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Abstract 

High-fat diet (HFD) induced obesity is associated with elevated risk of insulin resistance (IR) 

that may precede the onset of type 2 diabetes mellitus and associated metabolic 

complications. Being a heterogeneous metabolic condition, it is pertinent to understand the 

metabolites and metabolic pathways that are altered during development and progression of 

IR towards T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or 

chow diet (CD) for 16 weeks. Collected samples were analysed using Gas Chromatography-

Tandem Mass Spectrometry (GC-MS/MS). The identified raw metabolites data were 

evaluated using a combination of univariate and multivariate statistical methods. Mice fed 

with HFD had glucose and insulin intolerance associated with impairment of insulin 

signalling in key metabolic tissues. From the GC-MS/MS analysis of serum samples, a total 

of 75 common annotated metabolites were identified between HFD- and CD-fed mice. In the 

t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were 

up-accumulated whereas 6 metabolites were down-accumulated. Pathway analysis identified 

4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and 

linoleic acid metabolism were upregulated, whereas TCA cycle and pentose and glucuronate 

interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These 

results show the distinct metabolic profiles associated with the onset of IR that could provide 

promising metabolic biomarkers of diagnostic and clinical applications. 

 

Keywords: Insulin Resistance, High fat diet, Metabolomics, Gas Chromatography-Tandem 

Mass Spectrometry, Type II Diabetes Mellitus  
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A regulated nutrient metabolism is a fundamental requisite for growth, development and 

survival of all the organisms. Physiologically, a coordinated response of multiple metabolic 

pathways ensures proper functioning and sound physiology.1 Insulin is the principal acute 

regulator of nutrient metabolism. Insulin signals through insulin receptors and downstream 

activation of phosphatidylinositide-3-kinase (PI3K) and Akt regulates the metabolism of 

carbohydrates, lipids and protein to establish nutrient homeostasis.2 IR is the condition in 

which cells are not in a position to respond optimally to the normal level of circulating 

insulin.3 IR is the primary risk factor underlying the development and progression of 

metabolic diseases, including T2DM, non-alcoholic fatty liver disease, cardiovascular 

disease, etc.4 The pathophysiology of IR is multivalent, characterized by intricate connections 

among genetic, metabolic, immune pathways, nutritional, and life style modifications.5  

Diet is a noticeable element in regulation of the metabolic status of an individual. Precisely, 

consumption of high fat diet (HFD) and sedentary life style cause obesity.6 Obesity is a 

complex metabolic condition characterized by an excessive body fat and lead to increased 

risk of other diseases, such as T2DM, cardiovascular disease and other metabolic disorders.7 

Obesity has led to a global health care burden due to associated comorbid conditions. It is 

widely accepted that the increasing prevalence of obesity leads to IR, and caloric excess and a 

sedentary lifestyle are additive factors determining its manifestations.8 Although, obesity has 

been considered as a critical cue leading to metabolic diseases, mechanistic links between 

these two have not been precisely recognized. Integration of functional genomics, 

transcriptomics and proteomics have led to a deeper understanding of molecular mechanisms 

underlining obesity, IR and T2DM.9 Advent of metabolomics and lipidomics have 

significantly broadened our understanding of IR in relation to T2DM.10-11 However, linking 

obesity to IR using newer metabolomics tool is only beginning to emerge. Several studies 

have quantified serum metabolites in HFD-fed mice.12-14 The serum of 8-week-HFD-fed mice 
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display significantly reduced concentrations of TCA cycle intermediates.13  Metabolomic 

changes were found to be associated with Non-alcoholic Fatty Liver Disease (NAFLD) 

development in a HFD-fed mouse model. In this study, interestingly, at the end of 12 and 16 

weeks, metabolites profile predominantly correlated to abnormal bile acid synthesis, 

oxidative stress, and inflammation, representing hepatic inflammatory infiltration during 

NAFLD development.12-14 Although, increasing evidences support the notion that impaired 

lipid metabolism plays a vital role therein, contribution of other metabolic cues remained 

under explored.15-16 Recent advances in metabolic profiling techniques demonstrated high 

complexity in plasma metabolome.17 These methods facilitate identification of newer 

biomarkers associated with obesity, IR and T2DM which may be pertinent to 

pathophysiology, diagnosis, and therapy for metabolic disorders. 

The technology for analyzing metabolome and lipidome raw data set have evolved at a fast 

pace enabling us to identify novel metabolites and their roles in known metabolic pathways.18 

Consumption of HFD induces inflammation, associated with chronic IR. Saturated fatty acid 

especially arachidonic acid and palmitic acid are viewed as a pro-inflammatory molecule. 

Excess of saturated fat can cause inflammation in the metabolic tissues and in hypothalamus 

as well, disrupting signalling of insulin to regulate nutrient homeostasis.19-20 With the aim to 

explore potential metabolic cues modulated during IR development, in the present study, we 

used an established model of HFD-induced IR for metabolomic analysis. Based on the 

metabolic alterations, we have also identified the metabolic pathways affected by HFD and 

linked to the onset of IR. 

