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Abstract. Instruments measuring aerosol light absorption,
such as the Aethalometer and the Multi-Wavelength Ab-
sorbance Analyzer (MWAA), have been extensively used
to characterize optical absorption of atmospheric particulate
matter. Data retrieved with such instruments can be anal-
ysed with mathematical models to apportion different aerosol
sources (Aethalometer model) and components (MWAA
model). In this work we present an upgrade to the MWAA
optical apportionment model. In addition to the apportion-
ment of the absorption coefficient babs in its components
(black carbon and brown carbon) and sources (fossil fuels
and wood burning), the extended model allows for the re-
trieval of the absorption Ångström exponent of each com-
ponent and source, thereby avoiding initial assumptions re-
garding these parameters. We also present a new open-source
software toolkit, the MWAA model toolkit (MWAA_MT),
written in both Python and R, that performs the entire appor-
tionment procedure.

1 Introduction

Atmospheric particulate matter (PM) plays an important role
in environmental issues such as human health, air quality, and
climate change (Seinfeld and Pandis, 2016). Several chem-
ical species and aggregates, present in the atmosphere, af-
fect the energy balance of the Earth system by absorbing
and scattering solar radiation (Laj et al., 2020). A variety of

sources contribute to the emission of light-absorbing or light-
scattering PM: their identification and quantification are nec-
essary to mitigate the harmful effects of PM, especially in the
climate change issue.

Among other constituents, black carbon (BC) and brown
carbon (BrC) are the most light-absorbing components of PM
(Bond et al., 2013). BC consists of fractal-like chains of sub-
micron particles, and it is formed by incomplete combustion
processes. Due to the wavelength independence of the imag-
inary part of its refractive index, it is a strong light absorber
across the entire visible range. BrC represents a more elu-
sive class of organic carbonaceous compounds whose defin-
ing characteristic is to absorb radiation more efficiently at
shorter visible bands than at longer wavelengths, where its
absorption is considered negligible (Pöschl, 2003; Andreae
and Gelencser, 2006). The composition of BrC is still poorly
understood, due to its chemical complexity and spatiotempo-
ral variability; it consists of a number of molecular weight
compounds, generally prone to oxidation and chemically un-
stable (Forrister et al., 2015). BrC is emitted directly through
combustion of biomass but can also be formed as a product
of secondary processes in the atmosphere (Liu et al., 2015;
Tang et al., 2016).

Other aerosol compounds exhibit strong, albeit more se-
lective, light-interaction properties. One such example is
mineral dust, which is the most widespread aerosol type in
terms of total mass, with a consequent important impact on
the Earth’s energy balance due to its light absorption prop-
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erties (Alfaro et al., 2004; Caponi et al., 2017; Schepanski,
2018; Di Biagio et al., 2019). However, in this work, we re-
strict our attention to carbonaceous aerosol and its sources.

In general, the spectral dependence of light absorption by
small particles can be parameterized with a power-law func-
tion. In particular, the aerosol absorption coefficient babs can
be written as a function of the wavelength of the incom-
ing radiation as babs (λ)= cλ

−α , where c is a proportional-
ity factor and α, the absorption Ångström exponent (AAE),
defines the spectral dependence of the absorption. Different
aerosol types correspond to different values of α, which has
been shown to depend on particle size, morphology, chem-
ical composition, and mixing/ageing state (Moosmüller et
al., 2011; Utry et al., 2014). For BC in its ideal form (spher-
ical particles with no wavelength dependence of the imagi-
nary part of the refractive index), the literature is consistent in
indicating an α value of 1, both for real-world aerosol (Bond
and Bergstrom, 2006) and for that produced in samples under
controlled conditions (Vernocchi et al., 2022), whereas much
more variation is encountered in the value of α for BrC, with
reported values ranging up to 9.5 (Hoffer et al., 2006; Har-
rison et al., 2013; Lack and Langridge, 2013). This is likely
due to the broader range of chemical composition and ef-
fects of ageing. Intermediate values of α are observed for
aerosols containing both BC and BrC (Massabò et al., 2019).
This significant difference in the wavelength-dependent be-
haviour of light-absorbing components can be used as an ef-
ficient tool for the source and component apportionment of
light-absorbing aerosol.

