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A B S T R A C T

The rise of IT-dependent operations in modern organizations has heightened their vulnerability to cyber-
attacks. Organizations are inadvertently enlarging their vulnerability to cyber threats by integrating more
interconnected devices into their operations, which makes these threats both more sophisticated and more
common. Consequently, organizations have been compelled to seek innovative approaches to mitigate the
menaces inherent in their infrastructure. In response, considerable research efforts have been directed towards
creating effective solutions for sharing Cyber Threat Intelligence (CTI). Current information-sharing methods
lack privacy safeguards, leaving organizations vulnerable to proprietary and confidential data leaks. To tackle
this problem, we designed a novel framework called SeCTIS (Secure Cyber Threat Intelligence Sharing),
integrating Swarm Learning and Blockchain technologies to enable businesses to collaborate, preserving the
privacy of their CTI data. Moreover, our approach provides a way to assess the data and model quality and the
trustworthiness of all the participants leveraging some validators through Zero Knowledge Proofs. Extensive
experimentation has confirmed the accuracy and performance of our framework. Furthermore, our detailed
attack model analyzes its resistance to attacks that could impact data and model quality.
1. Introduction

With the advent of Industry 5.0, organizations tend to include
smart technology in their systems with the objective of delegating
repetitive and time-consuming activities to support devices, such as
cobots or smart objects, and digital twins. As a consequence, the attack
surface and the potential harm to the safety of cyber–physical systems
is expanding exponentially [1]. Indeed, as reported by Parachute,1
the year 2022 saw a significant resurgence in malware attacks, with
the number soaring to an astonishing 2.8 billion. Moreover, the Anti-
Phishing Working Group (APWG)2 reported that the second half of
2023 alone saw five million phishing attacks, and from March to May
2023, threat actors initiated an average of 11.5 attacks per minute, in-
corporating 1.7 newly developed malware samples per minute. Hence,
in the event of a cyber incident, having access to timely and relevant
threat intelligence can greatly aid in reaction and mitigation efforts. It
can provide valuable context about the attacker’s Tactics, Techniques,

∗ Corresponding author.
E-mail addresses: dincyrarikkat@cusat.ac.in (D.R. Arikkat), mert.cihangiroglu01@universitadipavia.it (M. Cihangiroglu), mauro.conti@unipd.it (M. Conti),

rafidharehimanka@cusat.ac.in (Rafidha Rehiman K.A.), serena.nicolazzo@unimi.it (S. Nicolazzo), antonino.nocera@unipv.it (A. Nocera), vinod.p@cusat.ac.in,
vinod.puthuvath@unipd.it (Vinod P.).

1 https://parachute.cloud/cyber-attack-statistics-data-and-trends
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and Procedures (TTPs), helping organizations prevent and remediate
the incident more effectively.

In this context, Cyber Threat Intelligence (CTI, hereafter) has
emerged as a powerful tool to gain knowledge and insights about cyber
threats and adversaries. CTI refers to systematically collecting, analyz-
ing, and interpreting data related to vulnerabilities, threat reports, and
attack trends observed across various sectors. CTI enables industries to
understand the evolving threat landscape better, anticipate potential
cyberattacks proactively, and carry out possible defenses [2].

In the pervasive environment, connected smart objects and sensors
produce an enormous amount of CTI in multiple forms and types.
On the other hand, organizations cannot rely solely on their inter-
nally generated CTI to protect themselves; they need to benefit from
the knowledge coming from external sources such as network traffic,
hacker forums, APT reports, technical blogs, etc. CTI Sharing plays
a crucial role in enabling organizations to disseminate both raw and
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Future Generation Computer Systems 164 (2025) 107562 
processed information. This helps organizations access external threat
ntelligence and enhance their collective ability to defend against cyber
hreats [3].

However, in practice, CTI Sharing is challenging due to a variety of
actors [4]. First, participants may not want to disclose their identity
o avoid damage to the organization’s reputation. Unfortunately, this

implies that if the source of certain data is unknown, the credibility
of shared information is harmed, and trusting relationships among the
participating entities cannot be easily established. Another factor linked
to entities’ trustworthiness that may discourage collaboration is the
problem of incomplete or false information. This can contaminate or
mislead the algorithms or the results of analysis. Furthermore, not
all organizations are inclined to invest additional resources both for
nteroperability and to ensure that the shared CTI can be automated and
asily reusable by the participating entities. Moreover, legal questions
hould be considered if the information to be shared contains mate-
ials protected under data protection and privacy law, antitrust law,
r intellectual property law. For instance, in Germany, IP addresses
re considered personal information; therefore, any disclosure of CTI,

including them, must comply with German privacy laws [5]. Instead,
in the UK, they can be freely shared. These legal and regulatory
obligations can pose a significant barrier to international business
cooperation. Although several solutions exist to provide organizations
with an environment for sharing and consuming CTI [6,7], they are not
esigned to assess the privacy and trust of the participants [5].

We propose a novel framework, Secure CTI Sharing (SeCTIS), to
ontribute to this setting. SeCTIS is an architecture that allows organi-
ations to share CTI data in a privacy-preserving way. Our framework
s the first that collaboratively trains Machine Learning (ML) models
n CTI data and assesses both the quality of data and models and
he trustworthiness of all participants. To do this, SeCTIS integrates
everal technologies, such as Swarm Learning (SL), Blockchain Smart
ontracts, and Zero Knowledge Proof mechanisms.

SL has been recently introduced [8] as a novel paradigm for collab-
orative and privacy-preserving Machine Learning. Similar to Federated
Learning (FL), SL participants jointly train a global model and update
their local model contribution. Instead of relying on a single aggregator,
SL leverages a Blockchain to coordinate the model aggregation and
ecurely onboard members. The aggregation of local model updates
nd the subsequent alignment of the local nodes are handled in a

decentralized manner. In our framework, the different organizations
represented by Swarm Edge Nodes compose a Swarm Network. They
aim to collaboratively train a Global Model using their private CTI data
and build the Local Models independently without revealing them to
other participants. Only model parameters are shared via the Swarm
Network. In this way, data security and confidentiality are preserved.

SeCTIS also includes some additional steps to assess the quality
of the employed CTI data and model and compute the participants’
trustworthiness. For this, in each iteration, a set of validators nodes is
randomly selected among the participants to verify the performance of
ll the local model updates before their aggregation. To protect against
alicious actions from the validators, a Zero-Knowledge Proof (ZKP,
ereafter) mechanism is also employed. Finally, an elected Swarm
ggregator computes the reputation score of all local models using
alidator nodes and aggregates the parameter updates from the top-k
ocal models. Subsequently, the aggregated Global Model is uploaded
nto IPFS and sent back to SL nodes to start the next iteration and
ontinue until convergence. Through this mechanism, the quality of
he model and the CTI data is assessed. SeCTIS also evaluates the
eputation of participating organizations during the SL model training.
rganizations’ reputation is estimated by considering the quality of

heir contribution (local model updates) during each SL iteration.
Hence our framework significantly advances traditional CTI sharing

methods in several aspects. Indeed, combining Swarm Learning with
Blockchain and ZKPs creates a robust system where (i) data privacy
is guaranteed (through the use of Swarm Learning), and both (ii) the
2 
quality of the model is assessed and (iii) trust among participants is
nsured (thanks to Blockchain and ZKPs). Moreover, minimizing data
xposure and ensuring secure, verifiable transactions address many of
he limitations of existing regulatory frameworks that demand strin-
ent data privacy and security measures. Hence, our comprehensive
pproach can significantly improve collective cybersecurity efforts,

making organizations more resilient against threats. To the best of our
knowledge, no current frameworks provide the possibility to keep data
private during CTI sharing, maintaining model quality and assessing
participants’ trustworthiness at the same time.

In summary, the main contributions of this paper, intended to solve
he major challenges in CTI Sharing, are as follows:

• Privacy-preserving CTI data sharing: our framework adopts an
SL Network to generate a CTI Model in a distributed manner
collaboratively. Since SL does not require data to be shared with
a central entity, this decentralization protects data privacy as the
raw data never leaves the local node, ensuring the confidentiality
of each organization’s data.

• Trust among participants and quality of CTI data: SeCTIS
provides a process based on validator nodes to assess CTI data
and model quality using reputation scores. In addition, through
the ZKP mechanism, validator activities can be verified ensuring
that malicious entities cannot compromise the system. These
mechanisms make SeCTIS also a collaborative trust framework.

• Interoperability and automation: SeCTIS provides a middle-
ware that can manage heterogeneous data formats and establish
a unique methodology to be employed. Indeed, only model pa-
rameters (weights and biases) are shared, not the raw data.
This decoupling allows systems with different data formats and
structures to contribute to the collective model without compat-
ibility issues. Moreover, different ML frameworks can be used
to train local models as long as they can produce compatible
model parameters for aggregation, thus enhancing interoperabil-
ity across different platforms and tools. Furthermore, automation
is achieved through both the decentralized and autonomous
model training and the automated validation of participants, thus
reducing the need for manual oversight and intervention.

• Scalability: SeCTIS is also a scalable solution to secure CTI
sharing, indeed it leverages some mechanisms to improve the
efficiency of the employed Blockchain. Moreover, the workload
of training models is distributed across multiple nodes which
reduces the burden on any single entity and allows the network
to expand as needed.

• Legal liabilities: Keeping CTI data confidential may reduce legal
risks concerning information disclosure, making organizations
more willing to participate in SL-sharing schemes. By exchanging
only the model updates or gradients, the amount of informa-
tion that could potentially reveal sensitive data is minimized.
Moreover, SeCTIS minimizes legal liabilities because it leverages
Zero-Knowledge Proofs for verification without data exposure, en-
couraging broader participation by lowering legal barriers. Also,
the use of Blockchain provides transparency and accountability
through the shared ledger to assess the trustworthiness of all the
steps of the framework for the different participants. All these
features collectively help organizations mitigate the legal risks
associated with data sharing and collaborative learning.

Our paper is organized as follows. Section 2 describes the main
orks related to our approach. Section 3 delves into the details about

CTI, Blockchain, Federated Learning, Swarm Learning, and Zero-
Knowledge Proof concepts that are essential to the understanding of our
olution. Section 4 describes the main components of our framework

and the steps we performed to secure CTI Sharing. In Section 5, we
present our attack model, demonstrating our approach as robust to
possible attacks against data and model quality. Section 6 deals with the
experimental campaign used to assess the performance of our solution,
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Future Generation Computer Systems 164 (2025) 107562 
including the setup, results, and possible limitations of our system.
An analysis of the security of validators’ operations through ZKP is
reported in Section 7. Section 8, instead, discusses some example attack
scenarios and analyze the behavior of our solution. The performance
impact of the inclusion of ZKP in our solution is evaluated in Section 9.
Finally, Section 11 concludes the work and presents possible future
irections.

2. Related work

In this section, we describe the related systems currently adopted to
hare CTI data and their characteristics.

