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Abstract. The paper introduces a new dataset to assess the perfor-
mance of machine learning algorithms in the prediction of the seriousness
of injury in a traffic accident. The dataset is created by aggregating pub-
licly available datasets from the UK Department for Transport, which
are drastically imbalanced with missing attributes sometimes approach-
ing 50% of the overall data dimensionality. The paper presents the data
analysis pipeline starting from the publicly available data of road traffic
accidents and ending with predictors of possible injuries and their degree
of severity. It addresses the huge incompleteness of public data with a
MissForest model. The paper also introduces two baseline approaches
to create injury predictors: a supervised artificial neural network and
a reinforcement learning model. The dataset can potentially stimulate
diverse aspects of machine learning research on imbalanced datasets and
the two approaches can be used as baseline references when researchers
test more advanced learning algorithms in this area.

Keywords: Class imbalance · Data imputation · Feature engineering ·
Neural networks · Reinforcement learning · Q–learning · Traffic
accidents

1 Introduction

Nowadays detailed information about traffic accidents is becoming available for
independent analysis. Authorities that collect such data may release, along with
traditional statistical aggregations, actual data points that are a rich source of
information. Apart from time, location, number of vehicles involved and similar
factual information, the data record often concerns subjective measures such as
the severity of the accident, which is annotated by trained traffic police officers.

In the UK, the Department for Transport (DfT) aggregates and releases a
dataset of reference with many details about each accident recorded. While data
are available, there is a huge imbalance in the information provided between
many minor events, e.g., collisions in parking lots, and the– fortunately less
frequent– major events that involve hospitalisation or worse.
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Several researchers have examined parts of the UK’s DfT traffic accident
data in order to answer a variety of research questions. Among them, when it
comes to predicting accident severity, [1,2,5] and [6], a central research question
is: “in the scenario of a traffic accident with injuries, how severe is the injury
going to be, based on available data on accident conditions, vehicle information
etc.?” Studies, like the ones cited above, have focused on analysing a specific year
or period of traffic data and although they have considered accident severity in
general, they did not focus on predicting the seriousness of injuries. This problem
comes across as being very challenging because the DfT considers that severity
of injury is a triage, namely slight, serious, or fatal1, which leads to a highly-
imbalanced distribution of data that impacts the prediction accuracy, especially
over minority classes (e.g. fatal accidents), of the methods tested.

Thus the paper considers the prediction of the seriousness of injury as an
imbalanced multi–class classification problem. It extends previous work, [1,2,
5] and [6], by applying a systematic data analysis and processing pipeline to
combine data from disparate sources of the UK’s DfT from years 2005–2018
in order to create a new larger dataset. The pipeline incorporates components
for data imputation, based on domain knowledge and the predictive power of
variants of Random Forests, and feature importance analysis components, which
use categorical feature correlation, mutual feature information and χ2–tests, with
more detailed description of each pipeline component to be presented in a later
section.

Lastly, the paper proposes two evaluation approaches to create machine learn-
ing predictors using the new dataset. These could be used as baseline references
when designing machine learning methods to predict the seriousness of injuries
in the scenario of a traffic accident given certain accident conditions, such as
involved vehicle information and some personals details (anonymised) of the
potentially-injured person and so on.

The rest of the paper is organised as follows. Section 2 presents relevant work,
while Sect. 3 describes the data sources that were used. Section 4 describes the
components of the pipeline that were used to create the new dataset. The baseline
models are presented in Sect. 5, and their evaluation is presented in Sect. 6. The
paper ends with conclusions in Sect. 7.

2 Relevant Work

UK traffic accident datasets are imbalanced with several missing attributes. Pre-
vious studies, [1,2,5,6], attempted to deal with the challenges in these data by
limiting the dimensionality of the problem, focusing for example on data from
a specific year or period, exploring the potential of specific subsets of attributes
that were available across all data points considered, or by transforming the
multi–class problem into a binary one. Although overall satisfactory accuracy
was produced, all models experienced very low accuracy over minority classes.

