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Abstract

To achieve near-zero training error in a classification problem, the layers of a feed-forward network
have to disentangle the manifolds of data points with different labels, to facilitate the discrimination.
However, excessive class separation can bring to overfitting since good generalisation requires learning
invariant features, which involve some level of entanglement. We report on numerical experiments
showing how the optimisation dynamics finds representations that balance these opposing tendencies
with a non-monotonic trend. After a fast segregation phase, a slower rearrangement (conserved across
data sets and architectures) increases the class entanglement. The training error at the inversion is
stable under subsampling, and across network initialisations and optimisers, which characterises it as
a property solely of the data structure and (very weakly) of the architecture. The inversion is the
manifestation of tradeoffs elicited by well-defined and maximally stable elements of the training set,
coined “stragglers”, particularly influential for generalisation.

Introduction
Supervised deep learning excels in the baffling task of disentangling the training data, so as to reach
near-zero training error, while still achieving good accuracy on the classification of unseen data. How
this feat is achieved, particularly in relation to the geometry and structure of the training data, is
currently a topic of debate and partly still an open question [1–12]. Activations of hidden layers in
response to input examples, i.e., the internal representations of the data, evolve during training to
facilitate eventual linear separation in the last layer. This requires a gradual segregation of points
belonging to different classes, in what can be pictured as a disentangling motion between their class
manifolds.

Segregation of class manifolds is a powerful conceptualisation that informs the design of distance-
based losses in metric learning and contrastive learning [13–17] and underlies several approaches aimed
at quantifying expressivity and generalisation, in artificial neural networks as well as in neuroscience [18–
23]. Several recent efforts have leveraged this picture to characterise information processing along the
layers of a deep network, particularly focusing on metrics such as intrinsic dimension and curvature [24–
29]. In Ref. [25], for instance, two descriptors of manifold geometry, related to the intrinsic dimension
and to the extension of the manifolds, are shown to undergo dramatic reduction as a result of training
in deep convolutional neural networks. Such shrinking decisively supports the model’s capacity in a
memorisation task.

Yet, this appears to be just one side of the coin. There are indications that entanglement of class
manifolds in the internal representations of deep neural networks promotes the correct discrimination of
test data [30]. This fact appears counterintuitive, as more entangled representations should correspond
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to smaller margins. Still, manifold entanglement may encourage compression (in information-theoretic,
rather than geometric, meaning) by reducing the number of discriminative features and by minimising
the information about the input data that gets propagated through the network, effectively acting as
a regularisation [31–33].

What emerges is a competition between learning invariant features and disentangling explanatory
factors [34]. In this perspective, the classic bias-variance tradeoff, and the tension between train and test
accuracy, translate to opposing tendencies for the optimisation dynamics: segregation of class manifolds
on the one hand, and their entanglement on the other. How this tradeoff is realised dynamically through
training is the focus of this manuscript.

In the spirit of statistical physics [35], we explore these questions in simple models, where patterns
are more likely to emerge clearly, and exploration of their causes and consequences is less hampered
by confounding factors. As an illustrative example, we consider a two-layer fully connected network,
using P = 8192 points, {xµ}, from MNIST, a dataset widely employed in computer vision, containing
28× 28 greyscale images of handwritten digits. We train the network to solve the parity classification
task, where the label is +1 for even digits and −1 for odd ones. However, we anticipate that the
phenomenology we will describe using this simple setting is more general: it is present also when
training wider and deeper networks, as well as in more challenging data sets, such as KMNIST and
CIFAR-10, and for different classification tasks (see Results and Supplementary Information).

