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Abstract 17 

Ceramic provenance studies often use minor and trace elements to gather knowledge about the presence of local furnaces and 18 
commercial trades. There are various chemical techniques that can be used to determine the elemental composition of ceramics, 19 
either non-destructively or by requiring samples. From these data, researchers can often determine provenance, and then use 20 
multivariate analyses with geological and archaeological information to classify the ceramics. In this study, we aimed to 21 
demonstrate the potential of supervised Machine Learning techniques to classify ceramic samples based on their chemical element 22 
concentrations. We applied several supervised learning algorithms to a set of 36 fragments whose archaeological classification was 23 
already known, using chemical analysis data that had been verified through previous studies. We carried out different sets of 24 
experiments, exploiting in different ways the available data, and evaluated the performance of the adopted algorithms, to propose 25 
new tools for ceramics provenance studies in archaeology. Our results show that machine learning can be a reliable and useful tool 26 
for archaeological classification based on chemical analysis data, providing a reliable and schematic picture of archaeological 27 
findings. 28 

1. Introduction 29 

Reliable provenance classification is based on interdisciplinary studies involving both the scientific and humanistic fields. The 30 
determination of ceramics “fingerprints” is one of the features in this complex path, and it involves several aspects, among which the 31 
identification of raw materials and the determination of manufacturing techniques (Cuomo di Caprio, 2017). These two matters are 32 
strictly linked, as raw clay was submitted to levigation and then added with tempering materials, such as chamotte or sand (Tite et 33 
al., 2003). Thus, to reach a reliable classification, a number of techniques should be synergically used, to have information about 34 
composition in both terms of chemical elements and of mineralogic phases (Sciau et al., 2015). 35 

The examination of elemental chemical composition, with particular reference to trace elements and in association with chemometric 36 
analysis, is a relevant analytical tool used to find out different geographical provenances among the sets of archaeological pottery 37 
(Jones, 1986). Indeed, clays can have a different composition within the same quarry or, otherwise, be quite similar in different sites, 38 
hence it is in general necessary to pay particular attention to minor and trace elements (Neff, 2000). It can also be useful to juxtapose 39 
elemental and mineralogical data, the latter being strongly influenced by production techniques, especially firing temperature (Bruni 40 
et al., 2001). 41 

Some of the most exploited techniques in the chemical characterization of ancient ceramics are: atomic emission spectroscopy (AES) 42 
(Bellanti et al., 2008), proton-induced X-ray emission (PIXE) (Robertson et al., 2002), X-ray fluorescence (XRF) (Padilla et al., 2006; 43 
Cariati et al., 2003), inductively coupled plasma (ICP) (Kennett et al., 2002), neutron activation analysis (NAA) (Descantes, 2002; 44 
Bishop, 2002), Raman and IR spectroscopy (Bruni et al, 2001), X-Ray diffraction (XRD) (Ballirano et al., 2014), Mössbauer spectroscopy 45 
(Wagner et al., 1999), and Laser Ablation Inductively Coupled Plasma Mass spectroscopy (LA-ICP-MS) (Li et al., 2006). Among these 46 
techniques, pXRF (portable X-ray Fluorescence) plays an important role, as it allows to perform non-destructive and non-invasive 47 
analyses, with short measuring times and directly in the conservation sites (Ruschioni et al., 2022). On the other hand, it does not 48 
allow the determination of the light elements matrix nor to distinguish among clay composition, inclusions and tempering materials 49 
(Frahm, 2018). For this reason, it is often used as the first approach in the Heritage material surveys, especially along with mineralogic 50 
techniques such as XRD, FT-IR or thin section studies. Hence, it is an important tile, but it gives a partial insight of materials, as many 51 
other techniques in the field of material sciences. Moreover, being pXRF a relatively superficial technique performed on small areas 52 
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of the samples, great attention must be devoted to the choice of the measuring point, as well as to the analysis of the ceramic surface, 53 
especially when they are decorated or they underwent to a burial period, as by definition the measure would not suitably represent 54 
the ceramic under study. Therefore, pXRF is usually coupled with complementary mineralogical techniques, and a subsequent deep 55 
and careful data analysis is required in order to help a correct archaeological interpretation of the obtained results. The present paper 56 
is devoted to the specific step of data handling; in other words, it focuses on the research question: “How Machine Learning 57 
techniques can help data interpretation, if they can do this?”. It is worth pointing out that these techniques can be applied to all sorts 58 
of data (Anglisano et al., 2020), so that a positive answer to the previous question would also allow to treat results from different 59 
analytical techniques in one unique elaboration (Saleh et al, 2020). 60 

2. Computer Science applied to Cultural Heritage Materials 61 

Several methodologies in the realm of Computer Science have been recently applied to Cultural Heritage and archaeological 62 
materials, demanding cross-disciplinary cooperation and two-way communication at various levels, from data handling to museum 63 
promotion. One of the most explored fields is that related to data analysis, as statistical methods are indeed used throughout the 64 
whole archaeological research process, from the survey planning to sampling and data collection. Whenever archaeometric data are 65 
involved, the problem of data handling and analysis arise to answer specific archaeological questions; in this case, the classical 66 
approach on a wide variety of archaeological materials consists in using unsupervised methods such as Principal Component Analysis 67 
(PCA), Hierarchical Cluster Analysis (HCA) and K-Means Clustering (Amadori et al., 2017; Bonizzoni et al., 2009; Bruni, 2022; Fermo et 68 
al., 2016; Galli et al., 2011). Ceramic provenance studies play an important role in gathering knowledge of local furnace presence and 69 
commercial trades: pottery sherds are the most abundant materials in archaeological excavations and archaeological queries about 70 
ceramic provenance represent a fundamental part to reconstruct the past. The examination of the elemental chemical composition 71 
in association with statistical analysis helps to find out different geographical provenances, allowing to confirm the existence of fabric 72 
groups and supporting the hypothesis of a common origin for some fragments (Bruno et al., 2000; Jones, 1986). Clays can have a 73 
different composition within the same quarry and, on the other hand, be quite similar in different sites; for this reason, it is generally 74 
necessary to pay particular attention to minor and trace elements (Neff, 2000). Indeed, multivariate statistical analysis is also 75 
generally applied to provenance ceramics studies, as a univariate study would be inadequate (Fermo et al., 2008; Liritzis et al., 2020; 76 
Papageorgiou, 2020). 77 