Although lots of organizations still rely on informal means (i.e.,
hone calls or emails) for sharing CTI-related information, recently,
here has been a growing interest in dedicated platforms to facilitate
he automated or semi-automated sharing of CTI data inside connected
ommunities [9]. Threat Intelligence Platforms (TIPs, hereafter) are

specialized software that helps industries collect and analyze real-time
hreat information from various sources to support defensive tactics.

hile numerous TIPs are available in the market, most are offered
nder commercial licenses. For instance, VirusTotal3 is one of the

leading CTI service able to analyze suspicious files, domains, IPs, and
URLs to detect malware and other breaches, produce threat reports,
and automatically share them with the security community. Another
similar open-source solution, known as MISP (Malware Information
haring Platform) [6], aims to gather, store, and distribute cyberse-
urity IoCs and CTI reports, both within the security community and
eyond. MISP offers a range of features, such as an indicator database,
utomated correlation, sharing capabilities, a user-friendly interface,
nd compatibility with various data formats and standards.

The authors of [10] assess nine TIPs such as ThreatStream,4
ThreatQ,5 ThreatConnect,6 Open Threat Exchange (OTX),7 MISP, IBM
X-Force Exchange,8 Falcon X Intelligence Crowdstrike,9 Collective In-
elligence Framework (CIF),10 and Collaborative Research into Threats
CRITs)11 by examining how they align with the CTI life cycle. Their

investigative case studies uncovered that the current focus of these
latforms, similar to the ones described previously, is primarily on the
re-processing and dissemination stages.

However, Jollès et al. [7] analyzed ThreatFox,12 a free platform for
IoCs Sharing similar to VirusTotal and MISP. Their findings revealed
that building collaborative cybersecurity on an established network of
trust is a crucial dynamic for this kind of platform.

A similar platform called ETIP (Enriched Threat Intelligence Plat-
orm) [11] focuses on the collection and processing of structured data

sourced from external sources, encompassing OSINT feeds, along with
information originating from an organization’s network infrastructure.
ETIP includes the following components: (i) an input module responsi-
ble for the collection and standardization of IoCs from OSINT feeds and
the monitoring infrastructure; (ii) an operational module, which pro-
duces enriched IoCs and evaluates threat data using a threat score; and
(iii) an output module for the presentation of the outcomes and their
sharing with external entities to strengthen cybersecurity defenses. This
platform eliminates duplicate IoCs, creates composed IoCs, and assigns
a threat score to each IoC to help Security Operations Center (SOC)
analysts prioritize security incident investigations.

3 https://www.virustotal.com
4 https://api.threatstream.com/
5 https://www.threatq.com/
6 https://threatconnect.com/
7 https://otx.alienvault.com/
8 https://exchange.xforce.ibmcloud.com/
9 https://go.crowdstrike.com/

10 https://csirtgadgets.com/collective-intelligence-framework
11 https://crits.github.io/
12 https://threatfox.abuse.ch
 l
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Haque et al. [12] underline the significance of adopting an auto-
mated strategy for sharing CTI while emphasizing the effectiveness of
Relationship-Based Access Control for facilitating this sharing. Their
pproach aims to identify, generate, and disseminate structured CTI
nd implement these concepts through a prototype Automated Cyber
efense System in a cloud-based environment. In response to the
hallenges related to trust in the source and integrity of threat intel-
igence data, Preuveneers et al. [13] improved the security framework

TATIS [14]. Both TATIS [14] and the framework in [12] guarantee that
nly authorized individuals can access sensitive data when it is being

transferred between various threat intelligence systems. Moreover, in
the proposal of [14], encryption is applied using the Ciphertext-Policy

ttribute-Based Encryption (CP-ABE) cryptographic scheme to protect
he shared data.

Sharing CTI data can greatly improve IT security, but it faces
several challenges, such as expenses, risks, and legal requirements. To
overcome these issues, Riesco et al. [15] proposed an approach to
encourage the sharing of CTI among various stakeholders by leveraging
blockchain technology and smart contracts. Their research suggests
creating a marketplace on the Ethereum blockchain where participants
can exchange CTI tokens as digital assets, thereby incentivizing sharing
while addressing potential storage limitations and transaction costs.
Menges et al. [16] presented DEALER, a system promoting secure CTI
haring by providing incentives and addressing compliance concerns.
ike our approach, DEALER relies on Blockchain technology and an

InterPlanetary File System (IPFS) distributed hash table. It employs
nbiased quality metrics for reputation assessment and protects buyers
nd sellers through dispute resolution and cryptocurrency rewards.
owever, the authors recommended limiting the platform’s use to

sharing noncritical data, as it may not be suitable for sharing highly
sensitive and critical CTI. However, these studies [15,16] do not em-
ploy Federated Learning. The BFLS [17] approach ensures the security
of CTI data sharing by combining FL for training threat detection
models and Blockchain for decentralized aggregation. Specifically, the
onsensus protocol of the Blockchain is enhanced to filter and select

high-quality CTIs for participation in FL [18]. Smart contracts are
utilized to automate the aggregation and updation of models, ensur-
ing efficient and secure CTI sharing. Sarhan et al. [19] proposed a
Hierarchical Blockchain-based Federated Learning (HBFL) framework
for collaborative IoT intrusion detection. The framework ensures se-
cure and privacy-preserved collaboration by leveraging a permissioned
blockchain and smart contracts. Moulahi et al. [20] used blockchain
technology and FL to safeguard data integrity and aggregation in
detecting cyber-threats within Vehicular Ad Hoc Networks (VANET)
and Intelligent Transportation Systems (ITS). Their approach involves
uploading vehicle-generated models onto a blockchain-based smart
contract for aggregation before returning them to the vehicles.

Table 1 provides a summary analysis of the contributions of the
existing related works compared to ours. This table shows the key
attributes of all the analyzed systems, namely: (i) if they provide threat
detection, (ii) if the threat computation is performed in a collaborative
way (iii) if the system allow CTI sharing, (iv) if it guarantees data pri-
vacy, model quality, and participant reputation. As shown by this table
and to the best of our knowledge, a complete framework providing
secure CTI Sharing still does not exist in the present literature. Indeed,
no current frameworks provide the possibility to keep data private
during CTI sharing through the collaboration of all the participants,
maintaining model quality and assessing participants’ trustworthiness
at the same time.

3. Background

In this section, we delve into some useful basic concepts to under-
tand the framework described in our paper. In particular, we define
he CTI scenario and the phases that compose its lifecycle. Then, we il-
ustrate the fundamental notions of Blockchain. Moreover, we describe

https://www.virustotal.com
https://api.threatstream.com/
https://www.threatq.com/
https://threatconnect.com/
https://otx.alienvault.com/
https://exchange.xforce.ibmcloud.com/
https://go.crowdstrike.com/
https://csirtgadgets.com/collective-intelligence-framework
https://crits.github.io/
https://threatfox.abuse.ch
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Table 1
CTI Sharing Systems features.

System Threat detection Collaborative
computation

CTI sharing Data privacy Model quality Participant
reputation

VirusTotal ✓ – ✓ – – –
MISP [6] ✓ – ✓ – – –
ThreatFox ✓ – ✓ – – –
ThreatStream ✓ – ✓ – – –
ThreatQ ✓ – ✓ – – –
ThreatConnect ✓ – ✓ – – –
OTX ✓ – ✓ – – –
IBM X-Force Exchange ✓ – ✓ – – –
Falcon X Intelligence Crowdstrike ✓ – ✓ – – –
CIF ✓ – ✓ – – –
Collaborative CRITs ✓ – ✓ – – –
Haque et al. [12] ✓ – ✓ – – ✓

ETIP [11] ✓ – ✓ – – –
DEALER [16] ✓ – ✓ – ✓ –
TATIS [14] ✓ – ✓ ✓ – ✓

Riesco et al. [15] ✓ – ✓ – – –
BFLS [17] ✓ ✓ ✓ ✓ ✓ –
HBFL [19] ✓ – ✓ ✓ – –
Moulahi et al. [20] ✓ ✓ ✓ ✓ – –

SeCTIS ✓ ✓ ✓ ✓ ✓ ✓
Table 2
List of the acronyms used in the paper.

Acronyms Description

CTI Cyber Threat Intelligence
EVM Ethereum Virtual Machine
FL Federated Learning
GM Global Model
IoT Internet of Things
IPFS InterPlanetary File System
LM Local Model
ML Machine Learning
SC Smart Contract
SL Swarm Learning
SMC Secure Multiparty Computation
TIP Threat Intelligence Platforms
TTP Tactic, Technique, and Procedure
ZKP Zero-Knowledge Proof

the main concepts related to FL and Swarm Learning, their workflow,
and such approaches’ principal differences and challenges. Finally, we
provide details about the Zero-Knowledge Proof and Zero-Knowledge
Machine Learning approaches. Table 2 summarizes the acronyms used
in the paper.

3.1. Cyber threat intelligence

With the term Cyber Threat Intelligence (CTI), we refer to a set
of data regarding security threats, threat actors, exploits, malware,
vulnerabilities, and indicators of compromises that can help organiza-
tions, governments, and individuals in decision-making for proactive
cybersecurity defense [21,22]. CTI data is usually shared in a textual
and unstructured form in several online data sources, such as blogs,
forums, Online Social Networks (OSNs, for short), or Dark Net Market-
places. Hence, an iterative process consisting of several phases should
be followed to provide valuable insights and transform raw data into
actionable intelligence. The main CTI phases can be grouped into six
stages [23], namely:

• Planning and Direction: phase identifies the main stakeholders
and defines the organization’s objectives, priorities, and require-
ments.

• Data Collection: phase in which the data sources are identified
and CTI data, including IoCs, malware samples, and network
traffic logs, are collected through automated tools and manual
research.

• Data Processing: a phase that involves the transformation and
cleaning of raw data into a structured format.
4 
Fig. 1. Example of a Blockchain.

• Analysis: phase in which patterns, trends, and potential threats
are identified.

• Dissemination: phase that consists of sharing data with relevant
stakeholders.

• Feedback: phase in which the effectiveness of the actions taken
and the overall intelligence process are considered to refine and
improve future iterations of the CTI lifecycle.

3.2. Blockchain

Blockchain technology refers to a decentralized solution based on a
distributed ledger mechanism. It records immutable transactions across
multiple parties to provide tamper resistance and security without
relying on any centralized trusted third party. This technology has been
originally conceptualized as the underlying framework for Bitcoin, the
first cryptocurrency, but its possible applications have developed far
beyond this initial scenario [24–26]. Transactions, as visible in Fig. 1,
are grouped into blocks and are the fundamental units of a Blockchain.
Each transaction represents the transfer of value or digital assets from
one participant to another.

Each block includes the transactions, the previous block’s hash
value, a timestamp, and a nonce (a random number for verifying the
hash). Due to the presence of a unique hash value, once generated, the
information within each block cannot be altered. This ensures the net-
work’s immutability. In the first generation of Blockchain technology
that handles cryptocurrencies, whenever a new transaction is created,
it undergoes validation and verification through a consensus protocol
carried out by the miners. Miners generate a new block of transactions
after solving a mathematical puzzle called Proof of Work (PoW) and
then propagate that block to the network. Other nodes in the network
can validate the correctness of the generated block and only build upon
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it if both the transactions included in a new block and of the block itself
are considered valid.

Ethereum13 has emerged as the second generation of Blockchain
to allow the building of complex distributed applications beyond the
cryptocurrencies through the development of Smart Contracts. A smart
contract is an executable code that automatically runs and enforces the
terms of an agreement once the specified conditions are met [27]. After
being deployed on the Blockchain, the contract operates autonomously,
and its code cannot be altered. Usually, it is initiated by activating its
constructor function via a transaction submitted to the network. This
constructor function is then executed, and the resulting smart contract
code is permanently stored on the Blockchain [28]. The execution
of the smart contract is validated by a consensus mechanism called
Proof of Stakes (PoS). Validator nodes with significant cryptocurrency
holdings and willing to ‘stake’ them as collateral are chosen in a fair
and transparent manner to participate in block creation and transaction
validation. Validators are incentivized by earning transaction fees.