At each epoch t during training, the activation of the hidden layer is a function ht mapping elements
of RN to elements of RH , where N is the dimension of the input space and H is the width of the hidden
layer. Our goal is to observe the evolution, throughout training, of the internal representations ht(xµ)
of the training data xµ ∈ T . In particular, we focus on the overall dispersion of points belonging to
the same class y, i.e., of the images under ht of equally-labelled elements of the training set. The
projective nature of linear separability suggests to consider projections onto the unit sphere Sn−1:
ĥt(x

µ) = ht(x
µ)/‖ht(xµ)‖ (see the Methods for further explanation). Such normalisation is natural

when ht is the representation at the last layer, but we employ the same definition even when considering
the first layer in a deep network. Thus, the internal representations of the two classes, or “class
manifolds”, at each epoch t, are the two sets

M±(t) = {ĥt(xµ) | y(xµ) = ±1} ⊂ RH , (1)

where y(xµ) is the label of xµ. Intuitively, separation of the two classes by the last layer is facilitated
wheneverM+(T ) andM−(T ), at the final epoch T , are small or far apart. This intuition is confirmed
by analytical computations [19,36].

Our analysis is based on a simple descriptor of manifold extension, the gyration radius, a metric
proxy of the set’s extension in Euclidean space. The two radii R±(t), together with the distance D(t)
between the two centres of mass of the two setsM±(t), are three metric quantities recapitulating the
geometry of the internal representations {ht(xµ)} (see Methods).

Results

Class manifold segregation in shallow networks
The internal representations of data points belonging to the same class are expected to move closer
to one another after training. This is persuasively shown in [25], where the authors focus on state-of-
the-art models (AlexNet and VGG-16) and on a sophisticated data set such as ImageNet. It is not
obvious whether the systematic compaction that they observe is due specifically to special properties
of the complex ImageNet data set, or to the heavily convolutional architectures probed. To address
these questions, we trained a shallow network on the simple task described above, and compared R±
and D before and after training. Figure 1(a) shows that the internal representationsM± in the trained
model are always less entangled than at initialisation, i.e, they are more compact (R± is smaller) and
further apart (D is larger).

Dynamics of class manifolds is non-monotonic
By contemplating the temporal dimension as well, one can address questions regarding the dynamics
of manifold segregation. In particular, do the metric quantities evolve monotonically?
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Figure 1: Non-monotonic learning dynamics. (a) Training disentangles the class manifolds. Scatter plot of the
two radii R± (top) and histograms of the distance D (bottom) from 1000 independent runs, at initialization (yellow) and
after training (pink). (b) Class manifold dynamics is non-monotonic. Radii and distance (top) and train and test errors
(bottom) as functions of training epoch (on the x axis, in log scale); the dashed horizontal lines are the mean values at
initialisation; inversion happens in the grey shaded regions; curve widths are 2 standard deviations. (c) Dynamics is robust
to sub-sampling. The three metric quantities as functions of training error (only means shown, computed over 20 runs);
different curves are obtained by training on non-overlapping subsets of MNIST. (d) Dynamics is similar across optimisers
and hyperparameters. Solid lines: Adam (learning rates 0.001 and 0.005); dashed lines: GD with weight decay (λ = 0.01 and
0.05); dotted lines: GD with momentum (µ, η = 0.5, 0.5 and 0.9, 0.2). Curves are averages over 20 runs. (e,f) Randomised
labels (pink curves) remove the non-monotonicity.

Figure 1(b) shows that the answer is negative: R± and D significantly overshoot before converging
to their asymptotic values. An “inversion epoch” t∗ marks the separation between two qualitatively
different training periods. During the first, which happens fairly quickly, the internal representations
of points belonging to the same class are brought closer to one another, while the representations of
points belonging to different classes move further away from each other. After t∗, when the radii R±
stop decreasing and the distance D stops increasing, training proceeds by a slow expansion of the
manifolds and a gradual drift of their centres of mass, bringing them closer together. During the latter
“expansion” phase, neither the radii nor the distance get back to their pre-training values.

Invariance of the training error at the inversion point
The location of the inversion epoch t∗ where the time derivatives of the metric quantities change sign
(i) is not appreciably different between R+, R−, and D (we obtain t∗ ≈ 30–40, corresponding to the
grey area in Fig. 1); (ii) it barely fluctuates between runs started from different initialisations; (iii) it is
not a special point for either the test or the training errors (Fig. 1(b)); see the Methods for definitions.