Source apportionment models exploiting the power-law
behaviour of babs have been successfully applied to multi-λ
measurements of absorption. The Aethalometer model (San-
dradewi et al., 2008) allows for the apportionment of the
absorption coefficient to two different sources, namely fos-
sil fuels (FF) and wood burning (WB), exploiting the dif-
ferent α that characterizes the aerosol produced by the two
sources. The MWAA (Multi-Wavelength Absorbance Ana-
lyzer) model extends the Aethalometer model by explicitly
including the apportionment of optical absorption due to BC
and BrC, resulting in an algorithm that allows for the differ-
entiation of both aerosol sources and components, based on
at least 5−λ absorption measurements (Massabò et al., 2015;
Bernardoni et al., 2017). Both the Aethalometer model and
the MWAA model are effective in apportioning aerosol ab-
sorption, but they have a conceptual drawback: the values of
some physical parameters must be fixed prior to the anal-
ysis in order to run the algorithm. These parameters are α
for FF and WB (αFF and αWB for the Aethalometer model
and αFF, αWB, and αBC for the MWAA model). Since α
depends on a variety of factors, as mentioned above, fix-
ing these exponents for the analysis, according to the liter-
ature, can lead to errors, since the actual value of these expo-
nents may be different for the specific aerosol analysed. The
only way to avoid this problem is to retrieve these crucial
parameters by using information obtained by independent

techniques/methods (e.g. levoglucosan, 14C, receptor mod-
els, others), as stated in several recent publications in the lit-
erature (Massabò et al., 2015; Martinsson et al., 2017; Titos
et al., 2017; Helin et al., 2018; Ivančič et al., 2022).

In this work we propose (1) a toolkit that implements a
revised version of the original MWAA model, as published
in Massabò et al. (2015). This toolkit has been rewritten and
optimized in Python and R and is available for use by the
scientific community. It has been also extended with the op-
tion to use an arbitrary number of spectrally resolved ab-
sorption coefficients, as long as at least five wavelengths are
available. This model is self-consistent and can be applied to
purely optical data without the need of any other informa-
tion. We also propose (2) an upgrade to the original MWAA
model that directly allows for source and component appor-
tionment of absorption data without the need to set any pa-
rameters before running the model. This is achieved by per-
forming the apportionment analysis along with a correlation
study with independent measurements such as chemical spe-
ciation or elemental composition. The parameters are then
automatically set by the algorithm, based on the values that
give the best correlation with the independent measurements.
The new software toolkit presented here is written in two
of the most widely used scientific programming languages,
Python and R, to perform this analysis automatically. The
presented MWAA model toolkit (MWAA_MT) has the fol-
lowing output: αFF, αWB, αBC, αBrC, and the carbonaceous
masses for fossil fuels and wood burning: ECFF /OCFF, and
ECWB /OCWB respectively, where EC (OC) stands for el-
emental carbon (organic carbon). Finally, to demonstrate
the capability of the upgraded model, we provide an exam-
ple application to data published elsewhere (Bernardoni et
al., 2017).

2 Model description

The MWAA model has been extensively described elsewhere
(Massabò et al., 2015). Here we will only report the main
points to establish the notation and describe the upgrades.

The measured aerosol absorption coefficient babs at differ-
ent wavelengths is decomposed in two different ways:

babs (λ)= b
BC
abs (λ)+ b

BrC
abs (λ)= Aλ

−αBC +Bλ−αBrC (1)

and

babs (λ)= b
FF
abs (λ)+ b

WB
abs (λ)= A

′λ−αFF +B ′λ−αWB . (2)

Equation (1) represents the decomposition of the measured
aerosol absorption coefficient, at each wavelength, into its
contributions due to carbonaceous components, BC and BrC.
Both species are assumed to absorb radiation according to a
negative power law babs (λ)∝ λ

−α , with a different absorp-
tion exponent for BC (αBC) and BrC (αBrC).

Equation (2) has the same structure as the Aethalometer
apportionment model (Sandradewi et al., 2008), whereby the
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absorption coefficient is decomposed into contributions from
different sources, FF and WB. As in Eq. (1), these terms are
also assumed to contribute to the total optical absorption fol-
lowing negative power law whose exponents are different for
FF (αFF) and WB (αWB).