For the development of an adequate model for data classification inferred (learned) from a set of available examples, Machine 78 
Learning methods can be considered. In particular, if for training examples the desired outputs are known, then supervised methods 79 
can be applied; on the other hand, if the desired outputs are unknown and we wish to find possible groupings of data based just on 80 
their similarity, unsupervised methods can be applied; a systematic survey of Machine Learning algorithms for data science can be 81 
found in (Alloghani et al., 2020). A good review of these multivariate methods and a discussion of their advantages with respect to 82 
classical methods in archaeometry can be found in (Baxter, 2006). Since that review, dating to about fifteen years ago, in which the 83 
author observed that “the explosion of interest in alternatives to the ‘classical’ methods of learning [….] has left the archaeometric 84 
literature largely untouched”, the panorama has changed and some work has been done, in particular focusing on the classification 85 
of samples described by chemical element composition.  86 

In (Charalambous et al., 2016), authors describe a robust methodology for choosing the best algorithm for the classification of 87 
archaeological ceramic samples coming from Cyprus; samples are described by a set of chemical compounds whose elemental 88 
concentrations were obtained through ED-XRF (Energy Dispersive X-Ray Fluorescence) analysis, the same technique used in the 89 
present paper. The data set consists of 177 measurements, a significant number for archaeological studies and, most important, 90 
similar to that considered in the present paper (112 XRF spectra from which elemental evaluation was obtained). In these 91 
experiments, K-Nearest Neighbours, Learning Vector Quantization and Decision Trees are compared. In particular, the authors 92 
highlight how the analysis of archaeological ceramic artefacts by means of classification algorithms can help to answer archaeological 93 
questions and, therefore, to identify possible typological categorizing errors or to recognize particular compositional, technological 94 
or stylistic patterns. In (Hazenfratz et al., 2017) self-organising maps are applied for the clustering of pottery shards coming from two 95 
archaeological sites in Central Amazon, and samples are described by the concentration of nine chemical elements, selected from a 96 
wider set by analytic quality control considerations and measured by INAA (Instrumental Neutron Activation Analysis). By comparison 97 
with patterns obtained through multivariate statistical methods, the authors verified the potential of Self-Organising Maps for the 98 
analysis of archaeometric data. In (Jasiewicz et al., 2021) soft clustering with Gaussian Mixture Models are combined in order to 99 
select the most important elements and classify prehistoric ceramics. Element concentrations were obtained through ED-XRF analysis 100 
and 15 elements were considered. The authors use an approach typical of supervised analysis, i.e., the selection of important 101 
variables, but applied it to unsupervised methods, minimising the disparity between the elemental classes and the position of the 102 
source material. In (Sun et al., 2020) Random Forest was the best performing algorithm compared to Support Vector Machines, 103 
AdaBoost and K-Nearest Neighbour in the multiclass classification of Chinese ancient ceramics; the classification model is enriched 104 
with Mahalanobis distance in order to determine how far the sample is from the centre of the predicted class, and the most relevant 105 
chemical elements for sample description are selected looking at their influence on classification accuracy. The resulting classification 106 
model was also applied in practical archaeological problems. As in (Charalambous et al., 2016) and (Jasiewicz et al., 2021), the 107 
elemental dataset used for the studies was obtained through ED-XRF analysis. 108 
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The aim of the present work is to create a model able to distinguish between fragments of Etruscan pottery classified as local 109 
production from other fragments having a different provenance. Since the performance of a learning algorithm strongly depends on 110 
the structure of data, we compared the results of several supervised learning algorithms for classification: in addition to the methods 111 
discussed in (Baxter, 2006), we also tested naive Bayes methods and Random Forests. The first methods are based on the assumption 112 
that variables describing objects are independent and exploit the Bayes’ theorem for building the classification decision rule (Maritz 113 
and Lwin, 2018); on the other hand, Random Forests are an ensemble of Decision Trees and use an aggregation rule (e.g., majority 114 
vote) for outputting their prediction (Breiman, 2001). 115 

3. Materials and methods 116 

With the aim of showing the potential of supervised methods on real archaeological data, we have considered a set of 36 fragments, 117 
whose known archaeological classification is summarised in Table 1. This classification, which has been made on archaeological bases, 118 
has been verified through chemical methods (Bonizzoni et al., 2010; Bruni et al., 2001; Fermo et al., 2004) coupled with statistical 119 
elaborations. Among the archaeometric analysis performed, pXRF had been also considered; in this work, we start again from the 120 
same XRF spectra and elemental concentrations, originating the previous classification, to test the supervised learning algorithms 121 
proposed in the present paper. For each fragment, several measuring points were considered, as detailed later in the text and 122 
reported in Table 1; the results of all measurements (112 on the 36 fragments) were used to prepare the dataset for statistical 123 
elaboration. 124 

We considered 27 fragments of Etruscan depurata pottery, with most of them belonging to the vernice nera arcaica (black varnish 125 
decoration) class, while the remaining ones belong to the etrusco geometrica (geometrical decorations), etrusco corinzio, and 126 
bucchero pottery class. They are all from the archaeological excavation at Pian della Civita in Tarquinia (Italy), classified as local 127 
production and dating from the VIII to the IV century B.C. Six additional fragments of black varnish fine pottery are from the Greek 128 
colony of Velia, dating the same period. Three further samples of non-local origin have been included, even if no hypothesis on their 129 
provenance were previously made. It is worth noting that somehow a vague classification is typical of real archaeological contexts, 130 
and thus this set of data, even though not ideal from a purely statistical point of view, is a representative and challenging case study 131 
for the aim of the present research.  132 