Since the inversion is an intrinsically dynamical phenomenon, an important question is how it
depends on the optimisation dynamics. To address this question, we considered the metric quantities
as functions of the training error εtr, by computing them from the sets M±(t(εtr)). The epoch t(εtr)
here is defined as the first epoch when the training error crosses the value εtr. Figure 1(d) shows
that, although t∗ itself can be very different for different optimisers, the training error at the inversion
epoch εtr(t∗) is approximately invariant; the figure collects trajectories obtained by running Adam and
gradient descent (GD) with different learning rates, with and without momentum and weight decay.
Using stochastic GD with a batch size much smaller than the training set gives similar results, but
shifts the inversion slightly towards smaller training errors (Supplementary Figure 1).

Similarly, we can ask whether the training error at the inversion is sensitive to sampling noise in
the training data. Figure 1(c) shows that the dynamics, and εtr(t∗) in particular, is quite independent
of the specific subset of the training set employed for training.
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Figure 2: Stragglers shape the dynamics and influence generalisation. (a) Training without stragglers removes
the inversion. The blue curve is obtained by training with the full dataset (shaded region corresponds to 2 sigmas); pink
curves (indicated by the arrow) are 20 runs with the pruned training set T \ S(t∗); the variability is due to the different
initialisations, which affect both the dynamics and the elements of S(t); grey curves above and below the pink ones are
obtained with pruned training sets T \ S(t), with t = 100 > t∗ and t = 10 < t∗ respectively. (b) Metric quantities at
convergence (y axis) using training sets T \ S (t (εtr)), as functions of εtr (x axis). (c) Removal of stragglers affects the
test error at convergence (y axis). The green curves, from bottom to top, are obtained from noisy test sets, obtained by
adding white noise, independently to each pixel, with standard deviation σ = 0, 0.5, 0.75, 1., 1.2, 1.5 respectively (inputs are
standardised, see Methods); shaded regions correspond to 2 sigmas. Grey curves are obtained by removing, for each εtr, a
random set of points, of the same cardinality as S (t (εtr)) (only the two smallest values of σ are shown). (d) The inversion
point marks a maximally stable set of misclassified points. Pink crosses are z-scores of the stability of the set S (t (εtr)) (y
axis; see Methods) under fluctuations in the initialisations, as a function of εtr. In all plots, T contains P = 8192 elements
from MNIST, the architecture is a two-layer network with 20 hidden units.

Manifold expansion is elicited by structure in the data
What is causing the expansion phase? We will give an answer in the upcoming sections. A preparatory
question is the following: does the inversion dynamics persist if one destroys the dependences between
the data points and their labels? We repeated the same experiments as above, this time with randomly
chosen labels for each input. The expansion phase disappears (Fig. 1(e,f)), giving way to a single
slow segregation mode: the distance between the latent manifolds increases monotonically, while the
two radii remain roughly constant throughout training. This result suggests that the non-monotonic
dynamics is elicited by data structure, i.e., by the relation between the geometry of the data manifolds
and the labels [8, 19,37,38].

Non-monotonic dynamics reveals trade-offs due to stragglers
What happens at the inversion? Some insight can be gained by watching which subset of the training
set is still classified incorrectly at t∗. At t∗, the model classifies correctly most of the training set.
Further optimisation of the loss function requires to trade off the overall segregation of this bulk for
the separability of the few data points that are still misclassified.

Consider the set of misclassified points at epoch t:

S(t) = {xµ ∈ T | ŷt(xµ) 6= yµ}, (2)

where ŷt(xµ) is the label predicted by the network trained up to epoch t, Eq. (5). We name “stragglers”
the elements of S(t∗), owing to their being late to catch up with the rest of the training set.