1 “Instruction for the completion of accident reports”, Dept. for Transport (2005).
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More relevant to this paper is the recent effort in [5], where the authors used
a variety of tools, such as different statistical methods and Machine Learning
(ML) algorithms, in the search for the right “mix” of feature selection and ML
algorithm that would provide good predictors for accident severity. The best
results were achieved by Random Forests (RFs) running over an input of 14
different features, from, e.g., the age of the driver to the weather conditions. A
RF achieved an overall accuracy of 85.08% with 15.12%, 22.03% and 96.58%
correct prediction for the fatal, serious and slight class of injuries, respectively.
However, the experiments used only c. 136k records from accidents reported in
2016, which is rather limited given the availability of data reported by the DfT2.

In comparison to that approach, and others cited above, this paper describes
a pipeline that includes acquiring, data-cleaning, and inputing long-term acci-
dent data (2005–2018) to create a new large dataset for multi–class classification.
This can potentially enable ML methods to pick up small fluctuations or rela-
tively rare events (e.g. did not appear in 2015 or 2016), but can determine a
non-trivial amount of accident cases, such as ice on the road that does appear
only sporadically in the UK but certainly determines a spike in the number
and gravity of accidents. Furthermore, the dataset is expanded horizontally by
including many new features, in search for non-standard influences.

3 Data Sources

The UK’s Department for Transport publishes three datasets per year, uploaded
in the Road Safety Data webpage of the data.gov.uk website:

– Accidents, with variables related to accident conditions. Each accident is
identified by a unique accident ID, called “Accident Index”.

– Vehicles, with variables related to vehicle characteristics, driver informa-
tion and driver action before the accident. Each vehicle is identified with a
unique vehicle reference number, “Vehicle Reference”, and linked with acci-
dents dataset through an “Accident Index”.

– Casualties: information about injured individuals, linking an injury with
accidents and vehicles through “Accident Index” and “Vehicle Reference”.

The paper exploits DfT data from 2005 to 2018, with data from 2019 used
for testing. Table 1 shows data distribution in the new aggregated dataset, high-
lighting the drastic imbalance among the target classes data.

Table 1. Distribution of casualty severity in the new aggregated DfT data.

Slight 2,539,715 87.10%

Serious 345,997 11.87%

Fatal 30,171 1.03%

2 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-
data.
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4 Creating the Dataset

The first phase in creating the new dataset involved accessing and merging data
from disparate sources into a single dataset. Next, the work dealt with missing
values, running missing value imputation, whenever possible, and assessing the
potential importance of each feature for the classification phase.

Imputation was based on domain knowledge and the predictive power of
Random Forests. With regards to assessing the potential importance of each
feature, which is relevant for machine learning classifiers, various techniques
were used. Since most of the variables are nominal, χ2–tests, Cramer’s mutual
information, and Theil’s U coefficients were used [9]. For correlation of numerical
features with nominal ones, the ANOVA test and correlation ratios [9] were
computed. Once feature importance analysis and imputation are completed, data
can be transformed to an input suitable for classification methods. The details
of the data analysis pipeline are presented below.

4.1 Dataset Merging

A fragment of the variables for the three datasets (Accidents, Vehicles, Casual-
ties), starting from 2005 and up to 2018, is shown in Table 2, where the target
variable, “Casualty Severity”, is shown in italics. The datasets were merged by
using Accident Index and Vehicle Reference as “foreign keys”: using Vehicle
Reference, each casualty was matched with a vehicle; pedestrians were matched
with vehicles that caused their injury. Next, the output records of the above join
were matched with accidents using Accident Index. The final output consists of
2,915,883 data points and 66 variables/features in total (cf. with Table 1).

Table 2. Dataset variables

Accidents Vehicles Casualties

Accident index Accident index Accident index

Location easting OSGR Vehicle reference Vehicle reference

Location northing OSGR Vehicle type Casualty reference

Longitude Towing and articulation Casualty class

Latitude Vehicle manoeuvre Sex of casualty

Police force Vehicle location-restricted lane Age of casualty

Accident severity Junction location Age band of casualty

Number of vehicles Skidding and overturning Casualty severity

. . . . . . . . .
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4.2 Dealing with Missing Values

Once merged, the DfT data turned out to be of rather poor quality with only
411,158 data points containing all necessary information, i.e., 86% of the avail-
able data points had at least one missing variable value.