The parameters A, B, A′, and B ′ are scaling factors pro-
portional to the mass absorption cross-section (MAC) of
each component. In the original MWAA model, all but one
of the exponents (αBrC) are fixed to appropriate values ac-
cording to the literature (Sandradewi et al., 2008; Favez et
al., 2010; Herich et al., 2011; Harrison et al., 2013; Mass-
abò et al., 2015; Zotter et al., 2017; Forello et al., 2019),
most commonly αBC = αFF = 1 and αWB = 1.8 or 2. Then,
the multi-λ measurements of babs are fitted using Eqs. (1)
and (2), obtaining A, B, A′, B ′, and αBrC. The contribution
of the different sources and species to the optical absorption
is obtained as follows.

b
BC,WB
abs (λ)=

(
A−A′

)
λ−αBC

b
BC,FF
abs (λ)= A′λ−αBC

bBrC
abs (λ)= Bλ

−αBrC

(3)

The upgraded model we present eliminates the need to ar-
bitrarily specify αBC, αFF, and αWB by instead adjusting
their values so that the apportioned contributions found in
Eq. (3) have the best correlation with independent measure-
ments. Figure 1 shows a streamlined version of the upgraded
MWAA model in which the independent measurement for
the adjustment of the exponents is the levoglucosan content
in the sample, as determined by chromatography. Levoglu-
cosan is a strong tracer for biomass burning (Simoneit et
al., 1999) and should therefore correlate well with bBrC

abs and
b

BC,WB
abs .

The three parameters αBC, αFF, and αWB are each varied
within their range, while the others are held constant. In the
first step, αBC is varied in the set {0.8,0.9,1.0,1.1,1.2}. For
each αBC value, Eq. (1) is used to fit the data and bBrC

abs is cal-
culated for the shortest available wavelength using Eq. (3).
The coefficient of determination R2 for a linear regression
between bBrC

abs and the levoglucosan concentration for all sam-
ples is calculated, and the αBC value that maximizes R2 is
selected. In the second step, αWB is set to 2 and a similar
procedure as described for the first step is performed for on
αFF. Finally, in the third step, the procedure is repeated to
find a best value for αWB It is worth noting that the permuta-
tion of the steps to minimize αFF and αWB leads to the same
preprocessing results. These three steps are repeated N = 3
times, restricting the range of variability for the parameters
in each iteration to increase the accuracy of the search for the
best values. To avoid statistically insignificant results, and to
obtain a more robust result, a tolerance parameter 1 is intro-
duced. If the increase in R2 in each minimization routine is
less than the tolerance, the previous value of the relevant α is
retained.

In addition to the component and source apportionment
of the optical absorption coefficient, the MWAA model pro-
vides a method to perform the apportionment of EC and OC
masses to the fossil fuel and wood burning contributions.

ECFF =
b

BC,FF
abs (λl)

babs (λl)− b
BrC
abs (λl)

EC (4a)

ECWB =
b

BC,WB
abs (λl)

babs (λl)− b
BrC
abs (λl)

EC (4b)

EC= ECFF+ECWB (4c)

OCFF = k1b
BC,FF
abs (λl)+OCNC (4d)

OCWB = k2b
BrC
abs (λs)+OCNC (4e)

OC= OCFF+OCWB+OCNC (4f)

In the above equations, λl and λs represent the longest and
shortest wavelengths for which a measurement is available
respectively; OCNC is the organic carbon produced by bio-
genic sources which is considered optically inactive; k1 and
k2 are coefficients, in g m−2, obtained by a linear regression
of Eqs. (4d) and (4e), in subsets of samples in which the OC
concentration is low (for k1) and high (for k2). The coeffi-
cients k1 and k2 are related to the mass absorption cross-
sections (MACs) of BC and BrC respectively and to the ratios
OCFF/BCFF and OCWB/BrC. For more details on the mass
apportionment procedure, see Massabò et al. (2015).

3 Software features

The software toolkit that performs the above-mentioned anal-
ysis has been released in the public domain (tisolabella and
Bigi, 2024). Currently, it can only be run in a Linux distribu-
tion (for example, Ubuntu or Linux Mint).

