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SAMPLING IN SPACES OF ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE IN C**!
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ABSTRACT. In this paper we consider the question of sampling for spaces of entire functions of
exponential type in several variables. The novelty resides in the growth condition we impose on
the entire functions, that is, that their restriction to a hypersurface is square integrable with
respect to a natural measure. The hypersurface we consider is the boundary b/ of the Siegel
upper half-space U and it is fundamental that bl can be identified with the Heisenberg group H,,.
We consider entire functions in C"! of exponential type with respect to the hypersurface b/
whose restriction to b/ are square integrable with respect to the Haar measure on H,,. For these
functions we prove a version of the Whittaker—Kotelnikov—Shannon Theorem. Instrumental
in our work are spaces of entire functions in C™"' of exponential type with respect to the
hypersurface bl/ whose restrictions to bl belong to some homogeneous Sobolev space on H,,.
For these spaces, using the group Fourier transform on H,,, we prove a Paley—Wiener type
theorem and a Plancherel-Pdélya type inequality.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The classical Paley—Wiener theorem characterizes the entire functions of exponential type
a in the complex plane whose restriction to the real line is square integrable as the space of
L?-functions whose Fourier transform is supported in the interval [—a,a]. For such functions
perhaps the most far reaching result is the Whittaker—Kotelnikov—Shannon sampling theorem.
These results have been extended to several variables for functions in C™ whose restrictions to
the surface {Im z = 0} = R™ have Fourier transform supported in a compact set 2, see e.g. [20]
and [17].

In this paper we take a different approach. We consider a hypersurface M that separates the
whole space C"*! into two unbounded connected components and entire functions in C**! that
satisfy some exponential growth condition adapted to M — namely, of quadratic order in the
complex tangential directions to M and of linear growth in the transversal direction. We also
require that these functions have restriction to M which is square integrable, or more generally is
in some homogeneous Sobolev space. For such functions we prove a Paley—Wiener type theorem
and a Whittaker—Kotelnikov—Shannon sampling theorem.
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Consider the complex spaces C"*!, with n > 1, and the strongly pseudoconvex hypersurface

U = {¢ = (¢, Cus1) €C" x C: Im Gy = $|¢')2},
which is the topological boundary of the Siegel upper-half space

U ={¢=((".61) €T x T 0(€) = Tm Gy — 3ICP > 0} (1)

It is well known that ¢ is biholomorphic to the unit ball B in C"*'. The (1,1)-form 6 = £(0—0)p
is a pseudo-hermitian structure on M = b/, and it is non-degenerate. Then, 6 A (df)™ is a volume
form on bU, i.e. 6 is a contact form. Then, there exists a natural Riemannian metric gy on blA.
The boundary b4 of U can be endowed with the structure of a nilpotent Lie group, namely
the Heisenberg group H,. It turns out that the volume form 6 A (df)" coincides with the Haar
measure on H,,. The Haar measure on H,, coincides with two canonical measures defined on the
strongly pseudoconvex manifold M, namely the Webster metric [8] and the Fefferman metric [9,
p. 259], resp. The volume forms constructed starting from such metrics coincide with the Haar
measure on H,,. We also remark that the induced metric from C"*! differs from the metric gyg,
for every smooth A : bd — (0, +00).

In C"*! we introduce coordinates by means of a foliation of copies of bf. Given ¢ = (¢/,(ny1) €
C"*! we define ¥ : C" x C - C" x R x R by

\I/<C/7Cn+1) = (ClaRe Crt1, Im Gppq — %‘CIP) =: (z,t,h).
Then, ¥ is a C*-diffeomorphism, and
\Ifl(z,t, h) = (z,t + ’L%|Z|2 —+ ih) =: (¢, Cnr1) -

Notice that h = o({’, (u+1), where g is as in (1). Clearly, the boundary bl is characterized
by the points of C"*! such that ¥U(¢) = (z,t,0), that is, h = o(¢) = 0, and

U={Ce C" . w(¢) = (2,t,h) is such that h > 0}.

When h = 0, we write [z,¢] in place of (z,¢,0). Then, the boundary b/ can be identified with
the Heisenberg group H,,, which is the set C" x R endowed with product

[w,s][z,t] = [w+ 2,5+t — FIm(w-2)].

Recall that H, is a nilpotent Lie group and the Lebesgue measure on C" x R coincides with
both the right and left Haar measure on H,,.

On H,, we consider the standard (positive) sub-Laplacian A and its fractional powers As/2
(see Section 2 for details). Let S = S(H,,) denote the space of Schwartz functions on H,,. Then,
we have the following definition.

Definition 1.1. For 1 < p < o0 and s > 0 we define the homogeneous Sobolev space WP =
W (H,,) as the completion of S with respect to the norm |A%2p||1», ¢ € S. More precisely,
given the equivalence relation on the space of LP-Cauchy sequences of Schwartz functions, {¢} ~
() if A%2(pp — ) — 0, as k — +o0, and denoting by [{yx}] the equivalence classes, then

WP = {[{gpk}] - {pr} €8, {A%%p,} is a Cauchy sequence in L,

with | [{oi}] |y = lim|A7 ]z |
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It is easy to characterize the homogeneous spaces stp(Hn) when 1 < p<owand 0 < s <
(2n + 2)/p, see Section 2.1

On H,, we define a homogeneous norm (with respect to the natural anisotropic dilations) by
setting

[z, 8] = (& ]z* + )"
Then, we introduce a “U-adapted norm” in C**1,
[Clee = 1Lz, ][> + ], where ¥(() = (2,t,h).

Notice that |[l;s grows like |[2,]|? in the complex tangential directions of H,, and like |h| in the
transversal directions.

We now introduce the spaces of entire functions we deal with. For a function F defined on
Crtl weset ' = FoWU—1 and ﬁ’h[z,t] = ﬁ(z,t, h). Then, in particular, Fy = F.

Definition 1.2. Let a > 0 be given. We define the space of entire functions of exponential type
a with respect to the hypersurface b as
& = {F e Hol(C™™) : for every € > 0 there exists C. > 0 such that |F(¢)| < C’ge(‘”s)HC”“} .

We define the corresponding Paley—Wiener space as
PW, = {Feé&, : Fye L*(H,) with norm | F|py, = |Fo| r2,)} -
For 0 < s <n + 1 we define the fractional Paley-Wiener spaces PW; as
PWs ={Fe&,: FyeW*? with norm |F|pyws = | Folljjen ) -

We point out that the fractional Paley-Wiener spaces PW; arise naturally in our setting,
since they constitute a tool for proving our main results. In the 1-dimensional setting these
spaces were introduced in [19], see also [18].