The element concentrations employed for calculation presented in this work have been obtained through non-destructive 133 
quantitative X-ray fluorescence (XRF) analysis, exploiting a portable spectrometer (Bonizzoni et al., 2010); this technique has proved 134 
to be useful as a first check for the presence of the same raw materials when coupled with multivariate statistical treatment of data 135 
(Romano et al., 2006; Padilla et al., 2006; Idjouadiene et al., 2019), making analyses possible for a wide range of materials even when 136 
sampling is forbidden (Fermo et al., 2016; Galli et al., 2011; Veneranda et al., 2022). XRF measurements were performed on selected 137 
areas on untreated ceramics with a portable spectrometer (Assing Lithos 3000) equipped with a low power X-ray tube with Mo anode 138 
and a Peltier cooled Si-PIN detector; the working conditions were 25 kV and 0.3 mA with a 500 s acquisition time. From qualitative 139 
analyses of the spectra, eleven elements were detected; among these, Cu and Zr were under the minimum detection limit for most 140 
of the samples and were not considered for quantification. We thus considered the remaining nine elements, namely K, Ca, Ti, Cr, 141 
Mn, Fe, Zn, Rb and Sr, for quantitative analysis. For elements showing a concentration under Minimum Detection Limit (MDL) only in 142 
a few samples, we substituted the missing data in the overall dataset table with a random concentration value between 0 and the 143 
detection limit itself. The MDL values for trace elements were estimated considering background fluctuation and instrument 144 
sensitivity for each single spectrum; the quantitative analyses were performed using a computational method (Lithos 3000 software) 145 
based on the fundamental parameters and considering, in addition to the characteristic X-ray lines of the elements, also the intensity 146 
ratio of the scattered peaks (Bonizzoni et al., 2010), to get information on effective Z of low elements’ matrix or at least on its 147 
behaviour regarding X-ray absorption. Due to the intrinsically inhomogeneous nature of ceramics, even if we are dealing with fine 148 
pottery, more than one measure was considered for each fragment (from 2 to 7, depending on the dimension and conservation state 149 
of the fragment, as reported in Table 1); the total number of measures considered was 112. Non-decorated areas and fresh fractures 150 
were preferred to minimise contamination from burial or material unrelated to the ceramic bulk. Compton normalisation has been 151 
applied to verify possible geometry problems and discard spectra before performing quantitative analysis. A reference sample with 152 
composition similar to the unknown ones was also measured to get elemental sensitivity and geometrical efficiency. For our samples, 153 
the sum of weight concentrations of detected medium-heavy elements is between 5% and 25%, depending on the samples, but it 154 
has a lower variation (a few percent) among different spots on the same sample. Considering the average concentration values for 155 
each fragment, statistical errors on calculated concentrations are about 10%, due to the local inhomogeneity of ceramic sherds. Prior 156 
to statistical elaborations, the weight concentrations obtained for all detected elements from a given spectrum have been normalised 157 
to 100 and can no longer be regarded as weight concentration. This simplifies sample comparisons, and it eliminates the differences 158 
among samples due to the varied silicate presence or firing temperatures, which could induce a different weight loss also in fragments 159 
with similar raw materials. This procedure is particularly advisable whenever samples contain indefinite amounts of extraneous 160 
material (Aruga, 1998), as the case of archaeological ceramics were extraneous substances such as crushed shell or crushed stone, 161 
called temper, could have been added to the original raw material in order to improve the properties of the manufactured products. 162 
Indeed, the applied normalisation decreases the number of variables by one: possible implications of this aspect are discussed in the 163 
following sections, when dealing with dimensionality reduction of data. It is worth noting that the number of measure points on each 164 
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fragment is not the same, as the dimension of fragments was quite different; even if this feature could lead to a slight skew of results, 165 
once again this is a typical situation when dealing with a real set of archaeological data. 166 

 167 
Table 1: samples considered for testing supervised methods; for each sample, the number of XRF spectra/measured points is reported. Further 168 

archaeological details can be found in the paper quoted in the text. 169 
 170 

Fragments Number of measurement points for each fragment Archaeological classification 

180_96 6 

Tarquinia (local) 

 

170_2 3_73 48_23 

4 186_2 13_4 40_8 

193_43 3_607 274_7 

c203-1   

88_74 3_610 121_2 3 

3 
59_35 199_33 80_25 

2 

 

59_159 227_35 227_46 

28_66 c3-738 3_204 

28_128 c30-110 A10_25 

c281-60   

72 3 Non local 

 
c258-12 A10-3bis  2 

V1 7 Velia 

 

V2 V5 V6 4 

V4 3 

V3 2 

4. Statistical analysis 171 

The available data (112 data points) were obtained from the 36 fragments listed in Table 1; 27 fragments (75%) were labelled as local 172 
production and 9 (25%) were labelled as non-local production. Taking into account the repeated measures for each fragment, we 173 
ended up with 112 data points, 81 (72.3%) labelled as local production and 31 (27.7%) labelled as non-local production. Table 2 shows 174 
the distribution of the number of repeated measures in the dataset; in particular, for all fragments at least two measures were taken, 175 
and the number of measures for a given fragment was at most 7. 176 

Each data point is described by the relative concentration of the already mentioned nine elements K, Ca, Ti, Cr, Mn, Fe, Zn, Rb and 177 
Sr. Normality of chemical elements was tested by the Shapiro-Wilk test; some elements showed a normal distribution, in particular 178 
Ca, Ti, Cr and Mn in the local production group and K, Ca, Ti, Cr, Zn and Rb in the other group. 179 

Table 2: frequency distribution of measures on same samples. 180 
Number of repeated measures Number of samples 

1 0 

2 16 

3 5 

4 13 

5 0 

6 1 

7 1 

Table 3 illustrates the results of a preliminary statistical analysis of the gathered dataset. In particular, we computed central position 181 
and dispersion values, comparing the two groups according to the Student’s t test (for normal variables) or the Mann-Whitney U test 182 
(for non-normal variables); all the elements had a statistically different behaviour in the two groups (p<0.001 for all the significant 183 
differences), except Sr. In addition, Figure 1 shows the histograms of chemical elements in the two groups: samples coming from 184 
Tarquinia have a higher Ca concentration than samples of non-local production, and this reflects the well-known characteristic of 185 
Tarquinia raw material, rich in illitic-kaolinitic clays (all containing Ca), mostly if compared to surroundings Etruscan sites (Fermo et 186 
al., 2004). Moreover, a narrow distribution is present for Tarquinian samples, while the non-local ones are more spread, reflecting 187 
the possible different origin of some of them. 188 

 189 

 190 

 191 
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Table 3: Element concentration: central and dispersion values in the two groups, with normality and significant differences. 192 