 

Materials and Methods: 

1. Chemical and reagents: All the solvents and chemicals used in the study were HPLC-

grade. Methanol and N-methyl-N-trimethylsilyl trifluoroacetamide with 1% TMCS were 
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purchased from SRL (Mumbai, India). Chromatography-grade water, methoxamine 

hydrochloride, and pyridine were procured from Thermo Fisher Scientific (MA, USA). 

Ribitol used as an internal standard was obtained from Sigma-Aldrich (MO, USA). Alkane 

standard solution containing C10-40, 50 mg/l in n-hexane was used for measurement of 

retention indices or performance of GC-MS/MS was purchased from Supelco (Bellefonte, 

PA, USA). The 60% high fat diet (cat no. # C1090-60) and chow diet (cat no. # C1090-10) 

were purchased from Altromin (Lage, Germany).  

 

2. Study design: 

Male C57BL/6J mice (20±5 g), aged 7-8 weeks available at the National Laboratory Animal 

Center of the CSIR-Central Drug Research Institute, Lucknow, were used for the study. The 

work with these animals was approved by the Institutional Animal Ethics Committee (IAEC) 

of the CSIR-Central Drug Research Institute, Lucknow and was conducted in accordance 

with the guidelines of the Committee for the purpose of Control and Supervision of 

Experiments on Animals (CPCSEA) formed by the Government of India. Mice were housed 

in polypropylene cages in the animal house under standard conditions of temperature 23±20C 

with relative humidity (50–60%), light 300 Lx at floor level along with light and dark cycles 

of 12h. Animals were provided with standard diet and drinking water ad libitum. Mice were 

divided into two major groups, kept on CD or 60% HFD for 16 weeks with weekly 

measurement of body weight and fasting blood glucose level. At end of the experiment, intra-

peritoneal glucose tolerance tests (GTT) and intra-peritoneal insulin tolerance test (ITT) was 

performed, as described previously.21 At the termination of experiment, animals were 

sacrificed; blood samples were collected, centrifuged to separate serum and stored at -800C 

for further analysis. Tissue samples were excised out and stored in liquid N2 for further 

analysis by western blotting, as described previously.21 Finally, we performed GC-MS/MS 
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based untargeted metabolomics analysis to identify the metabolic alterations of HFD-fed 

mice. 

3. Glucose/ insulin tolerance test 

Animals were subjected to glucose/ insulin tolerance test after 6h fasting. The baseline blood 

glucose level was monitored at 0 min, followed by an intra-peritoneal injection of glucose (2 

g/kg body weight) of insulin (0.75U/kg body weight). The blood glucose levels were again 

checked at 30 min, 60 min, 90 min, and 120 min post-glucose/ insulin administration. 

 

4. Measurement of insulin levels  

Insulin level in serum samples was measured using mouse enzyme linked immunosorbent 

assay kit (RayBiotech) as per the manufacturer’s instructions. 

 

5. Western blot analysis 

The Western blot analysis was performed by protein extractions from the metabolic tissues. 

Tissue samples were lysed in RIPA buffer supplemented with NaOV3 (1 mM), triton X-100 

(20%) and protease inhibitor cocktail (1:1000). The lysates were centrifuged (10,000 rpm) for 

10 min at 4°C and protein concentration was determined using BCA assay reagent. Lysates 

with equal amount of protein were heated at 650C in Laemmli sample buffer with 10% β-

mercaptoethanol. Proteins were resolved by SDS-PAGE and transferred to polyvinylidene 

difluoride (PVDF) membranes. After blocking, blots were incubated in indicated primary 

antibody solution for overnight at 40C, followed by incubation with appropriate HRP-

conjugated secondary antibodies. Immunoblots were developed using enhanced 

chemiluminescence (ECL, Millipore) reagent. Densitometric quantification of protein bands 

was performed using National Institute of Health (NIH) Image J software.  
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6. Extraction and derivatization of metabolites: Before metabolite extraction, 300 µl of 

chilled methanol was added to 30 µl of serum sample to precipitate protein. Serum 

metabolites were extracted with a solvent system with methanol: water (3:1; v/v). For 

primary metabolites extraction, 750 µl of chilled methanol was added to the samples and 

vortexed for 1 minute. Successively, samples were centrifuged at 8000 rpm for 10 min at 4ºC 

to remove precipitated proteins and supernatant was collected in separate 2 ml Eppendorf 

tubes. Again, 250 µl of cold water was added and the samples were vortexed for 2 min, 

centrifuged at 8000 rpm, and the supernatant was collected. Successively, to the extracted 

sample 20 µL of ribitol (0.005 mg/mL) were added as internal standard, and the samples were 

dried. For derivatization, samples were methoximated by adding 20 𝜇l 

methoxyamine/pyridine (20 mg/ml), vortexed and placed on Eppendorf Thermostat C at 800 

rpm for 1 h at 60°C. Successively, methoximated samples were sylilated by adding 80 𝜇l of 

MSTFA+1% TMCS and incubating them at 600C for 30 min.22 

 

7. GC-MS/MS based untargeted metabolomic profiling: 1 𝜇l of derivatised samples were 

injected in a splitless mode by a Triplus 100 autosampler (Thermo Scientific) in Trace 1300 

Gas chromatographer equipped with a TSQ 8000 Mass spectrometer (Thermo Scientific). 