The following Blockchain categories can be defined [29]:

• Permissioned Blockchains usually entails a set of participants
who must obtain authorization to join the network, perform trans-
actions, and validate blocks. Transactions are grouped, accessed,
and verified by a designated group of nodes instead of anonymous
miners.

• Permissionless Blockchains allow anyone to join and participate
without demanding prior authorization. Transaction verification
relies on the work of many anonymous miners competing to solve
a complex mathematical algorithm for that block of transactions
via a trial-and-error approach.

• Private Blockchains are restricted to authorized participants.
A single entity decides who can join the network and has full
authority over the blockchain’s management.

• Public Blockchain is an open and permissionless network acces-
sible to anyone. Control is shared among all participants through
consensus mechanisms. Since transactions are open to the public
to verify, the risk of hacking and data manipulation is low even
if information privacy can be menaced [29].

• Hybrid Blockchain integrates public and private Blockchain el-
ements.

• Consortium Blockchains, like Hybrid Blockchains, have pri-
vate and public features. Access to the network is restricted
to predetermined organizations or entities who jointly control
the network. Decisions require consensus among the consortium
participants.

3.3. Federated learning and swarm learning

Both Federated Learning (FL) and Swarm Learning (SL) are decen-
tralized approaches to machine learning that enable model training
across distributed devices without the need to centrally share raw
data. Since data is not transferred and centralized, these two methods
have advantages regarding privacy preservation and network traffic
reduction.

As for FL, the main actors of this protocol are  client devices (or
‘‘workers’’), owning sensitive data and running local training on them;
and a central server (or ‘‘aggregator’’), that organizes the whole FL
process aggregating the local updates. In particular, FL’s goal is to
train a global model 𝐰 by uploading the weights of local models from
workers {𝐰𝑖

|𝑖 ∈ } to the parametric aggregator optimizing a loss
function:

min
𝐰

𝑙(𝐰) =
𝑛
∑

𝑖=1

𝑠𝑖

𝐿𝑖(𝐰𝑖) (1)

13 https://ethereum.org
5 
Fig. 2. The Federated Learning workflow.

where 𝐿𝑖(𝐰𝐢) = 1
𝑠𝑖

∑

𝑗∈𝐼𝑖 𝑙𝑗 (𝐰
𝑖, 𝑥𝑖) is the loss function, 𝑠𝑖 is the local data

size of the i-th worker, and 𝐼𝑖 identifies the set of data indices with
|𝐼𝑖| = 𝑠𝑖, and 𝑥𝑗 is a data point.

As visible in Fig. 2, the basic FL workflow consists in the following
phases [30]:

1. Model initialization: phase in which the aggregator or server
sets all the parameters useful for the global ML model 𝐰 to their
initial status. Moreover, this step also selects the random workers
to be included in the process.

2. Local model training and upload: phase in which the workers
execute local training using their private data after download-
ing the current global model. Then, each client computes the
model parameter updates and sends them to the aggregator or
server. The local training typically implicates multiple iterations
of gradient descent, back-propagation, or other optimization
methods to enhance the local model’s performance. Specifically,
at the t -iteration, each client updates the global model with the
contributions coming from their datasets: 𝐰𝑖

𝑡 ← 𝐰𝑖
𝑡 − 𝜂 𝜕 𝐿(𝐰𝑡 ,𝑏)

𝜕𝐰𝑖
𝑡

(where 𝜂 identify the learning rate and 𝑏 is local batch).
3. Global model aggregation and updation: phase in which the

central aggregator collects and aggregates the model parameter
updates from all the workers, {𝐰𝑖

|𝑖 ∈ }. The central server
can employ different aggregation approaches like averaging,
weighted averaging, or Secure Multi-party Computation (SMC)
to combine the received updates from each client.

The security and fault tolerance of FL have been increasingly dis-
cussed because the central aggregator, keeping model parameters, can
be vulnerable to malicious attacks or system failures [31,32]. To ad-
dress these problems, Swarm Learning (SL) has been recently intro-
duced [8].

As visible in Fig. 3, SL exploits a Blockchain instead of a central
aggregator server to securely onboard members and dynamically elect

https://ethereum.org
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Fig. 3. The Swarm Learning workflow.

the leader. This allows for the performance of DL to be extremely
decentralized.

Moreover, it shares the model parameters via the Swarm Network
and builds the models independently on private data at Swarm Edge
Nodes, without the need for a central aggregator. In the workflow of
SL, a new edge node enrolls via a Blockchain smart contract, obtains
the model, and performs localized training until a given interval.
Then, local model parameters are exchanged between participants and
combined to update the global model before the next training round. A
Swarm coordinator can be elected randomly14 during each iteration and
is responsible for maintaining metadata like the model state, training
progress, and licenses without model parameters.

3.4. Zero-knowledge machine learning

Zero-Knowledge Proof or Zero-Knowledge Protocol (ZKP, hereafter)
is a cryptographic protocol, originally presented in [34], that enables
one party (called the prover) to prove to another party (called the
verifier) that a piece of information is true without disclosing the actual
details of that statement (without revealing any information beyond the
statement’s validity).

The main features of the ZKP system include the following proper-
ties [35]: (i) Completeness, which involves the fact that if the statement
is correct, the verifier will always accept it; (ii) Soundness, which
enforces the fact that if the statement is incorrect, the verifier will
always reject it; (iii) Zero Knowledge means that no (malicious) verifier
can get any extra information from the proof, except the correctness of
the statement defined before.

These properties make ZKP widely used in the context of Se-
cure Multiparty Computation (SMC), privacy and authentication. Zero
Knowledge Machine Learning (ZKML) is the application of ZKP on ML
models in which parameters and operations are concealed from the
verifier. The prover can demonstrate the computational correctness of
the ML models without disclosing undesired information, promoting
transparency and trust. The potential application of ZK to ML could
determine that a particular piece of content is produced by applying
a specific ML model to a given input [36]. Interestingly, ZKML allows

14 Due to deterministic characteristics of blockchains, randomization can be
achieved through third-party services such as Chainlink available for public
blockchain [33].
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users to specify the desired information included in the proof, such as
model parameters, input, output, or none.

4. Proposed approach

In this section, we present a general overview of our approach. The
framework aims at secure CTI sharing, allowing participants to train
a Global Model (GM, hereafter) collaboratively without revealing con-
fidential information. Furthermore, our reputation approach provides
an additional feature, indeed a set of Validator nodes is in charge of
evaluating the quality of the local model contributions. The reputation
mechanism detects low-quality models and prevents them from joining
the aggregation. Moreover, the trustworthiness of Validator nodes is
assessed by Zero-Knowledge Proof in our strategy.

A general architecture of our solution is reported in Fig. 4 with the
following actors:

• Swarm Edge Nodes. These nodes represent different organiza-
tions that are the basic participants of our framework. They are
both consumers and producers of shared CTI information, holding
private local data and training the local model according to the
SL mechanism. They are also called ‘‘clients’’ or ‘‘workers’’ of the
SL model.

• Validator Nodes. They are chosen among the Swarm Nodes
according to their computed reputation (see Section 4.3 for details
on the selection strategy). They rank all the local contributions
based on reputation score for each iteration to obtain a GM
with the best performance. Their trustworthiness is assessed via
a mechanism based on ZKP.

• Swarm Aggregator Node. A randomly selected node is in charge
of aggregating the best local models at each iteration.

• IPFS. This distributed File System stores the Global Model and the
different Local Models for each iteration.

• Blockchain. It is employed to provide a distributed ledger that
stores the results of ZKP algorithms and transactions. Moreover,
it allows the execution of several Smart Contracts, such as Co-
ordinator SC and Verifier SC. Coordinator SC contains
the necessary functions to orchestrate the framework, like storing
the verification contract addresses for all the local models at each
iteration. It also maintains IPFS model addresses (for both the
local and global models), computes trust and reputation scores,
and keeps track of the iteration number. Verifier SC, instead,
receives the proof generated by the validator and produces a
response based on its validity.

In practice, our solution comprises three main steps, namely:

1. Local Models Training. In this phase, the SL training iterations
take place for each client.

2. Validators Verification. In this phase, for each iteration, a
ZKML algorithm is computed to verify the validators and assess
their trustworthiness.

3. Global Model Aggregation. In this step, the Global Model is
aggregated by a selected node. This Aggregator ranks nodes
according to a reputation score and aggregates the top-k model.

In the following sections, we detail each phase of our framework
SeCTIS.

4.1. Local models training

This phase starts after the system setup and model initialization
step, in which the different organizations register to the Blockchain and
join the network.

For each iteration, the workers (i.e., the different organizations)
download the Global Model from the IPFS. After that, local training
with the CTI private data can be conducted for every client node.
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Fig. 4. The General SeCTIS Architecture.
When the Local Model (LM) is computed, it is uploaded to the IPFS
by the corresponding node. Moreover, the node submits the hash of
the LM that identifies the model itself to the Coordinator SC for
the subsequent phases. Also, the Verifier SC is deployed to the
Blockchain, and its contract address is submitted to the Coordinator
SC.

In summary, the Local Model Training phase comprises the follow-
ing steps:

1. Download the Global Model from IPFS.
2. Execute local training using their private CTI data.
3. Upload the model into IPFS.
4. Submit the IPFS address (the hash) of their local models to

Coordinator SC.
5. Deploy the Verifier SC to the Blockchain.
6. Get the Verifier SC address.
7. Submit the Verifier SC address to Coordinator SC.

Fig. 5 shows a sequence diagram of all the steps performed during
this first phase of the framework.

4.2. Validators verification

In this phase, Validator nodes are in charge of testing all the LMs
and producing proof of their trustworthiness. At each iteration of the
framework, validators are chosen randomly among all the participant
nodes. They have to query the Coordinator SC and get the hashes
of all the LMs. This is to be tested and identify them in the distributed
filesystem and download them. After that, they execute their test data
on all the LMs to assess the quality of these models. Since the validators
can be malicious or malfunctioning and their test data can be corrupted,
an immutable proof has to be run for each of them to assess the
quality and trustworthiness of these nodes. In particular, each validator
generates a Zero-Knowledge Proof containing: (i) a digest of the input
data batch, and (ii) a digest of the model weight. Through this proof,
we can assess that the validator’s behavior is equal for all the clients.
Specifically, this proof verifies that a given validator has tested all the
models with the same data points in the same order. After the proof
generation, for each tested model, the validator submits these proofs
to associated Verifier SC. Observe that for each iteration, there is
a Verifier SC for each participant node. In summary, during this
phase of the framework, each validator node does the following steps
for each iteration:
7 
Fig. 5. Local Models Training Sequence Diagram.

1. It queries the Coordinator SC and gets the hashes of all the
LMs to be tested.

2. It downloads all the LMs from the IPFS.
3. It executes its test data on LMs .
4. It generates the ZKP.
5. It submits the proof along with its results (i.e., the outputs of the

tested models) to the Verifier SC for each LM update.