Most of the variables in the dataset are categorical with integer encoding,
and missing values are represented with −1. In addition, some variables include
encoding for “unknown” as a separate category, e.g. like the feature Weather
Conditions. Initially, the following features were dropped:

– Accident Index, Vehicle Ref. and Casualty Ref.: administrative refer-
ences that are not useful for classification.

– Age Band of Driver and Age Band of Casualty: data already include
ages for casualties and drivers.

– Latitude, Longitude and LSOA of Accident Location: data already
include Eastings and Northings.

– Did Police attend the Scene of the Accident, Accident Severity and
Number of Casualties: post-accident information is not included in the
research.

– Road Maintenance Worker, Journey Purpose of Driver and Engine
Capacity: these variables have an excessive number of either missing,
“unknown” or “not applicable” values. Regarding Engine Capacity, many
of the available values were found to be inconsistent with the Vehicle Types.

Lastly, for Urban or Rural Area, Sex of Casualty, Sex of Driver, Pedestrian
Location, Pedestrian Movement and Light Conditions, all values for “unknown”
were re-encoded as missing values with −1.

4.3 Missing-value Imputations Based on Domain Knowledge

Domain knowledge was derived from available DfT documentation about acci-
dent data gathering and relevant guidelines. That was further informed by criti-
cal analysis and reasonable assumptions based on the known variables, and used
for manual imputation of the missing values as follows:

– Missing values for Car Passenger, which were related to Casualty Type of
buses and vans, were replaced with “Not car passenger” value.

– It was assumed that bicycles, motorcycles and mobility scooters have no Tow-
ing or Articulation.

– Bicycles, horses, motorcycles and trams cannot be classified as left or right
hand drive vehicles. A new category was created for “unknown”.

– Many missing values for Junction Location, Junction Detail, Junction Control
and 2nd Road Class were corrected, as they referred to accidents that did not
occurred near a junction.

– Some missing values for Age of Driver, Age of Casualty, Casualty Home Area
Type and Driver Home Area Type were corrected by checking samples where
the casualty was the driver.
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– All missing values for light conditions were set to “Daylight” after checking
Time value of the accident.

Lastly, data points where Eastings, Northings or Time values were missing
were dropped from the data. The result of this phase was a record with 53
features and 2,915,387 data points; still 1,471,895 data points, or 50.49% of the
total, had one or more missing values.

4.4 Time Processing, Feature Correlation and Feature Importance

The next step in the pipeline was to inspect the numerical variables of the
produced dataset, assess the importance of features and measure possible corre-
lations and collinearities among variables.

Variables Date and Time were discarded after they were converted into new
variables Hour, Month and Year. Next, the following features were treated as
numerical: Number of Vehicles, Speed Limit, Age of Casualty, Age of Vehicle, Age
of Driver, Location Easting OSGR and Location Northing OSGR. All remaining
variables were treated as nominal and represented by discrete values without any
form of intrinsic ranking. Casualty Severity, the target variable, is also nominal.

Due to the mixture of nominal and numerical variables in the data, various
feature selection and correlation metrics were used (the threshold for considering
two features as highly correlated was set to 0.7), depending on the combination
of examined features:

– Pearson’s correlation was calculated for all pairs of numerical variables.
– A χ2–squared statistic and mutual information between each categorical vari-

able and Casualty Severity were used to assess the importance of each cate-
gorical variables wrt. the target variable.

– the ANOVA F–statistic was calculated to assess the importance of each
numerical variable with respect to Casualty Severity.

– Correlation Ratio coefficient for each pair of categorical–numerical variables
was employed to check possible correlation in input variables, and confirm
the importance of numerical variables wrt. Casualty Severity.

– Cramer’s V and Theil’s U correlation were calculated for each pair of cate-
gorical variables to detect any correlation among input variables. Unlike the
rest of correlation coefficients, Theil’s U is anti-symmetrical and is based on
mutual information (entropy) between two variables.