Metabolites were separated on Trace GOLD TG-5MS column (Thermo Scientific) with a 

diameter of 0.25 mm, thickness of 0.25 µm and length of 30 m at constant flow of Helium at 

the rate of 1 ml/min. The injector port temperature was set at 200°C, whereas the transfer line 

and ion source temperature were set at 250°C. The GC programme was as follows: 0-1 min at 

50°C, ramping to 100°C at 6°C/min rate, increased up to 200°C at 4°C/min rate and finally to 

280°C at 20°C/min rate which was held constant for 3 min.  All the samples were run on full 

scan mode ranging from m/z 60 to 650 Da. The solvent delay was 4 min and total run time 

for the analysis was 40 min. Derivatized samples were injected in the GC-MS/MS system, 
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and an alkane standard mixture (C10-C40 all even) was injected at the start and end of 

sample analysis for retention index (RI) calculation. 

 

8. Raw GC-MS/MS Data Processing: The acquired raw data from GC-MS/MS were pre-

processed using MS-Dial version 4.80 for peak picking, alignment, annotation and mass 

spectral deconvolution. For peak detection and deconvolution, the default MS-Dial 

parameters were used.23 Automated annotation of metabolites was achieved using an in-house 

library built with publicly available MS spectra. The metabolomics standards initiative (MSI) 

guidelines for metabolite identification for metabolite annotation and assignment of the EI-

MS spectra were used.24 In particular, features were annotated at Level 2 [identification based 

on the spectral database (match factor >70%)] and Level 3 [identification based on the 

spectral database (match factor >70%)]. (Putatively characterized compound class based on 

spectral similarity to known compounds of a chemical class as suggested). 

 

9. Statistical Analysis: Significant alterations among the metabolic profiles of serum 

samples from CD- and HFD-fed mice were assessed using multivariate and univariate 

statistical analysis using the open-source software Metaboanalyst 5.0.25 GC-MS/MS data 

were normalized by reference feature (ribitol), root transformed and pareto scaled. 

Normalized data were further analyzed through univariate and multivariate analysis to 

highlight alterations in metabolites concentration that might help in distinguishing insulin-

resistant HFD-fed mice from CD-fed mice. For the identification of statistically meaningful 

molecules in both groups, univariate statistical measures such as Wilcoxon rank t-test 

(p<0.05) and log 2-fold change were utilized. Volcano plot analysis was carried out using a 

Fold-change (FC) > 2.0 and FDR corrected P value ≤ 0.05 to reduce significant features 

detection by focusing on those significant metabolites with a high FC. 
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Multivariate statistical analysis such as unsupervised principal component analysis (PCA) 

and the supervised orthogonal partial least square discriminant analysis (OPLS-DA) were 

used to identify the main metabolites involved in groups separation. The PCA score plot 

represents the distribution of original data sets and outlier detection. Whereas, OPLS-DA 

shows metabolite level differences between study groups. These models were used to 

illustrate the distribution pattern of serum metabolites amongst the studied groups and their 

efficacy in discriminating insulin resistant HFD-fed mice with CD-fed mice. Features 

selection with the highest discriminatory power was based on their variable importance in 

projection (VIP) score > 1. A permutation test with a permutation number set to 20 was 

developed to evaluate the quality of the resulting statistical model by considering the 

diagnostic measures R2 and Q2, which describe the endpoint variation captured in the 

regression model, and the variation reproduced in the permutation test. Predictive relevance is 

considered when R2 and Q2 values are higher than 0.5 and P ≤ 0.05 (Moltu et al., 2014). 

Pathway analysis was carried out using MetPA, a web-based tool of Metaboanalyst 5.0. A 

linear support vector machine (SVM) was used to predict the group of metabolites that act as 

a classifier between insulin-resistant HFD-fed mice and control CD-fed mice by Monte-Carlo 

cross validation (MCCV) using balanced sub-sampling. All SVM models were compared 

with variable distribution of metabolites (up to 100). ROC curves were used to evaluate the 

model, and the feature ranking algorithm built in SVM was used to identify biomarkers. 

 

Results: 

1. Establishment of IR Mice Model: 

Mice kept on HFD displayed a progressive increase in body mass and fasting blood glucose 

levels with a marked increase, compared to CD-fed group, observed after 16 weeks of HFD 

feeding (Fig. 1a & b). HFD-fed animals also showed a significant rise in serum insulin levels 
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after 16 weeks of HFD feeding, compared to CD feeding (Fig. 1c). Assessment of the glucose 

tolerance showed that HFD feeding in mice induced glucose intolerance which was 

evidenced at 4 weeks and further exacerbated progressively up to 16 weeks of HFD-feeding. 