Fig. 6 shows a sequence diagram of all the steps performed in the
second phase of SeCTIS.

4.3. Global model computation

During the last phase of our framework, a GM is computed by ag-
gregating the local model updates. However, a data quality mechanism
is applied to produce a GM that considers only the best local contri-
butions. To do this, as a first step, the Coordinator SC randomly
selects an Aggregator node among all the participants. This node has
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Fig. 6. Validators’ Verification Sequence Diagram.

Fig. 7. Global Model Computation Sequence Diagram.

to compute the LMs’ trust and reputation scores for all the validators.
Then, it submits all these scores to the Coordinator SC. After that
LMs are ranked and the top-𝑘 models are aggregated. Finally, the
aggregator publishes the results in the Blockchain.

In summary, the final stage of our framework consists of the follow-
ing steps:

1. An aggregator is randomly selected by the Coordinator SC.
2. The Aggregator collects the outputs of validators for each LM.
3. The Aggregator computes the trust and reputation scores from

the outputs that each validator has submitted.
4. It updates the trust and reputation values in Coordinator SC.
5. A global rank of LM is computed.
6. The top-k LMs are used to update the GM.
7. The Aggregator publishes the results in the Blockchain.

Fig. 7 shows a sequence diagram of all the steps performed for the
Aggregator selection and computation of the GM.

In the following, we define our trust and reputation model to assess
the trustworthiness of nodes. These metrics are useful to select the
 l
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validator nodes for the subsequent iteration. Indeed, If a participant’s
reputation is damaged over a set number of interactions, the organi-
zation they represent may be suspended or even removed from the
system. Hence, it can no longer be selected as a validator or participate
in the framework. The node reputation is computed through the model
trust scores for each iteration and is defined as follows.

Given the set of local models {𝑚1, 𝑚2,… , 𝑚𝑧}, let 𝑚𝑖 be the 𝑖𝑡ℎ
local model. For each validator 𝑗, test results are deployed into the

lockchain in the form of a 𝑛 − 𝑡𝑢𝑝𝑙 𝑒 containing the following infor-
ation:

1. a digest of the employed test set 𝑇 𝑆𝑗 with size |𝑇 𝑆𝑗 | = 𝑠,
2. a digest of the verified model (𝑚𝑖),
3. the output of the model for each data point in 𝑇 𝑆𝑗 .

The output of the 𝑖𝑡ℎ model is a vector of probabilities 𝑑
𝑖 [𝑝1, 𝑝2,… ,

𝑝𝑛] for each data point 𝑑 of 𝑇 𝑆𝑗 , where 𝑛 is the number of possible
lasses. This vector contains the probabilities that 𝑑 belongs to each
onsidered class (or label). The result can be represented as follows:

⟨(𝑇 𝑆𝑗 ),(𝑚𝑖),𝑛×𝑠⟩

where  is the hash function to compute the digest, and 𝑛×𝑠 is the
matrix containing all the probabilities vectors returned by the 𝑖𝑡ℎ model
for the data points of 𝑇 𝑆𝑗 .

To compute the trust score, we start by defining the average error
𝑃 𝑘
𝑖𝑗 , where 𝑖 is the 𝑖𝑡ℎ model, 𝑗 is the 𝑗𝑡ℎ validator and 𝑘 is the iteration,

according to the following equation:

𝑃 𝑘
𝑖𝑗 =

∑

𝑑∈𝑇 𝑆𝑗
‖𝑑

𝑖 − 𝑑
𝑐 ‖

|𝑇 𝑆𝑗 |
(2)

where 𝑑
𝑐 is the centroid of the different output vectors produced by

all the local models for the data point 𝑑. In practice, we consider each
robability vector as coordinates of a point in an Euclidean 𝑛-space.
ence, given a point 𝑑 of the test set 𝑇 𝑆𝑗 of 𝑗, we locate all the outputs
roduced by the available local models on 𝑑 in the Euclidean space and
dentify the most central one as the reference centroid for 𝑑. Finally,
𝑑
𝑖 −𝑑

𝑐 ‖ denotes the distance between the output of the 𝑖𝑡ℎ model for
he data point 𝑑 and the related centroid. Higher values of 𝑃 𝑘

𝑖𝑗 mean
hat the results of the 𝑖𝑡ℎ model differ greatly from the average.

Now we define 𝑃 𝑘
𝑖 as the average value of 𝑃 𝑘

𝑖𝑗 for each validators,
for the 𝑘𝑡ℎ iteration and for the 𝑖𝑡ℎ model, as:

𝑃 𝑘
𝑖 =

∑

𝑗∈𝑉 𝑃𝑖𝑗

|𝑉 |

(3)

where 𝑉 is the set of all validators, and |𝑉 | is its size.
The trust value for the 𝑖𝑡ℎ model at the 𝑘𝑡ℎ iteration can be computed

s:

𝑇 𝑘
𝑖 = 1 − 𝑃 𝑘

𝑖 (4)

Finally, the reputation score for the 𝑖𝑡ℎ model at the 𝑘𝑡ℎ iteration is
represented by the following equation:

𝑅𝑘
𝑖 = (1 − 𝛼)𝑅𝑘−1

𝑖 + 𝛼 𝑇 𝑘
𝑖 (5)

where 𝛼 is a weight parameter ranging from [0, 1]. The lower the
arameter 𝛼 the higher the importance of past reputation scores for
he given node.

5. Attack model

In our attack model, we focus on possible attacks to the mechanism
of assurance of data and model quality rather than addressing common
hreats like poisoning attacks, backdoors, or denial-of-service (DoS) in
warm Learning, as discussed in [37,38].

We can identify two main phases in which data can be altered in our
ramework, namely: (i) during the data collection and (ii) during the
abeling phases. As for the first case, the different organizations usually
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gather data from IoT sensors or custom applications. These sources can
be compromised or malfunctioning, and data can present errors, be
incomplete, or be false. Moreover, the labeling phase, since it has to be
carried out manually by some experts, can produce unintentional errors
and noisy labels [39]. In our attack model, the only type of malicious
attack to model and data quality we consider is label flipping attack.
The label flipping attack is a form of data poisoning where an adver-
sary intentionally mislabels data. This threat aims to corrupting the
model’s training data and potentially leading to degraded performance
or incorrect predictions [40] (see Section 6.2 for further detail on this
attack).

Moreover, the validator nodes pose potential threats. There is a risk
f collusion between certain validators and Byzantine clients [41] -

clients containing noisy labels that can behave differently. This collu-
ion enhances the reputation of the Byzantine clients while diminishing
hat of benign clients. In this attack model, a malicious validator selects

a set of verification data tailored to a specific colluding malicious client,
as explained in Section 6.2.

To fortify our framework against this form of attacks, we incorpo-
ate both the Zero-Knowledge Proof (ZKP) and a reputation mechanism

designed to foster consensus among validators. These approaches en-
sure that the behavior of validators remains consistent across all clients.

dditionally, this approach ensures that each validator tests all models
sing the same data points and in the same sequence, thereby main-
aining the integrity of the validation process and mitigating the risk
f collusion.

Finally, by combining ZPK, Smart Contracts, and Blockchain tech-
ologies, we can guarantee that SeCTIS is secure and can assess the
rustworthiness of all the participants of our framework. Hence, clas-
ical attacks on trust and reputation systems (such as Slandering,
hitewashing, or Sybil attacks [42]) are implicitly solved by design.

6. Experimental results

In this section, we discuss the experiments carried out to assess the
performance of our framework. Specifically, in Section 6.1, we describe
he dataset, the evaluation metrics, and the environment used for our
xperiments. Section 6.2 is dedicated to analyzing the findings and
erformance of our reputation approach. Lastly, in Section 6.3 we talk
bout scalability of SeCTIS.

6.1. Testbed description

In our experimentation, we have employed a testbed comprising
lements of Swarm Learning, integrating both Federated Learning and
lockchain technologies.

6.1.1. Dataset
In this study, we utilized four distinct datasets to evaluate the

proposed Swarm Learning framework for secure CTI sharing. Each
dataset represents a different facet of cybersecurity threats, providing
a comprehensive testbed for our approach.

• CIC-Darknet2020: Darknet traffic frequently encompasses com-
munications linked to malicious activities such as botnet, com-
mand and control, malware distribution, and phishing. Analyzing
this traffic can help organizations identify patterns and signatures
of such malicious activities and proactively defend them. There-
fore, we conducted our experiments utilizing the publicly acces-
sible CIC-Darknet2020 [43] dataset by the Canadian Institute of
Cybersecurity (CIC). This dataset includes traffic from various
categories: Non-Tor, Non-VPN, Tor, and VPN. The dataset con-
tains 93,356 Non-Tor samples, 23,863 Non-VPN samples, 1392
Tor samples, and 22,919 VPN samples.
9 
• KronoDroid: The KronoDroid dataset [44] provides both benign
and malicious Android applications with features for the detec-
tion and classification of mobile malware. This dataset includes
41,382 malicious apps and 36,755 benign apps. Each sample
has 200 static and 289 dynamic attributes extracted from apps
running on real devices.

• CSE-CIC-IDS2018: Anomaly detection helps an organization to
identify novel attacks. For the intrusion detection scenario, we
employed the CSE-CIC-IDS2018 dataset, which encompasses
seven distinct attack scenarios, including Heartbleed, DDoS, Bot-
net, Infiltration, Web, DoS, and Brute-force attacks. It captures
network traffic and system logs from each machine, with 83
features extracted using CICFlowMeter-V3. The dataset is la-
beled with 14 different attack types, such as DoS Golden Eye,
Heartbleed, DoS Hulk, DoS Slow HTTP, DoS Slowloris, DDoS,
SSH-Patator, FP, Patator, Brute Force, XSS, Botnet, Infiltration,
PortScan, and SQL Injection. As a preprocessing step, we removed
features like SrcPort, Flow ID, Timestamp, and IP addresses,
as well as duplicates rows. Additionally, we excluded the Be-
nign class label to focus on attacks, and removed the labels
SQL Injection, DoS attacks-SlowHTTPTest, and FTP-BruteForce
due to their counts being below 100. After excluding certain
labels, we have a dataset consisting of 575,364 samples of DDoS
attacks-LOIC-HTTP, 198,861 of DDoS attack-HOIC, 145,199 of
DoS attacks-Hulk, 144,535 of Bot, 140,610 of Infiltration, 94,048
of SSH-Bruteforce, 41,406 of DoS attacks-GoldenEye, 9908 of
DoS attacks-Slowloris, 1730 of DDoS attack-LOIC-UDP, 555 of
Brute Force-Web, and 228 of Brute Force-XSS, with a total of 78
features.

To conduct SL and evaluate the model, we partitioned each dataset
nto an 80:20 ratio, with 80% allocated for collaborative training and
he remaining 20% for testing. We carried out our experiments under
n Independent and Identically Distributed (IID) data distribution,
.e., the training data is evenly divided among each client. The testing
ata is solely employed for model evaluation purposes.

6.1.2. Evaluation metrics
We employed various evaluation metrics to assess the impact of

the label-flipping attack to evaluate the performance of the proposed
framework. These metrics include:

• Model F1-score. Due to the imbalanced nature of our datasets,
we adopted the F1-score as a metric to evaluate the model’s
performance. The F1-score considers both precision () and recall
(), and it is computed by Eq. (6).