* normal 

in both groups 

MEAN or MEDIAN STDEV or IQR 
T-test or  

Mann-Whitney U test 

LOCAL NOT LOCAL LOCAL NOT LOCAL p-value <0-001 

* Ca 52.13 22.69 8.33 9.03 * 

 Fe 29.08 43.73 7.42 7.89 * 

 K 15.7 29.28 4.72 5.59 * 

* Ti 2.25 3.65 0.68 0.96 * 

 Mn 0.71 1.18 0.23 0.69 * 

* Cr 0.29 0.53 0.11 0.20 * 

 Sr 0.12 0.11 0.07 0.05  

 Zn 0.07 0.12 0.03 0.07 * 

 Rb 0.05 0.10 0.02 0.02 * 

 193 

194 

  195 

196 
Figure 1: Histograms of element concentrations in the two classes of provenance (local and non-local). 197 
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5. Experiments 198 

For the classification task we compared ten different supervised machine learning algorithms, namely:  Logistic Regression (LR), Linear 199 
Discriminant Analysis (LDA), Neural Networks (in particular Multi-Layer Perceptrons, MLP), Support Vector Machines (SVM) in their 200 
linear and non-linear versions (the latter based on polynomial and Gaussian kernels), binary Decision Trees (DT), Random Forests 201 
(RF), Naive Bayes (NB) and K-Nearest Neighbors (KNN)1. In almost all cases, we directly used the scikit-learn python library (Pedregosa 202 
et al., 2011) for running these learning algorithms: the only exception was done for MLPs, whose scikit-learn implementation was 203 
tweaked in order to deal with a single output neuron activated using a logistic function. 204 

As we were dealing with a dataset of limited size, in order to perform model selection and jointly assessing model performance, we 205 
used the nested k-fold cross-validation resampling technique, and stratified training and test sets according to the two classes of local 206 
and non-local production. In simple k-fold cross-validation the original data set is divided into k folds of the same size, where one fold 207 
is used for validation and the remaining k-1 folds are used for training the model (in other words, data are split in a training and a 208 
test set approximately containing (k-1)/k and 1/k of the original dataset, respectively); the process is repeated k times, choosing at 209 
each time a different fold for validation, thus considering all the possible non-overlapping splits in train and validation of the original 210 
dataset. At each iteration a model is learned, and its generalisation capability is evaluated on the corresponding validation set. The 211 
average of these evaluations is used as an estimate of how any of the k learned models will perform on data not used during the 212 
training phase. If the learning algorithm is also characterised by a set of parameters (called hyper-parameters) that have to be tuned 213 
before model inference, as happening with almost all of the previously mentioned algorithms, nesting two k-fold cross-validation 214 
processes is a good method for performing model selection and evaluation: in the outer loop the entire data set is divided into several 215 
training and test sets (according to the k-fold technique), in the inner loop the best hyper-parameters configuration (through search, 216 
for instance, in a grid of possible values) is found by a second k-fold cross validation on the training set; the final model is then re-217 
trained using the complete training set and the best values for hyper-parameters, and its generalisation capability is evaluated on 218 
the outer test set. The overall process is repeated as many times as many folds we have in the outer cross-validation. The metric we 219 
used for model selection was accuracy, namely the fraction of examples correctly classified. We used 4 external folds and 3 internal 220 
ones. Generalisation ability was measured using accuracy, sensitivity, specificity, and F1 score (see later on for their formal definition). 221 

Despite the fact that the original data were already normalised, we tested a few dimensionality reduction techniques and a few 222 
scaling methods. Namely, concerning dimensionality reduction we exploited Principal Component Analysis (PCA) and Singular Value 223 
Decomposition (SVD), considering all the possible number of extracted components for both techniques. Scaling involved 224 
standardisation, normalisation, re-scaling to the [0, 1] interval, and robust scaling (via quantile extraction). We did not consider other 225 
scaling techniques, notably those based on logarithmic transformations, traditionally applied when dealing with statistical analysis 226 
on whole spectra, to avoid noise amplification. Scaling and dimensionality reduction are part of a pre-processing phase, but, since 227 
the choice of a particular method could perform better when coupled with a given learning algorithm and a particular choice of its 228 
hyper-parameters, we decided to incorporate them in the hyper-parameters grid search step, giving the possibility of ignoring either 229 
or both steps (thus, in the latter case, we directly process raw data). When performing dimensionality reduction, we have extracted 230 
seven variables as maximum size; in some cases, less than five dimensions were used for calculations. Please note that the two 231 
experiments for which all the variables were considered without dimension reduction showed the best performances.    232 

The hyper-parameters we considered for model selection and the corresponding grid values are listed in Table 4. In particular, for 233 
MLPs we conjectured that at most two hidden layers were sufficient for separating the two groups; for LDA we tried different solvers; 234 
for KNNs we decided to consider at most eight neighbours, given the small number of negative examples in the dataset; for SVMs 235 
we considered the linear, polynomial and Gaussian kernels, and values for the regularisation (inverse of penalty) C parameter ranging 236 
in the logarithmic space from 10-4 to 103; for binary DTs we tried entropy and the heterogeneity Gini index for node splitting and 237 
allowed a maximum number of features for node conditions ranging from the total number of descriptors (9) to its square root (3); 238 
in RFs we thought that, given the binary nature of the classification problem, an odd number of estimators was preferable, and we 239 
allowed a minimum of 3 and a maximum of 9 estimators; we did not perform any model selection for NB classification, using the 240 
default implementation in scikit-learn. The software implementing our experiments and data matrix are available for 241 
replicability/reproducibility purposes at https://github.com/dariomalchiodi/JAS-Tarquinia-classification. 242 
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We performed three different types of experiments, and we will refer to them as type 1, type 2, and type 3 experiments henceforth. 243 
In type 1 experiments we used the complete dataset as if all data were independent; this means that stratification and subdivision in 244 
folds were run over all the available data points, so that all the different measures taken from each fragment contributed individually 245 
to the learning process. However, since in this case data points are “not completely” independent, we assumed that this kind of 246 
strategy might lead to overfitting. In this simple way of exploiting data, indeed, only some among the measures of a given fragment 247 
might fall in a fold used for training; in this case, the remaining measures of the same fragment would belong in the fold devoted to 248 
model selection or assessment. Therefore, train and test sets used in the cross-validation process may be “not completely” disjoint. 249 
In order to overcome this problem, we designed type 2 experiments, where stratification and subdivision in folds were done on 250 
fragments rather than on measures; in this setting, each fragment was considered just once and the fold containing the fragment 251 
contained all its available measures. The drawback here is that now folds may have different sizes, since the number of measures is 252 
not constant across fragments (see Table 2). In order to consider folds having the same size, we conceived type 3 experiments, where 253 
stratification and subdivision in folds were done on fragments in the same way as in type 2 experiments, now considering only two 254 
measures for each fragment, sampled from the available ones. 255 