In order to state our main results we recall the basic facts about the Fourier transform on the
Heisenberg group (see also [2, 11, 23]). For A € R* the Fock space is defined as

Fr = {F € Hol(C") : <|2i|> f |F(2)[? e 31y < +oo}
us n

so that F* = FIAl. For A € R* and [2,t] € H,, the Bargmann representation f(y[z,t] is the
operator on FA

i)\tfiw-ifi\z\2 :

eNt=2 12" F(w + 2) if A >0,

BA[Z,t]F('lU) - ')\t+A . +&‘ ‘2 _ . (2)
e ETIEN F(w + Z) if A <0.

Notice that 8\[z,t] = B_x[Z, —t], when A < 0. Given f e L'(H,) its Fourier transform consists
of a family of operators {Bx(f)}rer* where B5(f) is a Hilbert-Schmidt operator on F* given by

BA(f)F(w) = ; flz,t]Bx[z, t] F(w) dzdt .

If f e L?(H,) and | - |us denotes the Hilbert-Schmidt norm on F*, we have Plancherel’s
formula

1
ey = gt |, IADIRSIA 03, 3)

1We point out that 2n + 2 is the homogeneous dimension of H,,.
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and, if f € L' n L?(H,,), the inversion formula
1
R e = I CYGENS IV @)

Definition 1.3. For s € R we define the space £2 as the space of measurable fields of operators
7:R* — H L(FY)
AeR*
where Z(F*) denotes the bounded operators on F*, such that

1

2 2 n+s
Il = gy [, IOl AP0 < 420

where | - |us = | - [lug(z»). We also define H? as the subspace of 7 € £2 such that
(i) 7(\) =0 for A > 0;
(i) ran(7(N)) < span{l} when A < 0.

If £ < (—,0), then H2(E {T e H2: suppT € E} Finally, when s = 0 we simply write £
and H? in place of £3 and 7—[0, resp.

Our first result provide the expected characterization of the spaces PW, and PW;, 0 < s <
n+ 1.
Theorem 1.4. Let 0 < s <n+ 1. If F € PWS, then Bx(Fp) € H2([—a,0)),
1

~ 0 ~
F(Q) = Fulet] = o [ M (By(Fale ) A",

(27)
and | F|pys = “ﬁA(ﬁO)"Eg. Conversely, let T € H2([—a,0)), and define
~ 1 0
F(C) = Fulzt] = 2y f M tr (T(\)Ba[z, 1)) |N|"dA. (5)

Then F € PW3, Br(Fo) = 7(A) and |F|pyws = |7 2.

We show that for functions in PW, a sampling result holds true, extending the classical
Whittaker—Kotelnikov—-Shannon Theorem in dimension 1. We recall that given a reproducing
kernel Hilbert space K of holomorphic functions on a domain 2, a sequence I' = {7} € Q is a
sampling sequence for K if there exist constants A, B > 0 such that for all F € K

A IFOPIE It < IFIR < B Y IFMPIE, I
~yell ~yell

where K., denotes the reproducing kernel at v € (2.
We now define the sequences for which we establish our sampling theorem. For b > 0 let
Ly < C be the square lattice

Ly = {w,me(C:wm:4/2%(€+im),(€,m)eZ2}. (6)
Definition 1.5. For (by,...,b,) € R" and a € Ry, consider the sequence of points I' < bl
r= {(7’, 2k + %WP) eC"xC: + e Ly, ) i= Loy x -+ x Ly, k€ Z}.
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Since the lattice I' < b, we can use Heisenberg coordinates and observe that I' has a product
structure; precisely

I' = {[’y’,kﬂ/a] eH,: ¢ Ly, pn)s k€ Z}.

Theorem 1.6. Let I' € bU be as in Definition 1.5 and suppose b; > a, j = 1,...,n. Then,
there exist constants Ar, Br > 0 such that for all F € PW] we have

n/2 n/2
Ar Yo PF)2 < |F 3y < Br D 162 F(7)P,
vell vyell

where t = Re (1. As a consequence, for every G € PW, we have the sampling

Ar ) 1GNP < IGlpw, < Br ), IGM)I*
~el ~yel’

Conversely, if there exists jo € {1,...,n} such that bj, < a, then the sequence I' fails to be
sampling for PW,.

We point out that Theorem 1.6 most likely could be generalized to more general sequences of
points, see the comments in the last Section 7.

We emphasize here one peculiar difference between the 1-dimensional and the several variables
settings: in the 1-dimensional setting the Fourier transform of a function in the fractional Paley—
Wiener space PW is supported on a symmetric interval [—a,a] ([19, Theorem 1]), whereas in
several variables the non-commutative Fourier transform of a function in PW; is supported on
an interval of the form [—a,0]. In fact, the upper half-plane U = {( = z +iy € C : y > 0}
and its complement U¢ = {{( = z + iy € C : y < 0} have the same geometry. However, our
result is modeled on the Siegel upper-half space U and the geometries of U and U® are clearly
different. We will see (Lemma 3.2) that a function F' € PW; is bounded in U, whereas grows
exponentially in U°.

The classical Paley—Wiener and Whittaker—Kotelnikov—Shannon Theorems have a natural
and straightforward extension in several variables at least when we consider entire functions in
C? of exponential type with respect to the cube [—a, a]d and the sampling on the lattice %Zd.
More generally, it is possible to consider entire functions of exponential type with respect to a
symmetric body K. A symmetric body is a convex, compact and symmetric subset of R? with
non-empty interior. Then, if f € Hol(C%) and f|ga € L2, f is of exponential type with respect to
K if and only if the Fourier transform of f|pa is supported on K, see [26, Chapter III]. Notice
that in this case R? is a totally real submanifold of real co-dimension d. Sampling theorems for
entire functions in several variables in more general sets than a dilation of the lattice Z% have
drawn considerable interest in recent times. In [21] the authors discuss the sampling for the
Paley—Wiener space of entire functions in several variables with convex spectrum. In [15] the
authors obtain very interesting results concerning some necessary and some sufficient condition
for sampling in Fock spaces in C? in connection with existence of Gabor frames in R?. In [13]
the authors prove strict density inequalities for sampling and interpolation in Fock spaces in C%
defined by a plurisubharmonic weight. See also [14] for related results, and the references in the
cited papers.

The paper is organized as follows. In Section 2 we recall some facts about representation
theory and the fractional Laplacian on the Heisenberg group. In Section 3 we prove a Plancherel—
Pélya type inequality and the Paley—Wiener type result, Theorem 1.4. We also compute the
reproducing kernels for the spaces PW;, 0 < s < n + 1 and show in Section 3 a resemble
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between the classical Paley—Wiener space PW,(C) in one variable and the fractional space
PW. In Section 4 we prove a representation theorem for functions in PW; that we shall use
in the proof of our sampling theorem, but that we believe is of interest in its own. Section 5 is
devoted to a careful estimate of the sampling constants for the Fock space F*» when \ varies in
the bounded interval (0,a]. In Section 6 we prove our main result and we conclude with some
final remarks and open questions in Section 7.