𝐹1-score = 2 ×  ×
 +

(6)

where  is the ratio of true positive predictions to the total
predicted positives and  is the ratio of true positive predictions
to the total actual positives.

• Class Transition Misclassification Rate. The Class Transition
Misclassification Rate (CTMR) measures the percentage of in-
stances from the source class, 𝑠, that are incorrectly classified as
the target, 𝑡, class. CTMR is calculated using Eq. (7). A higher
CTMR indicates a greater proportion of instances were misclassi-
fied.

CTMR =

∑𝑁𝑠
𝑗=1[(𝑦𝑗 == 𝑠) ∧ (𝑦̂𝑗 == 𝑡)]

𝑁𝑠
(7)

where 𝑁𝑠 is the total number of instances with the class label 𝑠,
𝑦𝑗 is the true label of instance 𝑗, and 𝑦̂𝑗 is the predicted label of
instance 𝑗.

• Source Recall. Source Recall measures the ability of the model
to correctly identify instances of a particular class 𝑠. A decline in
recall for a specific class indicates that an attack has successfully
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Table 3
Model architecture settings for each dataset.

Dataset Layers 𝜂  Optimizer 

CIC-Darknet2020 Hidden: (64, 32), Output: 4 0.01 32 SGD CrossEntropy
KronoDroid Hidden: (64, 32), Output: 2 0.001 16 Adam BCEWithLogits
CSE-CIC-IDS2018 Hidden: (64, 32), Output: 11 0.01 64 SGD CrossEntropy

where, 𝜂 represents learning rate,  indicates batch size, and  represents loss function.
Fig. 8. Class Transition Misclassification Rate of CIC-Darknet2020 Dataset.
a

misled the model, causing it to incorrectly categorize instances of
that class. Eq. (8) determines the recall of particular class 𝑠.

𝑠 =


 + ̂
(8)

where  =
∑𝑁𝑠

𝑗=1[(𝑦𝑗 == 𝑠) ∧ (𝑦̂𝑗 == 𝑠)]; ̂ =
∑𝑁𝑠

𝑗=1[(𝑦𝑗 == 𝑠) ∧ (𝑦̂𝑗 ≠
𝑠)]; 𝑁𝑠 is the total number of instances belonging to class 𝑠, 𝑦𝑗
is the true label of instance 𝑗, and 𝑦̂𝑗 is the predicted label of
instance 𝑗.

6.1.3. Environment setup
The experiments were conducted on a Windows 11 Pro system

eaturing an Intel Core i9 processor, 32 GB of RAM, and an NVIDIA
uadro P2000 with 5 GB of GDDR5X memory. We implemented the
eCTIS using the PyTorch framework. Additionally, the visualization of
esults was facilitated by employing the Matplotlib library.

In our research, we focused on testing the individual components
of our solution on a single machine, utilizing a local blockchain envi-
ronment with Foundry Forge Anvil [45]. While we did not implement
 production-level environment, our approach effectively demonstrates

the feasibility and functionality of the proposed system in a controlled
setting.

The following pseudocode illustrates the workflow we followed
uring our experiments:

# Dataset split among clients
split_dataset = split_data(dataset,

num_clients)

# Simulate training on each client
for client_data in split_dataset:

local_model = train_model(global_model ,
client_data)

onnx_model = convert_to_onnx(local_model)
circuit = setup_circuit(onnx_model)
deploy_smart_contract(circuit,

local_blockchain)

# Validators process
for validator in validators:

for model in deployed_models:
results = validator.run_model(model,

private_data)
proof = validator.generate_proof(

results)
 t

10 
submit_to_blockchain(proof,
local_blockchain)

# Aggregator collects results and aggregates
the selected models

good_models =
calculate_trust_and_reputation_scores(
local_blockchain)

aggregated_model = aggregate_results(
local_blockchain)

next_round(global_model)

Listing 1: Pseudocode for SeCTIS

High-level overview of the processes are as follows:

1. Dataset Distribution: The dataset is split among multiple
clients.

2. Client Training: Each client is simulated to train the global
model with their own data. The trained models are then con-
verted to ONNX format.

3. Circuit Setup and Smart Contract Deployment: Clients set up
the circuit for their models and deploy the smart contract to the
local blockchain.

4. Validation: In a separate loop, validators retrieve the models,
run them with their private data points, generate proofs, and
submit the results to the local blockchain.

5. Aggregation: The aggregator collects the results from the
blockchain, performs the necessary calculations(trust and rep-
utations scores), and then aggregates the models, preparing the
global model for the next training round.

6.1.4. Model settings
We implemented Deep Neural Networks (DNNs) across all datasets

nd conducted global model training for 50 rounds. In each round,
organizations trained their models for 5 local epochs. The DNN archi-
tecture, including the number of layers, neurons, learning rate, batch
size, and optimizer, is detailed in Table 3.

6.2. Experimental analysis of reputation model

The data collection and labeling phases of CTI generation within
he organization may unintentionally produce noisy labels. This may
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potentially obstruct the collaborative learning process. As stated in
ection 5, we randomly flipped labels to simulate instances of incorrect

labels. These simulations involved 𝑡% of the 𝑁 participating organiza-
ion acting as Byzantine client. Additionally, to analyze how the affect
f noisy labels on the model’s performance, we conducted experiments
here 𝑥% of samples from specific classes were changed to another

lass.
Initially, we tested the CIC-Darknet2020 traffic data within a Swarm

earning setup involving 10 participating organizations, excluding
yzantine clients. Our Swarm Learning model for darknet traffic clas-
ification achieved an F1-score of 0.928. Subsequently, we conducted
xperiments with 10%, 20%, and 30% of the total participating orga-

nizations as Byzantine clients. Since we have to assess whether our
reputation model could identify low-quality models, we designated
Byzantine nodes as fixed clients. For the scenario with 𝑡 = 10%, Client
5 was designated as the Byzantine client. In the case of 20%, Clients 2
and 5 were chosen as Byzantine, while for the 30% setup, Clients 2, 5,
and 8 were selected Byzantine. For each scenario, we also conducted
experiments with different percentages of label flipping from VPN class
to NonVPN, where 𝑥 ranges from 10% to 50%.

Then, we analyzed the CTMR rate on the test set under two cases:
(i) when flipping is performed and (ii) when the SL model is imple-

ented with the reputation technique. Fig. 8 illustrates the CTMR rates
across three different scenarios of CIC-Darknet2020 dataset: with one
Byzantine client, two Byzantine clients, and three Byzantine clients. In
Fig. 8(a), the horizontal dashed line represents the SL model’s CTMR
(with a value of 8.8569) without any Byzantine clients. This indicates
hat approximately 8.9% of the VPN data is misclassified to the Non-
PN class within the baseline model. Additionally, as shown in the

igure, the misclassification rate increases when the Swarm Learning
etup includes one Byzantine client. Also, the misclassification rate
ises proportionally with the increased percentage of incorrect labels.
pecifically, when 10% of VPN samples are changed to the NonVPN
lass, the misclassification rate increases to 9.77%. When 50% of VPN
lass samples are flipped, the misclassification rate reaches 10.67% in
he test set. The results for two and three Byzantine clients follow the

same pattern as those for one Byzantine client. Figs. 8(b), 8(c) depict a
clear increase in the misclassification rate as the number of Byzantine
clients increases. For instance, when three Byzantine clients are present
in the SL training round, and 50% of samples are changed to another
class, the misclassification rate reaches 13.05%.

We also experimented with the same SL scenario on the KronoDroid
dataset with the same initial assumptions (10 participating organiza-
tions and a maximum of three Byzantine clients). The baseline FL model
for the KronoDroid dataset achieves an F1 score of 0.980. To introduce
oisy labels, we flipped the labels of malware samples to benign.

Fig. 9(a) illustrates the results of the CTMR for the KronoDroid dataset.
hen no Byzantine clients are present, the SL model for Android mal-

ware detection on the KronoDroid dataset produced a misclassification
rate of 1.7413%. Similar to the CIC-Darknet2020 dataset, the CTMR
increases with the number of flipped samples, as shown in Fig. 9.
Moreover, the presence of Byzantine clients significantly affects the
CTMR as depicted in Fig. 9(a), 9(b), and 9(c). Specifically, with one
Byzantine client, the CTMR increases to 1.86%. When the number of
Byzantine clients rises to two, the CTMR further escalates to 2.08%.
With three Byzantine clients, the same reaches 2.22%. Moreover, when
50% of the samples are flipped and three Byzantine clients are involved,
the CTMR sharply increases to 5.63%, as illustrated in Fig. 9(c).

Furthermore, experimentation on the CSE-CIC-IDS2018 dataset
achieved an F1 score of 0.999. After testing various combinations of
label flipping, we specifically altered samples from the Infiltration
class to the DDoS attacks-LOIC-HTTP class. In the baseline scenario,
without any Byzantine clients, only 89 out of 28,122 samples were
misclassified, yielding an exceptionally low misclassification rate of
0.3165%, as depicted by the horizontal dashed line in Fig. 10. This
ow misclassification rate likely reflects the dataset’s high quality
11 
and linear separability under normal conditions. However, when the
xperiment included Byzantine clients and noisy labels, the number

of misclassifications surged to between 128 and 164, resulting in a
CTMR of 0.46% to 0.58%. These findings, plotted in Fig. 10, highlight
the significant impact of varying attack intensities and the presence of
Byzantine clients.

The results of the above experiments demonstrate that noisy labels
egrade the performance of the global model and increase misclassifica-
ion rates. To avoid the inclusion of low-quality models in aggregation,
e implemented SL and computed a reputation score for each model
sing validators, as explained in Section 4.2. Within this framework,

we examined two scenarios. First, we assessed the computation of the
eputation score under the assumption that all validators are honest

within the SL system, even when confronted with noisy labels. Subse-
uently, we examined the performance of the reputation model when

faced with dishonest validators.

6.2.1. Scenario 1: Reputation model with noisy labels and honest validators
In this, all the validators are honest, and each validator uses the

same data to evaluate different models, but different validators use
different validation data. Fig. 11 illustrates the reputation scores of 10
participating organizations in each round of our GM training. In this
Figure, Model 5, which is highlighted by a dashed line, represents the
Byzantine client, while the legitimate models are depicted in solid lines.
Also, the five different cases, corresponding to varying percentages of
label flipping, are presented in the subfigures. In the initial rounds of
SL training, the reputation scores are slightly lower than in subsequent
rounds. Specifically, the reputation score of Model 8 is notably low in
the first few rounds. However, following the reception of the aggre-
gated model, Model 8 shows improvement, with its reputation score
steadily increasing. As the rounds of SL progress, the models converge,
and the reputation scores appear to stabilize. Furthermore, it is evident
that the reputation scores of Byzantine clients are consistently lower
han those of legitimate clients. With an increase in the number of in-
orrect labels, there is a noticeable divergence in the reputation scores

between honest and Byzantine clients. Particularly, when 30%, 40%,
and 50% of samples are flipped, a clear distinction emerges, showing
the quality of legitimate clients. Similarly, the scenario involving two
Byzantine clients shows a identical pattern to that of a single Byzantine
client. From Fig. 12, it is evident that both Byzantine models (Model
 and Model 5) have lower reputation scores than others. Also, when
0% labels of samples are altered, the reputation scores of Byzantine
lients range between 0.80 to 0.85, whereas others range from 0.90 to
.95. The SL system effectively detects and isolates the three Byzantine
lients by assigning them low reputation scores. Fig. 13 depicts the
eputation scores of each model across multiple GM training rounds
ontaining three Byzantine clients. In this case, Models 2, 5, and 8 are
dentified as Byzantine, with their reputation scores notably lower than
thers. The reputation score of Model 8 varies depending on whether it
ehaves as Byzantine or not. Specifically, with 50% of samples flipped,
he reputation score of Model 8 drops to approximately 0.85, whereas
t is above 0.90 when not considered as a Byzantine node. Byzantine
lients exhibit lower reputation scores than others for 10% and 20%
lipping. However, the difference is insignificant due to the limited
umber of label alterations. This indicates that in scenarios where
rganizations with a higher proportion of incorrect labels exhibit com-
aratively lower reputation scores. So, based on the reputation score,
e opted to include only 70% of the total participating organizations
ith high reputation scores for aggregation.

