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SAMPLING IN SPACES OF ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE IN C
n`1

ALESSANDRO MONGUZZI*, MARCO M. PELOSO**, MAURA SALVATORI**

Abstract. In this paper we consider the question of sampling for spaces of entire functions of
exponential type in several variables. The novelty resides in the growth condition we impose on
the entire functions, that is, that their restriction to a hypersurface is square integrable with
respect to a natural measure. The hypersurface we consider is the boundary bU of the Siegel
upper half-space U and it is fundamental that bU can be identified with the Heisenberg group Hn.
We consider entire functions in C

n`1 of exponential type with respect to the hypersurface bU

whose restriction to bU are square integrable with respect to the Haar measure on Hn. For these
functions we prove a version of the Whittaker–Kotelnikov–Shannon Theorem. Instrumental
in our work are spaces of entire functions in C

n`1 of exponential type with respect to the
hypersurface bU whose restrictions to bU belong to some homogeneous Sobolev space on Hn.
For these spaces, using the group Fourier transform on Hn, we prove a Paley–Wiener type
theorem and a Plancherel–Pólya type inequality.

1. Introduction and statement of the main results

The classical Paley–Wiener theorem characterizes the entire functions of exponential type
a in the complex plane whose restriction to the real line is square integrable as the space of
L2-functions whose Fourier transform is supported in the interval r´a, as. For such functions
perhaps the most far reaching result is the Whittaker–Kotelnikov–Shannon sampling theorem.
These results have been extended to several variables for functions in C

n whose restrictions to
the surface tIm z “ 0u “ R

n have Fourier transform supported in a compact set Ω, see e.g. [26]
and [17].

In this paper we take a different approach. We consider a hypersurface M that separates the
whole space Cn`1 into two unbounded connected components and entire functions in C

n`1 that
satisfy some exponential growth condition adapted to M – namely, of quadratic order in the
complex tangential directions to M and of linear growth in the transversal direction. We also
require that these functions have restriction toM which is square integrable, or more generally is
in some homogeneous Sobolev space. For such functions we prove a Paley–Wiener type theorem
and a Whittaker–Kotelnikov–Shannon sampling theorem.
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Heisenberg group, sampling.
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Consider the complex spaces Cn`1, with n ě 1, and the strongly pseudoconvex hypersurface

bU “
 
ζ “ pζ 1, ζn`1q P C

n ˆ C : Im ζn`1 “ 1
4

|ζ 1|2
(
,

which is the topological boundary of the Siegel upper-half space

U “
!
ζ “ pζ 1, ζn`1q P C

n ˆ C : ̺pζq :“ Im ζn`1 ´ 1
4
|ζ 1|2 ą 0

)
. (1)

It is well known that U is biholomorphic to the unit ball B in C
n`1. The p1, 1q-form θ “ i

2
pB´Bqρ

is a pseudo-hermitian structure onM “ bU , and it is non-degenerate. Then, θ^pdθqn is a volume
form on bU , i.e. θ is a contact form. Then, there exists a natural Riemannian metric gθ on bU .
The boundary bU of U can be endowed with the structure of a nilpotent Lie group, namely
the Heisenberg group Hn. It turns out that the volume form θ ^ pdθqn coincides with the Haar
measure on Hn. The Haar measure on Hn coincides with two canonical measures defined on the
strongly pseudoconvex manifold M , namely the Webster metric [8] and the Fefferman metric [9,
p. 259], resp. The volume forms constructed starting from such metrics coincide with the Haar
measure on Hn. We also remark that the induced metric from C

n`1 differs from the metric gλθ,
for every smooth λ : bU Ñ p0,`8q.

In C
n`1 we introduce coordinates by means of a foliation of copies of bU . Given ζ “ pζ 1, ζn`1q P

C
n`1, we define Ψ : Cn ˆ C Ñ C

n ˆ R ˆ R by

Ψpζ 1, ζn`1q “
`
ζ 1,Re ζn`1, Im ζn`1 ´ 1

4
|ζ 1|2

˘
“: pz, t, hq .

Then, Ψ is a C8-diffeomorphism, and

Ψ´1pz, t, hq “
`
z, t ` i1

4
|z|2 ` ih

˘
“: pζ 1, ζn`1q .

Notice that h “ ̺pζ 1, ζn`1q, where ̺ is as in (1). Clearly, the boundary bU is characterized
by the points of Cn`1 such that Ψpζq “ pz, t, 0q, that is, h “ ̺pζq “ 0, and

U “
 
ζ P C

n`1 : Ψpζq “ pz, t, hq is such that h ą 0
(
.

When h “ 0, we write rz, ts in place of pz, t, 0q. Then, the boundary bU can be identified with
the Heisenberg group Hn, which is the set Cn ˆ R endowed with product

rw, ssrz, ts “
“
w ` z, s` t´ 1

2
Impw ¨ z̄q

‰
.

