

A B

C D,

f

g

h k

where g is an object of CExtsMV MV (i.e. ker(g) ∩ Rad(C) = {0}). We observe that, if a ∈ θf =

ker(f)∩Rad(A), then gh(a) = kf(a) = 0 and h(a) ∈ Rad(C). Hence, we can define h : A/θf → C

such that the two squares in the following diagram are commutative:

A B

A/θf B

C D.

f

πf

h

f

k

g

So, we have proved that η1 satisfies the universal property of unit of an adjunction.

In the case of MV-algebras, we define the class of arrows Ext2 MV of Ext MV as the class of

squares which are regular pushouts. Moreover, we introduce the class of arrows Ext CExtsMV MV

of CExtsMV MV as the squares of Ext2 MV in which the horizontal arrows are central extensions.

The purpose of the following results is to establish the admissibility of the Galois structure

(S1, i1,Ext2 MV,Ext CExtsMV MV).

Furthermore, applying Proposition 3.3 of [12] we get that every regular pushout is a regular

epimorphism in Ext MV. Finally, thanks to Theorem 2.1 and Example 3.1 of [25], we conclude
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that every regular pushout in Ext MV is an effective descent morphism.

Proposition 3.3.4. Ext2 MV is an admissible class of arrows.

Proof. Every isomorphism is in Ext2 MV: we consider a commutative diagram

A B

C Dg

h1 h2

f

where h1 and h2 are isomorphisms in MV. If we fix an element c ∈ ker(g) we get h−1
1 (c) ∈ ker(f)

and so c ∈ h1(ker(f)); this implies ker(g) = h1(ker(f)).

Ext2 MV is closed under composition: to see this, we fix the following diagram, where the two

squares are commutative, h1(ker(f)) = ker(g), and k1(ker(g)) = ker(e):

A B

C D

E F.

f

g

h1 h2

e

k1 k2

Then, k1h1(ker(f)) = k1(ker(g)) = ker(e); so, (k1h1, k2h2) is in Ext2 MV.

Ext2 MV is closed under pullbacks: consider two arrows (h1, h2) and (k1, k2) in Ext2 MV

A B E F

C D C D,

f

g

h1 h2

g

e

k1 k2

the pullback of (h1, h2) along (k1, k2) is given by the commutative cube:

B ×D F F

A×C E E

B D

A C,
f

h1

g

πE

πA

k1

f×e
e

k2

πB

⌟

⌟

πF

h2

where the front face and the back face are pullbacks in MV. We have to prove that (πA, πB) is in

Ext2 MV. First of all, we show that f×e is surjective. Fix an element (x, y) ∈ B×DF (i.e. x ∈ B,
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y ∈ F , and h2(x) = k2(y)). Then, there exist z ∈ A and w ∈ E such that f(z) = x and e(w) = y.

We know that gh1(z) = h2f(z) = k2e(w) = gk1(w). So, h1(z)⊖ k1(w) ∈ ker(g) = k1(ker(e)) and

k1(w)⊖ h1(z) ∈ ker(g) = k1(ker(e)). Therefore, there exist e1 ∈ ker(e) and e2 ∈ ker(e) such that

k1(e) = h1(z)⊖k1(w) and k1(e2) = k1(w)⊖h1(z). We define w := e1⊕(¬e2⊙w); clearly, we have

e(w) = 0⊕(1⊙e(w)) = y. Moreover, k1(w) = (h1(z)⊖k1(w))⊕((¬k1(w)⊕h1(z))⊙k1(w)) = h1(z)

(the last equality holds thanks to Proposition 1.6.2 of [21]). Hence, we deduce that (z, w) ∈
A×C E and (f × e)(z, w) = (x, y), and so we conclude that f × e is surjective.

It remains to prove that

πA(ker(f × e)) = ker(f).

Observe that

ker(f × e) = {(z, w) ∈ A×C E | f(z) = 0, e(w) = 0}.

We recall that h1(ker(f)) = ker(g) = k1(ker(e)). Therefore, given an element a ∈ ker(f), there

exists an element w ∈ ker(e) such that k1(w) = h1(a) i.e. (a,w) ∈ A ×C E. Finally, we notice

that (f × e)(a,w) = (0, 0), and so a ∈ πA(ker(f × e)). This implies πA(ker(f × e)) = ker(f).

Proposition 3.3.5. Ext CExtsMV MV is an admissible class of arrows.

Proof. Using a similar argument to the one presented in the previous proposition, we can conclude

that every isomorphism belongs to Ext CExtsMV MV, and that Ext CExtsMV MV is closed under

composition.

To see that Ext CExtsMV MV is closed under pullbacks consider two arrows (h1, h2) and (k1, k2)

in Ext CExtsMV MV;

A B E F

C D C D.

f

g

h1 h2

g

e

k1 k2

We recall that ker(f)∩Rad(A) = {0}, ker(g)∩Rad(C) = {0}, and ker(e)∩Rad(E) = {0} (since

f, g, e are central extensions).

The pullback of (h1, h2) along (k1, k2) is given by the commutative cube:

B ×D F F

A×C E E

B D

A C,
f

h1

g

πE

πA

k1

f×e
e

k2

πB

⌟

⌟

πF

h2

where the front face and the back are pullbacks in MV. Applying what we have seen in the
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previous proposition, it remains to prove that

ker(f × e) ∩ Rad(A×C E) = {0}.

We fix an element (x, y) ∈ ker(f × e) ∩ Rad(A ×C E); we observe that x ∈ Rad(A) and y ∈
Rad(C). Moreover, recalling that (x, y) ∈ ker(f × e), we obtain x ∈ ker(f) ∩ Rad(A) and

y ∈ ker(e) ∩ Rad(E). This implies (x, y) = (0, 0), and so we conclude that f × e is a central

extension.

Proposition 3.3.6. The data (S1, i1,Ext2 MV,Ext CExtsMV MV) determine a relatively admissi-

ble adjunction.

Proof. To show that S1(Ext2 MV) ⊆ Ext CExtsMV MV, consider an arrow (h, k) in Ext2 MV (the

left square below) and its image under S1, denoted by S1(h, k) = (h, k) (the right square below):

A B A/θf B

C D C/θg D.

h

f

g

h k

f

g

k

We aim to prove that (h, k) ∈ Ext CExtsMV MV. We consider an element [c] ∈ ker(g), which

implies that c ∈ ker(g). Since h(ker(f)) = ker(g), there exists an element a ∈ ker(f) such

that h(a) = c. Thus, we have [a] ∈ ker(f) and h([a]) = [c], showing that h(ker(f)) = ker(g).

Moreover, since i1 is the inclusion, we have i1(Ext CExtsMV MV) ⊆ Ext2 MV trivially. Finally, for

every object f : A ↠ B of Ext MV, the f -component η1f of the unit of the adjunction is defined

by the following square:

A B

A/θf B.

f

πf

f

We want to prove that η1f is in Ext2 MV: fix an element [x] ∈ ker(f); then x ∈ ker(f) and

πf (x) = [x] (i.e. πf (ker(f)) = ker(f)). Moreover, since i1 is the inclusion, the counit ε is a

natural isomorphism and, therefore, εg ∈ Ext CExtsMV MV, for every object g of CExtsMV MV.

Proposition 3.3.7. For every object f : A↠ B of Ext MV the counit of the adjunction

S1f ⊣ i1f : Ext CExtsMV MV/S1(f) → Ext2 MV/f

is a natural isomorphism.
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Proof. An object (h, k) of Ext CExtsMV MV/S1(f) is a regular pushout of the following form:

C D

A/θf B.
f

h k

g

Hence, i1f (h, k) is defined by the following commutative cube in which the front face and the

back face are pullbacks in MV:

D D

P C

B B

A A/θf ;
f

πf

f

pC

pA

h

gpC
g

k

k

⌟

⌟

in fact, we have i1f (h, k) := (pA, k). Therefore, the (h, k)-component ε(h,k) of the counit of the

adjunction S1f ⊣ i1f is given by the horizontal arrows of the commutative cube

D D

P/θgpC C

B B

A/θf A/θf .

f

pA

gpC
k

f

k

h

g

pC

To show that pC is an isomorphism of MV-algebras, we need to prove both injectivity and

surjectivity. First, we note that pC is surjective, since pC is surjective. To prove injectivity,

consider an element [a, c] ∈ P/θgpC such that pC([a, c]) = 0. This implies c = 0. Since (a, c) ∈ P

and c = 0, we have [a] = πf (a) = h(0) = 0. Thus, a ∈ θf = ker(f) ∩ Rad(A), which leads

to (a, 0) ∈ Rad(P ). Furthermore, gpC(a, 0) = g(0) = 0, which means that (a, 0) ∈ θgpC , and

therefore [a, 0] = 0 in P/θgpC . Hence, pC is injective. Finally, note that (h, k)(pC , idD) = (pA, k),

which completes the proof.

Corollary 3.3.8. The Galois structure

Γ1 := (S1, i1,Ext2 MV,Ext CExtsMV MV)
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is admissible.

We are ready to study the central extensions determined by the structure Γ1.

Proposition 3.3.9. Consider an element (h, k) ∈ Ext2 MV

A B

C D;g

k

f

h

(h, k) is a normal extension for Γ1 if and only if ⟨h, f⟩ : A ↠ C ×D B is a normal (or central)

extension for Γ.

Proof. Let us consider the pullback of (h, k) along (h, k):

B ×D B B

A×C A A

B D

A C.
f

h

g

π2
A

π1
A

h

f×f
f

k

π1
B

k

π1
B

⌟

⌟

We construct the diagram associated with the naturality of η1:

B ×D B B ×D B

A×C A A×C A/θf×f

B B

A A/θf .
f

πf

f

πf×f

π1
A

π1
A

f×f
f×f

k

π1
B

We have to prove that this cube is a pullback (i.e. the front square is a pullback) if and only if

⟨h, f⟩ is central for Γ (i.e. ker(⟨h, f⟩) ∩ Rad(A) = {0}).

We know that the square

A×C A A×C A/θf×f

A A/θfπf

πf×f

π1
A π1

A
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is a pullback if and only if the restriction π1
A : θf×f → θf is a bijection (thanks to Lemma 2.5.2).

We prove that π1
A is always surjective. Let a ∈ θf = ker(f) ∩ Rad(A); then (a, a) ∈ ker(f × f) ∩

Rad(A×A), and π1
A(a, a) = a. By Lemma 2.1.6, we know that the restriction of π1

A is injective if

and only if ker(π1
A)∩θf×f = {0}. Specifically, ker(π1

A)∩θf×f = ker(π1
A)∩ker(f ×f)∩Rad(A×C

A) = {(0, a) ∈ A×A | f(a) = 0, h(a) = 0, a ∈ Rad(A)}. It is clear that ker(π1
A)∩θf×f = {0} if and

only if ker(f)∩ker(h)∩Rad(A) = {0}. The last statement is true if and only if ⟨h, f⟩ : A↠ C×DB
is a normal extension for Γ, observing that ker(⟨h, f⟩) = ker(h) ∩ ker(f).

Proposition 3.3.10. Consider an element (h, k) ∈ Ext2 MV

A B

C D;g

k

f

h

(h, k) is a central extension for Γ1 if and only if (h, k) is a normal extension for Γ1.

Proof. Clearly if (h, k) is normal then it is central. Let us prove that also the other implication

is true. We consider two objects (h, k) and (h′, k′) of Ext2 MV, defined by the following squares:

A B A′ B′

C D C D.

f

h

g

k h′

f ′

k′

g

The pullback of (h, k) along (h′, k′) is given by the commutative cube

B ×D B′ B′

A×C A′ A′

B D

A C.
f

h

g

πA′

πA

h′

f×f ′

f ′

k′
πB

k

πB′

⌟

⌟
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We construct the diagram associated with the naturality of η1:

B ×D B′ B ×D B′

A×C A′ A×C A/θf×f

B′ B′

A′ A/θf ′ .
f ′

πf′

f ′

πf×f′

πA′

πA′

f×f ′

f×f ′

πB′

πB′

Now, if the restriction of πA′ : θf×f ′ → θf ′ is bijective, then it is injective and so, thanks to

Lemma 2.1.6, we obtain ker(πA′) ∩ ker(f × f ′) ∩ Rad(A ×C A′) = {0}. But ker(πA′) ∩ ker(f ×
f ′) ∩ Rad(A ×C A′) = {(a, 0) ∈ A × A |h(a) = 0, f(a) = 0, a ∈ Rad(A)}. It is clear that

ker(πA′) ∩ ker(f × f ′) ∩ Rad(A×C A′) = {0} if and only if ker(h) ∩ ker(f) ∩ Rad(A) = {0}. The

last statement is true if and only if ⟨h, f⟩ : A ↠ C ×D B is a normal extension for Γ (this is

implied by the fact that ker(⟨h, f⟩) = ker(h) ∩ ker(f)).

Corollary 3.3.11. Consider an element (h, k) ∈ Ext2 MV

A B

C D.g

k

f

h

(h, k) is a central extension for Γ1 if and only if ⟨h, f⟩ : A ↠ C ×D B is a central extension for

Γ.

We are now prepared to describe the commutator of two ideal subalgebras with respect to the

Galois structure that has just been studied. To accomplish this, we require the following results.

Lemma 3.3.12. Let A ̸= 1 be an MV-algebra and I ⊆ A a proper ideal. Then Rad(A)∩¬I = ∅.

Proof. Suppose x ∈ Rad(A)∩¬I. Since x ∈ Rad(A), we have x ≤ ¬x. However, since ¬x ∈ I by

assumption, we also have x ∈ I. Thus, we conclude that 1 = x⊕¬x ∈ I, which is in contradiction

with the fact that I is a proper ideal. Therefore, Rad(A) ∩ ¬I must be empty, as claimed.

Lemma 3.3.13. Let A be an MV-algebra. Consider three elements x, y, z ∈ A such that x ≤ y⊕z.
Then, there exist y1, z1 ∈ A such that y1 ≤ y, z1 ≤ z, and x = y1 ⊕ z1.

Proof. By Theorem 3.9 of [44], we know that A = [0, u] for a certain object (G, u) in uℓAb, where

uℓAb denotes the category of lattice-ordered abelian groups with order-unit. We recall that in A

the operation ⊕ is defined as a⊕ b = (a+ b) ∧ u, where + denotes the addition in (G, u). Given

x, y, z ∈ A such that x ≤ y ⊕ z ≤ y + z, we can apply the Riesz decomposition property (see,
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for example, Theorem 2.1 in [40]) to obtain two elements 0 ≤ y1 ≤ y and 0 ≤ z1 ≤ z such that

x = y1 + z1. Finally, we observe that y1 ⊕ z1 = (y1 + z1)∧ u = x∧ u = x = y1 + z1, and thus the

statement holds.