Does the expansion period persist if we remove the stragglers from the training set? Figure 2(a)
shows how R+ behaves when retraining the network on the reduced training set T \ S(t∗). Removal of
S(t∗) completely deleted the expansion period, in favour of a longer, and more seamless, segregation
phase. Not only did the radius decrease monotonically on average: no inversion point could be identified
in any single training run. Instead, removal of a random subset of the same cardinality did not affect
the radii appreciably. Pruning the dataset by removing sets S(t < t∗), which are generally larger
than S(t∗), had the same effect, but t∗ was the largest epoch at which this happened: removing sets
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S(t > t∗) did not destroy the non-monotonicity (bottom grey lines in Fig. 2(a)). Note that the sets
S(t) depend on the initialisation; all statements made here were checked for 20 different initialisations.

The individuality of the inversion epoch t∗ is emphasised by yet another experiment. We used
the pruned dataset T \ S (t (εtr)), and measured the metric quantities at convergence, as functions of
εtr (Fig. 2(b)). The training error at the inversion, εtr(t∗), marks the boundary between two qualita-
tively different phases: when εtr is larger than εtr(t∗) the asymptotic geometry of class manifolds is
approximately independent of εtr.

In MNIST, with P = 8192 and a two-layer network with 20 hidden units, the number of stragglers
is |S(t∗)| ≈ 800 (how this number changes for different tasks and architectures is reported below).
Similarly to the inversion epoch t∗, the identity of the stragglers is conserved across network initial-
isations and, when training with stochastic GD, for different shuffles of the training set; we checked
this by comparison with a null hypergeometric model (see Methods). Remarkably, among all the sets
S (t (εtr)), stragglers are maximally conserved (Fig. 2(d)).

Stragglers influence generalisation and noise robustness
The experiments above elucidated how stragglers shape the dynamics of the class manifolds, by trig-
gering a tradeoff phase where entanglement between different classes, as measured via their metric
properties, increases. As mentioned in the Introduction, entanglement between class manifolds is ex-
pected, in turn, to facilitate good generalisation, because it promotes learning of common invariant
features. Persuasive clues that this is in fact the case were identified in Ref. [30]. Hence, is it possible
to quantify the influence of stragglers on generalisation?

We trained a two-layer network on the pruned training sets T \ S (t (εtr)), and measured the test
error at convergence, εtest. The resulting εtest as a function of εtr, from which the training set depends,
is shown in Fig. 2(c). Testing accuracy deteriorates (εtest increases) when removing any subset S (t (εtr))
from T . The magnitude of the deterioration is much larger than that obtained when removing a random
subset of T of the same size as S (t (εtr)) (grey regions in Fig. 2(c)).

The magnitude of the increase in εtest is not a featureless function of εtr: the training error at
the inversion epoch (grey vertical band in the figure) appears to separate two different branches of the
curve. This contrast was accentuated when we repeated the same experiment with noisy versions of the
test set, obtained by adding white noise to the input images with increasingly large variances. At low
signal-to-noise ratios (large variances), the curves become non-monotonic, signalling a complex relation
between the pruned subsets and the testing accuracy. Interestingly, at sufficiently low signal-to-noise
ratios, removing stragglers reduces the test error to values below the original ones.

Given their impact on generalisation, it is natural to ask whether the role of stragglers is different on
the two sides of the double-descent curve [39,40]. We repeated the preceding experiments with training
set sizes and number of learnable parameters well above and well below the interpolation threshold,
finding no appreciable differences (Supplementary Figure 2).

Non-monotonic dynamics and stragglers in other data sets
The non-monotonic segregation dynamics, as discussed above, is due to data structure. Is this a
peculiarity of MNIST, or is the phenomenology more general? Figure 3(a) shows that KMNIST and
fashion-MNIST, other commonly-employed data sets (see Methods), engender a similar non-monotonic
dynamics. In addition, pruning the training set has similar consequences to those observed in MNIST.
Stragglers, the misclassified examples at the inversion point, are again the most conserved among all
subsets S(t) (Supplementary Figure 3).