MWAA_MT can perform optical and mass apportionment
of data obtained with instruments measuring light absorption
at least at five wavelengths, such as a multi-λ Aethalometer.

The toolkit works in four separate steps.

– Step I. It retrieves the best values for the three parame-
ters αBC, αFF, and αWB following the method detailed
in Sect. 2.

– Step II. The values of A, B, A′, B ′, and αBrC are ob-
tained from fitting Eqs. (1) and (2) with the remaining
exponents fixed to the best values found in the previous
step.

– Step III. Equation (3) is employed to apportion the ab-
sorption coefficient at every wavelength.

– Step IV. Following Eq. (4), the mass apportionment is
performed for each sample.
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Figure 1. Flowchart illustrating the pre-processing step in the improved MWAA model. clevo is the levoglucosan concentration in the samples,
R2 is the coefficient of determination in the linear regression, and the subscripts best and prev respectively refer to the best correlation in the
present iteration and the best correlation in the previous iteration relative to the same α; 1 is a tuneable tolerance that prevents statistically
insignificant fluctuations from assuming a physical meaning.

The first step of the analysis is the most innovative aspect of
the tool we introduce here, since the three values of αBC, αFF,
and αWB are directly retrieved by the toolkit itself. However,
if data from at least one independent analysis (e.g. levoglu-
cosan, 14C, positive matrix factorization, PMF) are not avail-
able, the user can still set these three parameters manually.
In addition, the mass apportionment step is optional depend-
ing on the availability of carbonaceous mass measurements:
if EC and OC are not available for the samples, the user can
decide to skip the fourth step. More details on the toolkit and
the analysis procedure are contained in the Supplement to
this article.

Similarly, the user can set many of the analysis hyperpa-
rameters. To perform the first step of the analysis, the current
version of the toolkit allows comparison of the optical ap-
portionment with levoglucosan measurements, as described
above. Future versions of MWAA_MT will likely allow the
user to choose between different types of preprocessing anal-
ysis, considering different types of data such as 14C measure-
ments or source apportionment results obtained with inde-
pendent techniques such as PMF or multilinear engine (ME-
2) receptor models. Another possibility could be to constrain
the model to maximize the correlation with tracers of traffic
emission such as NOx .

Any number of samples can be provided for an analysis
run; for the main optical apportionment procedure, steps II

and III, each sample is processed independently, whereas for
steps I and IV the entire dataset is considered for the regres-
sion analyses. Therefore, extra care must be taken to avoid
entering obvious outliers as input to the software, and the
analysis may need to be run twice, with the first run serving
to weed out potential outliers and adjust the range of param-
eter variation.

4 Example application: black and brown carbon
optical apportionment of MWAA data

As an example application of MWAA_MT, we examine the
results of the apportionment of two datasets previously pub-
lished (Bernardoni et al., 2017). The first dataset is from a
sampling campaign conducted in fall/winter 2014 in Propata,
a rural site in northern Italy, while the second dataset is from
a campaign conducted in winter 2016 at an urban background
site in Milan, one of the largest cities in Italy. In these cam-
paigns, PM10 samples were collected on quartz fibre filters,
with each filter sampled (for 48 h in Propata, for 12 h in Mi-
lan) and then analysed with the MWAA instrument to ob-
tain the wavelength-resolved absorption coefficients of the
aerosol. All samples were analysed by high-performance liq-
uid chromatography (HPLC) with pulsed amperometric de-
tection (PAD) to determine the levoglucosan concentration
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(Piazzalunga et al., 2010). No information on chemical spe-
ciation (except levoglucosan) was available at the two sites;
the average PM10 concentration measured at Propata and Mi-
lan was 8.3± 6.0 and 68.3± 25.6 µgm−3 respectively. Fur-
ther details on the measurements can be found in Bernar-
doni et al. (2017). In the current study, we apply the updated
MWAA model toolkit (MWAA_MT) to 28 samples from the
Propata campaign (hereinafter referred to as “P” samples)
and 25 samples from the Milan campaign (“AIN” samples).
The aim of the comparison is to verify whether the particulate
sampled in a rural area has a different optical behaviour than
the aerosol sampled in an urban area. The following steps
were performed identically for both datasets.