Proposition 3.3.14. Let A be an MV-algebra and let I and J be two ideals of A. We define

I ⊕ J to be the set {x ∈ A | there exist i ∈ I and j ∈ J such that x = i ⊕ j}. Then, we have

I ∨ J = I ⊕ J , where I ∨ J denotes the join of I and J computed in Ideals(A).

Proof. To prove that I⊕J is an ideal of A, it suffices to show that 0 ∈ I⊕J , I⊕J is closed under

⊕, and I ⊕ J is downward-closed. Since 0 = 0 ⊕ 0, we have 0 ∈ I ⊕ J . Moreover, if x = i1 ⊕ j1

and y = i2 ⊕ j2 with i1, i2 ∈ I and j1, j2 ∈ J , then x ⊕ y = (i1 ⊕ i2) ⊕ (j1 ⊕ j2) ∈ I ⊕ J , which

shows that I⊕J is closed under ⊕. Finally, suppose z ∈ I⊕J and w ∈ A such that w ≤ z. Then

there exist i ∈ I and j ∈ J such that z = i⊕ j. Applying Lemma 3.3.13, we obtain w = iw ⊕ jw

with iw ≤ i and jw ≤ j. Therefore w ∈ I ⊕ J , which shows that I ⊕ J is downward-closed and

completes the proof.

Consider an MV-algebra A, with A ̸= 1, and fix I and J two proper ideals. Let M = I ∪¬I and

N = J ∪¬J be the two ideal subalgebras associated with I and J , respectively. We aim to show

that

M ∨N = K ∪ ¬K,

where M ∨ N denotes the subalgebra generated by M and N , and K = I ∨ J (with this join

computed in the poset Ideals(A)). In fact, as K contains both I and J , it is clear that K∪¬K ⊇
M and K ∪¬K ⊇ N , which implies K ∪¬K ⊇M ∨N . Moreover, since M ∨N contains both I

and J , we have M∨N ⊇ I⊕J = I∨J (the last equality holds applying the previous proposition).

As M ∨N is an MV-algebra, we also have M ∨N ⊇ K ∨ ¬K. Therefore, the equality we need

to show holds.

We distinguish two cases. If I ∨ J = A, then the diagram

A A/J

A/I 1

qJ

qI (♣)

is a regular pushout. To show this, we only need to prove that the restriction qI : J → A/I is

surjective. Let [a] ∈ A/I be an arbitrary element. Since I ∨ J = A, there exist i ∈ I and j ∈ J

such that a = i ⊕ j. Therefore, [a] = [i ⊕ j] = [j] = qI(j). This implies that qI is surjective,

completing the proof. If I ∨ J ̸= A, then K is a proper ideal of A. Hence, it is easy to see that

K ∩ ¬K = ∅. Therefore, we define a morphism of MV-algebras χ : M ∨ N = K ∪ ¬K → 2 by

setting χ(x) = 1 if and only if x ∈ ¬K. Since I ⊆ K, this morphism induces a morphism of

MV-algebras ξ1 : (M ∨ N)/I → 2 defined by ξ1([x]) = 1 if and only if x ∈ ¬K. Similarly, we
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define a morphism of MV-algebras ξ2 : (M ∨N)/J → 2 by ξ2([x]) = 1 if and only if x ∈ ¬K. Let

us then show that the diagram

M ∨N (M ∨N)/J

(M ∨N)/I 2

qJ

ξ2

ξ1

qI (♠)

is a regular pushout. Consider an element [x] ∈ (M ∨N)/I such that [x] ∈ ker(ξ1), which means

that x ∈ K. Therefore, since K = I ∨ J , there exist i ∈ I and j ∈ J such that x = i ⊕ j. Now

observe that [x] = [i⊕ j] = [j] = qI(j). Hence, the restriction pI : J → ker(ξ1) is surjective.

To conclude, we note that the vertical arrows of both squares are central extensions for the

structure Γ1 if and only if Rad(A) ∩ I ∩ J = {0} (where we use the fact that Rad(M ∨ N) =

(M ∨N)∩Rad(A)). Applying Proposition 3.3.12, we can see that this condition is equivalent to

requiring that

P (A) ∩M ∩N ∈ Z .

Therefore, we can define the commutator between M and N with respect to the adjunction

S1 ⊣ i1 as

[M,N ]CExtsMV MV := P (A) ∩M ∩N ;

[M,N ]CExtsMV MV has the following property: it belongs to Z if and only if the vertical arrows

of (♣) or (♠) (depending on the join I ∨ J) are central extensions for Γ1. Finally, if at least

one of the ideals is not proper (for example, if I = A), then the study of centrality reduces

to analyzing the behavior of the regular epimorphism qJ : A ↠ A/J with respect to the Galois

structure Γ. Notably, observing that N = K[qJ ] and M = A, we have that qJ is central if and

only if P (A) ∩A ∩N = P (A) ∩N ∈ Z . Therefore, we can define [A,N ]CExtsMV MV := [A,N ]sMV.

One possible goal for future work is to further investigate the properties of this commutator.



Chapter 4

Protoadditive Functors in a

Multipointed Context and

Pretorsion Theories

The goal of this chapter is to explore the relationship between pretorsion theories, Galois struc-

tures, and stable factorization systems. In particular, we aim to investigate how pretorsion

theories, which generalize torsion theories in non-pointed categories, can be used to define Galois

structures and stable factorization systems.

There is a well-known correspondence between semi left exact reflections, that are often associ-

ated with torsion-free reflections and factorization systems. Indeed, the pair (E ,M ) of classes

of morphisms, where E is the class of morphisms inverted by a semi left exact reflector and M

the class of trivial extensions, is a factorization system [20].

In the previous chapter, we observed how the pretorsion theory (pMV, sMV) in the category of

MV-algebras determines a Galois structure and a stable factorization system. Building on this,

we aim to generalize these results to non-pointed categories.

To achieve this goal, we begin by revisiting and deepening our understanding of the concepts of

prekernel and precokernel. This will be essential in providing a solid foundation for understand-

ing the contents of the chapter.

We then examine how a pretorsion theory can be used to define a Galois structure in a non-

pointed category, and investigate the conditions under which such a structure exists. We also

explore the correlation between the reflector associated with the pretorsion theory and the cen-

tral extensions with respect to the induced Galois structure.

Furthermore, we investigate how pretorsion theories determine a stable factorization system in

non-pointed categories. So, we highlight the similarities and differences between the pointed and

non-pointed cases, and identify the necessary conditions for the existence of such a system.

97
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The purpose of Section 4.1 is to introduce the working context and examine the properties of

prekernels and precokernels. We work, in fact, in categories that are, in a sense, similar to the

category of MV-algebras. Thus, we prove that prekernels are always present in these categories.

However, we also show that the existence of precokernels cannot be guaranteed. This analysis

provides the foundation for the next sections.

Section 4.2 is focusing on a series of technical and specialized results in non-pointed categories.

These results are crucial for developing a proof of a variation of the Nine Lemma to the non-

pointed case.

Section 4.3 is the centerpiece of this chapter, as we investigate the crucial conditions that a

pretorsion theory must meet to determine, on the one hand, an admissible Galois structure with

respect to the class of all arrows and, on the other hand, a stable factorization system.

In Section 4.4, we present a series of examples of pretorsion theories that satisfy the properties

analyzed in the previous sections. To be specific, we will provide examples of such pretorsion

theories in the category of M-sets (with M a fixed monoid), in the variety of Heyting algebras,

and in the category of simplicial sets. Our goal is to provide concrete examples of how the con-

cepts and conditions discussed in earlier sections can be applied in practice to develop a deeper

understanding of pretorsion theories and their applications.

4.1 Framework Analysis: Properties of Prekernels and Pre-

cokernels

4.1.1 Framework and Assumptions

In general, our identifications will be up to isomorphism. Therefore, when this will not cause any

confusion, we will say that two objects or two morphisms of a certain category are equal when

in fact they are simply isomorphic.

Let us establish the framework for this chapter.

Assumption 4.1.1. We assume to work in a Barr-exact and protomodular category C with finite

colimits. We define Z as the full replete subcategory whose objects are (modulo isomorphisms)

the initial object 2 and the terminal object 1. We denote the class of arrows of C factorizing

through an object of Z as NZ .

Moreover, we require:

• 2 ̸= 1;

• for every object A ̸= 1, the unique arrow ιA : 2 → A is a monomorphism;

• for every object A, if there exists an arrow e : 1 → A then A = 1 and e = id1. Therefore

there does not exist an arrow 1 → 2.
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Remark 4.1.2. For every A, if there exists an arrow ξ : A → 2 then ξ is a split epimorphism

(where a section is given by ιA).

Examples of categories satisfying these assumptions include the category Boole of Boolean alge-

bras, the category MV of MV-algebras, the category Heyt of Heyting algebras, and the category

Setop.

Proposition 4.1.3. Let E be an elementary topos. The following conditions are equivalent:

i) for every object A ̸= 2, the unique arrow τA : A→ 1 is an epimorphism;

ii) E is two-valued (i.e. Sub(1) has exactly two elements).

Proof. i) ⇒ ii) Fix a monomorphism m : V ↣ 1. There are two possible cases to consider:

either V = 2 or m is an epimorphism. In the second situation, since E is balanced, we conclude

that m is an isomorphism and so V = 1.

ii) ⇒ i) We construct the (regular epimorphism, monomorphism)-factorization of τA

A 1

I.

τA

e m

If I = 2, since in an elementary topos the initial object is strict, we can conclude that A = 2.

If I ̸= 2, then we know from the assumptions that I = 1. This implies τA = e, and so τA is an

epimorphism.

Based on what we have just proved, we can assert that also categories of the form Eop, where E

is a two-valued elementary topos, satisfy the conditions presented in Assumption 4.1.1.

From this point on, we assume to work in a category C satisfying the conditions presented in

Assumption 4.1.1.

As a final result in this subsection, we present the following lemma which will be extremely useful

in the subsequent sections:

Lemma 4.1.4. Consider a regular epimorphism f : A ↠ B and a morphism g : B → C such

that gf ∈ NZ . Then g ∈ NZ .

Proof. If C = 1 the statement is trivial. Therefore, let us assume C ̸= 1. Thus, there exists a

morphism α : A→ 2 such that the following diagram commutes:

A B C

2 .

f g

α ιC
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So, for the diagonal property of the (regular epimorphism, monomorphism)-factorization, there

exists a morphism d : B → 2 such that df = α and g = ιCd, which implies g ∈ NZ .

4.1.2 Prekernels and Precokernels

As in the previous chapter, we will consider the class of zero objects Z = {1,2} fixed. Therefore,

when there is no ambiguity, we will use the terms prekernel, precokernel, and pre-exact sequence

to refer, respectively, to Z -prekernel, Z -precokernel, and Z -pre-exact sequence.

As a first step, we will show that every arrow in C admits a prekernel, and we will provide an

explicit description of it. Fix an arrow f : A → B, suppose B ̸= 1, and consider the pullback of

f along ιB :

K[f ] 2

A B.

ιB

f

k

χ

⌟

We claim that k : K[f ] → A is a prekernel of f . In fact, for every commutative diagram of the

following form (we know that if fe ∈ NZ , then it cannot factor through 1, since B ̸= 1):

2

E A B,
fe

ιBh

we have a morphism φ : E → K[f ] such that kφ = e induced by the universal property of the

pullback

E

K[f ] 2

A B.

ιB

f

k

χ

⌟e

h

φ

This morphism is unique: suppose there exists a morphism ψ such that kψ = e; since k is a

monomorphism (it is the pullback of a monomorphism) we get φ = ψ.

Furthermore, if B = 1, it is easy to see that preker(τA : A→ 1) = idA.

Given an arrow f , we denote the domain of the prekernel of f , defined up to unique isomorphism,

as K[f ].

Let us now state and prove two lemmas that will help us to understand better how prekernels

behave with respect to (regular epimorphism, monomorphism)-factorizations and pullbacks.

Lemma 4.1.5. Consider a morphism f : A → B, with B ̸= 1, and let k : K[f ] → A be the
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prekernel of f . Then, we have k = preker(g), where g is the regular epimorphism of the (regular

epimorphism, monomorphism)-factorization of f .

Proof. Let A I B
g i be the (regular epimorphism, monomorphism)-factorization of f .

We know that I ̸= 1, since B ̸= 1. We consider the following diagram:

K[f ] 2 2

A I B.

k ιI

g i

ιB(1) (2)

The square (2) is a pullback since the top arrow is an isomorphism and the bottom arrow is a

monomorphism. Recalling that (1)+(2) is a pullback by assumption, we can deduce that (1) is

also a pullback. Therefore, we obtain k = preker(g).

Lemma 4.1.6. Consider a pullback diagram:

A B

C D,g

l

f

h (1)
⌟

with D ̸= 1. Then, K[f ] is equal to K[g].

Proof. We know that preker(f) is defined by the pullback

K[f ] 2

A B.
f

ιB

χ

k (2)
⌟

Therefore, considering the commutative diagram

K[f ] 2

A B

C D,

f

ιB

χ

k (2)
⌟

h

g

l
⌟

(1)

since (1) and (2) are pullbacks, we get that (1)+(2) is a pullback diagram and so K[f ] is equal

to K[g].

Let us now shift our focus to precokernels. It should be noted that, unlike the case of prekernels,

the existence of a precokernel for an arrow in C cannot be guaranteed, in general. To illustrate
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this, let us suppose that the two projections π1, π2 : 2×2 → 2 are not equal (which precisely

means that 2×2 and 2 are not isomorphic). Under this assumption, the precokernel of id2× 2

does not exist. Indeed, let us suppose the existence of a precokernel q : 2×2 → Q of id2× 2.