2. PRELIMINARIES AND BASIC FACTS

2.1. The Sobolev space W*? and the Fourier transform. We consider the fractional op-
erator A%? defined following [16, 10] as

1 © s
AP = lim 5 f k=2 te A ARG dr (7)
5) Je

where k > s/2 is an integer, whose domain is the set of ¢ € LP(H,) for which the limit exists
in LP. Then A%/2 is a closed operator on LP, 1 < p < oo and its domain contains the Schwartz
space S, see [10, Thm. (3.15)]. When 0 < s < 2n + 2, the operator A*? has an inverse given by
convolution with a locally integrable homogeneous function. We denote such convolution opera-
tor by Zs. The following result in contained in [10, (1.11), (3.18)]. Recall that the homogeneous
Sobolev spaces W*? is the completion of S with respect to the norm |A%/2| 1».

-2 Then,

Proposition 2.1. Let 1 <p <0, 0 < s < (2n+ 2)/p and p* given by p—l* = % TR

T, : LP — LP* s bounded. Therefore, if 1 <p <0, 0 < s < (2n +2)/p,
WP = {fe L AV2f e L2, | e = |AY2f|1r} .

In particular, we emphasize that if f € W5?, then there exists a sequence {or}r © S such
that ¢, — f in LP™ and {As/ 2or}r admits a limit in LP. The fractional Laplacian AS2f of fis
set by definition to be such a limit. .

Our goal now is to extend the definition of the Fourier transform to W*? when 0 < s < n + 1.
The differentials of the Bargmann representations, that are defined in (2) , can be computed to
give:

(i) for all A # 0, dBA(T) = iX;
(if) for A > 0, dBA(Z;) = Ow,, dBA(Z;) = —Fw;;

(ili) for A <0, dBx(Z;) = 3w, and dB\(Z;) = Ow;;

see [11] or [28]. It is important to recall that, with our choice of normalization of the Fourier
transform, if f,g € L'(H,), Bx(f * g) = Bxr(f)Bxr(g), so that for any right-invariant vector field
D

BA(Df) = —dBA(D)BA(f) - (8)

Since A = —2 ?:1(2]7]- + Z;Z;), we obtain that dB)(A) is the operator on F* such that
dBr(A)eq = |A|(1 4 |a|/n)eq. In particular, dBy(A) is a diagonal operator on F* with respect
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to the standard basis {e,}. Therefore, from (7) it follows that

1 *© s
dBr(A¥?)ey = ——— j r*=57tagy (e A AR ey, dr

o0
_ k—2—1_—rdBy(A) k
= riTaT e dBx(A%)e, dr
r<k—§>fo A(&%)

o0
_ k=51 —r|A|[(L1+|al/n) |y 1k k
=——= | 2% A1+ |a|/n)"eq dr
F(k‘_i)fo A

= [IAI(1 + Jal/n)] e - (9)

Lemma 2.2. Let 0 < s <n+1. Then, the Fourier transform on H,, defines a bounded operator
B:Ws2 — L2,

Proof. If ¢ € S, then o, A%/2p € L?, so that both 8 (¢), Bx(A%2p) € HS(F*). The identities (8)
and (9) now give that

BA(p) = A7 2MyBA (A% 2), (10)
where M), is the bounded operator on F* such that My(es) = (1 + |a|/n)"*/?e4. Then,

18(o)12: = [ 1s(@)ls A+
S R*
- | 1M A

< |, 1a ol A
-

Following [23] and using the above differentials (i-iii) it is possible to see how the holomorphic-
ity forces some constraints on the support of the Fourier transform. In particular the following
lemma holds, see also [2, Section 2.3] and [5].

Lemma 2.3. Let ce R and set
uc = {C = (CIndJrl) : IanJrl > %|C/|2 + C}'

Let F € Hol(U,), F = F o U~ and set Fy[z,t] = F(z,t,h). If h > ¢ and F}, € L2(H,), then
Br(F) = 0 for A > 0 and ran (Bx(F})) < spanf{eg}.

Remark 2.4. As a consequence of the lemma, if

v={cecm Ky oo g <tmGu < S 4ot o)

is a neighborhood of bif,, F € Hol(V) and F, € L2(H,,) for ¢ € (c — §,c + 6), then
ox(Feyn) = eMor(F)

for any h € (—6,0), see e.g. [2, 22, 20].
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We now recall that the operators i '7 and A admit commuting self-adjoint extensions on
L3(H,), see [27] or [29, Ch. 2]. If F € Hol(V), where V is a tubular neighborhood of bif, and
Fy e L2(H,), then (A +4T)Fy = 0, that is, AFy = —iT Fy. Therefore,

ASPFy = (—iT)**F, (11)
for all such F’s and s > 0. Hence,
BAATPE) = BA((—iT)Fp) = [A[**Bx(Fp) - (12)

2.2. Fock spaces, lattices and Weierstrass o-functions. We now recall some facts on
lattices and the associated Weierstrass o-functions.
For b > 0, we let L to be the square lattice

Lb: {’ngG(CZ ’Yﬁm:’\/%r(g—i_im)a <€7m)eZ2}7 (13)

For such a lattice L; we consider the Weierstrass o-function associated to Ly,

z z Z2
or,(2) =z H <1——> exp{—+ 5 }

We recall a few well-known properties of the the Weierstrass o-function oy, for any b > 0,
see e.g. [31, Ch.1]:

(i) or, is an entire function of order 2 and type % that vanishes exactly at the points of Ly;

(ii) for all z € C, \aLb(z)|e_%‘z‘2 is double periodic with periods 4/27/b and i/27/b and it is

bounded above and below by constants Cy, ¢, resp., depending only on b times d(z, Ly),

the euclidean distance of z from the lattice Ly, for all z € C;
(iii) there exists a constant ¢ > 0 depending only on b, such that for all v, € L,

_b 2
o, (vem)e™ 1o > ¢, (14)

We also recall that given the lattice Ly, then for any any f e F with b < b we have the
decomposition

_ fyem) o1, (2)
f(Z) B 'YZmZELb O'ILb (’Yfm) Z = Yem (15)

where the series converges in Hol(C), see e.g. [31, Proposition 4.24].

3. THE PLANCHEREL-POLYA INEQUALITY

In this section we prove our first results. We begin with a Plancherel-Pélya type inequality
adapted to the Siegel half-space. This result implies in particular that the spaces PW; are
complete, for 0 < s <n + 1.

3.1. The Plancherel-Pdlya inequality. We now prove a Phrangém-Lindel6f type result for
the Siegel half-space. We first need the following modified version of the classical result in the
complex plane.

Lemma 3.1. Let g € Hol(C) and suppose that there exist constants c,a, M > 0 such that:
(i) [g(t)] < M,
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(ii) for every e > 0 there exists C. > 0 such that
lg(w)] < Celote)eltilul)
where w =t + tu.