4.1 Preliminary: comparison with levoglucosan
concentrations

To determine the goodness of the apportionment procedure
even without the extra pre-processing step, default values for
the free parameters were chosen (αBC = αFF = 1, αWB = 2)
and the standard MWAA model for optical apportionment
(steps II and III above) was run. Figure 2 shows the corre-
lation plots between the levoglucosan concentration and the
relevant apportionment results, namely bBrC

abs (λ= 375nm)
and b

BC,WB
abs (λ= 850nm) The linear regression equations

and coefficients of determination are given in Table 1.

4.2 Analysis step I

As described in Sect. 2, the first step of the upgraded ap-
portionment model is to find the values of the absorption
exponents that maximize the correlation between some of
the model’s output values and one or more independent
techniques. In this case, since the concentration of levoglu-
cosan (hereinafter cl) was measured on all samples, the fol-
lowing set of optimizations (levoglucosan analysis preset in
MWAA_MT) was carried out:

– vary αBC to maximize the correlation between
bBrC

abs (λ= 375 nm) and cl ;

– vary αFF to maximize the correlation between
b

BC,WB
abs (λ= 850nm) and cl ;

– vary αWB to maximize the correlation between
b

BC,FF
abs (λ= 850nm) and cl .

The resulting sets of exponents were
(αBC,αFF,αWB)

P
= (1.00± 0.05;1.00± 0.02;2.00± 0.05)

for Propata and (αBC,αFF,αWB)
M
=

(0.90± 0.05;0.90± 0.02;1.70± 0.05) for Milan. Fig-
ure 3 shows the variation in the R2 coefficient in the two
sites: the change in αWB value does not produce any sizeable
impact on the analysis of the rural dataset, whereas in
Milan the best choice turned out to be αWB = (1.70± 0.05).
Through the sensitivity tests we performed on the prepro-
cessing step, we discovered that the apportioned optical

absorption coefficients can vary by up to 10 % by adjusting
the values of the α parameters within their uncertainty
brackets. We estimated the uncertainty in the α parameters
by considering the steepness of the R2 vs. α curves. The
curve of αFF is very steep, which led us to estimate an un-
certainty of 0.02, whereas the R2 vs. α curves for the other
two parameters were flatter, indicating a larger uncertainty
for these parameters.

This justifies the choice of setting αWB = 2.0 for the rural
site, while the same choice is less robust for the urban site,
where αWB = 1.7 would be the more appropriate setting. The
analysis confirms the usual choice of αBC = 1.0 for the rural
site, while αBC = 0.9 gives the optimal value for the urban
dataset, possibly indicating a further reprocessing and ageing
of pure BC particles in the urban environment (Minderytė et
al., 2022). As with αFF, the analysis yields αFF = 1.0 and
αFF = 0.9 for the rural and urban site/dataset respectively.

4.3 Analysis step II

The parameters found in step I are then fixed for each dataset,
and a complete double fit of the experimental data is per-
formed for each sample following Eqs. (1) and (2). An ex-
ample of such fits for a sample belonging to each of the two
datasets is shown in Fig. 4.

One of the parameters determined during the fitting pro-
cedure is αBrC. Its range of variability over the entire dataset
and the uncertainty associated with its value allow for estima-
tion of the physical and chemical variability in the analysed
particulate. Figure 5 shows the determined values of αBrC
for the entire sampling period at the two sites. At a rural
site such as Propata, where wood burning is the predominant
source of carbonaceous particulate in the atmosphere during
winter, BrC corresponds to a well-defined sub-category of
organic carbon, and its absorption properties are therefore
constant. This is confirmed by the very small range of vari-
ation in the value of αBrC obtained for all Propata samples,
with αP

BrC = 3.79± 0.04, where the uncertainty is due to in-
herent systematic variations in the minimization routine. At
the Milan urban site, the range of variability in αBrC is much
higher. This can be due to the fact that the urban aerosol is
much more complex and contains a larger number of organic
carbon compounds from different types of wood burned un-
der different conditions, some of which could affect the op-
tical behaviour of the aerosol. Moreover, stagnation condi-
tions that favour ageing processes are typical of Milan (and
the Po Valley in general): they generally lead to an increase
in the molecular weight of organic matter, possibly enhanc-
ing light-absorption properties. Therefore, our model, based
on this simple decomposition, does not retrieve a sharp value
for αBrC, since the optical properties of BrC vary strongly in
Milan, unlike in Propata where the sampled particulate was
comparatively simpler. The determined absorption exponent
for BrC in Milan is therefore αM

BrC = 3.5± 1.1.
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Figure 2. Correlation between the levoglucosan concentration and the apportioned absorption coefficient of BrC at 375 nm (a) and the
absorption coefficient of BC due to wood burning at 850 nm (b). The rural site, Propata (red dots) exhibits a higher correlation than the urban
site Milan (black triangles).