Therefore, considering the diagram below, there are two morphisms φ1, φ2 : Q → 2 such that

φ1q = π1 and φ2q = π2:

2

2×2 2×2 Q

2 .

qid2× 2

φ1

φ2

π1

π2

π1

π2

So, we have ⟨φ1, φ2⟩q = id2× 2, which implies that q is a split monomorphism. However, in gen-

eral, a precokernel is an epimorphism, hence q is an isomorphism. Therefore, up to isomorphism,

we can assume that q = id2× 2. But, if id2× 2 = precoker(id2× 2), we obtain a factorization of

the following form:

2×2 2×2

2 .

id2× 2=⟨π1,π2⟩

p ∆

Indeed, id2× 2 cannot factor through 1, since this would imply that 2×2 = 1, and thus 2 = 1,

contradicting our assumption on C. Hence, we have ⟨p, p⟩ = ∆p = ⟨π1, π2⟩, which implies

p = π1 = π2, in contrast with π1 ̸= π2.

Let us continue by recalling a known and useful result concerning precokernels.

Proposition 4.1.7 ([31], Lemma 4.4). If p is a precokernel of some morphism, then p is also

the precokernel of its prekernel.

Now, let us present a list of situations in which we investigate the existence of precokernels. If

they exist, we provide an explicit description.

• If there exists a unique arrow ξ : A→ 2, then precoker(f : A→ B) = p, where p is defined

by the pushout

A 2

B P.

ξ

ιPf

p

⌟

Indeed, consider an arrow g : B → C such that gf ∈ NZ . If C = 1, we obtain τP p = g.
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Otherwise, we must have the following factorization:

A B P

2 C.ξ

f

g

ιC

p

Therefore, there exists a unique φ : P → C such that φp = g defined by the universal

property of the pushout

A 2

B P

C.

ξ

ιPf

p

⌟

g

ιC

∃!φ

From this, we can conclude p = precoker(f).

• If there does not exist an arrow A → 2, then precoker(f : A → B) = τB . To see this,

consider an arrow g such that gf ∈ NZ . We must have the following factorization of gf :

A B 1

1 C.

f τB

g

τA

So, we can immediately deduce that C = 1.

• The arrow τA : A→ 1 is a precokernel if and only if there does not exist an arrow A→ 2.

Indeed, if τA is a precokernel, then it is also the precokernel of its prekernel, which is idA.

Therefore, if there were an arrow A→ 2, there would exist an arrow 1 → 2, given by

A A 1

2,

idA τA

which leads to a contradiction. Conversely, if there is no arrow of the form A → 2, then

any arrow g in NZ with domain A must factor through 1, and thus τA is the precokernel

of idA:

A A 1

1 C = 1 .

idA τA

g=τA

• f : A→ B ∈ NZ if and only if precoker(f) = idB (see Lemma 5.4 in [30]).
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Proposition 4.1.8. Let f : A → B be the precokernel of an arrow g : C → A, with B ̸= 1. We

know that gf factors as in the following commutative diagram:

C A B ̸= 1

2 .

g f

χ ιB

Then, f can be obtained as the pushout of χ along g.

Proof. We consider the pushout of g along χ and the arrow θ, induced by the universal property,

making the following diagram commute:

C A

2 Q

B.

q

ιQ

χ

g

⌟

∃!θ

ιB

f

Then we obtain an arrow γ, making the diagram below commute, determined by the fact that

qg ∈ NZ and f = precoker(g):

Q

C A B ̸= 1

2 .

g f

χ ιB

q ∃!γ

Finally, we observe that that θγf = f and γθq = q. Since both f and q are epimorphisms (the

former is a precokernel and therefore an epimorphism, while the latter is the pushout of the split

epimorphism χ), we can deduce that θγ = idB and γθ = idQ.

Corollary 4.1.9. Consider a precokernel f : A→ B, with B ̸= 1, and its prekernel k : K[f ] → A.

Then the pullback

K[f ] 2

A B
f

ιB

h

k
⌟

is also a pushout.

Corollary 4.1.10. Every precokernel f : A→ B, with B ̸= 1, is a regular epimorphism.
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Proof. Every precokernel with a codomain different from 1 is a pushout of a split epimorphism,

and hence a regular epimorphism.

Proposition 4.1.11. Consider an arrow f : A → B with prekernel k : K[f ] → A, and suppose

that there exists a unique morphism χ : K[f ] → 2. Then we have k = preker(q), where q =

precoker(k).

Proof. Let us suppose B ̸= 1. Then k is defined by the pullback

K[f ] 2

A B

ιB

f

k

χ

⌟
(1)

Moreover, since there exists a unique morphism χ : K[f ] → 2, q is given by the pushout

K[f ] 2

A Q

B

ιQ

q

k

χ

⌟

f

ιB

∃!γ

(2)

and, additionally, this pushout induces an arrow γ : Q → B such that γq = f (and, of course,

γιQ = ιB). To prove that the square (2) is also a pullback, consider two arrows α : X → A and

β : X → 2 such that qα = ιQβ. Then, we have fα = γqα = γιQβ = ιBβ. By the universal

property of the pullback (1), there exists a unique morphism φ : X → K[f ] such that kφ = α and

χφ = β. Therefore, the square (2) is also a pullback. If B = 1 we have k = idA and, moreover,

the following diagram is both a pullback and a pushout:

A 2

A 2;

χ

χ

⌟

⌟

hence precoker(idA) = χ and preker(χ) = idA.

4.2 Some Remarks on the Nine Lemma for Pre-Exact Se-

quences

The Nine Lemma (or 3 × 3 Lemma) is a fundamental tool in homological algebra that is used

to establish exactness of sequences in various contexts. In [10] it is proved that this result

holds in any quasi-pointed (the unique arrow from the initial object to the terminal object is
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a monomorphism), regular, and protomodular category. In the present section, we provide an

alternative version of the Nine Lemma that is suitable for our non-pointed case (in which, in

general, the morphism 2 → 1 is not a monomorphism). To derive this, we adapt to our context

some results obtained in [10]. We begin by recalling the following:

Lemma 4.2.1. Let C be a regular category. If (1) and (2) are commutative squares, such that

(1) and (1)+(2) are pullbacks and f ′ is a regular epimorphism, then (2) is a pullback:

A B C

A′ B′ C ′.

ba c

f g

f ′ g′

(1) (2)

The purpose of this section is to prove a version of the Nine Lemma that holds in a category

satisfying the conditions stated in Assumption 4.1.1. Therefore, from now on, we will assume

that C satisfies these conditions.

We present a set of auxiliary lemmas and propositions that are adaptions of similar known results

in the pointed context. These findings will be essential in proving the final theorem within this

section.

Proposition 4.2.2. Consider a commutative diagram as below:

K A B

K ′ A′ B′,

k f

k′ f ′

bau

where f, f ′ are regular epimorphisms, k = preker(f), and k′ = preker(f ′). If u and b are

isomorphisms, then a is an isomorphism.

Proof. If B = 1, the result is trivial. Therefore, let us assume that B ̸= 1. Consider the following

commutative diagram:

K 2

A B

K ′ 2

A′ B′,

k

f
u

a

k′

f ′

b

where, by assumption, the top face, the bottom face, and the back face are pullbacks. Then,

the diagram defined by the top face and the front face is a pullback. Therefore, we obtain the
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commutative diagram

K A A′

2 B B′,

f f ′

k a

b

(1) (2)

where both (1) and (1)+(2) are pullbacks and f is a regular epimorphism. By protomodularity,

we conclude that (2) is a pullback, too. We can deduce that a is an isomorphism, as pullback of

the isomorphism b.

Lemma 4.2.3. Consider a commutative diagram as below:

K A B

K ′ A′ B′,

k f

k′ f ′

bau (1)

where f is a regular epimorphism, k = preker(f), and k′ = preker(f ′). Furthermore, we require

that if B ̸= 1 then also B′ ̸= 1. Under these assumptions, (1) is a pullback if and only if b is a

monomorphism.

Proof. Suppose B ̸= 1 and B′ ̸= 1, and consider the commutative cube

K A

2 B

K ′ A′

2 B′,

k

f

k′

f ′

u

b

a

where the top face and the bottom face are pullbacks. If (1) is a pullback, then the diagram

defined by the top face and the front face is a pullback, too. Therefore, in the commutative

diagram

K 2 2

A B B′
f b

k (i) (ii)

we have that (i)+(ii) is a pullback, (i) is a pullback and f is a regular epimorphism. Then,

thanks to Lemma 4.2.1, we obtain that (ii) is a pullback, as well. Since in a protomodular

category pullbacks reflect monomorphisms, we can conclude that b is a monomorphism.

If we assume that b is a monomorphism, we can deduce that the front face in the cube above is a

pullback. Therefore, the diagram defined by the back face and the bottom face forms a pullback.
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Since the bottom face is already a pullback, we can conclude that the back face is a pullback,

too. In other words, (1) is a pullback.

If B = 1, then also B′ = 1. In this case, b is an isomorphism, k = idA, and k′ = idA′ . So (1) is

trivially a pullback.

It should be noted that the previous result is not true, in general, in the case where B′ = 1 and

B ̸= 1. This can be illustrated with a counterexample given by the commutative diagram below

(in MV):

2 2 2

1 1 1 .

b(1)

In fact, (1) is a pullback but b is not a monomorphism.

Lemma 4.2.4. Consider a commutative diagram as below:

K A B

K ′ A′ B′,

u a b

f

f ′

k

k′

where f, f ′ are regular epimorphisms, k = preker(f), and k′ = preker(f ′). If u and b are regular

epimorphisms, then a is a regular epimorphism.

Proof. Let a be factored as a = ip, where p is a regular epimorphism and i is a monomorphism.

Consider the following commutative diagram:

K A B

K ′ Im(a) B′

K ′ A′ B′,
k′ f ′

i

f ′ij

u p b

fk

where j is determined by the fact that u is a strong epimorphism and i is a monomorphism. If

B′ ̸= 1, then j = preker(f ′i); in fact, in the diagram below the two squares are pullbacks:

K ′ K ′ 2

Im(a) A′ B′,

j k′

f ′i

and thus the whole rectangle is also a pullback, too. Furthermore, we observe that f ′ is a regular

epimorphism, and so, applying Proposition 4.2.2 to the bottom rectangle of the first diagram
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in this proof, we can deduce that i is an isomorphism. Hence, a is a regular epimorphism. If

B′ = 1, then k′ is an isomorphism. Thus, k′u = ipk is a regular epimorphism, and so i is a

regular epimorphism. Since i is also a monomorphism, it must be an isomorphism. Therefore, a

is a regular epimorphism.

Lemma 4.2.5. Consider a commutative diagram as below:

A B

K ′ A′ B′

K ′′ A′′ B′′,

a

a′

b

b′

f

f ′

f ′′

k′

k′′

u

where a′, b′, f ′, f ′′, u are regular epimorphisms, a = preker(a′), b = preker(b′), k′ = preker(f ′)

and k′′ = preker(f ′′). Furthermore, suppose B′ ̸= 1, and B′′ ̸= 1. Under these assumptions, f

is a regular epimorphism.

Proof. Consider the commutative diagram

K ′ A′ B′

K ′′ A′′ ×B′′ B′ B′

f ′

πB′

⟨a′,f ′⟩

⟨k′′,ιB′α⟩

u

k′

(♦)

where α is the upper arrow in the following pullback square:

K ′′ 2

A′′ B′′.
f ′′

ιB′′

α

k′′
⌟

In order to prove the commutativity of (♦), we have to show that f ′k′ = ιB′αu. We know that

f ′k′ ∈ NZ , and so we obtain f ′k′ = ιB′χ (where χ : K ′ → 2). We observe that b′f ′k′ = f ′′k′′u =

ιB′′αu; moreover, we notice that b′f ′k′ = b′ιB′χ = ιB′′χ. Since ιB′′ is a monomorphism, we

deduce αu = χ, and so ιB′αu = ιB′χ = f ′k′. We prove that ⟨k′′, ιB′α⟩ is the prekernel of πB′ .
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To see this, we notice that in the diagram

K ′′ 2

A′′ ×B′′ B′ B′

A′′ B′′
f ′′

b′

ιB′

ιB′′

πA′′

πB′

⟨k′′,ιB′α⟩

α

k′′

the rectangle and the bottom square are pullbacks, hence the top square is a pullback, too.

If u is a regular epimorphism, then by Lemma 4.2.4 we can deduce that ⟨a′, f ′⟩ is a regular

epimorphism. Since B ̸= 1 and B′ ̸= 1, it follows that A ̸= 1 and A′ ̸= 1. We can then construct

the commutative diagram:

A A′ A′′

B A′′ ×B′′ B′ A′′
πA′′

a′a

f ⟨a′,f ′⟩

⟨ιA′′β,b⟩

(⋆)

where β is the upper arrow in the following pullback square:

B 2

B′ B′′;
b′

b

β

ιB′′
⌟

the commutativity of (⋆) can be proved using an argument very similar to the one exhibited for

(♦). We observe that ⟨ιA′′β, b⟩ is the prekernel of πA′′ . In fact, we have the rectangle

B A′′ ×B′′ B′ B′

2 A′′ B′′

β

⟨ιA′′β,b⟩ πB′

b′

f ′′

πA′′(1) (2)

where (1) and (1)+(2) are pullbacks, and so also (2) is a pullback, too. Hence, applying Lemma

4.2.3 to (⋆), we obtain that the left square of (⋆) is a pullback, since idA′′ is a monomorphism.

So, by regularity, we conclude that f is a regular epimorphism.
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Theorem 4.2.6. Consider a commutative diagram as below:

K A B

K ′ A′ B′

K ′′ A′′ B′′,

u

u′

a

a′

b

b′

k f

k′ f ′

k′′ f ′′

(1)

where f, f ′, f ′′, u′, a′ are regular epimorphisms and u = preker(u′), a = preker(a′), k = preker(f),

k′ = preker(f ′), and k′′ = preker(f ′′). Furthermore, suppose B′ ̸= 1 and B′′ ̸= 1. Then, b′ is a

regular epimorphism and b = preker(b′).

Proof. We deduce that b′ is a regular epimorphism from the fact that b′f ′ = f ′′a′ and f ′′a′ is

regular epimorphism. Since B′′ ̸= 1, we know that A′′ and K ′′ are not terminal either. Using

Lemma 4.2.3, we obtain that (1) is a pullback, noting that k′′ is a monomorphism. Since (1) is

a pullback and B′ ̸= 1, we can apply Lemma 4.2.3 again to conclude that b is a monomorphism.

We define h : K[b′] → B′ as the prekernel of b′. Then, we consider the following commutative

diagram:

B

K A K[b′]

K ′ A′ B′

B′′,

l

h

b′

f

g

a

f ′

u

k

k′

b

where g is determined by the fact that b′f ′ = f ′′a′, and so b′f ′a = f ′′a′a ∈ NZ . Moreover,

observing that b′bf = f ′′a′a ∈ NZ and applying Lemma 4.1.4, we obtain that b′b ∈ NZ .