After assessing features importance, Casualty Type, Vehicle Type and Vehi-
cle Manoeuvre were found to be the most important categorical variables, while
Number of Vehicles and Speed Limit were the most important numerical ones.
On the opposite end, Carriageway Hazards, Was Vehicle Left Hand Drive and
Pedestrian Crossing-Human Control were the least important categorical vari-
ables; Eastings and Northings were the least important numerical ones.

Lastly, analysis of feature importance and computation of correlation
revealed that:
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– Variables Police Force, Local Authority (District), Local Authority (High-
way), Eastings and Northings are highly correlated. Only Local Authority
(District) was kept as it was found important wrt. Casualty Severity.

– Casualty Type is highly correlated with Casualty Class and Vehicle Type,
and it was dropped.

– Variables Casualty Home Area Type and Driver Home Area Type are highly
correlated with each other, so the former was dropped.

– Variables 1st Road Number and 2nd Road Number were dropped due to their
high cardinality.

4.5 Imputation with MissForest

The MissForest algorithm [8] was used to obtain missing–value imputation.
MissForest is a type of Random Forest algorithm suitable for handling high–
dimensional datasets with mixed data types (categorical and numerical), which
is exactly our case. Given the size of the dataset and taking into consideration
memory requirements, the procedure was applied iteratively:

1. Speed Limit and Weather Conditions were initially imputed, based on non-
missing variables, to increase the number of complete rows.

2. The remaining variables were divided in groups based on topic: Junctions
and road classes, Pedestrians, Vehicle–site interaction, Drivers–vehicles, Age
of Vehicle and Driver IMD Decile.

3. For each imputed variable, 100 trees were grown.

MissForest imputation produces a new dataset with 2,915,387 data points
and 49 features. Note that Casualty Type, Casualty Home Area Type, Police
Force and Local Authority (Highway) were excluded from the imputation pro-
cess. After missing–value imputation was completed, the remaining “unimpor-
tant” and highly–correlated features listed in Sect. 4.4 were removed.

5 Baseline Models

In this section two approaches are described to create predictors of the serious-
ness of injury. Creating optimal, or fine–tuned models, is out–of–scope for this
article. Instead the aim is to provide a point of reference for researchers to further
explore this dataset using machine learning methods. First, supervised learning
using a neural network classifier is considered, and then a non–traditional form
of learning by reinforcement using Deep–Q Network is explored.

5.1 A Supervised Learning Model

A small number of preliminary experiments were conducted to identify an
architecture that performs reasonably well, given the imbalanced nature of the
dataset, but no serious attempt was made to optimise model or training algo-
rithm hyperparameters. The outcome was a densely–connected artificial neural
network (ANN) implemented in Keras with TensorFlow backend:
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– Hidden layers and neurons: two or three hidden layers were used, with
some of the best results presented in the next section.

– Output layer: three nodes representing the three classes used by the DfT.
– Activation functions: ReLU activations for hidden–layer nodes and Soft-

max activations for output nones.
– Optimiser: the Adam optimiser was used in all experiments.
– Batch size: 512 showed better behaviour than 128 or 256.
– Early stopping: experimented with 5 and 20 epochs of early stopping.
– Weight initialisation: both Glorot and He uniform were tested.
– Loss function: the sparse categorical cross entropy was adopted.
– Class weights: since the distribution of Casualty Severity is heavily imbal-

anced, different class weights were tried. The vector of class weights was
initially computed as |samples|

|classes|∗|frequencies| .

5.2 A Reinforcement Learning Model

Reinforcement Learning (RL) is not traditionally applied to classification prob-
lems, but recent work has shown that it is possible to formulate a classification
task as a sequential decision-making problem and solve it with a deep Q–learning
network [7]. Moreover, empirical studies demonstrated that this approach can
reach strong performance, outperforming other imbalance classification meth-
ods, especially when there is high class imbalance [7]. Our RL model followed
this approach and was implemented in OpenAI Gym:

1. Environment: This was defined as the dataset itself, including the following
attributes:

– Observation space: the size of a data sample.
– Action space: taking an action as equivalent of a class prediction, there

are three possible actions, one per prediction: slight, serious or fatal.
– Step counter: an integer to track the number of steps the agent has

taken in the environment within the same episode.
– Weighted action rewards: a different reward can be earned for correct

classification of each class data sample.
– Reset function: it resets the environment at the end of the episode–

shuffling data; resetting step counter; retrieving the first training sample.
– Step: a function that makes a Casualty Severity prediction, collects

reward and checks if the episode is done. If so, it moves to the next
training sample; otherwise, the environment is reset.