Table 1. Results of the correlation analysis between the apportioned data and the independent measurement, in this case levoglucosan
concentration. The goodness-of-fit of the correlation, represented by the coefficient of determination R2, is much higher in Propata than in
Milan.

Location Absorption Fit equation y =mx+ q R2

{m} =Mm−1 µg−1 cm3

{q} =Mm−1

Milan bBrC
abs (λ= 375nm)

m= 18.4± 1.8
0.82

q = 9.3± 1.4

Milan b
BC,WB
abs (λ= 850nm)

m= 9.6± 1.1
0.75

q = 1.0± 0.9

Propata bBrC
abs (λ= 375nm)

m= 7.3± 0.3
0.96

q = 0.48± 0.10

Propata b
BC,WB
abs (λ= 850nm)

m= 2.02± 0.07
0.97

q = 0.15± 0.03

4.4 Analysis step III

The optical apportionment of the absorption coefficient is
performed for all available wavelengths according to Eq. (3).
Figures 6 and 7 show the apportioned babs at UV (375 nm)
and IR (850 nm) wavelengths for Propata and Milan respec-
tively. The main difference between the two sites is the corre-
lation between bBrC

abs and bBC,WB
abs . In Propata (Fig. 6) the cor-

relation is high, as can be inferred by the blue and black lines
having the same time trend. This means that most of the BrC
is produced via WB. On the other hand, in Milan (Fig. 7) this
correlation is lower, and BrC cannot be entirely attributed to
WB. In fact, in Milan the particulate is impacted by a num-
ber of different sources, and it is heavily processed due to
stagnation. A general feature common to both datasets is the
negligible absorption attributed to BrC at long wavelengths;
this is consistent with previous work (Massabò et al., 2015).

4.5 Analysis step IV

Mass apportionment was performed for both datasets using
the approach detailed in Sect. 2. The toolkit allows the user to
choose automatically determining the coefficients k1 and k2
from the linear regressions (see Eq. 4) or setting them man-
ually. The latter approach is recommended when the dataset
does not contain suitable candidate samples for the k1 re-
gression analysis (i.e. when there are no samples whose EC
content is predominant as evidenced by an α close to 1) and
especially when the values for k1 and k2 can be estimated by
complementary methods or by previous analyses of aerosol
samples taken at the same location during a comparable pe-
riod of the year.

For this example application, the second approach was
followed. For Milan, the regression coefficients were set to
kM

1 = 0.33 g m−2, kM
2 = 0.34 g m−2, while for Propata they

Atmos. Meas. Tech., 17, 1363–1373, 2024 https://doi.org/10.5194/amt-17-1363-2024
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Figure 3. Trend of the R2 correlation coefficient between the levoglucosan concentration and the apportioned optical absorption coefficient
vs. the value of the α exponents: Propata (a) and Milan dataset (b). The values of α parameter which maximize the R2 coefficient are marked
with a brown triangle. The plots are shown only for the last iteration of the preprocessing step.

Figure 4. Absorption coefficient plots for a representative sample from the rural site in Propata (a) and the urban site in Milan (b). The
experimental data points are marked with uncertainty crosses. Superimposed on the graphs are the results of the fits carried out with the two
different decompositions from Sect. 1.

were set to kP
1 = 0.24 g m−2, kP

2 = 0.35 g m−2, as described
in Bernardoni et al. (2017).