Hence, there exists a unique arrow l such that hl = b. We show that lf = g. Recalling that

hlf = bf = f ′a = hg and that h is a monomorphism, our claim follows. Thanks to Lemma 4.2.5

we observe that g is a regular epimorphism, so l is a regular epimorphism, too. Furthermore,

since b is a monomorphism, we get that l is a monomorphism. Thus, l is an isomorphism, which

completes the proof.

It is important to point out that the aforementioned result does not hold, in general, when B′ = 1
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and B ̸= 1. To see this, consider the commutative diagram in MV

2 2 2

2 2 1

2 2 1

and observe that the unique arrow 2 → 1 is not the prekernel of id1.

This version of the Nine Lemma is connected to the one explored in [34]. Fixed an ideal of

arrows N , the authors recall the notion of a star (i.e. an ordered pair of parallel morphisms

(k1, k2) : K ⇒ A such that k1 ∈ N) and they define the star-kernel of an arrow f : A → B as a

universal star with respect to the property that fk1 = fk2. Moreover, they introduce the notion

of star-exact sequence as a diagram

K A B,
fk1

k2

where (k1, k2) is the star-kernel of f and f = coeq(k1, k2).

In our context, for every regular epimorphism f : A↠ B with B ̸= 1, the sequence

K[f ] A B
fιAt

k

is star-exact with respect to the ideal NZ , where the arrows in the diagram above are defined

by the following pullback:

K[f ] 2

A B.

t

ιBk
⌟

Hence, the sequences in the diagram of Theorem 4.2 can be considered as star-exact sequences in

the sense of [34]. However, our specific version of the Nine Lemma does not directly derive from

the results presented in that paper. This is due to the fact that their study assumes the presence

of enough trivial objects, which requires closure of the class of zero objects under squares. In

contrast, our context lacks this property (for instance, in general, 2×2 /∈ Z ).
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4.3 Pretorsion Theories, Galois Structures and Factoriza-

tion Systems

The purpose of the initial part of this section is to present a preliminary investigation about

the pretorsion theories (T ,F ), such that T ∩ F = Z = {1,2}, on a category C that satisfies

the properties presented in Assumption 4.1.1. The exploration aims to provide a foundational

understanding of the key concepts and results that will be used in the subsequent sections of this

chapter. Let T and F be two full replete subcategory of C. We recall that (T ,F ) is a pretorsion

theory if every arrow that starts from an object in T and ends in an object in F factors through

an object of Z . Moreover, every object in C is in the middle of a pre-exact sequence such that

the left endpoint is a torsion object, and the right endpoint is a torsion-free object. We denote by

F the reflector on the category of torsion-free objects, and by T the coreflector on the category

of torsion objects.

Remark 4.3.1. Since the sequences

2 2 2,

1 1 1

are both pre-exact, and T ∩ F = {1,2}, we can assume F (2) = 2, F (1) = 1, T (2) = 2, and

T (1) = 1.

Given an object X in C, the (T ,F )-pre-exact sequence associated with X is the unique pre-exact

sequence, up to isomorphism,

T (X) X F (X)

such that T (X) ∈ T and F (X) ∈ F .

Proposition 4.3.2. Consider a pretorsion theory (T ,F ) on C. For every object T ∈ T there

exists at most one arrow T → 2.

Proof. We fix an object T ∈ T . First of all, let us show that F (T ) ∈ Z . Consider the (T ,F )-

pre-exact sequence associated with T :

T1 T F1

Z.

ηTεT

χ

Observe that ηT ∈ NZ (since its domain is an object of T and its codomain an object of F );

then ηT factors as above, where Z ∈ Z . If Z = 1, then F1 = 1 and, since ηT = τT is a

precokernel, we can deduce that there does not exist an arrow T → 2. In fact, suppose we have
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an arrow r : T → 2; then rεT ∈ NZ . Therefore, there must exist an arrow 1 → 2, which leads to

a contradiction. If Z = 2 the (regular epimorphism, monomorphism)-factorization of ηT is given

by:

T F1

2;

ηT

χ ιF1

applying Lemma 4.1.5, we get εT = preker(χ). Hence εT is equal to idT . Moreover, we know

that ηT = precoker(idT ) and ηT idT = ιF1
χ; then ηT is given by the pushout

T T

2 2 .

χ χ

⌟

So, we obtain that the (T ,F )-pre-exact sequence associated with T is

T T 2 .
χ

In conclusion, if we consider an arrow r : T → 2, since r ∈ NZ , there exists an arrow φ : 2 → 2

such that φχ = r. However, because 2 is the initial object, it follows that φ = id2, and so

r = χ.

Proposition 4.3.3. For a pretorsion theory (T ,F ) on C, the following statements are equiva-

lent:

i) for every object A ∈ C, F (A) = 1 if and only if A = 1;

ii) for every object T ∈ T with T ̸= 1, there exists a unique arrow T → 2.

Proof. i) ⇒ ii) We can apply the same argument as in the previous proof. In fact, the only

scenario where we lack an arrow T → 2 is when F (T ) = 1. This case only occurs when T = 1,

since, by i), we have F (T ) = 1 if and only if T = 1.

ii) ⇒ i) Let A ∈ C be a fixed object. If A = 1, then the existence of the arrow ηA : 1 → F (A)

implies that F (A) = 1. If F (A) = 1, then ηA = τA : A→ 1 and εA = idA. Observing that τA is

a precokernel, we conclude that there does not exist an arrow A → 2. Moreover, as εA = idA,

we get A ∈ T and so A = 1.

Definition 4.3.4. We say that a pretorsion theory satisfies condition (U) if it fulfills the equiv-

alent conditions outlined in the aforementioned proposition.

Proposition 4.3.5. For every object A of C, if there exists an arrow χ : T (A) → 2 then T (A×
2) ∼= T (A).
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Proof. First, we observe that T has products. This follows from the fact that T is the right

adjoint of the inclusion functor iT : T ↪→ C. For any pair of objects T1, T2 ∈ T , we have

T (iT (T1) × iT (T2)) = TiT (T1)×TiT (T2) = T1×T2, where × denotes the product in the sub-

category T . Note that the product in T may differ from the product in the larger category C.

So, we need to prove that T (A)×2 ∼= T (A). Let χ be the unique morphism from T (A) to 2.

Consider the following commutative diagrams:

T (A) T (A)×2 T (A)
⟨idT (A),χ⟩ πT (A)

idT (A)

T (A)×2 T (A) T (A)×2;
πT (A) ⟨idT (A),χ⟩

⟨πT (A),χπT (A)⟩

recalling that there exists a unique arrow T (A)×2 → 2 and, since π2, χπT (A) : T (A)×2 → 2,

we deduce π2 = χπT (A), so ⟨πT (A), χπT (A)⟩ = ⟨πT (A), π2⟩ = idT (A)× 2. Hence ⟨idT (A), χ⟩ is an

isomorphism.

Proposition 4.3.6. Let A be an object of C. If there is no arrow of the form T (A) → 2, then

A ∈ T .

Proof. We consider the (T ,F )-pre-exact sequence associated with A and the factorization of

ηAεA:

T (A) A F (A)

Z.

εA ηA

We observe that Z must be 1, and so F (A) = 1. Therefore, we obtain A = T (A) ∈ T .

Lemma 4.3.7. Let e : A → B be a precokernel with B ̸= 1, such that K[e] ∈ T . Then, for

every arrow g : C → B, the pullback e : P → C of e along g is a precokernel and K[e] ∈ T .

Proof. Let us say that the prekernel of e is k : K[e] → A and the prekernel of e is k′ : K[e] → P .

Thanks to Lemma 4.1.6, we deduce that K[e] = K[e] ∈ T . Furthermore, applying Proposition

4.1.8, we conclude that e is the pushout of a split epimorphism, and so it is a regular epimorphism.

Therefore, e is a regular epimorphism as pullback of e. We observe that, since k is the prekernel

of an arrow with domain different from 1 and K[e] = K[e], there exists an arrow t : K[e] → 2.

Moreover, this arrow is unique because K[e] is in T . In order to prove that e is a precokernel,

we examine the diagram

K[e] P

2 C;

k′

e

ιC

t
⌟



116 4.3. Pretorsion Theories, Galois Structures and Factorization Systems

applying Proposition 14 of [6], we immediately get that the square above is also a pushout.

Finally, since there exists a unique arrow t : K[e] → 2, we conclude e = precoker(k′).

As we can infer from the previous results and as we will see later, the existence of objects

T ̸= 1 ∈ T such that F (T ) = 1 can cause issues. In order to ensure that some of the desired

results hold, we need to impose specific constraints on these objects. In particular, we will require

the pretorsion theory to satisfy two particular conditions that are related to this class of torsion

objects. We will introduce one of them now, while the other will be presented later when needed.

Definition 4.3.8. We say that a pretorsion theory satisfies condition (P1) if, for every pair of

objects A,B ∈ C,

F (B) = 1 implies F (A×B) ∼= F (A).

Condition (U) clearly implies condition (P1) because, if (U) holds, then F (B) = 1 implies B = 1.

However, the converse is not true in general, as we will show with an example later on.

As mentioned in the introduction, the goal of this chapter is to explore the connection between

pretorsion theories, Galois theory, and stable factorization systems in the non-pointed context.

Specifically, the results presented here are a variation of those introduced in Section 3 of [27],

adapted to the non-pointed case.

Lemma 4.3.9. Let (T ,F ) be a pretorsion theory satisfying condition (U). Consider an object

A of C and the (T ,F )-pre-exact sequence associated with A:

T (A) A F (A).
εA ηA

In this sequence, the arrow ηA is a regular epimorphism.

Proof. Consider an object A in the category C. If F (A) = 1 then, by our condition (U), we have

A = 1. Therefore, η1 = id1 which is a regular epimorphism. If A ̸= 1, we can apply Corollary

4.1.10.

Proposition 4.3.10. Let (T ,F ) be a pretorsion theory satisfying condition (U), and let C rep-

resent the class of regular epimorphisms in C and F represent the class of regular epimorphisms

in F . In this context, the adjunction F ⊣ iF is relatively admissible with respect to these classes.

Proof. The components of the counit and of the unit of the adjunction are, respectively, iso-

morphisms and regular epimorphisms (see Lemma 4.3.9). Moreover, F is a left adjoint and so

preserves colimits: in particular F (F ) ⊆ C. Finally, we consider the following diagram in F :

A B Q,
f

g

q
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where q = coeqF (f, g). To clarify, we use the symbol coeqF to denote the coequalizer computed

in F , and we use the symbol coeqC to denote the coequalizer computed in C. Consider the

coequalizer q′ = coeqC(f, g) in C and observe that, since F preserves colimits, we have F (q′) = q.

Thanks to the naturality of the unit η, we obtain ηQ′q′ = F (q′) = q. This implies that q can be

presented in C as the composite of two regular epimorphisms. Since C is a Barr-exact category,

the composition of two regular epimorphisms is a regular epimorphism, too. Therefore, q is a

regular epimorphism in C.

Proposition 4.3.11. Let (T ,F ) be a pretorsion theory satisfying condition (P1). For every

object B in C, the counit of the adjunction FB ⊣ iFB : F/F (B) → C/B is an isomorphism.

Proof. First of all, we recall that iFB(f : A → F (B)) = (f ′ : A′ → B), where f ′ is defined by

the pullback

A′ A

B F (B).ηB

f

f ′′

f ′
⌟

So, we have to prove that

FB(f ′) = (F (f ′) : F (A′) → F (B)) ∼= (f : A→ F (B)).

Suppose B = 1; then the following square is a pullback:

A A

1 1,

⌟

and so the assertion holds. Now, if B ̸= 1 and F (B) = 1, we consider the pullback

A×B A

B 1 .

⌟

Then, since condition (P1) holds by assumption, we have F (A × B) ∼= F (A). Finally, suppose

F (B) ̸= 1 and consider the commutative diagram:

T (A′) A′ F (A′)

A,
f ′′

εA′ ηA′

∃!f ′′′

where f ′′′ is induced by the fact that f ′′εA′ ∈ NZ , as its domain is a torsion object and its

codomain is torsion-free. We prove that f ′′′ is an isomorphism. Applying Lemma 4.3.7, we im-
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mediately get that f ′′ is a precokernel and K[f ′′] = K[ηB ] = T (B). Thus, due to the uniqueness

of the (T ,F )-pre-exact sequence associated with A′, since K[f ′′] ∈ T and A ∈ F , we conclude

that f ′′′ is an isomorphism:

T (A′) A′ F (A′)

K[f ′′] A′ A.

f ′′′≀

εA′ ηA′

k f ′′

≀

Finally, we have to show that the following diagram is commutative:

F (A′) F (B)

A F (B).

F (f ′)

f

f ′′′

We note that ff ′′′ηA′ = ff ′′ = ηBf
′ = F (f ′)ηA′ (where the last equality follows from the fact

that η is a natural transformation). Therefore, since ηA′ is an epimorphism (it is a precokernel),

we get ff ′′′ = F (f ′).

We have just observed that a pretorsion theory (T ,F ) satisfying (P1) defines a precokernel-

reflective subcategory (i.e. a reflective subcategory with the property that each component of

the unit is a precokernel) F of C. Moreover, the reflector F : C → F satisfies F (1) = 1, and

F (f∗(ηB)) is an isomorphism for every object B ∈ C and every arrow f in F . Thanks to the

next proposition that we are about to state, we can claim the converse, too.

Proposition 4.3.12. Consider a precokernel-reflective subcategory F of C such that the reflector

F : C → F satisfies F (1) = 1, and F (f∗(ηB)) is an isomorphism for every object B ∈ C and

for every arrow f in F . Then, F is the torsion-free part of a pretorsion theory (T ,F ) which

satisfies (P1) and such that F ∩ T = Z .

Proof. We define the full subcategory of C whose objects are

T := {T ∈ C |T = K[ηX ] for some object X ∈ C}.