Table 4: Model, hyperparameters and grid values. For the sake of brevity, the column Hyperparameters shows the names used by the scikit-learn 256 
library. 257 

 258 
Model Hyperparameters Grid values 

LDA solver 'svd', 'lqsr' 

SVM 

C V = set of ten values evenly spaced between 1E-4 and 1E3 in logarithmic space 

kernel 
linear, polynomial (with degree p ranging in {2, 3, 5, 9}), gaussian (with parameter ɣ ranging in V, 

also allowing the predefined 'auto' and 'scale' settings) 

DT 

criterion Gini index, entropy 

max_features square root of total number of features, no maximum number of features 

max_depth 2, …, 9, ∞ 

min_samples_split 2, …, 5 

min_samples_leaf 2, …, 5 

ccp_alpha 0, 0.5, 1, 1.5 

RF same hyperparameters of DT + 

n_estimators 3, 5, 7, 9 

KNN n_neighbors 1, …, 7 

p 2, 3 

MLP 

hidden_layer_sizes 
one hidden layer with two neurons, one hidden layer with three neurons, two hidden layers with 

two neurons each 

activation logistic, ReLU 

alpha 1E-4, 1E-3 

learning_rate 'constant', 'adaptive' 

learning_rate_init 1E-4, 1E-3, 1E-2 

shuffle True, False 

momentum 0.8, 0.9 

LR penalty L1 and L2 regularization 

C V 
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6. Results and discussion  259 

For each considered learning algorithm, the best performing model according to the accuracy score (i.e., the one which corresponds 260 
to the best performing hyper-parameters) found in the internal cross validation was tested on the test sets of the external cross 261 
validation. In correspondence of each data point of the test set, the model output was 1 if its predicted class was Tarquinia, and it 262 
was 0 otherwise. Since the external folds were four, we ended up with four best performing models for each learning algorithm, and 263 
we used those models for evaluating the algorithm performance. Focusing on the model maximising accuracy among such best 264 
models, Tables 5, 6 and 7 (each devoted to one of the performed experiments) display the optimal values of the considered 265 
algorithms’ hyper-parameters, together with the optimal data transformation and dimensionality reduction technique. In other 266 
words, these tables report, for each experiment and for each considered model, the values of the hyper-parameters that can be used 267 
in order to train the best performing model without re-executing the model selection phase, in order to rapidly reproduce our results. 268 

We considered different performance measures. In Tables 8, 9 and 10 (also in this case, each table describes an experiment) such 269 
measures are evaluated considering the four best performing models through mean and standard deviation (in brackets). These 270 
evaluations concern data not used during the training phase, thus they suitably summarise the generalisation capability of the 271 
induced models when they will be queried with new data. In particular, let us introduce some intermediate concepts which we will 272 
use in order to define the considered measures.  273 

We denote as positive the samples belonging to the local production (Tarquinia) class, and as negative the remaining samples. Let us 274 
define: i) P and N, respectively, as the total number of positive and negative samples; ii) TP (true positives) as the number of positive 275 
samples correctly classified; iii) TN (true negatives) as the number of negative samples correctly classified; iv) FN (false negatives) as 276 
the number of positive samples erroneously classified. Now: 277 

⚫ accuracy is the ratio of correct predictions over the total number of samples, that is (TP + TN) / (P + N), 278 
⚫ sensitivity (also known as recall) is the analogous of accuracy when only considering positive samples, that is TP / P, 279 
⚫ specificity is the analogous of accuracy when only considering negative samples, that is TN / N, 280 
⚫ F1 score is the harmonic mean between sensitivity and precision, the latter intended as the ratio of correct positive 281 

classifications over the total number of positive predictions, that is TP / (TP + FN). 282 

Our dataset was not balanced: in particular, the positive class was over-represented. In such cases, accuracy might not be a reliable 283 
performance estimator. This is why we also considered the remaining measures: sensitivity and specificity are specialised on a 284 
particular class, whereas F1 score synthesises a unique numerical value for both classes, with a sudden drop when performance on 285 
either one of them decreases. Summing up, Tables 8, 9 and 10 summarise for each experiment and for each model the values of the 286 
four performance-metrics listed above: more precisely, they report the mean and standard deviation on the test set for each fold of 287 
the cross-validation process. For all metrics, the higher the first value, the more performing is the corresponding model on the 288 
average. Similarly, the lower the standard deviation, the higher is the uniformity of the performances on the cross-validation folds. 289 

The accuracy for all the considered learning algorithms in any of the three experimental settings was not less than 0.85, and the F1 290 
score was not less than 0.88. In many cases they were higher than 0.95. All the considered algorithms performed well on the positive 291 
class (sensitivity), while some performed poorly on the negative class (specificity). We underline that in such cases the standard 292 
deviation has the same magnitude of the mean, thus the models are not highly predictive on the negative class.  293 

Puzzlingly, type 1 experiments reached the best performances, although they were the weakest from a methodological point of view, 294 
as discussed in the previous section. However, they produced the best models because, in the actual context, different measures of 295 
the same fragments can be considered as independent observations. In fact, ceramics can present inclusions locally changing 296 
chemical composition on small areas, thus it is reasonable to consider each measure on the same object as independent. Type 1 297 
experiments thus allow to indirectly verify the sufficient homogeneity of the fragment and thus its suitability to the classification by 298 
punctual chemical analyses, such as portable ED-XRF. Type 3 experiments performed in general worse than the other two types of 299 
experiments, and this could also be due to the fact that some data points were lost if not selected in the sampling phase, reducing 300 
the training set size.  301 

As a general trend, non-linear models perform better than linear ones in almost all settings, although with notable exceptions: on 302 
the one hand, the score of linear SVMs is in the upper part of the ranking; on the other one, Neural Networks are always among the 303 
less performing models. We hypothesise that this is due to the high complexity of such models, which easily leads to overfitting. 304 
Indeed, very simple models such as NB and KNNs consistently ranked as best across all experiments. 305 

 306 
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Table 5. Characterisation of the best performing models found for each considered learning algorithm in experiments with stratification performed 307 
on all measures. 308 