Then,
lg(w)| < Meell.

The classical proof applies also here and we skip the details; see, for instance, [30]. In the
Siegel half-space we have the following variation.

Lemma 3.2. Let F € Hol(C""!) and suppose that there exists constant c,a, M > 0 such that:

(1) |F (Ol = [Folz,t]] < M,
(ii) for every e > 0 there exists Cc > 0 such that

IPQ)] = 12,8, )] < CoeletE= )
Then, setting h— = —min(0, h), we have
|F(Q)] = [F(z,t,h)| < Me*- .
Proof. For w =t + iu € C and for every fixed ¢’ € C" we define
g¢ (w) = F(¢"w+ §I¢*) = F(zt,u).
Then, g¢ is entire and from (7i) above we get

lger(w)| < C’se(a+€)(0\[z,t]|2+IU\) < Cee(a+e)(c%+c|t\+|u\)

< C!(¢)elare)elil+lul)
where the constant CZ(¢") depends on the fixed ¢’ € C™. Moreover,
lger ()] = 1F(¢' t+ I < M,
where M is an absolute constant not depending on ¢’. Lemma 3.1 implies
lgcr(w)] < Ml
Thus, setting w = (41 — ﬁ'|(/\2 we have h = p(¢) = u and
[F(¢ G| = [F (¢ w + 51T P)] = lger(w)] < Mel

In order to complete the proof, we need to show that we can improve the above inequality when
h > 0, by showing that in fact |F(¢)| < M when ¢ € U. For each (1 fixed we have

sup |F(¢, Cna)| = sup [F (", Gn1)| < sup [F(C, Gogn)] -
¢ I G ¢ 1P =t ¢ ¢etit
Therefore,
sup |[F(¢)] = sup [F(O)] < sup |[F(¢, Coir)| < M,
ceut (¢ 1) 2 <Im G Cebtd
as we wished to show. ]

From this Phragmén—Lindeldf principle we deduce a version of the Plancherel-Pdlya inequality
/12
in this setting. For ¢ € R we set U, = {C = (¢, Cny1) : ImCpyq > % + c}.
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Proposition 3.3. (Plancherel-Pélya Inequality) Let F € &, be such that Fy € LP(H,),1 <
p < 0. Then, for all h e R,
n)’

where (z,t,h) = VU(¢) and h— = —min(0, h). In particular, F € HP(U,), the Hardy space on U,
for all c e R.

f [l )P dedt < e | B2,

Proof. Let ¢ € C(Hp), 0 < ¢ <1, @] 1 g, < 1, where % + Z% =1, and define

G(Q) = j ﬁh([z,t][w,s])w[w,s] dwds .

n

Then, if ( € bU, i.e. U(() = (2,t,0) = [2,t] € H,,

GO < | Foll o |2l o g,y < 1Fbll o) -

(

Moreover, for ¢ € C"*1 using [7] (with a slight abuse of notation) we have
2 2
[ (= tlw, s], h) e = [L2 tllw, s1” + 2] < (I, t]] + |[w, s]1)” + |1
< 2([z 11" + [[w, s]*) + [h].
Therefore,

G(O) < C. f et AP 2012 . ][ duwds

n

< Clel@t I 4l (16)

since ¢ has compact support. By Lemma 3.2 we obtain
GO < e | Foll o) »
that is,

Bt sl) el s duds| < e |Fillogs, .

for every p € CF (Hn), ||l s, < 1. Therefore,

|7l o = 1ER (L Dw, sD e @ < €[ Fol oo, -

The conclusions follow. ]

Proof of Theorem 1.4. We begin with the case s = 0. Let F' € PW,. By Proposition 3.3 it
follows that | F|z2m,) < €~ |Follr2am,) and F € H?*(U,) for all ¢ € R. In particular, arguing
as in Remark 2.4 we obtain that

Br(Fy) = M Bx(Fp)
for all h € R. Thus, thanks to the Paley-Wiener characterization of H?, we have oy (ﬁb) = 0 for
A > 0. By Plancherel’s formula it then follows that

|EnlZ2 e, = j |8\ (ER) s | A" dX = J B (Fo) [Bis A" dA
—00

—00
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whereas, by Proposition 3.3

~ 0 ~
Pl < [ 1B\ E)lfsA" .

—00
Therefore, for all h € R,

0 0
f M8y (Fo) 2 A" dA < 200~ f 167(Fo) B A" dA,
—00

—00

and, by letting h — —o0, this easily implies that supp 5A(ﬁb) < [—a,0).
To prove the converse direction, given 7 € 7—[2([—a,0)), arguing as [2, Lemma 3.1], we see
that for every A <0, |tr (7(A\)Br[z,¢]*)| < |7(A)|us. Therefore,

0 0
f M tr (T(N)Ba[z, t1*) [|A[™ dA <j () s A" dA

—a

0 1/2
<Irle ( | eMWdA)

< O g2e,

This shows that the integral in (5) converges absolutely. Let F' be given by (5). The same
argument as in [2, Lemma 3.1] now shows that F is entire, hence in &, by the previous estimate.

Moreover, F is such that 8y(Fp) = 7(\) € £2, so that by Plancherel’s formula £y € L2(H,,), that
is, F'e PW,.

We now consider the case s > 0. If F'e PW?, then by Lemma 2.2 3 (ﬁo) is well defined and

ﬁ(ﬁo) e L2, Let ¢ be a Schwartz function on H,, such that By(p) = ¢o(\){,e0)eq for pg € C®
having support in [N, —1/N], for some N > 0.
We define G|z, t] = (F}, = ¢)|z,t], so that

G(O) = | Billz.tlw.s) ) pluw, 5] duds.
We claim that G € &,. Indeed, observe that 8x(Go) = Bx(Fo)Bx(¢) = ¢o(A)Bx(Fp), has compact
support contained in [—~N,—1/N]. Since B(Fp) € £2, it follows that B(Go) € £2, which in
turns gives G € L?(H,). The first part of the theorem now shows that G is entire function of
exponential type at most N. However, since F' € &,, arguing as in (16) we also have

GO < j 1B (2 [, 5171 [, 5] duwds

n

< Celo+e) @I+ )

Since Gp € L?(H,), by the previous case s = 0, G € PW, and supp(ﬁA((N}'o)) < [~a,0). By the
choice of ¢, this easily implies that also supp(8x(Fp)) < [—a,0), and that ran 8)(Fp) < span{eq}.
By Lemma 2.2, in particular by (10), we have

Br(AV2Ey)ea = [NP2[1 + [al/n]*B (Fyea
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Then,