2. Episode: it starts when the first training sample is read, and it ends when
all training samples are classified, or a minority class sample is misclassified.

3. Reward function: the recommendations of [7] were followed:

reward =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if label = fatal and prediction = fatal
−1 if label = fatal and prediction �= fatal
r1 if label = serious and prediction = serious

−r1 if label = serious and prediction �= serious
r2 if label = slight and prediction = slight

−r2 if label = slight and prediction �= serious,

(1)
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where r1 is the ratio of Serious injury samples to Slight injury samples, and
r2 is the ratio of Fatal injury samples to Slight injury samples.

4. Memory: a facility to save transitions in the environment and sample batches
of saved transitions for Q–Network training.

5. Transition: it includes the following information:
– Current state: the current training sample.
– New state: the next training sample.
– Action taken: predicted severity.
– Reward: value earned/lost based on prediction and sample actual label.
– Episode done flag: a boolean that indicates episode’s completion.

6. Agent: an agent has memory, as described above, and holds the following
functionality and attributes:

– Evaluation and target networks: it uses one network for training
and a second target network, which is updated periodically after a fixed
number of steps. This avoids overestimation of Q values and enhances
training stability [4].

– Action space: the set of available actions (class predictions).
– Hyperparameters: they relate to training and reward collection, e.g.

ε for ε–greedy policy, γ for reward discount, batch size to sample from
Agent’s memory, N number of episodes before updating target network
and Q–Network optimiser with learning rate.

– Save: a facility to save a transition in Memory and training/target net-
work weights, and the entire memory space.

– Load: a facility to load saved network weights and Memory.
– Training: it updates the training/target network weights.
– Action selection: predicting Casualty Severity for a training sample.

The steps of a full episode within the environment of traffic accidents are:

1. The environment is reset.
2. The agent checks the first training sample and predicts Casualty Severity

using the ε–greedy policy.
3. A reward, a new training sample and an episode done flag are returned.
4. Agent prediction is compared against actual label and the training network

weights are updated by back-propagation with Stochastic Gradient Descent.
5. If a minority sample (serious, fatal) is classified incorrectly, the episode ends

and the environment is reset. Otherwise, the agent takes a new step.

Training and target neural networks use the architecture described in
Sect. 5.1. However, no Softmax activation is needed, since the RL approach is
based on collecting maximum reward from Q values.
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6 Evaluation

The following experiments could be used as a baseline when optimising similar
models or designing more sophisticated approaches. Data and models are avail-
able at: https://ale66.github.io/traffic-accident-gravity-predictor/. In this con-
text, different models were trained and tested (cf. with Sect. 5) without hyper-
parameter optimisation or fine–tuning. In training and validation, 2005–2018
accident data (cf. with Table 1) were used with a 75%–25% split. Different test
sets were used, as described below, and the following metrics:

– Overall classification accuracy: correctly classified test samples over total
number of test samples

– Class accuracy: performance in testing on each single class.

6.1 Supervised ANN Experiments

Experiments with ANNs were run using different versions of the dataset.

Experiment 1: Only full records, c. 411k data points, were used for training
and validation in this experiment, i.e. there was no imputation or resampling to
treat imbalance. Testing used 2019 data (c. 153k data points). Highest accuracy
for fatal injury in testing, 53%, was achieved with an ANN of three hidden
layers with 1000 neurons each and class weights 17.5, 2.44 and 0.69 for the fatal,
serious and slight classes, respectively. The highest accuracy for the serious–
injury class, 66%, was achieved with an ANN of two hidden layers with 2000
and 500 neurons respectively, and class weights of 31.83, 3.04 and 0.38, for the
fatal, serious and slight classes, respectively. The highest overall classification
accuracy, 77%, and best accuracy per class on average, 56% (44% fatal; 43%
serious; 82% slight), were achieved with an ANN of three hidden layers with
1200 neurons each and class weights of 19.5, 3.44 and 0.69 for the fatal, serious
and slight classes, respectively.