Fig. 1d depicts the blood glucose profile of chow- and HFD-fed mice during GTT at 16 

weeks; HFD-fed mice were found to be 132.7% (p<0.001) more glucose intolerant compared 

to CD-fed mice (AUC120min of 18088.8 vs. 42097.7 for CD- and HFD-fed mice, respectively, 

Fig. 1e). Moreover, at 16 weeks of HFD-fed mice were found to be 74.3% (p<0.01) more 

insulin intolerant compared to CD-fed mice, as evidenced by ITT (AUC120min of 6235.3 vs. 

10870.17 for CD- and HFD-fed mice, respectively, Fig. 1f & g). The data showed that HFD 

feeding progressively induces IR and glucose intolerance in mice. 

Next, we analysed the activation of insulin signalling in key metabolic tissues viz. skeletal 

muscle and liver, responsible for regulation of glucose metabolism. Insulin stimulation 

induces phosphorylation of Akt at Ser-473, required for the further downstream progression 

of insulin signalling, leading to the regulation of glucose utilization in metabolic tissues.26 As 

depicted in Fig. 1h, insulin administration caused a profound increase in Akt (Ser-473) 

phosphorylation in skeletal muscle and liver tissues of CD-fed animals. However, the insulin-

stimulated phosphorylation of Akt (Ser-473) was significantly decreased in both skeletal 

muscle and liver tissues of HFD-fed mice compared to CD-fed animals. Findings indicated 

the impairment of insulin signaling in skeletal muscle and liver upon HFD feeding in mice. 

Altogether, our data verified the induction of IR in HFD-fed mice at week 16. Therefore, 

serum samples from these 16-week HFD-fed mice were subjected to metabolomic analysis, 

compared to CD-fed mice.    
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Figure 1: Validation of HFD-induced mice model of IR. The male C57BL/6J mice were kept 

on CD or HFD for 16 weeks. Shown are the effect on body weight (a), fasting blood glucose 

level (b), serum insulin level (c), glucose tolerance (d and e), insulin tolerance (f and g) and 

insulin-stimulated Akt (Ser-473) phosphorylation in skeletal muscle and liver (h) after 16 

weeks. B; basal, I; insulin treated group. Data are mean±SE, n=6, **p<0.01 and 

****p<0.001.  

 

2. Metabolic Changes in IR Mice: We performed univariate analysis on 75 annotated 

metabolites identified through GC-MS/MS-based untargeted metabolomics approach in 

HFD-fed mice serum samples (Supplementary Data 1). Fold change analysis with threshold 

value of 2.0 identified that total 27 metabolites were characterized by increased concentration 

and 31 metabolites were down-accumulated in HFD-fed mice, whereas 16 metabolites were 

not significantly altered (Supplementary Data 1). The t-test analysis pointed out that 22 

metabolites out of 75 (p-value ≤ 0.05) were significantly altered in insulin-resistant mice fed 

with HFD. The T-stat value highlights that 6 out of 22 have a lower concentration (positive t-

stat value) and 16 out of 22 were increasing in concentration (negative t-stat value) in HFD-

fed insulin-resistant mice (Table 1). 
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Table 1. Outcomes of T-test analysis of metabolites data comparing individual 

metabolites in CD mice samples with HFD mice samples (p-value <0.05). 

 

Metabolites Name t.stat p.value -log10(p) 

Stearic acid -9.095 9.92E-05 4.0034 

L-Malic acid 8.7058 0.000127 3.8965 

Cholesterol -6.8769 0.000466 3.3314 

Mannitol 5.7725 0.00118 2.928 

L-Lysine -5.1162 0.002187 2.6603 

Xylitol 4.9102 0.002683 2.5714 

S-Carboxymethyl-L-cysteine -4.9074 0.002691 2.5701 

abietic acid -4.7739 0.003082 2.5111 

Linoleic acid -4.4576 0.004294 2.3671 

Diethanolamine -4.1177 0.006232 2.2054 

Phenylalanine 4.1014 0.006347 2.1974 

isohexonic acid 3.6755 0.010386 1.9835 

Melibiose -3.4419 0.013769 1.8611 

beta-sitosterol -3.4387 0.013823 1.8594 

D-Glucose 6-phosphate -3.2561 0.017333 1.7611 

Tryptamine -3.1026 0.021047 1.6768 

Noradrenaline -2.9785 0.024683 1.6076 

Uridine 5'-diphospho-N-acetylglucosamine -2.8478 0.029268 1.5336 

Threonic acid 2.8228 0.030243 1.5194 

2_3-Diaminopropionic acid -2.6643 0.037311 1.4282 

Glycerol 3-phosphoate -2.5338 0.044451 1.3521 

D-Penicillamine -2.4601 0.04911 1.3088 

 

Further, we performed volcano plot analysis, combining fold change and P-value (FC > 2.0, 

p-value ≤ 0.05). The results of the volcano plot analysis showed that 16 metabolites were 
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significantly up-accumulated, whereas 6 were down-accumulated in mice serum samples 

after 16 weeks of HFD feeding (Fig. 2) (Table 2).  