The misclassification rate of SL with reputation, compared to the
odel without reputation scheme, is illustrated in Fig. 8. Fig. 8(a), 8(b),

and 8(c) clearly demonstrate a reduction in the misclassification rate
hen low-quality models are excluded based on the reputation score.

For instance, with three Byzantine clients and 50% of label flipping,
the misclassification rate reduced to 9.12% from 13.05%. As the repu-
tation model excludes low-quality models from aggregation, our SeCTIS
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Fig. 9. Class Transition Misclassification Rate of KronoDroid Dataset.

Fig. 10. Class Transition Misclassification Rate of CSE-CIC-IDS2018 Dataset.

Fig. 11. Reputation scores for each model experimented on CIC-Darknet2020 dataset with 10% Byzantine clients. Byzantine client (Model 5), highlighted in red, contrasts with
benign participants represented in green.

Fig. 12. Reputation scores for each model experimented on the CIC-Darknet2020 dataset across 50 rounds of Swarm Learning involving 20% Byzantine clients. Two Byzantine
models (Model 2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.

Fig. 13. Reputation scores for each model experimented on the CIC-Darknet2020 dataset across 50 communication rounds with a presence of 30% Byzantine clients. Three
Byzantine models (Models 2, 5, and 8) are vivid in red, while benign models are represented in green.

Future Generation Computer Systems 164 (2025) 107562 

12 



D.R. Arikkat et al. Future Generation Computer Systems 164 (2025) 107562 
Fig. 14. Reputation scores for each model tested on the KronoDroid dataset with 10% Byzantine clients. Byzantine clients (Model 5), highlighted in red, contrast with benign
participants represented in green.
Fig. 15. Reputation scores for each model tested on the KronoDroid dataset across 50 rounds of Swarm Learning involving 20% Byzantine clients. Two Byzantine models (Model
2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.
Fig. 16. Reputation scores for each model tested on the KronoDroid dataset across 50 communication rounds with a presence of 30% Byzantine clients. Three Byzantine models
(Models 2, 5, and 8) are vivid in red, while benign models are represented in green.
Fig. 17. Reputation scores for each model tested on the CSE-CIC-IDS2018 with 10% Byzantine clients. Byzantine clients (Model 5), highlighted in red, contrast with benign
participants represented in green.
framework reduces misclassification rates. Achieving the same results
as FL without Byzantine clients becomes challenging. However, in some
cases, the misclassification rate reaches the baseline. We also examined
the recall of the VPN class under two conditions: when the reputation
scheme is not utilized and when SL with reputation is applied, as
depicted in Fig. 20. In this figure, the recall of the baseline model is
denoted by a dashed line, with a value of 88.4162. The presence of
Byzantine clients during collaborative learning will diminish the source
recall; for instance, with SL involving three Byzantine clients and 50%
of label alterations, the source recall drops to 84.36%. However, with
aggregation based on the reputation scheme, the recall consistently
improves across all scenarios, closely approaching the performance
of the baseline model. Specifically, when three Byzantine clients are
present, and 50% of the labels are flipped, our SeCTIS framework
enables a significant increase in the recall rate to 88.35%.

We also evaluated the proposed reputation scheme on the Kron-
oDroid dataset. Similar to the CIC-Darknet2020 dataset, our reputation
13 
scheme effectively identifies low-quality models and excludes them
from aggregation in the KronoDroid dataset. Figs. 14, 15, and 16 show
the reputation scores of each of the 10 models across three scenar-
ios: one Byzantine client, two Byzantine clients, and three Byzantine
clients, respectively. In these figures, Byzantine clients are represented
by dashed lines, while non-Byzantine clients are shown with solid
lines. For the KronoDroid dataset, there is a clear distinction between
Byzantine and non-Byzantine nodes. In the presence of one Byzantine
client and with 50% of samples flipped, the reputation score of Model 5
ranges from 0.60 to 0.80, whereas non-Byzantine nodes have reputation
scores close to 0.95. Similarly, with two and three Byzantine clients,
the reputation scores of Byzantine nodes remain low compared to those
of non-Byzantine nodes, following the same pattern observed with one
Byzantine client.

Based on these reputation scores, we excluded low-quality models
from aggregation and then computed the CTMR and source recall, as
discussed for the CIC-Darknet2020 dataset. Fig. 9 illustrates the CTMR
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Fig. 18. Reputation scores for each model tested on the CSE-CIC-IDS2018 dataset across 50 rounds of Swarm Learning involving 20% Byzantine clients. Two Byzantine models
(Model 2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.
Fig. 19. Reputation scores for each model tested on the CSE-CIC-IDS2018 dataset across 50 rounds of Swarm Learning involving 30% Byzantine clients. Three Byzantine models
(Models 2, 5, and 8) are emphasized in red variant colors, and legitimate participants are highlighted in green.
Fig. 20. Source Recall of CIC-Darknet2020 Dataset.
when the global model is implemented with the reputation scheme. As
shown in Fig. 9, the CTMR is reduced across all scenarios. Specifically,
as previously discussed, when 3 Byzantine clients and 50% of the
samples flipped, the CTMR is 5.63%. However, after excluding low-
quality models, the CTMR is reduced to 1.78%, which is close to the
baseline model’s performance.

Moreover, Fig. 21 shows that the source recall for the Malware
class decreases when noisy labels are introduced. However, when low-
quality models are excluded based on the reputation scheme, the
source recall increases, approaching the performance of our baseline
model. For instance, with three Byzantine clients and 50% of malware
samples flipped, the source recall for the Malware class is 94.37%.
After removing the low-quality models and creating a global model, the
source recall improves to 98.22%, which is very close to the baseline
recall of 98.26%.

Similar to the CIC-Darknet2020 and KronoDroid datasets, the CSE-
CIC-IDS2018 dataset exhibit the same behavior. The low-quality models
in the CSE-CIC-IDS2018 dataset were identified by the reputation score,
as illustrated in Figs. 17, 18, and 19. As shown in Fig. 17, which
depicts the scenario with one Byzantine client, the reputation score
of Byzantine client Model 5 ranges from 0.94 to 0.975, while for the
other models, it exceeds 0.975. Similarly, in the scenario with two
Byzantine clients (illustrated in Fig. 18), the reputation scores of Models
2 and 5 fall below 0.970, whereas for non-Byzantine clients, the scores
are above 0.970. This pattern is also observed in the scenario with
three Byzantine clients, as illustrated in Fig. 19. After excluding these
14 
low-quality models from aggregation, the CTMR decreases and returns
to baseline levels, as shown in Figs. 10. Additionally, source recall
improves and aligns with the baseline value of 99.6266%, as shown in
Fig. 22. When three Byzantine clients flip 50% of the samples, source
recall drops to 99.33%. However, after applying the reputation scheme
and excluding low-quality models during aggregation, source recall
improves to 99.54%. Our experimental findings show that integrating a
reputation scheme into SL effectively reduces the impact of Byzantine
clients, leading to lower misclassification rates and improved recall
rates. Furthermore, this integration helps to identify and exclude low-
quality models during the GM aggregation. Thus enhancing the overall
performance and resilience of collaborative learning.

6.2.2. Scenario 2: Reputation model with noisy labels and faulty validators
We introduced faulty validators that collude with Byzantine clients

to evaluate the effectiveness of our framework in the presence of
dishonest validators. Our consensus mechanism is specifically designed
to ensure fault tolerance and robustness in these scenarios. It functions
effectively as long as a majority of the nodes remain honest and
operational. For a system with 𝑁 nodes with 𝑓 faulty nodes, the system
ensures correctness if at least 2𝑓 + 1 nodes are honest and operational.

In our framework, we assessed scenarios involving a total of 10
validators, which allows the system to tolerate up to three faulty
validators. To test this, we simulated a scenario where three faulty
validators colluded with Byzantine clients. Specifically, we examined a
case with one Byzantine client and three faulty validators–Validators 0,
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Fig. 21. Source Recall of KronoDroid Dataset.

Fig. 22. Source Recall of CSE-CIC-IDS2018 Dataset.

Fig. 23. Reputation scores of each model with 10% Byzantine clients and dishonest validators on the CIC-Darknet2020 dataset. Byzantine clients (Model 5), highlighted in red,
contrast with benign participants represented in green.

Fig. 24. Reputation scores throughout rounds of Swarm Learning involving 20% Byzantine clients dishonest validators on the CIC-Darknet2020 dataset. Two Byzantine models
(Model 2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.

Fig. 25. Reputation scores across communication rounds with a presence of 30% Byzantine clients dishonest validators on the CIC-Darknet2020 dataset. Three Byzantine models
(Models 2, 5, and 8) are vivid in red, while benign models are represented in green.
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Fig. 26. The reputation scores of all models were evaluated under conditions of 10% Byzantine clients and dishonest validators using the KronoDroid dataset. Byzantine clients
(Model 5), highlighted in red, contrast with benign participants represented in green.
Fig. 27. The reputation scores of all models were tracked during multiple rounds of Swarm Learning, conducted with 20% Byzantine clients and dishonest validators on the
KronoDroid dataset. Two Byzantine models (Model 2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.
Fig. 28. The reputation scores of all models were evaluated throughout multiple communication rounds in a Swarm Learning environment with 30% Byzantine clients and dishonest
validators, using the KronoDroid dataset. Three Byzantine models (Models 2, 5, and 8) are vivid in red, while benign models are represented in green.
1, and 5–colluding with Byzantine Client 5 and holding Client 5’s noisy
data. This setup was designed to artificially inflate the reputation score
of Model 5. However, since the majority of validators are honest, the
overall system can still identify Model 5 as low quality. The reputation
scores calculated in the presence of faulty validators are illustrated in
Fig. 23. When comparing Figs. 11 and 23, there is no significant differ-
ence in the overall reputation scores of the clients. This consistency is
achieved with three faulty validators as the system reaches a consensus
on the correct state without exceeding the tolerated threshold.