The more complex data set CIFAR-10, which required a more expressive network (see the caption
to Fig. 3), allows us to make an interesting observation. The goal of defining the inversion point as a
function of training error (as opposed to the epoch) was to enable a fair comparison between optimisers.
For simple data sets such as MNIST, plotting R± and D as functions of epoch or training error has no
qualitative impact on the observed behavior. On the contrary, when an 8-layer architecture is trained
on CIFAR-10, the dependence on the training error is much sharper (less fluctuating). Figures 3(c)
and 3(d) show a comparison between the use of epochs and training error as independent variables.
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Figure 3: Stragglers across data sets and architectures. (a) The three metric quantities (y axes) as functions of the
training error (x axis) for MNIST, KMNIST, and fashion MNIST. (b) Fraction of stragglers has a well-defined large-dataset
limit. Dashed lines are fits of Eq. (12) to these data. (c), (d) Non-monotonic dynamics of R+ (y axes) in CIFAR-10, as a
function of training error in (c) and epochs in (d). (e) The asymptotic (large-dataset) fraction of stragglers (y axis) depends
only weakly on the depth, and negligibly on the width, of the architecture. The four groups of boxes correspond to increasing
widths from left to right; darker shades of blue correspond to deeper architectures. The curves in (a),(c), and (d) are 20 runs
for each data set. Box heights in (b) and (e) correspond to 2 standard deviations. Architectures and parameters: 2 layers
with 20 hidden units each in (a) and (b); 8 layers (fully connected) with 20 hidden units each, learning rate η = 0.02, in (c)
and (d); 2,4, and 8 layers, each with 10,20,40, and 80 hidden units, η = 0.1, in (e).

Weak dependence on data size, depth, width, activation function
The training error at the inversion epoch φ = εtr(t∗) is the fraction of stragglers in the data set. Above,
we have used a fixed number of training examples P . How does φ depend on this choice? Increasing P
makes the training more and more difficult by adding new constraints in the optimisation problem, thus
potentially also influencing the inversion point. However, this is not the case. Figure 3(b) shows that φ,
as a function of P , saturates to a relatively small fraction for MNIST, KMNIST, and fashion MNIST.
By fitting a tentative scaling form for φ as a function of P , one can attempt an extrapolation to infinite
data set size, thus obtaining an estimate of the asymptotic fraction φ∞ (see Methods, Eq. (12)). The
fitted curves are in Fig. 3(b); we obtained φ∞ ≈ 4% (fashion MNIST), 11% (MNIST), 20% (KMNIST).

The arrangement of these values and the higher inversion point for CIFAR-10 (Fig. 3(c)) indicate
a relation between the complexity of the data set and the proportion of stragglers. A similar relation
was reported between the fraction of critical samples, defined via the concept of adversarial examples,
and data-set complexity [41].

We explored the dependence of the fraction of stragglers on the architecture by computing φ∞ for
fully connected networks with 2,4, and 8 layers, and 10,20,40, and 80 units per hidden layer. Figure
3(e) shows φ∞ as a function of the total number of trainable parameters. In MNIST, about 11–13%
of the training set is composed of stragglers, this figure being approximately constant over the range
of depths and widths considered, encompassing more than an order of magnitude in total number of
parameters. A weak systematic dependence emerges, mainly as a function of depth.

We checked the stability of the stragglers’ identity across architectures, by comparing the sets S(t∗)
obtained in models with different widths and depths. Stragglers are strongly conserved, with z-scores
lying close to those obtained by comparing different training runs of a single shallow network (see
Methods).

Finally, we observed that the inversion point, when using nonlinearities other than tanh, is slightly
more fluctuating, but it still occurs around the same value of the training error. For a 4-layer network
with 20 hidden units per layer, trained on 8192 examples from MNIST, we found φ = 0.089 ± 0.009
(reLU), φ = 0.088 ± 0.007 (leaky reLU with negative slope 0.1), and φ = 0.097 ± 0.014 (siLU), to be
compared with φ = 0.098±0.002 (tanh). The phenomenology persists in the fully linear case where the
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activation function is the identity, for which we found φ = 0.100±0.002. This suggests that theoretical
insight into the segregation dynamics of class manifolds may be gained by employing the theory of deep
linear networks, which allows for analytical computations [42].