 

Figure 2: Volcano plot representing differential metabolites in insulin-resistant mice fed with 

CD. Fold Change >2.0, P-value ≤ 0.05 (in red) shows significantly altered metabolites 

between CD and HFD mice. Fold Change >2.0, P-value ≤ 0.05 (in pink) highlights the top 10 

significant metabolites between the two groups. 

  

Table 2. Metabolites that have more than 2-fold high and low accumulation after 16 

weeks of HFD-fed mice compared to CD-fed mice (p-value <0.05, FC >2.0).                                           

Metabolites Name FC log2(FC) p-value -log10(p) 

Stearic acid 0.00051 -10.938 9.92E-05 4.0034 

L-Malic acid 161.8 7.3381 0.000127 3.8965 

Cholesterol 0.002035 -8.9407 0.000466 3.3314 

Mannitol 346.49 8.4367 0.00118 2.928 

L-Lysine 0.023519 -5.41 0.002187 2.6603 

Xylitol 14.388 3.8467 0.002683 2.5714 
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S-Carboxymethyl-L-cysteine 0.019154 -5.7062 0.002691 2.5701 

abietic acid 0.0533 -4.2297 0.003082 2.5111 

Linoleic acid 0.05374 -4.2179 0.004294 2.3671 

Diethanolamine 0.10856 -3.2034 0.006232 2.2054 

Phenylalanine 18.88 4.2388 0.006347 2.1974 

isohexonic acid 1416.3 10.468 0.010386 1.9835 

Melibiose 0.010569 -6.564 0.013769 1.8611 

beta-sitosterol 0.071252 -3.8109 0.013823 1.8594 

D-Glucose 6-phosphate 0.075062 -3.7358 0.017333 1.7611 

Tryptamine 0.055695 -4.1663 0.021047 1.6768 

Noradrenaline 0.051604 -4.2764 0.024683 1.6076 

Uridine 5'-diphospho-N-acetylglucosamine 0.1654 -2.5959 0.029268 1.5336 

Threonic acid 20.575 4.3628 0.030243 1.5194 

2_3-Diaminopropionic acid 0.085848 -3.5421 0.037311 1.4282 

Glycerol 3-phosphoate 0.1612 -2.6331 0.044451 1.3521 

D-Penicillamine 0.15981 -2.6456 0.04911 1.3088 

 

The heat map, contained 22 distinct metabolites in the two groups and provided a global 

picture of metabolic aspects. Remarkably, higher level of fatty acids or lipid-like molecules, 

such as palmitic acid, linoleic acid, stearic acid, cholesterol and beta-sitosterol were found; 

however, serum level of different amino acids was significantly decreased in insulin-resistant 

mice after intake of HFD for 16 weeks (Fig. 3). 
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Figure 3: Heat Map of GC-MS/MS based top 22 differential metabolites between mice fed 

with CD and HFD (distance measure using Euclidean, and clustering algorithm using ward). 

Change in colours from green to red represents the higher concentration of metabolites in 

particular samples. (Control 1-4 = Mice fed with CD, HFD 1-4 = Mice fed with HFD). 

 

3. Multivariate Analysis: To evaluate the robustness of the GC-MS/MS based serum 

metabolomics profiling, multivariate analysis such as principal component analysis (PCA) 

and orthogonal partial least square discriminant analysis (OPLS-DA) were performed. The 

multivariate analysis assessed metabolites in groups and individuals, allowing for sample 

differentiation. Among all the analyzed samples, 75 annotated metabolites were allowed for 

metabolomics data analysis and retrieval of 2419 unknown EI-MS common characteristics 

(Supplementary Data 1). 

PCA score plots of the first two components obtained from GC-MS/MS pointed out a clear 

separation between the insulin-resistant mice fed with an HFD (n=4, green circle) from the 

group fed with CD (n=4, red circle). The first principal component (PC1) explains 46.2% of 
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the total variability, whereas PC2 has 22.9% (Fig. 4a). The loadings plot highlighted that the 

PC1 was mainly dominated by inositol, stearic acid, galactitol, D-penicillamine, and D-

galactose, whereas the PC2 by D-mannose, tyrosine, creatinine, isocitric acid, 2,3-

diaminopropionic acid, hexose, cholesterol, stearic acid, heptadecanic acid and sorbitol (Fig. 

4b). 