Model Best parameters 

NB MinMaxScaler + PCA(n=3) 

KNN MinMaxScaler + TruncatedSVD(n=2), n_neighbors: 1, metric: minkowski, p: 2 

SVM-lin StandardScaler + PCA(n=7), C: 0.13 

SVM-rbf StandardScaler + PCA(n=4), C: 4.64, gamma: 0.0036 

SVM-poly StandardScaler + PCA(n=2), C: 166.81, degree: 5 

RF 
No scaling, PCA(n=2), criterion: gini, max_features: sqrt, max_depth: 9, 

min_samples_split: 5, min_samples_leaf: 3, ccp_alpha: 0, n_estimators: 3 

LDA No scaling, PCA(n=5), solver: svd 

DT 
No scaling, TruncatedSVD(n=2), criterion: gini, max_features: None, 

max_depth: None, min_samples_split: 2, min_samples_leaf: 2, ccp_alpha: 0 

LR 
StandardScaler + PCA(n=6), penalty: l2, C: 27.83, solver: liblinear, 

max_iter: 5000 

MLP 

No scaling, PCA(n=2), hidden_layer_sizes: [2], activation: logistic, 

alpha: 0.0001, learning_rate: constant, learning_rate_init: 0.001, shuffle: True, 

momentum: 0.9 

Table 6. Characterization of the best performing models found for each considered learning algorithm in experiments with stratification performed 309 
on all fragments, considering all available measurements. 310 

Model Best parameters 

NB No scaling, no dimensionality reduction 

KNN MinMaxScaler + PCA(n=2), n_neighbors: 1, metric: minkowski, p: 2 

SVM-lin StandardScaler + PCA(n=2), C: 0.129 

SVM-poly StandardScaler + PCA(n=2), C: 1000, degree: 3 

SVM-rbf StandardScaler + PCA(n=2), C: 166.81, gamma: 0.00059 

RF 
No scaling, PCA(n=2), criterion: gini, max_features: sqrt, max_depth: None, 

min_samples_split: 5, min_samples_leaf: 4, ccp_alpha: 0, n_estimators: 3 

LDA No scaling, PCA(n=7), solver: svd 

DT 
No scaling, TruncatedSVD(n=2), criterion: gini, max_features: None, 

max_depth: None, min_samples_split: 3, min_samples_leaf: 3, ccp_alpha: 0 

LR No scaling, PCA(n=2), penalty: l1, C: 0.129, solver: liblinear, max_iter: 5000 

MLP 

No scaling, PCA(n=2), hidden_layer_sizes: [2], activation: logistic, 

alpha: 0.0001, learning_rate: constant, learning_rate_init: 0.001, 

shuffle: False, momentum: 0.9 

Table 7. Characterization of the best performing models found for each considered learning algorithm in experiments with stratification performed 311 
on all fragments, considering each time two sampled measurements. 312 

Model Best parameters 

NB No scaling, no dimensionality reduction 

KNN MinMaxScaler + PCA(n=3), n_neighbors: 5, metric: minkowski, p: 2 

SVM-lin StandardScaler + PCA(n=2), C: 4.641 

SVM-poly StandardScaler + PCA(n=3), C: 4.6415, degree: 3 

SVM-rbf StandardScaler + PCA(n=2), C: 0.774, gamma: auto 

RF 
No scaling, PCA(n=2), criterion: entropy, max_features: sqrt, max_depth: 6, 

min_samples_split: 2, min_samples_leaf: 3, ccp_alpha: 0, n_estimators: 7 
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LDA RobustScaler + PCA(n=2), solver: svd 

DT 
No scaling, TruncatedSVD(n=2), criterion: gini, max_features: None, 

max_depth: None, min_samples_split: 2, min_samples_leaf: 3, ccp_alpha: 0 

LR No scaling, PCA(n=2), penalty: l2, C: 0.00359, solver: liblinear, max_iter: 5000 

MLP 

No scaling, PCA(n=2), hidden_layer_sizes: [2], activation: logistic, 

alpha: 0.0001, learning_rate: adaptive, learning_rate_init: 0.001, shuffle: True, 

momentum: 0.9 

Table 8. Performance of the best performing models found for each considered learning algorithm in type 1 experiments (stratification performed 313 
on all measures).  Values outside and within brackets represent mean and standard deviation, respectively. 314 

Model Accuracy Sensitivity Specificity F1 

NB 0.98 (0.03) 1.00 (0.00) 0.93 (0.12) 0.99 (0.02) 

KNN 0.97 (0.03) 1.00 (0.00) 0.90 (0.12) 0.98 (0.02) 

SVM-lin 0.96 (0.03) 1.00 (0.00) 0.87 (0.10) 0.98 (0.02) 

SVM-poly 0.96 (0.03) 1.00 (0.00) 0.87 (0.10) 0.98 (0.02) 

SVM-rbf 0.96 (0.03) 1.00 (0.00) 0.87 (0.10) 0.98 (0.02) 

RF 0.95 (0.06) 0.99 (0.02) 0.83 (0.17) 0.96 (0.04) 

LDA 0.94 (0.05) 1.00 (0.00) 0.77 (0.19) 0.96 (0.03) 

DT 0.91 (0.04) 0.96 (0.04) 0.77 (0.19) 0.94 (0.03) 

LR 0.91 (0.05) 0.91 (0.10) 0.90 (0.12) 0.93 (0.05) 

MLP 0.85 (0.07) 0.81 (0.13) 0.93 (0.12) 0.88 (0.06) 

Table 9. Performance of the best performing models found for each considered learning algorithm in type 2 experiments (stratification performed 315 
on all fragments, considering all available measurements). Same notations as in Table 8. 316 

Model Accuracy Sensitivity Specificity F1 

NB 0.98 (0.04) 1.00 (0.00) 0.88 (0.22) 0.99 (0.02) 

KNN 0.96 (0.03) 0.99 (0.02) 0.86 (0.21) 0.98 (0.02) 

SVM-lin 0.95 (0.05) 1.00 (0.00) 0.78 (0.22) 0.97 (0.03) 

SVM-poly 0.93 (0.06) 1.00 (0.00) 0.70 (0.27) 0.96 (0.03) 

SVM-rbf 0.96 (0.04) 1.00 (0.00) 0.81 (0.21) 0.98 (0.02) 

RF 0.90 (0.06) 0.92 (0.08) 0.82 (0.21) 0.93 (0.05) 