I8\ (AY2E) s = DB (A2 Fp) e caypa|” = INF18 (Fo) s -
Hence,

1F[2ys = f A2 By [z, ]2 dzdt

n

0

- f 1B (A%2 Fo) 2 AI™ dA
—Q0
0 ~

- f 16 (Fo) [ A" dA.
—00

In particular, 5A(ﬁb) € H2, with equality of norms.
Conversely, let 7 € H2([—a,0)) and F be given by (5). We have that

0 0
j M| tr (T()\)B,\[z,t]*)“)\\”d)\éj M7\ s A" dX

—a

0 1/2
<lrles( [ o)

< COlrlze™=, (17)

where ¢ < 400 if and only if s < n + 1. In this case we can conclude that F' € &,. Now, we
claim that Sy(A%2Ep) = |X|*27()), so that

N 0 ~
A2 Folaga,y = | 1BA ) slAP dA

0
- f () g A+ dA

= |I712:,

as we wished to show. It remains to prove the claim. It is easy to construct fields of operators
ne such that 7. € £2(—a + ¢, —¢) be smooth in A and 1. — 7 in H2(—a,0) as € — 0. Then, the
function

~ 1

Ga(C) = Ge,h[z,t] = W f__a e)\h tr (na()\)/@A[Zyt]*) |)\|nd)\

is in S(H,,). Hence, using (12) and (4), we have that
BAA(Gep)) = IN?BA(Geo) = N Pne(N).

Since n. — 7 in H2(—a,0), |A\[¥?*n. — |A*?7 in H?(—a,0), so that A5/2(C~¥€70) converges in
L2(H,) to a function G such that 8y (G) = |A|*27()). Moreover, since W2* embeds continuously
in L?*, we also have that CN}QO is a Cauchy in L and its limit is ﬁo. Then, by definition,
AS/ 21?0 = (G and the claim follows. ]
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As a consequence of the Paley—Wiener theorems we obtain that the space PW3,0 < s <n+1,
is a reproducing kernel Hilbert space and we explicitly compute its kernel. We set

Qw, () = (wn+1 Cng1) = w C7
so that, by writing ¢ = (z,¢ +i(h + %)), w= (w,u+i(k+ %)),
Q(z,t, hyw,u, k) = (u—t~|— Im(w-z) +i(h+k+ F|lw— 2> ))

Corollary 3.4. Let s € [0,n + 1). Then, the space PW3 is a reproducing kernel Hilbert space
with reproducing kernel

1 0 7 w n—s
K(w, () = K¢(w) = Wf PO N2 d), (18)

and [y (k\{o) = X[=a,0)(NeMA[T*PyB\[2,t], where Py denotes the orthogonal projection onto
the subspace generated by eg.

Proof. The Plancherel-Pélya Inequality, Proposition 3.3, implies that PW continuously embeds
into Hol(C"*1). Hence, the completeness of PW$ and the boundedness of the point-evaluation
functionals follow.
The explicit computation of the kernel follows from a standard argument. Let 7 denote the
element of H2([—a,0)) and define
~ 1 0
FIQ) = ) = f_a Mt (r(\)Ba2 1] [APdA

1 0 Ah .
B Wfae tr (7(\) PoBalz, £]%) [AI"dA.
The last identity holds since ran 77(\) € span{eg}. We also have

1 (0 .
(277)7%1]_ tr (r(N)BA(K)o)*) IA™F* dA.

Since the above identities hold for all 7 € H2([—a,0)) it follows that
BAE0) = X (a0 WA Pofa[=. 1]

From the inversion formula (5), and arguing as in the proof of [2, Corollary 4.3] to compute
tr (POBA[z,t]BA[w, s]*), we obtain that

F(¢) = Fulzt] = (F, Koypws =

1 0 .
Kelw) = ggrr | @0 (Pl s, sI7) P
1 0 Mhtk+tw—z2+i(t—s— % Imw-Z)) -
— e 1 w—=z 3 S 3 mw-z |)\|77/ Sd)\
(27T)n+1 f
and the conclusion follows. O

Remark 3.5. In particular, in the case s = n the reproducing kernel K (w, () of PW?! takes a
more familiar expression, that involves the sinc function, sinc z = 822, Namely,

K(w,¢) = (2m) " tae Q@) gine (aQ(w, C)) .
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We also observe that

1 (0 o
K 2 L= 2h X AP t 2 )\TL+Sd)\: j 2hA AlPSdN
PArN. EZ@EITJ‘GE | IX* Foa Lz, 1] s I\ G |
2ah_
Rga € .

In particular, | K¢|pws ~sq 1 for ¢ € bU.

4. A REPRESENTATION THEOREM FOR PW;

In this section we prove a representation theorem for functions in PW:, for s € [0,n + 1). We
denote by .# the 1-dimensional Euclidean Fourier transform, that is, for f € L*(R),

fﬂ8=Lﬂ@W%%

We also write .Z f = f. Recall that .% extends to a surjective isomorphism .7 : L*(R) — L*(R)
where

1
2 o 2
1 lz2@) = 517 flz2)

and the inverse .Z ! is defined as
- 1 —ifx
FUw) = o | FOe s
™ Jr

We recall that if f € L? and f has compact support, then f extends to an entire function £’ and
F(F(-+iy))(A) = F(N)e. (19)

Theorem 4.1. Let F e PW;, 0<s<n+ 1. For (e C" fized, define for(r) = F(¢', k), where
k =x+iy € C. Then there exists ¢ : C" x R — C such that the function F'¢((',-)(x) extends
to an entire function in the variable k and it holds that

F(¢ Cor1) = F 710, ) (Cnr) s (20)
Moreover, the function ¢ satisfies the following:
(i) é(-,\) € FA for a.e. X € [—a,0);
(i) (- Mz € L2([~a,0), [N dA) ;

0
ﬁmﬂ%wzwﬁw*f 160, A) s [AIF" 0.

If s =n we also have
(iv) o(¢’,-) € L*([~a,0)) for all ¢ € C*; in particular F({',-) belongs to the one-dimensional
Paley—Wiener space PW,(C) for all (' € C™.