Specificity of stragglers within the data set
Do stragglers occupy special places with respect to the data manifold? While visual inspection does
not reveal striking peculiarities, we found that stragglers, compared to other training examples, are
significantly further away from the respective class centres. This analysis was done using all 10 MNIST
classes, even though the classification problem is binary. By embedding the data in 2-dimensional
space by t-SNE, it becomes visually clear that stragglers lie preferentially close to the class boundaries
(see Supplementary Figure 4). This result suggests that it may be useful to think of stragglers as the
“support vectors” for the non-linear classification problem.

Discussion
The nonmonotonic dynamics, and its inversion point in terms of training error, proved to be remarkably
robust to changes in the hyperparameters and to perturbations. The fraction of stragglers appears to
be an invariant property of the data set, characterising its complexity in terms of the tradeoffs discussed
above. How this measure relates to other metrics of task difficulty, such as the intrinsic dimensions of
the data set [43,44] or of the objective landscape [45], and to other specifics of data structure [41,46–48],
is an open question.

In spite of the robustness presented above, we were able to find one way to disrupt the behaviour.
Increasing the variance of the weight initialisation kept φ unchanged but pushed the radii towards 1
and made the minimum shallower. When the variance far exceeded the inverse of the number of units
in hidden layers, the minimum disappeared abruptly and the radii became monotonic. This may be
the manifestation of a transition between the feature learning and the lazy training regimes [49].

We list here some limitations of our work. (i) However robust, the phenomenology found in small
fully-connected architectures should not be expected to arise immediately, or to be as clearcut, in
state-of-the-art deep convolutional neural networks or transformers. (ii) We focussed solely on the
internal representations at the first layer, even in deeper architectures. The dynamics in immediately
downstream layers is not dissimilar, but representations closer to the output display different patterns.
(iii) It is not evident how much the behaviour of the test error under pruning, Fig. 2(c), is sensitive to
the choice of architecture. A more systematic exploration of these matters is left for future work. To
address, at least partially, the limitations (i) and (iii), we have explored a set of 2-layers convolutional
neural networks (CNN). Their behaviour varies with the choice of hyperparameters. Some architectures
(e.g., with large kernel sizes) behave in the same way as fully connected ones, while in others the
dynamics is qualitatively the same only for D (see the Supplementary Figure 5 for an example with
4 × 4 kernels, on MNIST). Even in the latter architecture, removal of stragglers (as identified with
either a CNN or a FC network) has a profound impact on the training dynamics, making the inversion
less marked. The results of Fig. 2(c), and 2(d) are also still valid (see Supplementary Figure 6).

Our empirical results shed light also on separate questions regarding the role of different examples
during the training. Once architecture, optimiser, and training objective are fixed, thus establishing im-
plicit inductive biases, the ability to generalise to unseen, possibly out-of-distribution, data is acquired
by relying solely on the training set. Do all training data coherently cooperate in maximising train
and test accuracy? Or does heterogeneity, a well documented feature of empirical data sets [50, 51],
play a role? The inversion dynamics presented here indicates that two different compartments of T are
involved in shaping distinct periods of training, and appear to have distinct contributions to generali-
sation. Stragglers emerge as a set of challenging instances located at the outskirts of class manifolds,
which are memorised during later stages of training. We hypothesize that they carry information about
the geometry of the data distribution, thereby contributing to the fine-grained properties of the learned
discrimination boundaries. Omitting these examples from the training set results in more compact class
representations but at the cost of decreased generalization. Conversely, when the geometric details of
the data distribution are blurred by the presence of noise, as in our experiments with noisy test sets
(Fig. 2c and Supplementary Fig. 2), removing the stragglers can instead enhance the out-of-distribution
generalization.
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Previous literature supports the observation that training examples are consistently classified at
different learning stages, implying the existence of easy and hard examples [41]. Accurate metrics for
assessing example difficulty are essential for designing data set pruning strategies [52] and curriculum
learning protocols [53]. Exploring the potential role of stragglers as challenging examples in these
contexts is an avenue for future research.