To determine F ∩ T , let us consider an object Z ∈ F ∩ T . Since Z = K[ηX ], we know that it

is defined by the pullback

Z Z ′

X F (X),ηX

χ
⌟

where Z ′ = 1 if F (X) = 1, and Z ′ = 2 if F (X) ̸= 1. Recalling that F (χ∗(ηX)) is an isomorphism

and F (Z) = Z (since Z ∈ F ), we obtain Z = F (Z ′) = Z ′. Moreover, we have F (1) = 1, by

assumption, and F (2) = 2, since F preserves coproducts. So, we get Z = 1 or Z = 2, i.e.
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F ∩ T = Z . Now, we show that F (T ) ∈ Z for every T ∈ T . Since T = K[ηX ], T is given by

a pullback of the form

T Z

X F (X),ηX

χ
⌟

where Z ∈ Z . As before, we can conclude F (T ) = Z ∈ Z . In order to prove that every arrow

f : T → F (with T ∈ T and F ∈ F ) is an element of NZ , consider the naturality square of η

below:
T F (T ) ∈ Z

F F.

f F (f)

ηT

This diagram tells us that f = F (f)ηT ∈ NZ . Furthermore, given an object X ∈ C, we observe

that the (T ,F )-pre-exact sequence associated with X is given by

T (X) = K[ηX ] X F (X),
ηXεX

where εX = preker(ηX). Finally, we notice that (T ,F ) satisfies (P1). Suppose F (X) = 1; then

ηX = τX and so, applying F to the top arrow of the pullback

X × Y Y

X 1,τX

⌟

we deduce F (Y ×X) = F (Y ).

Thanks to what has been shown so far, we are finally ready to describe, in terms of the pretorsion

theory (T ,F ), the normal and central extensions determined by the Galois structure associated

with the reflector F .

Theorem 4.3.13. Consider a pretorsion theory (T ,F ) satisfying condition (P1), where F is

protoadditive (i.e., F (1) = 1, F (2) = 2, and F preserves the pullback of split epimorphisms

along every morphism). Suppose f : A → B is an effective descent morphism (in our case, a

regular epimorphism), and let ΓF be the Galois structure associated with the reflector F . Then,

the following conditions are equivalent:

i) f is a normal extension for ΓF ;

ii) f is a central extension for ΓF ;

iii) K[f ] ∈ F (where K[f ] denotes the domain, up to isomorphism, of the prekernel of f).
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Proof. i) ⇒ ii) This implication is always true.

ii) ⇒ iii) Let p : E → B be an effective descent morphism such that the morphism p∗(f), defined

by the pullback below, is a trivial extension:

P A

E B.p

fp∗(f)
⌟

Suppose B ̸= 1. This implies E ̸= 1, too. Consider the commutative cube

K[p∗(f)] K[f ]

P A

2 2

E B,p

f

p∗(f)

in which the front face and the two lateral faces are pullbacks. Therefore, also the back face is

a pullback, and hence K[p∗(f)] ∼= K[f ]. By assumption, p∗(f) is a trivial extension, then the

square

P F (P )

E F (E)

F (p∗(F ))

ηE

ηP

p∗(F )
⌟

is a pullback. If F (E) ̸= 1, applying the same argument seen before, we deduce K[F (p∗(F ))] ∼=
K[p∗(F )] ∼= K[f ]. Hence, since F is closed under limits in C, we obtain K[F (p∗(F ))] ∈ F . Thus

K[f ] ∈ F . If F (E) = 1, consider the following commutative cube:

K[p∗(f)] F (P )

P F (P )

2 1

E 1,

p∗(f)

where the front face and the two lateral faces are pullbacks. Therefore, the back face is a

pullback, too. This implies K[p∗(f)] ∼= 2×F (P ) ∈ F (since F is closed under products) and so

K[f ] ∼= K[p∗(f)] ∈ F .
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If B = 1 and E = 1 the statement follows trivially.

Finally, if B = 1 and E ̸= 1, consider the commutative cube

2×A A

E ×A A

2 1

E 1 .

π′
E

π′
A

πA

ιE×idA
π2

ιE

Using a similar reasoning to what was proposed in the first part of the proof, we deduce 2×A ∈
F . Hence, we have T (2×A) ∈ Z . Now, if there exists an arrow T (A) → 2, applying Proposition

4.3.5, we get T (A) = T (2×A) ∈ Z and then A ∈ F . If there does not exist an arrow T (A) → 2,

then, as seen Proposition 4.3.6, we have A ∈ T and F (A) = 1. Hence f = ηA = τA. So,

since f is central, there exists a regular epimorphism τE : E ↠ 1 such that πE : E × A → E is

trivial (observe that πE is the pullback of f along τE). Given that F (A) = 1 and condition (P1)

holds, we obtain F (E ×A) = F (E). Moreover, because πE is trivial, the following diagram is a

pullback:

E ×A F (E ×A) = F (E)

E F (E).

πE F (πE)=idE

ηE×A

ηE

⌟

Noting that πE is an isomorphism, as a pullback of an isomorphism, we can suppose E ×A = E

and πE = idE . In conclusion, considering the diagram

E A 1

E 1 1,

ηA (1)
⌟

(2)
⌟

where (2) is a pullback and (1)+(2) is a pullback, we can apply Lemma 4.2.1 to get that (1) is

a pullback. Therefore, ηA is an isomorphism and A = 1.

iii) ⇒ i) We will start by examining the case where B ̸= 1. As a direct consequence we have

A ̸= 1. Moreover, we can apply a similar argument to the one seen before to the commutative



122 4.3. Pretorsion Theories, Galois Structures and Factorization Systems

cube

K[π1] K[f ]

Eq(f) A

2 2

A B,

∼=

π2

f

f

π1 ∆

where (Eq(f), π1, π2) is the kernel pair of f , to deduce K[f ] ∼= K[π1]. Therefore, by assumption,

we have K[π1] ∈ F . Consider the pullback

K[π1] Eq(f)

2 A

π1 ∆
⌟

and observe that it is preserved by F , since it is the pullback along a split epimorphism. Hence,

also the square

F (K[π1]) F (Eq(f))

2 F (A)

F (π1) F (∆)
⌟

is a pullback. Observe that K[π1] ∈ F implies F (K[π1]) = K[π1]. Suppose F (A) ̸= 1 and

consider the cube
K[π1] K[π1]

Eq(f) F (Eq(f))

2 2

A F (A).

ηF (Eq(f))

ηA

π1

Since π1 is a split epimorphism and C is a protomodular category, we conclude that the front

face is a pullback. Thus, π1 is a trivial extension and so, by definition, f is a normal extension.

Let us deal with the case F (A) = 1. Analyzing the pullback

F (K[π1]) F (Eq(f))

2 F (A) = 1,

⌟
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we deduce F (Eq(f)) = 1 and K[π1] = F (K[π1]) = 2. Moreover, considering the commutative

cube
K[π1] = 2 1

Eq(f) F (Eq(f)) = 1

2 1

A F (A) = 1,

ηF (Eq(f))

ηA

π1

once again, we can conclude that the front face is a pullback, and hence f is a normal extension.

Finally, if B = 1, we obtain K[f ] = A ∈ F . Hence the square

A×A F (A×A)

A F (A)

π1 F (π1)

ηA×A

ηA

⌟

is a pullback, since ηA and ηA×A are isomorphisms (A × A ∈ F ). Then, π1 : A × A → A is a

trivial extension, and thus f is normal extension.

The purpose of the following results is to understand the relationship between pretorsion theories

and factorization systems. Specifically, we will see how certain pretorsion theories give rise to

stable factorization systems. Moreover, we will show that every stable factorization system

(E ,M ), such that 2 → 1 ∈ M and every arrow in E is a precokernel, induces a pretorsion

theory.

Lemma 4.3.14. For a given pretorsion theory (T ,F ), we define two classes of arrows:

E := {e precokernel |K[e] ∈ T } and M := {m |K[m] ∈ F}.

Then, for every e ∈ E and m ∈ M , we have e ↓ m. Additionally, the unique arrow 2 → 1

belongs M .

Proof. We recall that e ↓ m holds if, for every commutative square

A B

C D,

e

m

a b∃d

there exists an arrow d : B → C such that md = b and de = a. Let k(e) : K[e] → A be the

prekernel of e, and k(m) : K[m] → C the prekernel of m. We consider the following commutative
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diagram:

Z

K[e] A B

Z ′

K[m] C D,

k(e)

k(m)

e

m

ba∃!φ ∃!d

where e ∈ E , m ∈ M , ma = be, and Z,Z ′ ∈ Z . Since mak(e) = bek(e) ∈ NZ , there exists

a unique arrow φ such that ak(e) = k(m)φ. Furthermore, since K[e] ∈ T and K[m] ∈ F , it

follows that φ ∈ NZ . Hence, we have ak(e) = k(m)φ ∈ NZ . Additionally, we recall that e is the

precokernel of k(e) (by Proposition 4.1.7), and therefore there exists a unique arrow d : B → C

such that de = a. To conclude, we obtain mde = ma = be and, from the fact that e is an

epimorphism, we deduce md = b. Furthermore, we can note that preker(2 → 1) = id2 and that

2 ∈ F . Therefore, we obtain that 2 → 1 is an element of M .

The following definition represents a generalized version, applicable to our non-pointed case, of

the original definition presented in [33].

Definition 4.3.15. We say that a pretorsion theory (T ,F ) satisfies condition (N) if, for every

diagram

T (K[f ]) K[f ] A B
fkεK[f]

where k = preker(f), then kεK[f ] is the prekernel of some arrow.

Definition 4.3.16. We say that a pretorsion theory (T ,F ) satisfies condition (P2) if, whenever

F (B) = 1 and A ̸= 1, the sequence

2×B A×B A
πAιA×idB

is pre-exact and 2×B ∈ T .

Proposition 4.3.17. If the pretorsion theory (T ,F ) satisfies conditions (P2) and (N), then

the pair of classes E and M , defined in the previous lemma, forms a stable factorization system.

Proof. We can obtain a factorization of the arrow τA : A→ 1 as follows:

A 1

F (A).
ηA τF (A)

τA

Here, preker(ηA) = (εA : T (A) → A), and, since T (A) ∈ T , we get ηA ∈ E . Similarly,

preker(τF (A)) = idF (A) : F (A) → F (A), and, since F (A) ∈ F , we have τF (A) ∈ M . Thus,
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we can restrict our argument to an arrow f : A → B with B ̸= 1. By assumption, we know

that kεK[f ] is a prekernel of some arrow. Suppose that kεK[f ] = preker(τA : A → 1). Then

we can assume kεK[f ] = idA, which implies A = T (K[f ]) ∈ T . Moreover, since kεK[f ] is an

isomorphism, we obtain that k is a regular epimorphism; recalling that k is a monomorphism,

as a prekernel, we deduce that k is an isomorphism. Since k is an isomorphism, we can suppose

preker(f) = idA. Additionally, we observe that there exists an arrow χ : A → 2, in fact, given

that B ̸= 1, K[f ] is defined by the pullback

K[f ] 2

A B.
f

k
⌟

So we have an arrow K[f ] → 2, and, recalling that A = T (K[f ]), this implies the existence

of χ : A → 2. Thus, A being an object of T , the morphism χ : A → 2 is unique. Moreover,

considering that preker(f) = idA and B ̸= 1, the factorization f = ιBχ holds. Finally, the square

below is a pushout:

A 2

A 2

χ

χ

⌟

and so χ = precoker(idA). To sum up, f can be factorized as f = ιBχ, where K[ιB ] = 2 ∈ F (i.e.

ιB ∈ M ) and χ is a precokernel such that K[χ] = A ∈ T (i.e. χ ∈ E ). We still need to examine

the scenario where B is not equal to 1, and kεK[f ] is the prekernel of an arrow h : A→ C, where

C is not equal to 1. First of all we construct the precokernel of kεK[f ]. We observe that there

exists a unique morphism ξ : T (K[f ]) → 2, since T (K[f ]) ∈ T . Therefore, the precokernel of

kεK[f ] is given by the pushout

T (K[f ]) 2

A Q.q

kεK[f]

ξ

⌟

Notice that q is a regular epimorphism, since it is the pushout of the split epimorphism ξ. Now,

we can apply Proposition 4.1.11 to obtain that kεK[f ] = preker(q). So, consider the commutative

diagram

P

T (K[f ]) K[f ] A B

Q I,

εK[f] k f

g j

q
m

e

i

where (g, j) is the (regular epimorphism, monomorphism)-factorization of f , (e, i) the (regular
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epimorphism, monomorphism)-factorization of m, and m is induced by the universal property

of the precokernel q. We claim that f = mq is the (E ,M )-factorization of f . Thanks to

Lemma 4.1.5, we get that k = preker(g) and, by the uniqueness of the (regular epimorphism,

monomorphism)-factorization, we can assume P = I. Additionally, we recall that, by construc-

tion, q is a precokernel and preker(q) = kεK[f ] : T (K[f ]) → A. Hence q ∈ E . So, it remains

to prove that m ∈ M or, equivalently, K[m] ∈ F . Applying Lemma 4.1.5, we deduce that

K[e] = K[m]. Therefore, we will show that K[e] ∈ F . To this end, consider the commutative

diagram

T (K[f ]) K[f ] F (K[f ])

T (K[f ]) A Q

2 P P,ιP

e

q

g

kεK[f]

ξ

εK[f] ηK[f]

k ∃!k′

where k′ is induced by the universal property of the precokernel ηK[f ]. Thanks to Theorem 4.2.6,

we conclude that k′ = preker(e) and so K[e] = F (K[f ]) ∈ F .

To complete the proof we have to show that E is pullback stable. For this purpose, fix an arrow

e : X → Y of E and suppose Y ̸= 1. Since Y ̸= 1, we can apply Lemma 4.3.7 to deduce that

e ∈ E . In contrast, if the codomain of e is the terminal object, i.e. e = τX : X → 1, we obtain

idX = preker(e) and, moreover, there does not exist an arrow X → 2. But X = K[e] ∈ T , so

F (X) = 1. We consider the pullback of e along the arrow τW : W → 1

X ×W W

X 1 .e

τW

πW

πX

⌟

If W = 1, then πW = e and so the pullback of e is a precokernel. If W ̸= 1, we use condition

(P2) to assert that the sequence

2×X W ×X W
πWιW×idX

is pre-exact. Thus, we have that πW is the precokernel of ιW × idX and 2×X ∈ T , i.e.

πW ∈ E .

Proposition 4.3.18. Consider a stable factorization system (E ,M ) such that every arrow in

E is a precokernel and 2 → 1 ∈ M . Let T be the full subcategory of C whose objects are

T := {T ∈ C | ∃t : T → 2, t ∈ E } ∪ {T ∈ C | τT ∈ E }
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and F the full subcategory of C whose objects are

F := {F ∈ C | τF ∈ M }.