The average ECFF /EC ratio turned out to be 49± 20 %
and 58± 15 %, and complementary ECWB /EC resulted
in 51± 20 % and 42± 15 % respectively in Milan and
Propata. For the organic aerosol, the average OCFF /OC
was found to be 25± 14 % and 18± 9 %, while OCWB /OC
was 58± 17 % and 61± 14 %, in Milan and Propata re-
spectively. The non-combustion component of the organic
aerosol, OCNC, contributed 17± 15 % and 21± 15 % of the
total OC measured in Milan and Propata. For all reported re-
sults, the uncertainty is understood as the standard deviation
of the mass-apportioned values of EC and OC in the distribu-
tion for all samples. These results are in full agreement with
those reported in Bernardoni et al. (2017).

5 Conclusions

In the aerosol community concerned with aerosol source ap-
portionment, the possibility of apportioning carbonaceous
sources by exploiting optical properties has occupied much
space in recent years. The main reason for this growing in-
terest is the diffusion of optical instruments that are rela-
tively easy-to-use and offer high time resolution measure-
ments. The main weakness of this apportionment method-
ology, based on optical measurements, is the practically
obligatory choice of the critical parameters necessary as in-
put, in particular αWB and αFF, whose values vary consid-
erably in the literature (Sandradewi et al., 2008; Favez et
al., 2010; Herich et al., 2011: Harrison et al., 2013; Mass-
abò et al., 2015; Zotter et al., 2017; Forello et al., 2019).
In this work, we show that it is possible to perform opti-
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Figure 5. Values of the parameter αBrC for all samples in the datasets: Propata/rural (a) and Milan/urban (b).

Figure 6. Temporal variability in the apportioned absorption coefficients in Propata. Each sample covers a 48 h period, starting from 7 Novem-
ber 2014 for P01.

cal source and component apportionment of carbonaceous
aerosols without constraining any physical parameters with
a priori knowledge. Instead, the upgraded model toolkit pre-
sented here (MWAA_MT) allows for the determination of
these parameters for any specific receptor site, provided that
a measurement using an independent technique able to trace
biomass burning emissions is available for comparison, also
with different (lower) time resolution. This offers the advan-
tage of an apportionment routine based entirely on experi-
mental data, where computational parameters are automati-
cally adjusted to best match the results with the data them-
selves. With this upgrade, it is possible to obtain α absorp-
tion exponents that are related to the specific site and sea-
son, allowing for better characterization of future measure-
ments at the same site or at sites with similarities (e.g. rural
sites with similar geographical characteristics such as type of
wood burnt). In addition, the α parameters obtained from the
analysis of robust, low time resolution samples can be used

to inform and fine-tune the apportionment procedure on high
time resolution data.

We have also shown how sensitive the model is to the
choice of some of these parameters: in our example, in partic-
ular, the choice of αFF has the greatest impact on the reliabil-
ity of the subsequent apportionment. It should be emphasized
that this could be a feature of these specific data/sites: other
datasets could be more sensitive to the variation in another
one of the free parameters. It is therefore recommended that,
whenever possible, such an analysis be performed to deter-
mine the best value for any of these exponents.

We have applied this upgraded methodology to the ap-
portionment of the optical absorption coefficient in two dif-
ferent sites in northern Italy. The “pre-processing step” has
shown that, for the example dataset we considered, the val-
ues for αBC, αFF, and αWB at a rural site are consistent with
the literature, while in the case of an urban site, values of
αBC = 0.9, αFF = 0.9, and αWB = 1.7 seem to be a more ap-
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Figure 7. Temporal variability in the apportioned absorption coefficients in Milan. Each sample covers a 12 h period, starting at 21:00 CET
21 November 2016 for AIN01.

propriate choice. We would like to underline that the Milan
case study is to be considered a stress test of our algorithm:
the context is very complex due to the presence of a large
number of sources, such as traffic, biomass combustion, and
industry, in a city with over 1.3 million inhabitants. The city
is also subject to major regional transport events, high PM
concentrations (average PM10 value during the campaign of
68.3± 25.6 µgm−3), and air stagnation conditions resulting
in a high level of aerosol reprocessing. On the other hand,
when it comes to the Propata dataset, the correlation with lev-
oglucosan is much higher (R2

= 0.96), indicating that within
the experimental uncertainties, the assumption that BrC is
only produced by WB is satisfied.

Finally, we have described the operation of the new soft-
ware toolkit, MWAA_MT, that we have used to perform this
analysis and which has been made available to the scientific
community.
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