 

 

 

 

 

 

 

 

 

Figure 4: Multivariate statistical analysis based on un-targeted GC-MS/MS based 

metabolomic profiling data from serum samples of insulin resistant mice fed with CD (n=4, 

red circle) and HFD (n=4, green circle). a) PCA score plots of the first two components 

obtained from GC-MS/MS represent complete metabolite class isolation between two study 

groups. b) PCA loadings plot of PC2 versus PC1 from quantified serum metabolites of HFD 

and CD mice. 

 

The compact clustering of the HFD replicates (green circles) represents the high 

reproducibility of the GC-MS/MS analysis. Groups separation was further confirmed by the 

OPLS-DA analysis with 95% confidence interval, where the T-score was 33.7%, and the 

Orthogonal T score was 30.7% (Fig. 5a). As per the OPLS-DA derived loading (VIP scores), 

15 metabolites were identified that contributed significantly to groups separation 

(Supplementary Data 1). Six of them (Malic acid, xylitol, mannitol, isohexanoic acid, 

phenylalanine and Threonic acid) were significantly down-accumulated. In contrast, the 

a. b. 
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remaining 9 (Cholesterol, linolenic acid, stearic acid, abietic acid, lysine, diethanolamine, 

beta-sitosterol, S-Carboxymethyl-L-cysteine and Glucose 6-phosphate) were characterized by 

increased concentration in serum of HFD-fed mice (Fig. 5b and Supplementary Data 1). 

The study model was validated through permutation and cross-validation to avoid overfitting. 

The permutation test supported our study model's robustness and our data's reproducibility 

(p-value ≤ 0.05), and cross-validated coefficient R2Y (0.988) and Q2 (0.762) shows the 

goodness of fit (Fig. 5c and d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: OPLS-DA analysis. a) The OPLS-DA model represents the CD mice (red circle) 

and HFD (blue circle), confirming the separation between the two groups, where the T-score 

was 33.7%, and Orthogonal T score was 30.7%. The shaded ellipses around each group (n=4) 

represent 95% confidence interval estimated from the score; b) VIP scores showing the top 

15 metabolites identified through GC-MS/MS analysis and most important for two study 

groups discrimination. c) Model overview of the OPLS-DA model for the provided dataset. It 

a. b. 

c. d. 
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shows the R2X, R2Y, and Q2 coefficients for the groups; d) 2000-times permutation analysis 

of the model indicates the stability of our study model. 

 

4. Alteration in metabolic pathways in insulin resistant mice: To detect physiologically 

relevant patterns, data concerning 16 weeks of HFD in insulin resistant mice were further 

analyzed through the metaboanalyst tool in KEGG-based pathway analysis. The comparative 

metabolomic profiling of HFD-fed insulin-resistant mice with CD-fed mice, identified 4 

significantly affected metabolic pathways with impact score > 0.05 and p-value ≤ 0.05 (Fig. 

6).  

 

 

 

 

 

 

 

 

 

 

Figure 6: Pathway analysis from Metaboanalyst 5.0. The top enriched and impacted 

metabolic pathway of physiological importance in insulin-resistant mice. The X-axis 

represents pathway impact, whereas Y-axis represent -log10 (p) value. The size of the circles 



19 
 

represents the enrichment of the pathway, and the intensity of the red colour represents a 

higher statistical significance. 

 

In significantly altered metabolic pathways, primary bile acid biosynthesis and linoleic acid 

metabolism were upregulated in HFD group; whereas pentose and glucuronate 

interconversions, and citrate cycle (TCA cycle) were downregulated in mice fed with HFD 

(Fig. 7).  

Figure 7: Schematic representation of altered metabolic pathways in insulin resistant mice 

fed with HFD for 16 weeks. Red colour depicts Pathway upregulated whereas green colour is 

representative of pathways downregulated in HFD-fed insulin resistant mice. 
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5. Identification of metabolomics-based IR Biomarkers: Biomarker analyses were carried 

out to identify the least number of metabolites needed to illustrate and interpret the difference 

between IR mice fed with HFD and control CD-fed mice. In this study, the support vector 

machine (SVM) with 3 metabolites has good AUROC (0.86, 95% CI= 0-1), and increasing 

the number of metabolites up to 5 increased AUROC (0.96, 95% CI= 0.225-1) near perfect. 

Further increasing the number from 10 metabolites to 74 AUROC reached perfect values (1, 

95% CI=1-1) (Fig. 8a). Similar results were observed on predictive accuracies with number 

of different features where the addition of 34 metabolites increased accuracy by 9%. While 

reaching a number of 74 features, predictive accuracy increased by only 2% (Fig. 8b). 