Methods
Models and training Most of our analysis was carried out on a shallow network with weights
w ∈ RH×N and v ∈ R2×H , and biases b ∈ R2 and c ∈ RH . We denote wij , vai , ba, and ci the elements
of these vectors, where i = 1, . . . ,H; j = 1, . . . , N ; a = ±1. The forward function is

fa(x) =

H∑
i=1

vai [h (x
µ)]i + ba, a = ±1, (3)

where the vector h(xµ) is the internal representation of xµ; its components are

[h(xµ)]i = σ

 N∑
j=1

wijx
µ
j + ci

 . (4)

The transfer function σ was tanh for most of our analyisis. With these definitions, the predictor is

ŷ(x) = argmax
a

({fa(x)}a) . (5)

We use the subscript t, as in ht or ŷt, to specify that weights and biases are those evaluated at epoch
t during training.

All models were trained using full-batch gradient descent with learning rate η = 0.2 (except where
stated otherwise), with loss function

L = −
P∑
µ=1

log [softmax {fa(x)}a]y(xµ) , (6)

where y(xµ) is the label of xµ in the training set. Weights and biases were initialised as independent
random variables with the uniform distribution U (−1/

√
n, 1/

√
n), where n is the number of weights in

the layer. Using other initialisation schemes, such as He or Xavier initialisation, does not change the
results presented above, but see the comment regarding initialisation in the Discussion.

Datasets and standardisation We used the following data sets:

• MNIST, handwritten digits, 28x28 greyscale images [54],

• Kuzushiji-MNIST, or KMNIST; cursive Japanese characters, 28x28 greyscale images [55],

• Fashion MNIST; Zalando’s article images, 28x28 greyscale images [56],

• CIFAR-10, 32x32 RGB images; the three channels were averaged down to greyscale [57].

All data sets are natively divided into training and test subsets. In all cases, unless specified otherwise,
we constructed our training sets by using the first P = 8192 elements of the training subset. For
computing the test errors, Eq. (7) below, we used the full test subsets. In both training and test
sets, we binarised the classification task by using label y = −1 for odd classes and y = 1 for even
classes, except when stated otherwise. All inputs in our training sets (respectively, test sets) were
standardised by removing the mean and dividing by the standard deviation, separately for each pixel
i: xi  (xi − 〈xi〉)/(

〈
x2i
〉
− 〈xi〉2)1/2, where the means 〈xi〉 and

〈
x2i
〉
are computed on the training set

(respectively, test set).

8



Projection onto the unit sphere The problem of linear separation of a set of points is projective,
in the following sense. Let us consider a linear separator identified by the vector w ∈ RH . A dichotomy
f of the points zµ ∈ RH , µ = 1, . . . , P , can be defined by setting f(zµ) = sign(w ·zµ) for all µ. There is
a large class of transformations of the points zµ under which the dichotomy is invariant. In particular,
rescaling each point by a (possibly different) positive factor, z̃µ = λµzµ, λµ > 0, gives f(z̃µ) = f(zµ).

This fact shows that projection onto the unit sphere of the internal representations ht(xµ), as
defined above Eq. (1), does not affect the final linear readout. We perform this normalisation step
during evaluation of the metric quantities. However, we do it for both shallow and deep networks, even
if the invariance does not hold for the latter. Without this transformation, the non-monotonicity in
the learning dynamics would be less evident (see e.g. [18]).