Then, the pair (T ,F ) forms a pretorsion theory in C satisfying conditions (P2) and (N), with

T ∩ F = Z .

Proof. Let us begin with the study of the intersection T ∩ F . It is clear that both 1 and 2

belong to T ∩ F . Vice versa, fix an object X ∈ T ∩ F . If there exists an arrow χ : X → 2

belonging to E , then we consider the commutative diagram

X 2 1,
χ∈E ∈M

τX∈M

where τX ∈ M , since X ∈ F . From the uniqueness of the (E ,M )-factorization we deduce that

χ is an isomorphism, and so X = 2. If there does not exist an arrow X → 2 belonging to

E , then we must have τX ∈ E . Hence, since X ∈ F , τX belongs also to M . Considering the

commutative diagram

X 1

X 1,

τX∈E

τX∈M

∃!d

we deduce that X = 1 (since there must exist an arrow d : 1 → X).

Let us show that (T ,F ) is a pretorsion theory. First of all, we consider an arrow f : T → F

from an object T ∈ T to an object F ∈ F . We have to prove that f ∈ NZ . If there does not

exist an arrow t : T → 2 belonging to E , then τT ∈ E . So, from the commutative square

T 1

F 1,

f

τT∈E

τF∈M

∃!d

we deduce that there exists an arrow d : 1 → F , since τT ↓ τF . Thus, F = 1 and f ∈ NZ . If

there exists an arrow t : T → 2 belonging to E , we consider, as before, the commutative diagram

T 2

F 1;

t∈E

f

τF∈M

∃!d

since t ↓ τF , there exists an arrow d : 2 → F such that dt = f . This implies f ∈ NZ .
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For every object A ∈ C we consider the (E ,M )-factorization of τA : A→ 1

A 1

I,

τA

e m

and we define (k : K[e] → A) := preker(e). Clearly, since I = K[m], we deduce that I is an

object of F . We prove that K[e] belongs to T . If I = 1, we get τA ∈ E , and so K[e] = A ∈ T .

If I ̸= 1, then K[e] is defined by the following pullback:

K[e] 2

A I,e

t∈E

⌟

where t ∈ E (we recall that the factorization system is stable). Hence, we have K[e] ∈ T . In

other words, for every object A, the pre-exact sequence

K[e] A Iek

is such that K[e] ∈ T and I ∈ F . Referring to the diagram above, we define T (A) := K[e] and

F (A) := I.

Let us now focus on proving that (T ,F ) satisfies condition (N). Consider a morphism f : A→ B

and assume B ̸= 1. Given the sequence

T (K) K A B,
fkε

we have to verify that kε is a prekernel (where k = preker(f) and T (K) is the torsion part of K).

To this end, we study the (E ,M )-factorizations of f : A
e−→ I

m−→ B and of τK : K
e′−→ I ′

m′

−−→ 1.

Generally, for every arrow χ : K → 2 in C, the E part of the factorization of χ is equal to the E

part of the factorization of τK . To prove it, we examine the diagram

I

K 2 1

I ′,

χ z∈M

e∈E m∈M

e′∈E m′∈M

where χ = me and τK = m′e′. Since M is closed under composition, we obtain zm ∈ M .

Therefore, zme = m′e′ and so, from the uniqueness of the (E ,M )-factorization, we deduce

e = e′. Hence, in order to study the torsion part of K, we can focus on the arrow χ : K → 2,
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whose existence is guaranteed by the fact that K is the prekernel of an arrow with codomain

different from the terminal object. Let us put χ = m′e′ with e′ ∈ E and m′ ∈ M , and consider

the commutative diagrams

K I ′ 2 K I ′

A I B I B,

d ιB

m′

me

e′

k

e′

m

ιBm
′ek ∃d

where d is induced by the diagonal property of the factorization system (see the square on the

right). Thanks to the stability of the factorization system and the uniqueness of the (E ,M )-

factorization, we conclude that both the squares in the rectangle on the left are pullbacks.

Therefore, applying Lemma 4.1.6, we get k(e) = kk(e′), where k(e) = preker(e) and k(e′) =

preker(e′). By definition of T (K) we have ε = k(e′), and so we deduce that kε = kk(e′) = k is a

prekernel. If B = 1, we come to a trivial situation.

Finally, we have to prove that (T ,F ) satisfies condition (P2). With this goal, fix an object

B ∈ C such that F (B) = 1. So, by definition, τB ∈ E . Now, since E is stable, for every arrow

A→ 1, with A ̸= 1, the pullback

A×B A

B 1
τB∈E

πA∈E

⌟

tells us that πA ∈ E . Hence πA is a precokernel. Furthermore, consider the prekernel of πA

defined by the pullback

2×B 2

A×B A.πA

⌟

Then, 2×B ∈ T since it is the domain of the prekernel of an arrow of E . To sum up, we have

verified that the sequence

2×B A×B A
πAιA×idB

is pre-exact and 2×B ∈ T .

Theorem 4.3.19. The assignments defined in Proposition 4.3.14 and Proposition 4.3.18 estab-

lish a one-to-one correspondence between pretorsion theories (T ,F ), satisfying conditions (N)

and (P2), and stable factorization systems (E ,M ) such that every arrow in E is a precokernel

and 2 → 1 ∈ M .

Proof. For every pretorsion theory (T ,F ) we define

E := {e precokernel |K[e] ∈ T } and M := {m |K[m] ∈ F}.
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The pretorsion theory induced by this factorization system is given by the two full subcategories

whose objects are

T := {T ∈ C | ∃t : T → 2, t ∈ E } ∪ {T ∈ C | τT ∈ E }

and

F := {F ∈ C | τF ∈ M }.

On the one hand, if we consider an object T ∈ T such that there exists an arrow t : T → 2 ∈ E ,

then T ∈ T , since preker(t) = idT and so K[t] = T . We proceed in a similar way if T → 1 ∈ E .

On the other hand, if we take an object T ∈ T , then either T → 2 or T → 1 must be a

precokernel (since F (T ) = 2 or F (T ) = 1). So, as before, T ∈ T . In other terms, we have

proved T = T . Analogously, we can show that F = F .

For every factorization system (E ,M ), satisfying the assumptions of Proposition 4.3.18, we define

T = {T ∈ C | ∃t : T → 2, t ∈ E } ∪ {T ∈ C | τT ∈ E }

and

F = {F ∈ C | τF ∈ M }.

The factorization system, induced by this pretorsion theory, is defined by the classes of arrows

E := {e precokernel |K[e] ∈ T } and M := {m |K[m] ∈ F}.

Fix a precokernel e : A → B, with B ̸= 1. We prove that e ∈ E if and only if e ∈ E . To this

end, observe that, since e is a precokernel, the diagram below (which defines the prekernel of e)

is both a pullback and a pushout:

K[e] 2

A B.e

⌟

⌟

Due to the closure of E under both pullbacks and pushouts, we can infer that e ∈ E if and only

if K[e] → 2 ∈ E . This equivalence can be further expressed as K[e] ∈ T , which, in turn, is

equivalent to e ∈ E . It remains to study the case B = 1. If τA ∈ E , then A ∈ T and so τA ∈ E .

Conversely, if we τA ∈ E , then A ∈ T and so, since there does not exist an arrow A → 2 (we

recall that τA is a precokernel), τA ∈ E . We have shown E = E . Finally, observing that in a

factorization system each class is uniquely determined by the other, we conclude M = M .
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For a given pretorsion theory (T ,F ), we define

E := {f ∈ Arr(C) |F (f) is an isomorphism} and

E ′ := {g ∈ E | every pullback of g is an arrow of E }.

Lemma 4.3.20. Let (T ,F ) be a torsion theory satisfying condition (P2). Then, the inclusion

E ⊆ E ′ holds.

Proof. Since E is closed under pullbacks, showing that E is a subset of E is sufficient to prove

the statement. Let us start with an arrow e : A → 1 ∈ E . We observe that F (A) = 1, since

K[e] = A ∈ T . Therefore, we conclude F (e) = id1, and so e ∈ E . Now, consider an arrow

e : A → B of E , with B ̸= 1. We know that e = precoker(k) and K[e] ∈ T , where k : K[e] → A

is the prekernel of e. We notice that F (K[e]) = 2. This is because K[e] ∈ T , which implies

F (K[e]) ∈ Z . Moreover, since there exists an arrow χ : K[e] → 2 (B ̸= 1), F (K[e]) cannot be

1. Furthermore, having that χ is unique, we conclude that the diagram below is a pushout:

K[e] 2

A B.e

ιB

χ

k ⌟

We can therefore apply F to the above diagram, which yields another pushout (due to the fact

that F preserves colimits):

2 2

F (A) F (B).
F (e)

ιF (B)=F (ιB)F (k) ⌟

In conclusion, as F (e) is the pushout of an isomorphism, it is an isomorphism, too. This implies

that e ∈ E .

The following result is a generalization of Proposition 4.2 of [31].

Lemma 4.3.21. Given a sequence in C

F1 X F2
f g

such that F1, F2 ∈ F and f = preker(g), then X ∈ F .

Proof. Consider the (T ,F )-pre-exact sequence associated with X

T (X) X F (X)

F1 X F2,
f g

εX

∃!φ

ηX
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where φ is induced by the universal property of the prekernel f (in fact gεX ∈ NZ , since it is an

arrow with domain a torsion object and codomain a torsion-free object). Then, φ ∈ NZ because

it is an arrow between a torsion object and a torsion-free object. Consequently, εX ∈ NZ , which

implies that ηX is an isomorphism (i.e. X ∈ F ).

The dual of the previous proposition tells us that, for every sequence

T1 X T2,
f g

if g = precoker(f) and T1, T2 ∈ T , then also X ∈ T .

Finally, we can provide the analogous of Theorem 3.7 in [27]. We write EffDes(C) (resp.

NExtF(C)) for the full subcategory of the category of arrows Arr(C) determined by all effec-

tive descent morphisms (in our case regular epimorphisms) in C (resp. all normal extensions with

respect to ΓF , which is the Galois structure associated with F ).

Theorem 4.3.22. If (T ,F ) is a pretorsion theory in C satisfying our assumptions and such

that the functor F is protoadditive, the following properties hold:

i) NExtF(C) is a reflective subcategory of Arr(C);

ii) normal extensions are stable under composition;

iii) any effective descent morphism f : A → B factors uniquely (up to isomorphism) as a

composite f = me, where e is stably in E and m is a normal extension; moreover, this

factorization coincides with the (E ,M )-factorization of f .

Proof. i) We can follow the same argument that was used in Theorem 3.7 of [27] for the pointed

context.

ii) We consider two normal extensions f : A → B and g : B → C. It is a known and general

fact that gf is an effective descent morphism. We have to prove that gf is normal, i.e. that

K[gf ] ∈ F . If C ̸= 1, we consider the following commutative diagram where the three squares

are pullbacks:

K[α] 2

K[gf ] K[g] 2

A B C.g

⌟

f

α

k′

⌟

⌟

Hence K[α] = K[f ] ∈ F , and so we have a sequence

K[f ] = K[α] K[gf ] K[g]k′ α
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where k′ = preker(α), and the objects K[α],K[g] belong to F ; therefore we can apply Lemma

4.3.21 to get K[gf ] ∈ F . If C = 1, we have g = τB , B = K[g] ∈ F , K[f ] ∈ F , and

K[gf ] = K[τA] = A; again, we can apply Lemma 4.3.21 to the sequence

K[f ] A B,
fk

where k = preker(f). So we get A ∈ F .

iii) Again, we can follow the same argument that was used in Theorem 3.7 of [27] for the pointed

context.

This final result establishes a foundation for future studies on higher-order central extensions.

4.4 Examples

4.4.1 MSet and Fix Points

It is a well-known fact that, for every monoid M , the category MSet of sets with a fixed action

of M is an elementary topos. Clearly, MSet is a two-valued topos (Sub(1) = {1, ∅}). Given an

object X of MSet, we define the set of fix points

Fix(X) := {x ∈ X |mx = x for every m ∈M}.

We observe that, for every arrow f : 1 = {∗} → X in MSet and every m ∈ M , one has

mf(∗) = f(m∗) = f(∗). Then, there is a bijection

MSet(1, X) ∼= Fix(X).

Therefore, the objects of MSet for which there exists a unique arrow 1 → X are precisely the

ones with exactly one fix point. In the light of what has just been said, we define two full

subcategories of MSet whose objects are

F := {X ∈ MSet | Fix(X) = X} and T := {X ∈ MSet | |Fix(X)| ≤ 1}.

From this point on, we will consider as class of zero objects Z := F ∩T = {1, ∅}. In order to

study prekernels and precokernels in MSet, we can apply what we have seen in the first section

of this chapter. Therefore, given an arrow f : A → B (with A ̸= ∅) in MSet, q = precoker(f) is

defined by the following pushout diagram

A B

1 Q[f ].

f

q

⌟
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If A = ∅, we get precoker(∅ → B) = idB . Additionally, since coproducts in MSet are computed

as in Set, we obtain that Q[f ] ∼= B/f(A), where, given an object X of MSet and a subset Y ⊆ X

closed under the action of M , we define X/Y as the MSet obtained just contracting Y to one

point and defining the action of M as the one induced by X. Finally, if there exists a unique

arrow 1 → B, the prekernel k of an arrow f : A→ B is given by the following pullback diagram:

K[f ] 1

A B.
f

k
⌟

Proposition 4.4.1. (F ,T ) is a pretorsion theory in MSet.

Proof. First of all, we consider F ∈ F and T ∈ T . If Fix(T ) ̸= ∅, then every arrow h : F → T

factors as

F T

1

h

since, for every x ∈ F and every m ∈ M , mh(x) = h(mx) = h(x) = y (where y is the only fix

point of T ). If Fix(T ) = ∅, then F must be empty (since every image of a fix element is a fix

element), and so h = ιT ∈ NZ . Hence MSet(F, T ) ⊆ NZ . Now, given an object X of MSet, we

define

F (X) := Fix(X), T (X) := X/Fix(X),

and we have the sequence

F (X) X T (X)
εX ηX

where εX is the inclusion and ηX the quotient projection. Clearly Fix(Fix(X)) = Fix(X) and

|Fix(X/Fix(X))| ≤ 1 (it is exactly 1 when Fix(X) ̸= ∅, and the unique fix point is [x] with

x ∈ Fix(X)). We prove that the sequence above is pre-exact. If Fix(X) ̸= ∅, the following square

(which we know to be a pushout, thanks to the description of precokernels) is a pullback

Fix(X) X

1 X/Fix(X).

ηX

εX

⌟

To show this, we consider an arrow g : Y → X such that ηXg(y) = [x], for an arbitrary x ∈
Fix(X). Then g(y) ∈ Fix(X), and so g restricts to Fix(X); hence we get εX = preker(ηX) and

ηX = precoker(εX). If Fix(X) = ∅, we have the following sequence

∅ X X,
idXιX
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where idX = precoker(ιX) (thanks to the description of precokernels), and ιX = preker(idX)

(since every arrow g ∈ NZ with codomain X must have ∅ as domain, otherwise X would have

at least one fix point).