The variables chosen in the SVM model with 37 metabolites. All the 22 metabolites that were 

statistically significant in t-test were significantly altered in the serum of mice fed with HFD 

or CD in biomarker analysis (p-value ≤ 0.05). Interestingly; some of the statistically non-

significant (p-value > 0.05) metabolites were also selected namely, galactose, galactitol, 

palmitic acid, 2 oxoglutaric acid, hexose, hexitol, homoserine, maltose, methyl pentadecanoic 

acid, N-alpha-acetyl-L-ornithine, creatinine, O-acetyl-L-serine, L-serine and L-aspartic acid 

but these metabolites were significantly altered in log 2-fold change analysis (Fig. 8c). 
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Figure 8: Metabolomic based biomarker analysis. a) Model performance test for all 6-

support vector machine (SVM) classifier with continuously enhancing the number of 

metabolites. ROC curve of each SVM classifier based on average cross-validation 

performance. AUC and CI of 95% are displayed in the panel. b) predictive accuracy with 

different features for 6 different SVM. The model shows the highest accuracy with 74 

metabolites highlighted in red. c) Important 37 variables for classification of HFD mice to 

CD mice from the SVM model. 

 

Discussion:  

The IR is a characteristic feature of metabolic syndrome and a precursor to development of 

T2DM and associated metabolic complications. However, the contributory and causative 

factors leading to IR remained largely uncertain. Although, IR has been known to be 

associated with obesity and excess accumulation of triglycerides, the exact relationship of 

obesity with IR is obscure. The diagnosis of diabetes is an end point that represent itself very 

late when many organ systems are already affected. Thus, there is a need to understand the 

early abnormalities that are associated during the development of IR, leading to T2DM.  

Increased consumption of HFD and physical idleness lead to obesity which a leading factor in 

the pathogenesis of metabolic syndrome.27 There is a profound significance of metabolic 

alterations and perturbations in obese subjects making them susceptible to IR. Advanced 

LC/MS techniques were used for identification of lipid biomarkers, characterization of other 

metabolites are still explored.28-29 Obese mice induced by HFD exhibit marked metabolic 

differences.12 The selected and targeted metabolites of glycolysis, the tricarboxylic acid 

(TCA) cycle, glutaminolysis, and fatty acid β-oxidation in HFD-fed obese mice have been 

profiled by using gas chromatography earlier.13 This study included 8 week old HFD mice. 

We performed the untargeted metabolic profiling in the obese mice fed with HFD for 16 

weeks. The longer span of HFD allowed the establishment of IR phenotype (Fig.1). To best 

of our knowledge, for the first time, untargeted full scan metabolite analysis of insulin 

resistant mice allowed us to look into a diverse array of metabolic pathways as well as look 

into potential biomarkers. This information may potentially enable us to characterize 
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metabolic transformations that take place during the progression of IR to T2DM. A study 

conducted on 4-16 weeks HFD-fed mice characterized the role of metabolites at different 

time points in Inducing Non-alcoholic Fatty Liver Disease.14 Analysis of the metabolomic 

profile revealed marked differences in metabolites between the control and HFD group 

depending upon NAFLD severity resulting in shortlisting of a total of 30 potential biomarkers 

strongly associated with the development of NAFLD. 

In the present study, a rodent model of HFD-fed mice was used for untargeted metabolomic 

profiling using GC-MS/MS. Mice fed on HFD  for 16 weeks displayed metabolic alterations 

characterized by glucose and insulin intolerance and impaired insulin-stimulated 

phosphorylation of Akt (Ser-473), a key node of insulin signalling cascade; validating the 

induction of IR in HFD-fed mice.26 Therefore, the metabolic profiling of HFD-induced IR 

mice may provide important information to increase our understanding of the 

pathophysiology of IR and metabolic syndrome. Serum Metabolic profiling identified higher 

accumulation of lipid and steroid such as cholesterol, linoleic acid, stearic acid and beta-

sitosterol in HFD-induced insulin reisitant mice. In contrast, CD mice have higher 

accumulation of sugar acids e.g., malic acid, Threonic acid, hexanoic acid etc. 

Our findings revealed that HFD-induced metabolic changes resulted in the modulation of key 

metabolic pathways involved in bile acid synthesis, linoleic acid metabolism, pentose and 

gluconate inter conversions and TCA cycles. Bile acids are crucial physiological agents, in 

addition to their role in nutrient absorption they also act as signalling molecule to regulate 

nutrient metabolism and to establish metabolic homeostasis.30 Our metabolomics profiling 

indicated upregulation of bile acid synthesis pathway in HFD-fed IR mice. We also observed 

increased cholesterol level in HFD-fed mice. Therefore, activation of bile acid metabolism in 

our study reflects the expected physiological changes where increase in cholesterol and bile 

acids are required for efficient digestion and absorption of HFD ingredients. Cholesterol is 
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the precursor for the synthesis of bile acid which intern involved in multiple activities 

including absorption of fat- and fat-soluble vitamins.31 In support, involvement of raised bile 

acid metabolism in glucose homeostasis, a cross-sectional study revealed that IR in males had 

associated with hyper bile acidaemia in both diabetic and non-diabetic participants and 

associated positively to IR.32 Another metabolomic study during oral glucose tolerance 

showed decreased level of fatty acids and rise of bile acids in biphasic manner.33 These 

studies along with our data support the implication of bile acid metabolism in pathogenesis of 

IR.  