Definitions of the quantities measured The train and test errors were computed as

εtr,test = 1− 1

|Ttr,test|
∑

x∈Ttr,test

δŷ(x),y(x), (7)

where Ttr,test is the training or test set respectively, and y(x) = ±1 is the label of x.
The squared gyration radii of the class manifolds, Eq. (1), are defined as follows:

R2
±(t) =

1

2n2±

∑
x,y∈M±(t)

‖x− y‖2, (8)

where n+ = |M+(t)| is the number of elements with label +1 (and similarly for n−). The distance
D(t) between the centres of mass ofM+(t) andM−(t) is

D(t) =

∥∥∥∥∥∥ 1

n+

∑
x∈M+(t)

x− 1

n−

∑
x∈M−(t)

x

∥∥∥∥∥∥ . (9)

The inversion epoch t∗ is the epoch corresponding to the stationary value of each metric quantity:

t
R±
∗ = argmin

t
R±(t),

tD∗ = argmax
t

D(t)
(10)

Operatively, we computed t∗ separately for R+, R−, andD; then φ = εtr(t∗) was computed by averaging
the training errors corresponding to these values of t∗. The values of φ reported are averages over 100
training runs.

Identity of stragglers To check that the identity of stragglers is conserved across initialisations,
we performed the following experiment. We trained a two-layer neural network with 20 hidden units (on
MNIST with P = 8192) starting from two random initialisations. For each of the two runs, α = 0, 1, we
identified the set Sα(t∗) containing the misclassified elements of T at the inversion epoch; in addition,
we picked two random subsets Ŝα ⊂ T , such that |Ŝα| = |Sα(t∗)|. We computed the numbers of
common points M = |S0(t∗) ∩ S1(t∗)| and M̂ = |Ŝ0 ∩ Ŝ1|. The distributions of M and M̂ , over 10k
repetitions, were peaked aroundM ≈ 680 and M̂ ≈ 70, with standard deviations σM ≈ 10 and σM̂ ≈ 8.
Comparing these numbers to the number of stragglers for this setting (around 800) shows that around
85% of them are conserved, as opposed to 9% in the null model.

To quantify the stability of the stragglers, or more in general of the sets S (t (εtr)), we used the
z-score

z =
〈M〉 − 〈M̂ 〉

σM
, (11)

where 〈M〉 and 〈M̂ 〉 are the averages of M and M̂ , and σM is the standard deviation of M , obtained
with a similar experiment as the one described above, but for different epochs t(εtr) instead of t∗. The
z-score for S (t (εtr)), as a function of εtr, is plotted in Fig. 2d.

The z-score can be used to measure the conservation of the stragglers’ identity between different
models. To this aim, we used the same definition as above, and performed the two runs α = 0, 1 on

9



two possibly different architectures. We obtained the following z-scores; in parentheses, the depths Lα
and widths Hα of the two architectures, (L0/H0, L1/H1): z = 50 (2/20, 4/20), z = 41 (2/20, 8/20),
z = 40 (4/20, 8/20). By comparison, the same-architecture z-scores for the deeper models are z = 51
(4/20, 4/20) and z = 45 (8/20, 8/20). The same method can be used to compare the identity of
the stragglers for two different shuffles of the training set, when training is performed using stochastic
gradient descent. For a shallow network with 20 hidden units, and batch size 32, we obtained z ≈ 11.

Scaling with training set size A simple form, inspired by the theory of finite-size scaling in
statistical physics [58], is effective in capturing the dependence of the fraction of stragglers, φ, on the
size of the training set P :

φ(P ) = φ∞

[
1−

(
P

P0

)−γ
+ o
(
P−γ

)]
. (12)

Fits are performed by varying φ∞, P0, and γ. The asymptotic values φ∞ in Fig. 3(e) were obtained
by fitting Eq. (12) to data with P = 4096, 8192, 16384, 32768.

Data availability
The datasets analysed during the current study are available in public repositories; links are in the
corresponding publications [54–57].

Code availability
The code produced and used in the current study [59] is available on GitHub, under the GNU General
Public License, version 3 (GPL-3.0), at https://github.com/marco-gherardi/stragglers
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