Proof. Observe that from Theorem 1.4 it follows that PW, n PW; is dense in both spaces.
Then, if F' € PW, n PW;, the computations that follow are all justified. By Theorem 1.4 we
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have
~ 0 ~
F(C Curt) = Bl t] = j_ M tr (B (Fo)Balz, £]7) A" dA

0 n ~ . .
o [ (Y e (sl 01

0 n ~ A2 -
- — <%) tr (/BA(FO)ﬂA[CCO]*)eiZ'C' e~ A1 )
Therefore, setting

A\ 7 ~ A2
d(¢', ) = (%) tr (@\(Fo)ﬁ,\[C',U]*)e*ZK' X[-a,0)(A) 5

it follows that F(¢',Cur1) = F 1o(¢’,-)((ns1), that is, (20) holds. From (2) we deduce that
#(+, A\) is entire, and by (20), using (19) and (11), it follows that

P, = [ 1872 Fole. 0P daa
= [z dede
Hr
:f f||T|s/2F(z,t+§|z|2)|2dtdz
Cn JR

| |3J(|T\8/2F<z,-+ L) (V[ ddz
™ Jcr JR

1 (o 2
— N A 5= gy
5 | [ e R s

0
= @0t [ ol NI AP

The conclusions (i-iii) now follow. About (iv), if Py denotes the orthogonal projection onto the
subspace generated by eg, we have

6(C", )2 = [(JA1/(2m)"™ tr (Ba(F0)BALC, 01 ) e~ 1P x 0y ()2
= [(IM/@2m)" tr (Br(Fo) PoBalC 01F) e~ 1P x 0y (V)2
||5A<Fo>||HsHPom<co1||Hse 2P (IA/2m) "X a0y VP
e3 1P 83 (Fo) s (1A1/(27)) "X (a0 NI

where we used A < 0 and the identity | PyB\[¢’,0]|3g = 1. Since F' € PW2

0 ~
| 1Bl (A1/2m) " ax < e,

and this completes the proof. O
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As a consequence, we have the following. For 0 < s <n + 1 we set

Ts = {<25 :C" x [—a,0) > C: (i) ¢(-,\) € F for a.e. A€ [—a,0),

0
() 1ol = @n)" " [ [ NI A ax < oo}

Corollary 4.2. For 0 < s <n+ 1, the mapping
U :PW:sF — ﬁ(FthnH:O) €T,

is a unitary map (where F denotes the Fuclidean Fourier transform in the real part of the
variable (,+1); in particular

0
12y, = <2w>”1f 6> V)2 (AP dA.

Proof. We only need to prove that the mapping is onto. Given ¢ € Ty, setting F(¢', (hy1) =
FG(,)(Cay1) it is easy to see that F € PW? and the conclusion follows. O

5. SAMPLING IN THE FOCK SPACE

In this section we prove a result, Theorem 5.3, that it may be considered as folklore. We
consider the 1-dimensional case and make explicit the dependence on A of the sampling constant
in the case of square lattices for the Fock space F*(C). However, we believe that the result is
not completely obvious and it is key for our Theorem 1.6. We recall that a square lattice L; in
C is sampling for F%(C) if and only if b > a ([24, 25]) and that the behavior of the sampling
constants as b — a* are obtained in [3].

Lemma 5.1. Let a > 0 be given, let b > a and let Ly, be the square lattice (6). Let f € F> with
0 < A< a. Then, for any n € Ly, the function

Ay
F:) = ez — )
belongs to the Fock space F¥ with a <V < b.

Proof. We have

f \F,?‘(Z)Pe_%l‘z‘z dz = f |e%(z+77)ﬁf(z)|26_%/|Z+77|2 dz
C C

:eénﬁf F(2) e E2 R =3 1P g
C

ge%ﬂFJ |f(z)|2ef%|z|2 dz
C

and the conclusion follows. (]
Lemma 5.2. Let a > 0 be given, let b > a and let Ly be the square lattice (6). For 0 < A < a
define the positive measure
A2
u%b = e~ 2 0y
V€L
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where 0. is the unit point measure at v and consider the integral operator

freoTf = | Kulom) fn) di, 0
with positive kernel
Ki(y,m) = e%(\fy\2+\n|2)e—%|—y+n|27 a<t<b.
Then, the operator T extends to a bounded operator T : L?(Ly, ,u%b) — L?(Ly, ,uéb) with operator
norm uniformly bounded for 0 < X < a.

Proof. For ~ € L, we have
A2
Tf(y) = Y, Ke(y.m)f(me 2.

neLy
By Schur’s test [12, Appendix A.2] it is enough to find ¢ > 0 and C' > 0 such that

_2A
3 Ki(vame(me 2 < Co(y).
neLy

This would also guarantee that the operator norm of 7" is bounded by C. Choosing ¢(v) = eihl®
the conclusion follows with a constant C' independent of A as we wished to show. O

Theorem 5.3. Let a > 0 be given, let b > a and let Ly be the square lattice (6). Then there
exist constants A, B > 0 such that for all 0 < X\ < a and all f € F*(C) we have

_ A N2 _ A2
AN Y 1F )PP < f15 < BA Y IF()Pe2 I
’YELb ’yELb

Proof. Let 0 < X\ < a and let f € F be given. Let Ry, be the fundamental region of the square
lattice Ly and let Ry, , be the translated region Ry, + n where € Ly. Then, C = UneLb Rp, 5
and the intersections of the Ry, ;’s have Lebesgue measure zero. Therefore,

A A2
£ = 5 D f(2)Pe 2 d2
T]GLb RLbyW
A
== | e—mPeil g
T neLy YLy,
A _
=5 e~ 2l jR |e%'z’7f(z - 77)|2(37%|Z|2 dz. (21)
nely Ly

In particular the factor e=21** is bounded above and below on the region Ry, with positive

constants uniformly on z and A. Hence, we conclude that

fBa = A Y e 20 [ e - P, (22)
neLy Ry,
that is, the two quantities are comparable up to some positive constants which do not depend
on A.

Now, setting Fg‘(z) =e

347 f(z—=mn), Lemma 5.1 guarantees the decomposition

F)‘(Z) _ Z Fg\(f}/) JLb(Z)

PR
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or, (2)

Since Pl S C for a constant C' which does not depend on z € Ry, and 7y € L, we have

12 < On Y em3it f 3 (2 — )2 de

neLy Ry,

F)\ 2
<CA Z e_§"|2f ( Z ‘ K ™) D dz
neLy Rr, vyeLy O-Lb<’7)

2TA S =3P Aye=thi)
éC’TZe 2 Z|Fn(7)e4 |
neLy €Ly

where a < t < b and we used the estimate (14). Now,

27 2 B 2
i ew( v ,Fm)ewo - ew( S [eB i+t fm’)

7]€Lb ’yELb nELb ’yELb

2mA A2 )
SR IR F Kbl i)
neLy

YELy
where we have set
Ki(y,n) = et (PHm) o= 52 hretnl?
Thus, from Lemma 5.2 we get
~5nf —5h? i 203l
2N Ky, )| f()]e <C ) |f(n)Pe2

nely YeLy neLy
where C does not depend on \. In conclusion, we have

2 A 2 A t 2 2 2 A 2

[£155 < BA Y5 e 2 3 [Fr (e 3PP ) < BA D [ f()Pe 2!
neLly vyeLy neLy

with B independent of A\ as we wished to show.
Next, denoting by D(v,r) the disk centered at v € C with radius r» > 0, we show that for all
f € Hol(C) and d > 0 we have

2 —dly|? d 2 ,—dlw|?
PR < ey | e . (25)

For, by the mean value formula we have that

1 21

P <o | 1f(y+re?)dp,
T Jo
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so that,

j UKUOFeddeu):‘[ |f (w + )P+ gy
P D(O.)
:f |f (w + y)e T |Pe= w1 gy
D(07T)

T 21 .
= f e f ‘f(seie + 7)e_d86297‘2 dfsds
0 0

> 27T|f(7)|2e_d|“*|2 f e~ %" sds
0
T —dr 2
T (1 e e
and (23) follows. Finally, given the lattice Lp, we let 0 < r < inf{|y; — 2| : 71,72 € Lp}. Then,
the disks {D(v,7) : v € Lp} are disjoint so that, by (23 ) we have

I L e | Pem3hl gy
1 D(fyr

~eLy ( - ’YELb
A 2
< sup ————[f%
Ae(0,a] (1 — e_%rz) 7

-1
and the conclusion follows with A = <sup/\e(0 al (7)32)> . L]
H(1—e2m

The following result now follows easily.