Proposition 4.4.2. The pretorsion theory (T ,F ) in MSetop satisfies conditions (P1) and (P2).

Proof. To prove the statement we work, dually, in MSet. We recall that both limits and colimits

in MSet are computed as in Set. In general, for every pair A,B of objects of MSet one has

Fix(A + B) = Fix(A) + Fix(B); so condition (P1) trivially holds. In order to prove that also

condition (P2) holds we have to show that the diagram

A 1

A+B 1+B
τA+idB

i1iA

τA

is both a pullback and a pushout and 1+B ∈ T , whenever B is such that Fix(B) = ∅ and

A ̸= ∅. We observe that |Fix(1+B)| = 1 + |Fix(B)| = 1, hence 1+B ∈ T . Moreover, the

square is clearly a pushout. In order to show that it is also a pullback, we consider an arrow

a : X → A+B
X

A 1

A+B 1+B
τA+idB

i1iA

τA

a

τX

such that (τA + idB)(a(x)) = ∗ for every x ∈ X (where ∗ is the unique element of 1). We

observe that Im(a) ⊆ iA(A): if there exists an element x ∈ X such that a(x) ̸∈ iA(A), then

(τA+idB)(a(x)) ∈ iB(B) ⊆ 1+B, but (τA+idB)(a(x)) = ∗ ∈ i1(1). This leads to a contradiction

because 1 and B are disjoint in 1+B. Therefore, we get an arrow α : X → A such that iA(α(x)) =

a(x), for every x ∈ X. Since iA is injective, this arrow α is unique.

Proposition 4.4.3. The pretorsion theory (T ,F ) in MSetop satisfies condition (N).

Proof. To prove the statement we work, dually, in MSet. Given an arrow f : A→ B we consider

A B Q[f ] = B/f(A) T (Q[f ]) = (B/f(A))/Fix(B/f(A))
f q ηQ[f]

and we have to show that ηQ[f ]q is a precokernel. If A = ∅, the assertion is trivial. If A ̸= ∅, we

have that

(B/f(A))/Fix(B/f(A)) ∼= B/(f(A) ∪ Fix(B))
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where the isomorphism is given by φ : (B/f(A))/Fix(B/f(A)) → B/(f(A)∪Fix(B)) induced by

φ : B/f(A) → B/(f(A)∪Fix(B)), where φ([b]) := (b) ([b] denotes the class of b with respect to the

quotient on f(A), while (b) denotes the class of b with respect to the quotient on f(A)∪Fix(B)).

Clearly φ is well defined and surjective. We observe that φ([b]) = φ([c]) implies b, c ∈ f(A) ∪
Fix(B): if b, c ∈ f(A), then [b] = [c]; if b ∈ f(A) and c ∈ Fix(B), then [b] ∈ Fix(B/f(A))

(since every element coming from A via f is a fix point of B/f(A)) and [c] ∈ Fix(B/f(A));

if b, c ∈ Fix(B), then [b], [c] ∈ Fix(B/f(A)). Therefore φ is also injective and T (Q[f ]) is the

precokernel of f(A) ∪ Fix(B) ↪→ B.

We are ready to describe the stable factorization system induced by (T ,F ) on MSetop. In order

to simplify the argument, we will work again in MSet. Recalling what we have studied in the sec-

ond section, we immediately get that E = {e : A → B ∈ Arr(MSet) | e is a prekernel, B/e(A) ∈
T } and M = {m : A → B ∈ Arr(MSet) |B/m(A) ∈ F}. Hence, if we consider an arrow

f : A→ B, the (M ,E )-factorization of f is given by

A B

f(A) ∪ Fix(B),

f

m e

where the morphism m ∈ M is obtained by restricting the codomain of f , while e ∈ E is the

inclusion map. In order to see that e is a precokernel consider the pullback (assume A ̸= 1,

otherwise the statement is trivial)

f(A) ∪ Fix(B) 1

B B/(f(A) ∪ Fix(B)),

te

q

⌟

where t is defined and unique since |Fix(B/(f(A) ∪ Fix(B)))| = 1.

We observe that, in general, the functor F , induced by the pretorsion theory (F ,T ) in MSet,

does not preserve colimits. For example, if we consider an object A of MSet such that A ̸= ∅
and Fix(A) = ∅, then τA : A→ 1 is an epimorphism but F (τA) : ∅ → 1 is not an epimorphism.

Proposition 4.4.4. The reflector F induced by the pretorsion theory (T ,F ) in MSetop is

protoadditive.

Proof. Again, we work in MSet. Clearly F (∅) = ∅ and F (1) = 1. We prove that F preservers

the pushouts of split monomorphisms. Hence, we consider the following pushout:

X Y

Z P,
iZ

iY

s

p

f ⌟
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where ps = idX . We define on Y the following relation: y ∼ w if and only if y = w or there exist

x, t ∈ X such that y = s(x), w = s(t), and f(x) = f(t). Let us prove that ∼ is an equivalence

relation preserved by the action of M . It is clear that ∼ is both reflexive and symmetric. We

deal with the transitivity: suppose y ∼ w and w ∼ r; clearly if y = w or w = r the property

holds, so suppose y = s(x), w = s(t) with f(x) = f(t) and w = s(t), r = s(q) with f(t) = f(q);

since s is injective we deduce t = t, and so y ∼ r. Finally, if y ∼ w and y ̸= w then y = s(x),

w = s(t) with f(x) = f(t) and, therefore, my = s(mx), mw = s(mt) with f(mx) = f(mt), i.e.

my ∼ mw. We prove that, in the category Set, the following square is a pushout:

X Y

Z (Z \ f(X)) + (Y/ ∼),

s

f i2

i1

where i1(z) = z if z ∈ Z \ f(X), i1(z) = [s(x)] if z = f(x) (if f(x1) = f(x2) then, by definition,

s(x1) ∼ s(x2)), and i2(y) = [y]. The square is commutative: i1f(x) = [s(x)] = i2(s(x)).

Now, let us consider two arrows a : Z → A and b : Y → A such that af = bs; we define

φ : (Z \ f(X)) + (Y/ ∼) → A by putting

φ(e) =

a(z) if e = z ∈ Z \ f(X)

b(y) if e = [y] ∈ Y/ ∼ .

φ is well defined: if [y] = [w] and y ̸= w, then y = s(x), w = s(t) and f(x) = f(t), hence

b(y) = bs(x) = af(x) = af(t) = b(w). The uniqueness is guaranteed because i1, i2 are jointly

epimorphic (i1(Z) ⊇ Z \ f(X) and i2(Y ) = Y/ ∼). With the action of M induced by i1

and i2 we deduce that the square above is a pushout also in MSet. Now, we observe that

Fix((Z \ f(X)) + (Y/ ∼)) = Fix(Z \ f(X)) + Fix(Y/ ∼). So, we study the set Fix(Y/ ∼). We

consider an element [y] ∈ Fix(Y/ ∼), such that y /∈ Fix(Y ); then, for every m ∈ M such that

my ̸= y, since my ∼ y, there exists an element x ∈ X such that y = s(x) (and, since s is

injective, this element x does not depend on m) and an element x′ ∈ X such that my = s(x′)

with f(x) = f(x′). But s is injective, hence, from s(x′) = my = ms(x) = s(mx), we deduce

x′ = mx and then f(x) = mf(x). Moreover, for every element m ∈ M such that my = y, we

get ms(x) = s(x) and, applying p, we obtain mx = x and so mf(x) = x. In other words, if

y /∈ Fix(Y ) there exists a unique x ∈ X such that y = s(x) and f(x) ∈ Fix(Z). We are ready to

prove that the commutative diagram below is a pushout (i.e. F is protoadditive)

Fix(X) Fix(Y )

Fix(Z) Fix(Z \ f(X)) + Fix(Y/ ∼),
i1

i2

s

f
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where, with a slight abuse of notation, we have used the same symbols to indicate an arrow and its

image through F . We consider two arrows in F (i.e. maps) a : Fix(Z) → A and b : Fix(Y ) → A

such that af = bs, and we define φ : Fix(Z \ f(X)) + Fix(Y/ ∼) → A by putting

φ(e) =


a(z) if e = z ∈ Fix(Z \ f(X))

b(y) if e = [y],with y ∈ Fix(Y )

af(x) if e = [y],with y /∈ Fix(Y ),

where the third part makes sense because y = s(x) and f(x) ∈ Fix(Z). In order to show that

φ is well defined we consider [y], [w] ∈ Fix(Y/ ∼) such that [y] = [w] and we distinguish three

cases:

• y, w ∈ Fix(Y ) (with y ̸= w, otherwise the assertion easily holds): then there exist x, t ∈ X

such that y = s(x), w = s(t), and f(x) = f(t); hence, applying p, we deduce x, t ∈ Fix(X),

and then φ([y]) = b(y) = bs(x) = af(x) = af(t) = bs(t) = b(w) = φ([w]).

• y ∈ Fix(Y ) and w /∈ Fix(Y ): then there exist x, t ∈ X such that y = s(x) (and so, since

y ∈ Fix(Y ), x ∈ Fix(X)), w = s(t), f(t) ∈ Fix(Z), and f(x) = f(t). Since x ∈ Fix(X)

we can use the commutativity of the square to get bs(x) = af(x), and so φ([y]) = bs(x) =

af(x) = af(t) = φ([w]).

• y, w /∈ Fix(Y ): then there exist x, t ∈ X such that y = s(x), w = s(t), f(x), f(t) ∈ Fix(Z),

and f(x) = f(t); therefore φ([y]) = af(x) = af(t) = φ([w]).

Finally, i1, i2 are jointly epimorphic. To show it we deal with the only non-trivial case: we

consider an element [y] ∈ Fix(Y/ ∼) such that y /∈ Fix(Y ); therefore there exists x ∈ X such

that y = s(x) and f(x) ∈ Fix(Z), and then i1(f(x)) = [s(x)] = [y]. Hence φ is unique and F is

protoadditive.

Thanks to the previous result we can describe the central extensions for ΓF , i.e. the Galois

structure induced by (T ,F ) in MSetop. We apply Theorem 4.3.13 and we get that a regular

epimorphism (i.e. an effective descent morphism in a Barr-exact context) of MSetop is a central

extension if and only if K[f ] is an object of F . If we dually translate what has just been said we

get that a regular monomorphism f in MSet, seen as an arrow of MSetop, is a central extension

for ΓF if and only if Q[f ] ∈ F (where Q[f ] is the codomain of the precokernel of f in MSet).

Finally, recalling that limits in MSet are computed as in Set, we get that a regular epimorphism

f of MSetop is a central extension if and only if f : A→ B, considered as an arrow of MSet, is a

monomorphism and B/f(A) ∈ F (or, equivalently, if B = Fix(B) ∪ f(A)).
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4.4.2 Double Negation in Heyting Algebras

We recall that a Heyting algebra is an algebraic structure (H,∨,∧, 1, 0,⇒) such that (H,∨,∧, 1, 0)

is a bounded lattice and the binary operation ⇒ satisfies

x ∧ y ≤ z if and only if x ≤ y ⇒ z.

Given a Heyting algebra H, let H¬¬ denote the set of regular elements of H. An element x ∈ H

is said to be regular if ¬¬x = x (recalling that, in general, ¬x := x⇒ 0). It is a known fact that

(H¬¬,∨¬¬,∧, 0, 1,⇒) is a Boolean algebra, where

x ∨¬¬ y := ¬(¬x ∧ ¬y).

Therefore, this construction defines a functor

Heyt Boole

H H¬¬

L L¬¬,

f F (f)

F

where F (f) is simply the restriction of f to H¬¬. Since it is true that ¬¬(¬¬x) = ¬¬x, we can

define the function
¬¬ : H → H¬¬

x 7→ ¬¬x.

It is known that this map is a surjective morphism of Heyting algebras. Specifically, this mor-

phism is the H-component of the unit of the adjunction F ⊣ i, where i : Boole → Heyt is the

inclusion functor.

A Heyting algebra H is pseudo-deterministic (we thank Mariano Messora for the suggestion of

the name) if, for every x ∈ H, either ¬x = 1 or ¬x = 0. Given a Heyting algebra H, we define

T (H) := {x ∈ H | ¬x = 0 or ¬x = 1}. We recall that, in every Heyting algebra, the equations

x ⇒ 1 = 1, ¬(x ∧ y) = x ⇒ ¬y, ¬(x ∨ y) = ¬x ∧ ¬y, and ¬(x ⇒ y) = ¬¬x ∧ ¬y hold (a proof

of these identities can be found in any book that deals with Heyting algebras and intuitionistic

logic). These identities can be used to prove that T (H) is a Heyting algebra whose operations

are induced by H. In particular, we get

¬(x ∨ y) =

1 if ¬x = 1,¬y = 1

0 otherwise
¬(x ∧ y) =

0 if ¬x = 0,¬y = 0

1 otherwise

¬(x⇒ y) =

1 if ¬x = 0,¬y = 1

0 otherwise.
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So, T (H) is a pseudo-deterministic Heyting algebra. We denote by PD the full subcategory

whose objects are pseudo-deterministic Heyting algebras. Moreover, the assignment described

above establishes a functor

Heyt PD

H T (H)

L T (L),

f T (f)

T

where T (f) is given by the restriction of f to T (H). It is easy to observe that the inclusions of

T (H) in H are the H-components of the counit of the adjunction j ⊣ T , where j : PD → Heyt is

the inclusion functor.

Since, in every Boolean algebra, ¬x = 0 implies x = 1 and ¬x = 1 implies x = 0, we deduce that

Boole∩PD = {1,2}.

From this point on, we will consider as class of zero objects Z := Boole∩PD = {1,2}

Proposition 4.4.5. (PD,Boole) is a pretorsion theory for Heyt. Moreover, this pretorsion theory

satisfies both conditions (U) and (N).