LDA 0.90 (0.09) 0.99 (0.02) 0.61 (0.40) 0.94 (0.05) 

DT 0.85 (0.09) 0.87 (0.08) 0.73 (0.28) 0.90 (0.06) 

LR 0.89 (0.07) 0.93 (0.11) 0.69 (0.32) 0.92 (0.06) 

MLP 0.89 (0.06) 0.94 (0.06) 0.63 (0.41) 0.93 (0.03) 
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Table 10. Performance of the best performing models found for each considered learning algorithm in type 3 experiments (stratification performed 317 
on all fragments, considering each time two sampled measurements).  Same notations as in Table 8. 318 

 319 
Model Accuracy Sensitivity Specificity F1 

NB 0.96 (0.07) 0.96 (0.06) 0.94 (0.11) 0.97 (0.05) 

KNN 0.97 (0.05) 1.00 (0.00) 0.88 (0.22) 0.98 (0.03) 

SVM-lin 0.99 (0.02) 1.00 (0.00) 0.96 (0.07) 0.99 (0.02) 

SVM-poly 0.93 (0.05) 0.98 (0.04) 0.75 (0.25) 0.96 (0.03) 

SVM-rbf 0.94 (0.04) 1.00 (0.00) 0.77 (0.18) 0.96 (0.02) 

RF 0.93 (0.07) 0.98 (0.03) 0.75 (0.25) 0.96 (0.04) 

LDA 0.92 (0.05) 0.98 (0.04) 0.71 (0.22) 0.95 (0.03) 

DT 0.92 (0.06) 0.93 (0.09) 0.88 (0.22) 0.94 (0.04) 

LR 0.85 (0.05) 0.83 (0.11) 0.88 (0.22) 0.89 (0.04) 

MLP 0.88 (0.07) 0.87 (0.10) 0.88 (0.22) 0.91 (0.05) 

As far as dimensionality reduction is concerned, in most cases the best choice was the use of only two components (by PCA or 320 
truncated SVD). This was unexpected since, as discussed in Section 3, the chemical elements behave quite differently in the two 321 
classes and the first two PCA components explain only 75% of total variance1. It is worth noting that a relatively low variance is often 322 
found for ceramics classifications through the joint use of XRF and PCA (Frahm, 2018; Freitas et al., 2018; Liritzis et al., 2020). 323 
However, the first two PCA components seem to be sufficient for a good separation of the two classes, as shown in Figure 2. We 324 
highlight that the group separation reported is not evident as the obtained classes do not form compact and well separated groups. 325 
Nonetheless, the learning algorithm is able to find an efficient discriminant function for grouping the measurements, as clear from 326 
the figures reported in Appendix A: supplementary materials. It must be taken into account that this is not the output of the data 327 
elaboration, but an intermediate step before performing the actual classification; the final output will be a direct answer for the 328 
pertaining group. Table 11 shows the coefficients of the PCA transformation (computed on the overall dataset) for the first and the 329 
second components, ordered by decreasing absolute value. It can be noted that Ca is the element contributing with the highest 330 
absolute weight in the first component, while in the second component it is Sr.  331 

Table 11. Coefficients for the first and the second PCA components, ordered by decreasing absolute value 332 

First principal component Second principal component 

Ca -0,965 Sr 0,934 

Fe 0,898 Rb 0,381 

Rb 0,827 Zn 0,322 

Ti 0,812 Cr -0,165 

K 0,807 Fe -0,164 

Mn 0,77 Ca 0,119 

Zn 0,743 Ti 0,113 

 

1 One of the reviewers pointed out that in the dimensionality reduction phase a robust estimation of location and spread could be more 
appropriate than standard PCA, and suggested the use of the R rrcov package (Todorov 2022). We found that, in our specific dataset, the outliers 
detected by the more robust methods didn’t represent a difficulty for the classification task, as indeed Figure 2 shows. 

 



12 
 

Cr 0,732 K -0,07 

Sr -0,212 Mn -0,012 

 333 

 334 
Figure 2: Data points plotted against the first two PCA components. 335 

As far as data transformation is concerned, in some cases different scaling techniques were chosen, despite the fact that data were 336 
already normalised between 0 and 100. The more frequently chosen scaling techniques were standardisation and normalisation 337 
between 0 and 1.  338 

Let us now focus on prediction robustness. For each considered algorithm, we inferred four different models (according to the used 339 
cross-validation technique), and we remark that these models are strictly equivalent from a statistical point of view. For this reason, 340 
they can be aggregated using majority vote as prediction and the degree of agreement as a reliability measure. We applied this new 341 
form of classification across all the 112 data points, defining as uncertain all samples for which the rate of agreement was less than 342 
one. Most of the samples were correctly classified by all of the applied methods, while for a minority of samples/measurements 343 
uncertain classification was obtained for some of the methods.  Figures 3, 4 and 5 use heat maps in order to describe the samples 344 
that were uncertain for at least two learning algorithms. White and black are used for non-local and local classes, respectively. In the 345 
first column, we report the archaeological classification, and in the remaining ones we show the predictions for all learning 346 
algorithms, where the grey level accounts for the degree of agreement. This representation allows us to rapidly highlight several 347 
aspects, both on the methods and on the samples. Indeed, if we consider algorithms, those with the best/worst classification ability 348 
are pointed out by the different shadows in the relative column: for instance, for type 1 experiments (Figure 3), MLP is the worst 349 
algorithm for the classification of local materials. It is evident that LR and MLP are the worst performing algorithms. Focusing instead 350 
on samples, we can note that, if we exclude LR and MLP methods, the uncertain samples are mostly of non-local origin. This is 351 
reasonably due to the heterogeneity of the non-local class.   352 

It is worth noting that in the three types of experiments, the uncertain samples are almost the same. In some cases, the 353 
misclassification regards all the measurements on a fragment: this indicates the requirement for a further archaeological check to 354 
exclude an error in class labelling. For instance, sample A10-3bis is uncertain for both its measurements (8.1/A10-3bis and 8.2/_2 in 355 
the figures) according to either type 1, type 2 or type 3 experiments. In some other cases, the misclassification regards only one of 356 
the measurements on the fragment, such as for one of the measurements of sample 72, which is uncertain for all the experiments. 357 
This can suggest the non-suitability of the single analytical data, possibly due to non-homogeneity of the samples itself (inclusions, 358 
decorations, alteration due to burial) or even to an error in calculating elemental concentration from the original spectrum. 359 