Similarly, we simulated scenarios with two Byzantine clients and
three Byzantine clients. With two Byzantine clients, Validators 0, 2,
and 5 were faulty; Validators 0 and 5 colluded with Byzantine Client
5, while Validator 2 colluded with Byzantine Client 2. In three Byzan-
tine clients case, Validators 2, 5, and 8 were faulty and colluded
with Byzantine Client 2, Byzantine Client 5, and Byzantine Client 8,
respectively. In these cases also, we got the same pattern as when
all validators are honest, as shown in Figs. 12, 13 and 24, 25. This
indicates that our framework can handle up to three faulty validators
and discards the Byzantine clients, ensuring reliable consensus and
maintaining the system’s integrity. We also conducted similar tests
using the KronoDroid, and CSE-CIC-IDS2018 datasets. Figs. 26, 27, and
28 illustrates the reputation scores for various cases in the Kronodroid
dataset, while Figs. 29, 30, and 31 depicts those for the CSE-CIC-IDS201
dataset. In both cases, our framework successfully identifies low-quality
models, even with the presence of up to three faulty validators. In
our evaluation, our framework maintains safety and liveliness, ensur-
ing system integrity and responsiveness. Safety mechanisms guarantee
correctness and consistency, even when faced with adversarial actions.
Despite challenges posed by Byzantine clients and colluding validators,
the majority of honest validators consistently identified and rejected
16 
malicious data injections. For example, in the simulated scenario fea-
turing one Byzantine client and three faulty validators, attempts to
manipulate the reputation score of Model 5 were thwarted by the
vigilance of honest validators.

6.3. Scalability of SeCTIS

While an increase in data volume affects the training time of local
models in the Swarm Learning setup and, hence, represents a standard
scaling issue, it is not a major concern for our solution. SeCTIS is
built on top of a Swarm Learning setup and, therefore, its scalability is
primarily affected by the model size, i.e., the ONNX model generated
by the learners.

The key factors in our framework’s scalability are:

• Model Size:

– Circuit Creation Time: as the model size increases, the time
required to create the circuit on the learner side increases
as well. This affects the initial setup phase and is managed
locally by each learner.

– Proof Generation Time: larger models result in longer
proof generation times on the validator side.

• Number of Learners: the main effect is on the total time a
validator spends, as the higher the number of learners the higher
the number of executions required to verify the quality of their
models. On the other hand, in Swarm or Federated Learning, the
number of learners cannot scale exponentially due to inherent
system limits like bandwidth, synchronization, and computational
constraints, which keep validation manageable [46,47].
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Fig. 29. Reputation scores of each model with 10% Byzantine clients and dishonest validators on the CSE-CIC-IDS2018 dataset. Byzantine clients (Model 5), highlighted in red,
contrast with benign participants represented in green.
Fig. 30. Reputation scores throughout rounds of Swarm Learning involving 20% Byzantine clients dishonest validators on the CSE-CIC-IDS2018 dataset. Two Byzantine models
(Model 2 and 5) are emphasized in red variant colors, and legitimate participants are highlighted in green.
Fig. 31. Reputation scores across communication rounds with a presence of 30% Byzantine clients dishonest validators on the CSE-CIC-IDS2018 dataset. Three Byzantine models
(Models 2, 5, and 8) are vivid in red, while benign models are represented in green.
In light of the reasoning above, the main impacting factor for the
scalability of our framework is the model size. For this reason, we
performed experiments to assess the performance of our solution by
using models of varying sizes. The models used in the experiments have
the following architectures:

• M3: 3 layers (32 → 16 → 4 neurons);
• M4: 4 layers (64 → 32 → 16 → 4 neurons);
• M5: 5 layers (128 → 64 → 32 → 16 → 4 neurons).

Our goal was to observe how increasing model complexity affects
the key performance metrics in our framework, namely: calibration
time, setup time, and proving time. The results, as shown in Table 4,
indicate a clear trend: as the model size increases, so do the time and
resource demands. For the M3 model, the calibration took 18.56 s, the
setup took 52.13 s, and proving took 63.90 s. As we scaled up to the
M4 model, the calibration time rose to 26.56 s, the setup to 81.82 s,
and proving to 102.17 s. The M5 model further escalated these times to
63.70 s for calibration, 204.54 s for the setup, and 199.02 s for proving.

These results show the increase in computational effort and resource
allocation as model complexity grows. Larger models demand more
time for calibration, setup, and proving and require larger proving keys,
thus showing a direct correlation between model size and resource
consumption.

SeCTIS validates the proofs via Blockchain, therefore it is important
to discuss the scalability of the Blockchain component of our frame-
work. A large percentage of the time spent on the Blockchain is for the
verification of the proofs generated by the validators (Swarm Learning
validators). Each validator submits 𝑁 proofs, where 𝑁 is the number
17 
Table 4
Execution times with different model architectures (in seconds).

Model Calibration time Setup time Proving time

M3 18.56 52.13 63.90
M4 26.56 81.82 102.17
M5 63.70 204.54 199.02

of models they are testing. As a result, the number of transactions is
related to the number of learner nodes involved.

In a real-world setting, SeCTIS would be deployed on a public
Blockchain like Ethereum. Therefore, following the reasoning above
concerning the implicit limitation for the number of learners in a
Swarm Learning scenario, as long as each transaction is included in
the first block after it is sent, the overall time for all transactions will
be approximately 12 s.

7. Security analysis of validator operations

We employed the EZKL library in our framework to implement and
manage ZKPs [48]. EZKL is specifically designed to facilitate efficient
and secure proof generation and verification, making it an integral
component in ensuring the privacy and integrity of our computational
processes. This section details how the underlying mechanisms up-
held the security guarantees using EZKL. In the following subsections,
we will provide a high-level overview of the workflow EZKL in our
solution.
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Table 5
List of Terms used in ZKP concept.

Elliptic Curve Point A point on an elliptic curve

Commitment Cryptographic binding of data to a fixed value
KZG-commitments A polynomial commitment scheme used in ZKPs [49]
Poseidon Hash A cryptographic hash function used in ZKPs
Witness Data used to generate a zero-knowledge proof
SRS Structured Reference String [50]
Circuit A set of equality constraints for ZKP computations
EZKL Python library for zero-knowledge proof systems [48]
HALO2 A recursive Zero-Knowledge Proof protocol [51]
ZKSNARK A Zero Knowledge Proof System [52]

7.1. Setup phase

This is the initial phase which configures Zero Knowledge solu-
tion. The objective of this phase is the generation of a key pair,
⟨𝑝𝑟𝑜𝑣𝑖𝑛𝑔 𝑘𝑒𝑦, 𝑣𝑒𝑟𝑖𝑓 𝑖𝑐 𝑎𝑡𝑖𝑜𝑛 𝑘𝑒𝑦⟩, and setting the circuit as done in [53].
The key pair and circuit settings are used in the proof generation
and, subsequently, in the verification phases, which are handled by
the validators and the Verifier SC, respectively. For this objective,
based on the aforementioned key pair and circuit setting, the federated
learning clients build an Ethereum Virtual Machine (EVM) verifier and
deploy it to the blockchain. In our solution, we inherit the function-
alities of the EZKL framework and use them to carry out the steps
above.

The input to the setup phase includes:

• The local model in the ONNX format.
• The Structured Reference String (SRS) contains all the informa-

tion to generate and verify the proofs [50,54]. In our framework,
we use a global SRS for all ZKP operations across all learner
nodes. The SRS is stored in IPFS and its address is available in
the Coordinator SC.

The outputs of the setup phase are:

• The proving key used to generate the proof. This key can ei-
ther be provided to the validators by a trusted third party or
built through a Secure Multiparty Computation performed by the
involved organizations [53].

• The verification key. Verifier SC takes the proof submitted
by the validator as input and uses this verification key to assess
whether the proof is valid or not. The verification key is pre-
embedded in Verifier SC smart contract on the blockchain.

• The circuit settings. The circuit is created based on the EZKL
framework. Circuit settings include tolerance, input scale, and
lookup range. Tolerance defines the acceptable error margin in
computations, while the input scale specifies the scaling factor
for input values. Lookup range setting the range of values for
lookup operations. By changing these settings, we can fine-tune
the performance and accuracy of cryptographic computations.

7.2. Commitment creation

Validators generate proofs using HALO2 and KZG commitments (see
efinitions in Table 5). These commitments include the input data hash,
odel hash, and public output. The hash is created using the Poseidon
ash function, with elliptic curve commitments facilitated by EZKL.

The Structured Reference String (SRS) defined during the Setup
Phase includes a generator 𝑔 and its powers based on a secret scalar
𝑠. The SRS ensures the security of the commitments. In our solution,
we define the following commitments:

7.2.1. Input data commitment
This represents the input data 𝑥 to the ONNX model used by the

validator. The dataset Poseidon hash is used to build the commitment
18 
as follows:

𝐶(𝑃 𝐻(𝑥)) = 𝑔𝑃 𝐻(𝑥) (9)

7.2.2. Model commitment
Similarly, the commitment for the ONNX model, denoted as 𝑀 , is

defined as follows:

𝐶(𝑃 𝐻(𝑀)) = 𝑔𝑃 𝐻(𝑀) (10)

The model hash maps the commitment to the target ONNX model.

7.2.3. Public output commitment
The public output 𝑦, generated by running the model 𝑀 on its input

data 𝑥, is committed as follows:

𝐶(𝑦) = 𝑔𝑦 (11)

These commitments bind the data to specific values while keeping
them hidden, except for the public model results.

In our solution, a dedicated verifier contract is in charge of checking
and detecting the correctness of the proofs submitted by validators. If
an attacker attempts to alter the input data, model, or public output,
the resulting commitments 𝐶(𝑃 𝐻(𝑥′)), 𝐶(𝑃 𝐻(𝑀 ′)), and 𝐶(𝑦′) will be
different from the original 𝐶(𝑃 𝐻(𝑥)), 𝐶(𝑃 𝐻(𝑀)), and 𝐶(𝑦). Due to the
roperties of the hash function and the elliptic curve commitments, any
eviation will be detected by the verifier:

𝑔𝑃 𝐻(𝑥′) ≠ 𝑔𝑃 𝐻(𝑥), 𝑔𝑃 𝐻(𝑀 ′) ≠ 𝑔𝑃 𝐻(𝑀), 𝑔𝑦′ ≠ 𝑔𝑦

Also, to forge a valid proof using different points, an attacker
would need to find consistent polynomial evaluations for points 𝑔𝑃 𝐻(𝑥′),
𝑔𝑃 𝐻(𝑀 ′), and 𝑔𝑦′ that correspond to valid inputs. This is equivalent
to solving the polynomial evaluation problem at secret points defined
by the SRS, which is computationally infeasible. This ensures that any
change in the inputs or attempts to generate fake proofs will result in a
detectable change in the results, maintaining the binding property. The
security of our commitments relies on the computational infeasibility
f deriving the secret 𝑠 from the SRS. Additionally, the Poseidon hash
unction ensures collision-resistance and preimage-resistance, further
ecuring the integrity of the commitments.

7.3. Proof generation and verification

After the generation of the commitments as explained in Section 7.2,
the proof can be generated and verified as follows.

7.3.1. Proof generation
The generation of the proof leverages the proving key for the val-

idator generated during the setup phase. As mandated in the HALO2
ZK-SNARK proof system, the prover (i.e., the validator in our scenario)
uses the proving key to generate a zero-knowledge proof, namely 𝜋,
which includes the commitments.15 The proof demonstrates that the
prover uses 𝑃 𝐻(𝑥), 𝑃 𝐻(𝑀), and obtains 𝑦 as output.