Proof. We start by showing that, for any Heyting algebra H, F (H) = 1 holds if and only if

H = 1. It is evident that H = 1 implies F (H) = 1. Conversely, if F (H) = 1, this implies that

¬¬1 = ¬¬0 in H, and as a result, 0 = 1. Hence, if we can prove that (PD,Boole) constitutes a

pretorsion theory, it will inevitably fulfill condition (U). Let us consider a morphism of Heyting

algebras f : T → F , where T is an object of PD and F is an object of Boole. Let x ∈ T be a

fixed element. If ¬x = 0, then 0 = f(¬x) = ¬f(x). Since F is a Boolean algebra, we deduce

that f(x) = 1. Similarly, if ¬x = 1, we get f(x) = 0. Thus, f factors through an object of Z .

We now fix a Heyting algebra H ̸= 1 and show that the inner commutative square below is both

a pullback and a pushout:

K

T (H) 2

H F (H)

M,

χ

ι

ηH

εH
h

l

g

f
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where εH is the inclusion, ηH denotes the double negation map, and χ is defined as follow:

χ(x) =

0 if ¬x = 1

1 if ¬x = 0.

Simple calculations allow us to verify that χ is a morphism of Heyting algebras. Let us consider

two morphisms of Heyting algebras, h : K → H and l : K → 2, satisfying the condition ηHh = ιl.

By observing that ¬¬h(k) = ιl(k), for every k ∈ K, and recalling that in any Heyting algebra

¬¬¬x = ¬x, we can infer that ¬h(k) can only be equal to 0 or 1. Thus, h factors through T (H),

and the uniqueness of this factorization is ensured since εH is a monomorphism. Therefore,

the given square is a pullback. We now fix two morphisms of Heyting algebras, f : H → M

and g : 2 → M , such that fεH = gχ. We observe that the kernel pair of ηH is given by

Eq(ηH) = {(x, y) ∈ H | ¬¬x = ¬¬y}. Moreover, since ¬¬(x ⇒ y) = ¬¬x ⇒ ¬¬y, we deduce

that, if (x, y) ∈ Eq(ηH), then ¬¬(x ⇒ y) = 1 and ¬¬(y ⇒ x) = 1. Hence ¬(x ⇒ y) = 0

and ¬(y ⇒ x) = 0, so we see that x ⇒ y and y ⇒ x are elements of T (H). Clearly, we have

χ(x ⇒ y) = 1 and χ(y ⇒ x) = 1. By commutativity, we deduce that f(x ⇒ y) = 1 (hence

f(x) ≤ f(y)) and f(y ⇒ x) = 1 (hence f(y) ≤ f(x)). Finally, since ηH is surjective, and

therefore the coequalizer of its kernel pair, there exists a unique morphism of Heyting algebras

f : F (H) → M , induced by the universal property of the coequalizer, such that fηH = f . It is

also trivially true that fχ = g. Therefore, the square is a pushout. So, given a Heyting algebra

H, the associated pre-exact sequence, with a torsion object on the left and a torsion-free object

on the right, is the following:

T (H) H F (H).
εH ηH

To conclude, we show that this pretorsion theory satisfies condition (N). Let us consider the

following diagram:

T (K[f ]) K[f ] H L,ε k f

where k = preker(f) and ε = εK[f ]. If L = 1, the statement is trivial; hence, let us assume L ̸= 1.

In order to prove that condition (N) holds, we show that the following square is a pullback:

Y

T (K[f ]) 2

H H/(Eq(ηH) ∩ Eq(f)),q

χ

ιkε
a

b

where Eq(ηH) ∩ Eq(f) = {(x, y) ∈ H ×H | ¬¬x = ¬¬y and f(x) = f(y)} and q is the quotient

projection. Let us consider two arrows a : Y → H and b : Y → 2 such that qa = ιb. It can be
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observed that, for every y ∈ Y , if b(y) = 0, then by commutativity, qa(y) = 0, which implies

that ¬¬a(y) = 0 and fa(y) = 0. Recalling that K[f ] = {x ∈ H | f(x) = 0 or f(x) = 1}, we

can deduce that a(y) ∈ T (K[f ]). By a similar reasoning, if b(y) = 1, then a(y) ∈ T (K[f ])

as well. Thus, we can conclude that a factors through T (K[f ]), and the uniqueness of this

factorization is guaranteed by the fact that kε is a composition of monomorphisms, and therefore

a monomorphism itself.

Proposition 4.4.6. The reflector F is a localization (i.e. it preserves all finite limits). Hence,

in particular, F is protoadditive.

Proof. Clearly, F preserves the terminal object 1. So, it suffices to prove that F preserves every

pullback. Consider the following pullback in Heyt:

H ×L K K

H L.
f

gπH

πK

⌟

Our goal is to show that (H ×L K)¬¬ = H¬¬ ×L¬¬ ×K¬¬. Let (h, k) ∈ (H ×L K)¬¬. Then we

have (h, k) = ¬¬(h, k) and f(h) = g(k). This implies that ¬¬h = h (i.e. h ∈ H¬¬) and ¬¬k ∈ K

(i.e. k ∈ K¬¬). Therefore, (h, k) ∈ H¬¬ ×L¬¬ ×K¬¬. Conversely, let (h, k) ∈ H¬¬ ×L¬¬ ×K¬¬.

Then we have ¬¬h = h, ¬¬k = k, and f(h) = g(k). It follows that (h, k) = ¬¬(h, k) and hence

(h, k) ∈ (H ×L K)¬¬. Therefore (H ×L K)¬¬ = H¬¬ ×L¬¬ ×K¬¬, as required.

We are now ready to investigate the central extensions pertaining to the Galois structure defined

by the adjunction F ⊣ i. As we have shown, an effective descent morphism f : H → L in Heyt

(i.e. a surjective map) is a central extension if and only if K[f ], which is defined as the set

{x ∈ H | f(x) = 0 or f(x) = 1}, is a Boolean algebra. In simpler terms, a surjective map is

central if and only if its prekernel is an object of Boole. Furthermore, since the reflector F is a

localization, it follows that an extension is central if and only if it is trivial. This result can also

be seen as a consequence of Remark 4.6 in [38].

We now turn our attention to the stable factorization system induced by the pretorsion theory

(PD,Boole). Thanks to the results obtained in this chapter, we get E = {e ∈ Arr(Heyt) | e
is a precokernel and K[e] ∈ PD} and M = {m ∈ Arr(Heyt) |K[m] ∈ Boole}. Given an arrow

f : H → L in Heyt, we can construct the following factorization:

H L

H,

f

e f

where H := H/(Eq(f) ∩ Eq(ηH)), e is the quotient projection, and f([x]) := f(x) for every
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[x] ∈ H. It is not difficult to see that e is the precokernel of the inclusion of K[e] = {x ∈
H | f(x) = 0,¬x = 1} ∪ {x ∈ H | f(x) = 1,¬x = 0}, and that K[e] ∈ PD, being a subset of

T (H). Moreover, we observe that K[f ] ∈ Boole. To see this, consider an element [x] ∈ K[f ].

We need to show that [x] = ¬¬[x] to prove that K[f ] is a Boolean algebra. Suppose f([x]) = 0;

the argument can be adapted to the case f([x]) = 1. To conclude that [x] = ¬¬[x], we need to

prove that f(x) = f(¬¬x) and ¬¬x = ¬¬¬¬x. The second equality always holds, while the first

is true because f(x) = 0. Thus, the proposed factorization is precisely the (E ,M )-factorization.

4.4.3 Contraction of Vertices in sSet

We recall that ∆ is the category whose objects are the totally ordered sets [n] := {0, 1, 2, . . . , n},

where the order is induced by the usual one of N, and whose morphisms are the order-preserving

functions. A simplicial set is a functor X : ∆op → Set. The category of simplicial sets, denoted

by sSet, is defined to have the simplicial sets as objects, and the natural transformations between

them as morphisms. For every natural number n and every simplicial set X, we define Xn :=

X([n]).

A simplicial set X can be seen as family of sets Xn for each non-negative integer n, and two

sets of functions di : Xn → Xn−1 and si : Xn → Xn+1 for every 0 ≤ i ≤ n, such that specific

conditions are satisfied for each n:

didj = dj−1di, i < j

sisj = sjsi−1, i > j

disj =


sj−1di, i < j

id, i = j, j + 1

sjdi−1, i > j + 1.

This is the standard way to write the data of a simplicial set following [32]. The elements of X0

are called the vertices. Given that each si is an injective map, to simplify the notation, we will

assume that these maps are inclusion maps.

Let S denote the terminal object of sSet, and V denote the initial object. It is clear that

S = ∆(−, [0]), which implies that Sn = {∗}, for every natural number n. Furthermore, Vn = ∅
for every natural number n. We observe that sSet is a two-valued elementary topos. Indeed, if

we consider a simplicial set X ⊆ S, then either Xn = {∗} for all n ∈ N, or there exists a natural

number n such that Xn = ∅. However, in the latter case, it follows that Xn = ∅ for all n ∈ N,

and hence X = V . Therefore, we have Sub(S) = {S, V }, as desired.
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We observe that the Yoneda Lemma implies

sSet(S,X) = sSet(∆(−, [0]), X) = X0

for every simplicial set X. Therefore, the simplicial sets for which there exists a unique arrow

S → X are precisely those such that |X0| = 1. We now define two full subcategories of sSet

whose objects are:

F := {X ∈ sSet |Xn = X0, X(f) = idX0
for every n ∈ N, f ∈ Arr(∆)}

and

T := {X ∈ sSet | |X0| ≤ 1}.

Given a simplicial set X, we define F (X) as the subobject of X such that F (X)n = X0 for every

n ∈ N. So, we have F (X) ∈ F .

From this point on, we will consider as class of zero objects Z := F ∩T = {S, V }.

Proposition 4.4.7. (F ,T ) is a pretorsion theory in sSet.

Proof. Let us consider an arrow f : P → T in sSet, where P is an object of F and T is an object

of T . If T = V , then clearly f factors through an object of Z . If T ̸= V , then f0(P0) = T0 = {∗}.

Moreover, by naturality, the following diagram commutes:

P0 T0 = {∗}

P0 T1.

f0

f1

Thus, f1(P0) = {∗}. By iterating this reasoning, we deduce that fn(P0) = {∗} for every natural

number n. Therefore, f factors through S. Furthermore, we define the simplicial set morphism

εX : F (X) → X, where (εX)n is the inclusion of X0 in Xn. Let us assume that X ̸= V and

construct T (X) through the following pushout diagram:

F (X) S

X T (X).

εX

ηX

t

⌟

Recalling that limits and colimits in sSet are computed, level-wise, as in Set, we deduce that

T (X)0 = X0/X0 = {∗} and, therefore, T (X) ∈ T . We now show that the above square is also
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a pullback. To this end, let α : Y → X be a morphism of simplicial sets such that ηXα = tτY :

Y

F (X) S

X T (X).

εX

ηX

t
α

τY

Since, for every n ∈ N and for every y ∈ Yn, we have (ηX)n(αn(y)) = tn(∗) = ∗, it follows that

αn(y) ∈ X0 ⊆ Xn. Hence, α restricts to an arrow on F (X) and the square is indeed a pullback.

Therefore, we have shown that εX is the prekernel of ηX , and that ηX is the precokernel of εX .

Finally, if X = V , we clearly have F (X) = V , and we define T (X) := V .

We observe that the pretorsion theory (T ,F ) in sSetop satisfies condition (U). Indeed, if F (X) =

V (recall that V is the terminal object in sSetop), then X0 = ∅, and thus X = V . Moreover,

we observe that F preserves pullbacks in sSetop. To see this, we work dually and we show that

F preserves pushouts in sSet. Since pushouts in sSet are computed level-wise as in Set, and

F (X) = X0 for every simplicial set X, the claim follows easily. In particular, F is protoadditive,

considered as functor on sSetop. Finally, we prove that (T ,F ) satisfies condition (N). Consider

a morphism of simplicial sets f : X → Y , where X ̸= V , and define Q[f ] through the following

pushout:

X 1

Y Q[f ].

f

q

⌟

We need to prove that ηQ[f ]q is a precokernel:

X Y Q[f ] T (Q[f ]).
f q ηQ[f]

We observe that T (Q[f ]) = (Yn/fn(Xn))/(Y0/f0(X0)), and applying a similar reasoning to the

one seen for the case of MSet, we deduce that Yn/(Y0 ∪ fn(Xn)) ∼= (Yn/fn(Xn))/(Y0/f0(X0)).

Therefore, we conclude that ηQ[f ]q is the precokernel of the inclusion F (Y ) ∪ f(X) ↪→ Y (where

(F (Y )∪f(X))n := Y0∪fn(Xn) for every natural number n). Moreover, if X = V , then Q[f ] = Y ,

q = idY , and ηQ[f ] = ηY . Thus, in this case ηQ[f ]q = ηY , which is a precokernel by construction.

We can now describe the stable factorization system induced by (T ,F ) on sSetop. To simplify

the argument, we will follow our discussion in the context of sSet. We have E = {e : X → Y ∈
Arr(sSet) | e is a prekernel, and Y/e(X) ∈ T }, and M = {m : X → Y ∈ Arr(sSet) |Y/m(X) ∈
F}, where (Y/e(X))n := Yn/en(Xn) and (Y/m(X))n := Yn/mn(Xn), for every natural number

n. Therefore, as previously observed in the case of MSet, the (M ,E )-factorization of an arrow
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f : X → Y is given by:

X Y

f(X) ∪ F (Y ),

f

em

where the morphism m ∈ M is obtained by restricting the codomain of f , while e ∈ E is, level-

wise, the inclusion map.

Finally, we can characterize the central extensions for ΓF , which is the Galois structure induced

by (T ,F ) in sSetop. Theorem 4.3.13 implies that a regular epimorphism of sSetop is a central

extension if and only if K[f ] is an object of F . In the dual perspective, we can say that a regular

monomorphism f in sSet, viewed as an arrow of sSetop, is a central extension for ΓF if and only if

Q[f ], which is the codomain of the precokernel of f in sSet, belongs to F . Moreover, since every

monomorphism in sSet is regular, we can conclude that a regular epimorphism f in sSetop is a

central extension if and only if f : X → Y , considered as an arrow in sSet, is a monomorphism

and Y/f(X) ∈ F , where Y/f(X) is the simplicial set defined by (Y/f(X))n := Yn/fn(Xn), for

every natural number n. Equivalently, if Yn = Y0 ∪ fn(Xn) for every natural number n.
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