The only models readily interpretable are DTs and RFs. Focusing on decision trees, the best performing four models (corresponding 360 
to the four folds of the external cross validation) developed for the three types of experiments were quite different from each other. 361 
In particular (see Figure 1S in supplementary materials) some models were very simple, since they consisted of only one decision rule 362 
based on one variable; the other models had a greater depth, that is, they contained several decision rules, which in turn were based 363 
on several variables. Reminding that the four best performing trees are equivalent from a statistical point of view, according to the 364 
shortest explanation principle (Occam’s razor) we can say that the simplest models may be preferable as an operational decision 365 
support tool. 366 
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 367 
Figure 3. Classification of uncertain samples for type 1 experiments: majority on the external 4 folds, colour shade corresponds to degree of 368 

agreement, white and black are used for non-local and local classes, respectively. In the first column. Rows identifiers must be read in the following 369 
way: <fragment number> . <measure number> / <fragment>, where  <fragment number> and <measure number> are conventional codes and 370 

<fragment> is the physical fragment according to Table 1. 371 

 372 

 373 

 374 

Figure 4. Classification of uncertain samples for type 2 experiments: majority on the external 5 folds, colour shade corresponds to degree of 375 
agreement, white and black are used for non-local and local classes, respectively. Rows identifiers follow the same notation as figure 3.  376 
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 377 

 378 
Figure 5. Classification of uncertain samples for type 3 experiments: majority on the external 5 folds, colour shade corresponds to degree of 379 

agreement, white and black are used for non-local and local classes, respectively.  Rows identifiers follow the same notation as figure 3.  380 

Conclusions 381 
 382 

To show the potential of supervised machine learning methods, we compared the performance of ten different supervised learning 383 
algorithms for classification on a dataset of limited size, non-ideal for statistical elaborations, but typical of the archaeological context. 384 
The 36 fragments included in our set, for a total of 112 data points deriving from multiple acquisitions on each fragment, had been 385 
previously classified on archaeological basis in two main groups. The former includes samples produced in the Etruscan town of 386 
Tarquinia (local samples), the latter contains samples imported from the colony of Velia, together with other non-local fragments. 387 
The asymmetric knowledge about provenance of the two subsets, together with the limited size of the whole dataset, has been a 388 
challenge for the statistical elaboration, but it reflects the complex situation which is typically faced when dealing with ceramics finds. 389 
We planned and executed three types of experiments: in type 1 we used the complete dataset considering each data as independent, 390 
while in type 2 we considered the data from each fragment as related. In type 3, for each fragment only two data were randomly 391 
selected. To assess the reliability of our results, we considered the accuracy, the sensitivity, the specificity and the F1 score. (i.e., the 392 
harmonic mean between sensitivity and precision). As a general trend, non-linear models perform better than linear ones in almost 393 
all settings, but neural networks are always among the less performing models. We hypothesise that this is due to the high complexity 394 
of such models, which easily leads to overfitting. Indeed, very simple models such as NB and KNN consistently ranked as best across 395 
all experiments. Most of the samples were correctly classified by all of the applied methods, while for a minority of 396 
samples/measurements uncertain classification was obtained for some of the methods. The use of heat maps to describe incorrect 397 
classification allowed to highlight in a simple way whether the misclassification regards all the measurements or only one of the 398 
measurements on the fragment. In the former case, the indication is clear for the requirement for a further archaeological check to 399 
exclude an error in class labelling, while in the latter the non-suitability of the single analytical data is suggested.  400 
The obtained results prove that Machine Learning can be of great help for archaeological classification on the basis of chemical 401 
analyses, providing a reliable and schematic picture of archaeological data even when the dataset is not suitable, in theory, for 402 
supervised learning algorithm elaboration. This approach opens the way to the building of a robust decision support system for the 403 
classification of objects whose labels are actually unknown, with the aim to confirm a supposed provenance of objects. In this 404 
perspective, as future work, one-class classification algorithms and clustering techniques are interesting learning methodologies to 405 
be considered. 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 
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Appendix A. Supplementary materials 414 

The software implementing our experiments and data matrix are available for replicability/reproducibility purposes at 415 
https://github.com/dariomalchiodi/JAS-Tarquinia-classification. 416 
 417 

Figure 1S The four best performing decision trees developed in the four internal folds corresponding to the best mean accuracy 418 
for (a) type 1 experiments, (b) type 2 experiments and (c) type 3 experiments. The number of rules in each decision tree is the 419 
number of paths from the root to the leaves. A given variable can be considered at different decision points in the tree. Variables 420 
are ordered components in the transformed space (through PCA or Truncated SVD): X[0] is the first component, X[1] the second 421 
one and so on. At each decision point more information about the learning process is shown, namely the number of samples 422 
considered for building the rule, the mean heterogeneity of the child nodes (according to the selected heterogeneity index, Gini or 423 
entropy), and the number of data points flowing in each child node.  424 

(a) Type 1 experiments. 425 

a.1 The two simplest trees (depth =1). They involve only one variable, namely the first component X0, in just one rule. 426 

  427 

a.2 Rules are longer and involve the first three components, namely X0, X1 and X2. 428 
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a.3 Rules involve many different variables.430 

 431 

(b) Type 2 experiments. 432 

b.1 The two simplest trees (depth =1 ). They involve only one variable, namely the first  principal component X0, in just one rule. 433 

  434 

 435 

 436 

b.2 Rules are longer (depth=5) and involve only the first two components, namely X0 and X1. 437 
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 438 

 439 

b.3 Rules involve many different variables.440 

 441 

(c) Type 3 experiments. 442 

c.1 The two simplest trees (depth =1). They involve only one variable, namely the first component X0, in just one rule. 443 



19 
 

 444 

c.2 Rules are quite short (depth=2) and involve only the first two components, namely X0 and X1.445 

 446 
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c.3 Rules are longer and involve many different variables.447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

 458 
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Figure 2S: For each experiment type, the graphs here below show how the best performing models relying on two extracted 459 
components separate the overall dataset.  460 

 461 

 462 

type1, svm-poly 463 

 464 

type2, KNN 465 

 466 

type3, SVM-lin 467 

 468 

 469 

 470 

 471 

 472 
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