Corollary 5.4. Forj=1,...,nleta > 0 be given, let b; > a and set Ly, . p,) = Ly, ¥+ x Ly,
Then, there exist constants A, B > 0 such that for all X € (0,a] and f € F}(C") we have

_A n Y
AN P <R < B Y (f)Ren

We remark that the main point in Theorem 5.3 and Corollary 5.4 is to estimate the dependence
of the constants as A approaches 0. In fact, if we restrict the parameter A to vary in a compact
interval [§,a] for some 0 < § < a < b, then we can replace the square lattice L; by a general
sampling sequence for F?. In [24] and [25] it was shown that a sequence Z < C is a sampling
sequence for F¢ if and only if Z is the union of finitely many separated sequences and Z contains

a separated subsequence Z’ such that D_(Z') > a/(27); see also [31]. Here
D z'
D7) = tim inf 7L w.r) 0 )
r—00 weC r

and 7’ is said to be separated if

inf |w—w|>=cy >0.
w,w'eZ’

In fact, the following result holds.

Proposition 5.5. Let 0 < ¢ < a be given. For j = 1,...,n let Z; be a sampling sequence for
FUC) and let Z = Z(y,.. ) = Z1 X -+ X Zp and let b := 2rminj—y _, D—(Z;) > a. Then, there
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exist constants A, B > 0 depending only on ,b and the separation constants of Zj, j =1,...,n,
such that for all X € [6,a] and f e F>(C") we have

_A n A
AN F)RPe I < f1Z0 < BAY Y | F()Pe 3N
veZ vez

Proof. This follows from the arguments in [24, 25] (see also [31, Chapter4]). Notice that we may
assume that n = 1 and then that Z is separated. Then, Z is a sampling sequence for F )‘((C), for
any A € [§,a] with constants A, B’ > 0 that depend only on the separation constant of Z and
on D_(Z) such that

_ A2 _ A2
A Y FOPe 2 < f5 < B Y If()Pe 20
veZ YeZ

The conclusion now follows since we are assuming A € [4, a]. OJ

6. SAMPLING IN PW,

Before proving Theorem 1.6, we study a few properties of PW/'. In particular we present
some elements and produce an explicit orthonormal basis of such space. We also remark that
because of the Fourier transform characterization of PW!' the Fock spaces JF A that will appear
in this section are defined for negative A in [—a,0) and that, by definition, F* = F AL

We use both the notation .% ¢ and g to denote the 1-dimensional Euclidean Fourier transform
of g € L*(R). Let g € L?(R) such that suppg S [—a,0], we set G(¢’,(ny1) = g(Cns1), where
we denote by g its entire extension to C (notice that G is independent of (' € C™). Then we
compute

G2y _f A2G [, 1] dedt _f f 26 (=t + 1P [P dedt

= f f A[(FG)(z, M) ezzzd)\dZ——f f IA["|GO0) 2e2 1 drdz

- [ o

Hence, G € PWY and |G|%yn = (27)"|g|%2 5. More generally, given a multiindex «, we set

1 glelr?
CEP (€ g(Cnr) -

Lemma 6.1. The following properties hold.

Ga(Cla CnJrl) =

(i) For every o we have
n n 7.\ |2
|Gl = (27)" 972 = (2m)" ) lo(5F)
keZ

(ii) Let go € L*(R) be such that supp(ge) S [—a,0], {Ge : £ € Z} is an orthonormal basis of
L?*(—a,0) and set

1 P
Gae(¢' 1) = W(CI)O‘@L |/294(Cn+1)-

Then {Ga,g caeN" (e Z} s an orthonormal basis of PW,.
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Proof. We observe that for any r > 0, (¢;)"g = .# ' (|\|"g) € PW,. Then, by (19) again,

HGaH%Wg = j j ’@EHHQDQGQ (z,t+ ﬁ\z|2)‘2 dzdt
Cn JR

1 1 0
‘_—f \zﬂ ATl G Pe2 o dadz
Ccn —a

27 21l
0
=0t [ P dx = @) lglE g

Conclusion (i) now follows from the classical Whittaker—Kotelnikov—Shannon theorem. In order
to prove (ii) we argue in a similar fashion:

G Gorpwy = [ AVEG 2112 (Gool. ]

n

= J j ‘anﬂa'wGa(z,t + %|2\2)6§n+‘6|)/2G5 (z,t + %|2?) dzdt
C?’L

f gt/ ot + g|z\2)a§"+‘6')/29m(t+ i12]2) dtdz

«/2Ia\+lﬁ\a15| fn

0 _—
= ! |>\|N+(|a\+lﬁ\)/2§€()\)§m()\)eg|z|2 d\dz

L e o
21 /20l +18101 31 Jen »

= 60,590, Gm) 12 (R)

Thus, {Ga,} is an orthonormal system. We show that it also complete. Let F' € PW] be
orthogonal to {Gq, : a € N* k € Z}. Using the same computation as above we see that

(F, Gatyrwy = 5 m f = [ e el

|A|"*'°‘/2f (FF)(z, Nz dz () d

- %«/Qla\ag _

0
=@ [ (FFaal

Ge(A) dA,

where we denote by (FF)a()\) the Fourier coefficient of #F(-,A) in F* w.r.t. the basis
{ean}, that is, eqn = 24/||2%| #r. Since F' is orthogonal to {G, ¢} for all ¢ € Z, it follows that
(FF)ax(A) =0 Aa.e., and then by Proposition 4.2 that F' = 0. O

We now prove a necessary condition for certain sequences in C"*!. The sequence we consider
are more general than the ones in Definition 1.5, but, again in Heisenberg coordinates, are still
Cartesian product of sequences in C™ and R, resp. Precisely, for a > 0 and a separated sequence
Z" in C" given, let

Z={yeC" i y=(,Zk+iy|?): ve 2 keZ} (24)

Theorem 6.2. Let a > 0 be fizred and let Z be as in (24). If Z is a sampling sequence for PW,,
then Z' is a sampling sequence for F*(C™).
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Proof. Let ¢ > 0, f € Fo¢(C") and g. € L?*(R), |g-|z2 = 1, and such that supp(g.) <
[~a,—a + ¢]. Note that f € F» for all A > a — ¢, and that A — | f|z is continuous in
[a —e,00). Also, g. is in PW,(C).