7.3.2. Verification of proof
To validate the proof 𝜋 returned by a validator, Verifier SC uses

the verification key to ensure the proof 𝜋 correctly proves knowledge of
𝑃 𝐻(𝑥), 𝑃 𝐻(𝑀), and obtained 𝑦, without having access to execution
details. This step ensures that the commitments are valid under the
HALO2 ZK-SNARK protocol used by EZKL.

15 We do not report the details about the proof generation as they are part
of the basic HALO2 ZK-SNARK framework and, hence, not defined in our
solution.
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Table 6
Scenario 1.

Valid Not valid

Data Hash cfbacc 0fbacc
Proof Bytes 0 × 10513eb. . . 0 × 10513eb. . .
Output 1 The constraint system is not satisfied

Table 7
Scenario 2.

Valid Not valid

ECP 30,189; . . . 40,189; . . .
Output 1 The constraint system is not satisfied

Table 8
Scenario 3.

Valid Not valid

Model Hash 96cbd4d3 06cbd4d3
Proof Bytes 0 × 10513eb. . . 0 × 10513eb. . .
Output 1 The constraint system is not satisfied

8. Validation robustness against example attack scenarios

As we stated before, our solution guarantees robust and secure
odel validation through the use of zero-knowledge proofs. In par-

icular, such proofs certify that each validator has used a defined set
f input data, has tested target models, and has generated specific
utputs during its validation activity. To demonstrate the efficacy of
ur solution, in this section, we focus on four possible attack strategies
hat are derived from the attack model described in Section 5. In

particular, we focus on scenarios where the attacker controls some
alidator nodes and tries to compromise their standard behavior. To
chieve this objective, the attacker can try to exploit the following
omponents: (i) input data; (ii) secure parameters in the Proof; (iii)
odel weights; (iv) public output.

Without losing generality, we focus on the case in which the at-
tacker controls a single validator, and we consider four scenarios,
namely Scenario 1, Scenario 2, Scenario 3, and Scenario 4. In each
scenario, the adversary focuses on one of the above-mentioned com-
ponents to forge the attack. The adversary objective is to elude the
Verifier SC so as to jeopardize the estimated trust score for target
models. This causes model exclusion (resp., inclusion) in the subsequent
aggregation step.

In Scenario 1, a malicious validator tries to deceive the Verifier
SC by exploiting different input data to generate the public output for
a target model. The rationale behind this strategy is to penalize a target
model by using special input data to validate it.

As discussed in Section 7, changing the input to the proof will
generate a different commitment value (see Eq. (9)). Therefore, our
erifier SC will return an error as visible in Table 6.

In Scenario 2, a malicious validator tries to tamper with the proof
by changing the Elliptic Curve Points (ECP). However, again, due to
he properties of the ZKP Scheme and Hash Function, this action will
enerate different values with respect to the content of the SRS, thus
aking the proof invalid. Therefore, once again, the Verifier SC
ill return an error message as visible in Table 7.

In Scenario 3, a malicious validator attempts to use a different model
o generate results. This action will cause the violation of the Model
ommitment (see Eq. (10)), which will hence make the proof not valid.

The output produced by the Verifier SC is visible in Table 8.
Finally, in Scenario 4, a malicious validator tries to modify the

public output produced by the execution of a target model before sub-
mitting it to the blockchain. However, because this forged output is not
 v
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Table 9
Scenario 4.

Valid Not valid

Public Output 0 1𝐸 + 63
Proof Bytes 0 × 1308d6f. . . 0 × 1308d6f. . .
Output 1 The constraint system is not satisfied

generated by the given input data hash and model, such modification
would violate the Public Output Commitment (see Eq. (11)), which
will, hence, invalidate the proof. In such a case, the Verifier SC
will return the error visible in Table 9.

9. Execution performance for ZKP operations

To provide insights about the execution time of the cryptographic
perations included in our EZKL-based solution, we conducted a final

experiment to measure the execution times of even distinct actions from
two key actors: Validators and Learners. In particular, we focused on
the following operations.

1. Calibration of input data. (Learner)
2. Circuit compiling. (Learner)
3. Circuit setup. (Learner)
4. Circuit deployment on the blockchain.(Learner)
5. Witness file generation. (Validator)
6. Proof generation. (Validator)
7. Proof verification on the blockchain. (Validator)

We ran this experiment by using our previously discussed neural
etwork on a 2021 Apple M1 Pro with 8 CPU cores at 3200 MHz

and 16 GB RAM. Our analysis found out that, without considering ZKP
operations, each client spent approximately 100 s for a global FL round,
while each validator spent around 95 s. Table 10 provides a compre-
ensive breakdown of the time duration associated with the various

operations performed during the execution of ZKP processes by both
Learner and Validator entities. In particular, for Learner operations, it
shows that the most time-intensive task is data calibration, requiring
an average of 223.14 s. Conversely, the compilation of the circuit
demonstrates negligible duration, taking merely 0.0052 s. Setting up
the circuit follows as the next significant operation, consuming an
average of 72.89 s. The circuit is deployed, and the final operation is
completed within an average time of 12 s. When it comes to validator
operations, witness generation is the quickest task, requiring an average
of 0.39 s. Conversely, the process of proving is the most time-consuming
operation, averaging 83.25 s, followed by the verification process,
which takes an average of 12 s.

We are also aware of other zero-knowledge protocols commonly
dopted by researchers and developers, such as Orion and Risc0 [55,

56]. According to the EZKL official GitHub repository, in which they
ompare different frameworks and their benchmark results on various
odels, EZKL uses 63.95% less memory than Orion and 99.14% less

han RISC0. Additionally, it is 2.92 times faster in proving compared
o Orion and 77.29 times faster compared to RISC0.

Our implementation ensured that both privacy and efficiency were
pheld during the proof generation and verification processes. Through
 series of experiments, we validated the effectiveness of our framework
hile preventing any attempts by dishonest provers to deceive the
erifier. In cases where the proof held true, honest provers were able to
emonstrate its truth to the verifier. Conversely, attempts by dishonest
rovers to falsify proofs were effectively thwarted. The cryptographic
apability of EZKL’s underlying algorithms acted as a robust safeguard
gainst tampering and falsifying proofs, ensuring our framework’s in-
egrity and security. Furthermore, EZKL’s sophisticated cryptographic
echniques obscured the underlying data, preventing any leakage of
dditional information beyond the truth of the statement during the

erification process.
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Table 10
Times taken for learner and validator operations.

Operation Time (s)

Learner
Data Calibration 223.14 s
Compile Circuit 0.0052 s
Setup Circuit 72.89 s
Deployment 12 s

Validator
Witness Generation 0.39 s
Prove 83.25 s
Verify 12 s

10. Discussion

Sharing CTI has been proposed as an effective way to enhance
overall cyber intelligence and defense. However, loss of data confiden-
tiality may act as a disincentive to disclose information and impede
data sharing. Moreover, various sources of liability may discourage
private entities from participating in CTI data distribution. The most
ommonly cited source of liability is privacy and data protection law,
hough antitrust law, negligence law, and intellectual property law are
lso potential concerns if any information they intend to share contains
aterial that is potentially protected [4].

Several features of SeCTIS are intended to address these issues.

1. Data processing is decentralized, hence each participant pro-
cesses its data on-site without sending it to a central server. The
fact that only the learned model parameters (like weights and
gradients) are shared reduces the risk of data breaches and en-
sures compliance with privacy regulations (such as GDPR [57]).
Indeed, Intellectual Property (IP) on data, data ownership, and
data protection are crucial points for sharing data to train ML
models in a distributed way [58].

2. Since SeCTIS architecture relies on Swarm Learning the collab-
orating entities train a shared model without exchanging their
underlying datasets. This ensures that sensitive data remains
within its country of origin, avoiding potential legal and ethical
challenges associated with cross-border data transfers.

3. Since SeCTIS does not require data to be moved across borders, it
allows organizations to collaborate while adhering to their own
country’s regulations and still contributing to a global model.

4. SeCTIS exploits Blockchain to add an additional layer of security,
ensuring that the whole process is transparent, immutable, and
tamper-proof. Thanks to this technology a trustless environment
where participants do not need to trust each other is also guar-
anteed and this can incentivize international collaboration and
foster a more cooperative and equitable environment.

In summary by keeping data local, (i) companies can comply with
ata sovereignty laws that require data to remain within specific ju-
isdictions, (ii) the risk of non-compliance with data protection reg-
lations is reduced, and (iii) the potential legal liabilities and penal-
ies associated with data breaches or unauthorized data sharing are

minimized.

11. Conclusion

CTI Sharing provides businesses with access to CTI data that ordi-
arily they may not have been able to obtain without collaboration
ith other organizations. This information can be exploited to improve

their overall security posture by using the knowledge, experience, and
apabilities of the participating entities. This ensures that the detection

and previous knowledge of one organization becomes the future pre-
vention of another one. Unfortunately, most organizations are hesitant
to share their private CTI data for several reasons, such as the possible
loss of credibility, the lack of trust in other peer organizations, possible
20 
risks in using external data that may be false or wrong, and strict law
regulations.

To provide a contribution in this setting, we propose a complete
framework called SeCTIS (Secure CTI Sharing) that aims to tackle
ifferent challenges. Firstly, it performs a collaborative training of
L models between different organizations through a Swarm Learn-

ng approach. Furthermore, SeCTIS assesses models and data quality
hrough the use of validator nodes and the Zero-Knowledge Proof, thus
eveloping a robust reputation model to estimate the trustworthiness of
ll participants. To evaluate our reputation model experimentally, we
ntroduced byzantine clients with noisy labels and simulated different
ttack scenario. Our results show that integrating a reputation scheme
nto Swarm Learning effectively mitigates the influence of noisy labels.
oreover, this integration streamlines the identification and exclusion

f low-quality models during aggregation, thereby strengthening the
ollective performance and resilience of collaborative learning.

To the best of our knowledge, our proposal is novel, and SeCTIS
s the first framework to provide complete assurance of data con-

fidentiality, Organization privacy, data, and model quality, and the
trustworthiness of participants.

As a limitation of our approach, we identify two main points. First,
our framework relies on the EZKL library to generate and verify the
required cryptographic proofs. This library allows our framework to
run on any blockchain compatible with the Ethereum Virtual Machine
(EVM). However, in the current most diffused public blockchains,
such as Ethereum, the use of such technology leads to an increase
in gas costs for the execution of involved Smart Contracts. On the
other hand, opting for a private permissioned blockchain would require
additional solutions for basic operations included in our solution. For
example, the simple random selection of validators and aggregators
among available clients may become problematic due to the lack of
third-party services, such as Chainlink, that provide verifiable random
numbers. This would require the deployment of additional, possibly
costly, solutions. As a second point, we showed that secure operations
included in EZKL require relatively high execution times. For both of
the points mentioned above, we emphasize that within our application
context, which involves (even large) organizations, these limitations
seem insignificant. However, they could become impacting if our solu-
tion should be extended to other application contexts, such as scenarios
in which Internet of Things devices are directly exposed and involved
in the learning task.

In the future, we aim to improve our SeCTIS framework by con-
sidering also Organization-Specific Threat Intelligence. In particular,
we want to help Security Operations Center (SoC) analysts exchange
and train ML models to suit a peculiar organization’s needs. As for the
limitations mentioned above, we are also planning to adapt and test our
solution with newer layer 2 blockchains, like Arbitrum, Optimism, and
Base, which could allow us to enhance the obtainable performance.
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