Experiment 2: As above, the full records (c. 411k data points) were used but this
time Synthetic Minority Over–sampling Technique (SMOTE), [3], was applied
to treat class imbalance. The default value of three neighbours was used for
generation of synthetic samples and the output was a new dataset with an equal
amount of observations per class. The best test results were achieved with an
ANN of three hidden layers with 1200 neurons each: 24% for fatal, 63% for
serious, 67% for slight. One of these models also exhibited the best available
accuracy for the fatal–injury class (about 25%) with class weights 1.23, 1.07
and 0.89 for the three classes respectively. For the serious–injury class, the best
available model achieved an accuracy of 63% with class weights 1, 0.85 and 0.5,
for the three classes respectively. Although tests failed to show clear advantage
when SMOTE training data are used, fine–tuning deserves some consideration.
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Experiment 3: This experiment focused on the larger dataset (cf. with Table 1)
with imputation, and testing was based on c. 153k data points from 2019. Again,
the best results were achieved with an ANN of three hidden layers with 1200
neurons each: 45% for fatal, 57% for serious, and 66% for slight. Best available
accuracy for the fatal–injury class was 48% with weights 19.5, 3.44 and 0.69 for
the three injury classes respectively. For the serious–injury class, best available
accuracy was 64%, with class weights 32.1, 2.81 and 0.38, for the three classes
respectively. In comparison, best available results for logistic regression (the
stochastic incremental gradient method SAGA and an L2 penalty was used)
reached 67% for fatal, 43% for serious, and 63% for slight, indicating that further
tuning of the ANN model is needed. Simulations were also run using SMOTE
generated data but, as in Experiment 2, test results did not show clear benefits
for the minority classes.

6.2 Reinforcement Learning Experiments

Q–learning proved to be demanding computationally, although saving and load-
ing memory and network weights may ease some of the burden of training the
evaluation and the target networks for thousands of episodes. Different variants
of the reward function, Eq. (1), were tried, e.g. different reward ratios, slightly
increasing the reward for successful fatal class predictions, reducing even more
the reward for predicting correctly light injuries, with no clear benefit. Memory
size was set to 1,000,000, γ was 0.1, initial ε was 1.0 and final ε was 0.01 after
all decrements.

To alleviate computational demands, only the full records, c. 411k data
points, were used, keeping 75% for training and 25% for testing, without impu-
tation or resampling. In testing, a Softmax activation was added to the output
layer of the target network to generate an injury–class prediction.

As per Sect. 5.2, ANNs with three hidden layers of 1200 neurons each were
used. Best available accuracy per class in testing was 29% for fatal, 49% for
serious, and 58% for slight, which was achieved after 5800 training episodes. Best
available accuracy in testing for the fatal–injury class was 37% after training for
3400 episodes. For the serious–injury class, best available accuracy in testing
was 69% by a model trained across 4700 episodes. Increasing the number of
training episodes to several thousands has led to overestimation. Clearly that
is an issue that deserves further investigation as it has been encountered in
RL applications before and various strategies have been proposed, e.g. tuning
the rewards, maximising representation diversity or some form of regularisation,
which may improve the RL model.

7 Conclusions

While several studies have sought to deploy ML to process public traffic accident
data, to the best of our knowledge this is the first attempt to create a clean
2005–2018 dataset for predicting the seriousness of personal injuries. There are
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of course several alternatives that one can explore with respect to improving the
data quality and the predictive ability of ML methods. Experiments with the two
base models demonstrated that obtaining good accuracy on the minority classes
without compromising performance on the majority class is very challenging,
and perhaps requires applying more sophisticated approaches.

Although systematic comparison and fine–tuning were out–of–scope for this
paper, experiments highlighted the potential of supervised learning. Avenues
for further investigation naturally include hyperparameter tuning and model
optimisation.
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