Let
Fa(c/a Cn-i—l) = f(C/)gE<Cn+1)’

Using Plancherel theorem and (19), we compute

i 2
o, = [N EGet o+ S da

n

1

- L |f<z>|2j APIG ()23 drds

1 [ote 2\ 1n o D2
=5 f 9= (MI7IA| f £ (2)]Pe 2 I*I" dzd
T J_, cn
—a+te

= RO T

—a
Now, in addition, suppose also that |g:()\)|?> — d, in the vague topology as ¢ — 0% (e.g. we may
take gz = 5*1/2)([,&7,%5]). Then, the right hand side above tends to (27)" | f|%. as ¢ — 07

(since A — || fﬂ% A is continuous). It follows that
Tim [, = (2)" 3. (29

Suppose now Z as in (24) is a sampling sequence for PW, with sampling constants A, B > 0.
Then, by also applying Whittaker—Kotelnikov—-Shannon theorem to ¢g., we have

|, < B Y IE-()P =B Y5 1F (NP X 19:Gk + 5P

YEZ y'ezZ! keZ
-5 Y If(v’)lzf gt + Y PP de

,YIEZ/ R

B —a+¢e N Ay
o= N HICOICH IRAOVIEE LY

y'eZ! -

Therefore, using the fact that |g:|72 = 1 and that Z’ is separated, we obtain

B _
| F= B, < o DA Pe
VEeZ!

a—

14712
7P < O)f |F-,

where the last inequality follows from the fact that Z’ is separated. Analogously,

a2 —a+te ~ A2
SR < S )P f ARSI LA
,YIGZI ,\/IEZ/ —a
=27 Z ‘Fa(7)|2
yeZ

2
< Z|Elbw,.
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Letting ¢ — 0+ and using (25) we have

_a 2 _a 2
)P 2T < f1F < )|%e 2 (26)

ﬁ/ 'eZ! ﬁ/ 'eZ!
for all f € F¢(C"). We now claim that (J..,F* °(C") is contained and dense in F¢(C").

Once the claim is proven, from (26) it follows that Z’ is a sampling sequence for F*(C") and
the desired conclusion will follow. We observe that:

e for 0 < <1, |f(v/r)lFer = | fl7e and |f(Vr)lze = |l por < 11
o lim, - [f (V)| Fe = [ fllFe;
o f(y/r-) — f pointwise as r — 17.

Notice that the last two conditions imply that f(y/r-) — f also in F*norm. The claim is then
proven, so is the theorem. H

Proof of Theorem 1.6. For F' € PW}, let ¢({',\) = FF(¢',\). By Theorem 4.1

0
[F[2y = (27)" ) j 6 )2 dA.

Given the sequence of points I' as in the statement, we write I = L, 3,). By Corollary 5.4
and denoting by A, B > 0 the constants therein, we have

n— n ,_l 2
|F |3y < B! f AP S ol e 2P ax

~'el”
271_7112] ‘)\‘ ‘(b ‘2 _*“'Y|2d)\
y'el”
n2
BeR" 3 | PEE 4R
~y'el”
n/2 s 7
=Be0)" Y. NIAPRE T+ LY P,
~' el LeZ

where the last identity follows from (iv) in Theorem 4.1, the fact that PW,(C) is closed under
(fractional) differentiation and the classical Whittaker—Kotelnikov—Shannon Theorem.
Conversely, by the same sequences of equalities, using Corollary 5.4 again,

Aenr Y SRR 4 iy P2 = 2w"1f S APl Ve R ax

vy el beZ @ ~reT
< (2m)"! j 64 V)2 A

= [F 1By -
This proves the sufficient condition in the case of PW].
Finally, let G € PW, be given. Consider Gy and for € > 0 define
1

el IR CXESENERIPRES

U [z, t] = o)
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By (4) it follows that W, € L?(H,,) and that
BA(¥e) = X[-a,-e WA T"2Ba(Go) - and - BA(A"We) = ax|—q, - (MBA(Go)

for some constant «, |a| = 1. Since % Go € 7—[2([ a,— )) Theorem 1.4 implies that ¥, extends
to a function F. € PW, n PW". Moreover, the sequence {A™?W_} is a Cauchy sequence in
L?(H,), that is, { F.} is a Cauchy sequence in PW™. Let F be its limit. It is clear that Fy = T,,Go,
where Z,, is the inverse of A™? (see Proposition 2.1), that is, A" 2[ = Go. Therefore, by the
first part of the theorem,

AN NGO = AN AP FA)E =AY (PO < 1 F by = [Gl3w,

vyell vyell ~yell
2 2
= |Flpwy < BY 1012 F() = B Y. IATPF()P = B Y GO
vyell el el

This proves the sufficient condition for PW,.

In order to prove the necessary condition, we have to show that if b;, < a for a jo € {1,...,n},
I" fails to be sampling. By the previous Theorem 6.2, if I' is sampling for PW,, then L, 5, is
sampling for F*(C™). Since Ly,....b,) 1s the cartesian product of the square lattices Lbl, .., Ly,,
L,,...p,) is sampling for F*(C") if and only if L;, is sampling for F(C), for j = 1,...,n. But
this happens if and only if b; > a for j = 1,...,n. This proves the theorem. ]

As a consequence we have

Corollary 6.3. The space PW; admits a frame of reproducing kernels, namely {K, : v e I'},
where ' is a lattice as in Theorem 1.6.

7. FINAL REMARKS AND OPEN QUESTIONS

We believe that the spaces we introduced are worth investigating and arise quite naturally in
our multi-dimensional setting.

The present work leaves some open questions. First of all, it should be proved a more general
version of Theorem 1.6 by combining the characterization of sampling sequences for the 1-
dimensional Paley—Wiener space PW, and some sufficient conditions for sampling sequences for
the Fock space F(C") as in [15].

Moreover, in this paper we essentially dealt with the Hilbert case and we left the case p # 2
for future studies.

This analysis is based on the growth condition on entire function given by the p-integrability of
their restriction to submanifold blf, that is the boundary of the Siegel domain U. It is certainly
possibile to consider also the growth condition given by the p-integrability of restrictions to
Shilov boundary of Siegel domains of type II. In order to extend this theory, it is likely that the
results and techniques developed in [5, 6, 4] will play an important role.

Finally, our formulas and results suggest that the space PV might have a privileged role, as
for the case of the Drury—Arveson space, see [1] for a study of such space on the Siegel domain

U.
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