In HFD-fed mice model, fatty acids become the primary source of energy over glucose. 

Therefore, IR generally associated with increased fatty acid oxidation and an overall decrease 

in glycolysis and utilization of glucose.34 Excessive dependence on fatty acid oxidation as an 

energy source can increase oxygen cost leading to increased ROS, further contributing to 

induction/ progression of IR.35 In our study, development of HFD-induced IR was associated 

with increased concentration of free fatty acids including, linolenic acid, stearic acid and 

palmitic acid, suggesting the pathogenic role of fatty acids in the development of IR. 

Importantly, we observed up regulated linoleic acid metabolism in HFD-fed mice and it could 

to a protective mechanism to metabolize higher level of fatty acid in HFD-fed condition. 

Importantly, conjugated linoleic acid supplementation adversely affect insulin and glucose 

metabolism in T2DM patient.36 The study supports our metabolomics data and provide 

linoleic acid as an indicator of IR development. 

The tricarboxylic acid (TCA) cycle leads to final oxidation of fat and is the main source of 

electron for respiration and metabolic progenitor of gluconeogenesis. The HFD-induced 

impairment in TCA cycle has been demonstrated to cause dysfunctional mitochondrial 

activity, contributing to development of IR. The process enables feeding of electrons into an 

inefficient respiratory chain making the physiology susceptible to increase ROS and by 
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providing mitochondria derived substrate for gluconeogenesis, further contribute to 

mitochondrial dysfunction.37 We also observed impairment of TCA cycle in mice fed on 

HFD for 16 weeks in our metabolomics profiling, verifying its role as a biomarker and 

therapeutic target for IR. Another pathway revealed by analysis for top enriched and 

impacted metabolic mechanism was galactose metabolism. Higher galactose levels have been 

correlated with IR in patients with polycystic ovary syndrome.38 In D-galactose induced 

aging model, higher concentration of galactose leads to cardiac dysfunction.39 In the present 

study also the galactose metabolic pathways were positively associated with IR in HFD-

induced mice model, validating the role of galactose metabolism in IR development.  

Diet-induced obesity is the leading cause of the of patients diagnosed with metabolic 

disorders such as T2DM, cardiovascular disease or atherosclerosis.40 Ceramides are important 

bioactive lipids capable of regulating activity of enzymes as well as transcription factors.41-43 

Human studies indicate a connection between ceramides and IR. Elevated ceramides are 

reported in individuals with obesity in association with muscle IR.44-45 Correlations between 

liver ceramides content and hepatic IR in fatty liver disease are also known.46  GC analysis in 

the mice samples did not detect Ceramide class of metabolites; a limitation in the present 

study. 

Analysis of metabolome of patients with obesity or T2DM compared with healthy control 

revealed that BCAA and glutamine metabolism and urea cycle constitute major metabolomic 

changes.47 In fact usage of Metabolomics in obesity has been examined widely. Untargeted 

metabolomic profiling was performed on fasting serum samples from 27 obese and 

adolescents and 15 sex- and age-matched healthy children. Three metabolomic assays were 

combined and yielded 726 unique identified metabolites by using GC–MS) and liquid 

chromatography-mass spectrometry (LC–MS). Children with obesity had higher 

concentrations of branch-chained amino acids and various lipid metabolites, including 
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phosphatidylcholines, cholesteryl esters, triglycerides.48 Both these studies indicated 

involvement of altered BCAA and lipid metabolism, similar to the data presented in our 

study. Non-pharmological interventions such as exercise training can benefit obese subjects 

via altering their metabolomc profiles leading to reduced IR.49  

In summary, the serum samples from the HFD-fed IR and CD-fed mice were compared and 

characterized using metabolomic profile to provide new instincts related to development of 

IR. Substantial alterations were reported in metabolic pathways leading to bile acid 

biosynthesis, fatty acid metabolism, pentose-glucuronate interconversion and TCA cycle.  

The metabolites of the primary bile acid biosynthesis and linoleic acid metabolism were 

upregulated and positively correlated with IR; whereas metabolites of Pentose and 

glucuronate interconversions, and TCA cycle were significantly decreased and negatively 

associated with development of HFD-induced IR.  Results of biomarker analysis identified 

metabolites that are potentially involved in the altered metabolic pathways. Hence, key 

metabolite of these altered pathways could be exploited as biomarker for diet- induced IR. 

Our study also revealed the use of GC-MS/MS based untargeted metabolomic profiling as an 

effective analytical tool to illustrate metabolomic profile in diet-induced IR. 
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Distinct metabolomic profiling of serum samples from high fat diet-induced 

insulin resistant mice 
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HFD-induced IR mice exhibit altered metabolomic pattern upon GC-MS analysis. The 

metabolites of the primary bile acid biosynthesis and linoleic acid metabolism are up 

accumulated; whereas metabolites of Pentose and glucuronate interconversions, and TCA 

cycle are down accumulated upon development of HFD-induced IR. 
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