Recall that Hn is a nilpotent Lie group and the Lebesgue measure on C
n ˆ R coincides with

both the right and left Haar measure on Hn.
On Hn we consider the standard (positive) sub-Laplacian ∆ and its fractional powers ∆s{2

(see Section 2 for details). Let S “ SpHnq denote the space of Schwartz functions on Hn. Then,
we have the following definition.

Definition 1.1. For 1 ă p ă 8 and s ą 0 we define the homogeneous Sobolev space 9W s,p “
9W s,ppHnq as the completion of S with respect to the norm }∆s{2ϕ}Lp , ϕ P S. More precisely,
given the equivalence relation on the space of Lp-Cauchy sequences of Schwartz functions, tϕku „
tψku if ∆s{2pϕk ´ ψkq Ñ 0, as k Ñ `8, and denoting by rtϕkus the equivalence classes, then

9W s,p “
!“

tϕku
‰
: tϕku Ď S, t∆s{2ϕku is a Cauchy sequence in Lp,

with
››“tϕku

‰››
9W s,p “ lim

kÑ`8
}∆s{2ϕk}Lp

)
.
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It is easy to characterize the homogeneous spaces 9W s,ppHnq when 1 ă p ă 8 and 0 ă s ă
p2n ` 2q{p, see Section 2.1

On Hn we define a homogeneous norm (with respect to the natural anisotropic dilations) by
setting

|rz, ts| :“
`

1
16

|z|4 ` t2
˘1{4

.

Then, we introduce a “U -adapted norm” in C
n`1,

}ζ}U “ |rz, ts|2 ` |h| , where Ψpζq “ pz, t, hq .
Notice that }ζ}U grows like |rz, ts|2 in the complex tangential directions of Hn and like |h| in the
transversal directions.

We now introduce the spaces of entire functions we deal with. For a function F defined on

C
n`1, we set rF “ F ˝ Ψ´1 and rFhrz, ts :“ rF pz, t, hq. Then, in particular, rF0 “ F|bU .

Definition 1.2. Let a ą 0 be given. We define the space of entire functions of exponential type
a with respect to the hypersurface bU as

Ea “
!
F P HolpCn`1q : for every ε ą 0 there exists Cε ą 0 such that |F pζq| ď Cεe

pa`εq}ζ}U
)
.

We define the corresponding Paley–Wiener space as

PWa “
 
F P Ea : rF0 P L2pHnq with norm }F }PWa “ } rF0}L2pHnq

(
.

For 0 ă s ă n` 1 we define the fractional Paley–Wiener spaces PWs
a as

PW
s
a “

 
F P Ea : rF0 P 9W s,2 with norm }F }PWs

a
“ } rF0} 9W s,2

(
.

We point out that the fractional Paley–Wiener spaces PWs
a arise naturally in our setting,

since they constitute a tool for proving our main results. In the 1-dimensional setting these
spaces were introduced in [19], see also [18].

In order to state our main results we recall the basic facts about the Fourier transform on the
Heisenberg group (see also [2, 11, 23]). For λ P R

˚ the Fock space is defined as

F
λ “

"
F P HolpCnq :

ˆ |λ|
2π

˙n ż

Cn

|F pzq|2 e´ |λ|
2

|z|2dz ă `8
*

so that Fλ “ F |λ|. For λ P R
˚ and rz, ts P Hn, the Bargmann representation βλrz, ts is the

operator on Fλ

βλrz, tsF pwq “
#
eiλt´

λ
2
w¨z´λ

4
|z|2F pw ` zq if λ ą 0,

eiλt`
λ
2
w¨z`λ

4
|z|2F pw ` z̄q if λ ă 0 .

(2)

Notice that βλrz, ts “ β´λrz,´ts, when λ ă 0. Given f P L1pHnq its Fourier transform consists
of a family of operators tβλpfquλPR˚ where βλpfq is a Hilbert–Schmidt operator on Fλ given by

βλpfqF pwq “
ż

Hn

f rz, tsβλrz, tsF pwq dzdt .

If f P L2pHnq and } ¨ }HS denotes the Hilbert–Schmidt norm on Fλ, we have Plancherel’s
formula

}f}2L2pHnq “ 1

p2πqn`1

ż

R

}βλpfq}2HS|λ|n dλ , (3)

1We point out that 2n ` 2 is the homogeneous dimension of Hn.
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and, if f P L1 X L2pHnq, the inversion formula

f rz, ts “ 1

p2πqn`1

ż

R

tr
`
βλpfqβλrz, ts˚

˘
|λ|n dλ . (4)

Definition 1.3. For s P R we define the space L2
s as the space of measurable fields of operators

τ : R˚ Ñ
ź

λPR˚

L pFλq

where L pFλq denotes the bounded operators on Fλ, such that

}τ}2
L2
s
:“ 1

p2πqn`1

ż

R˚

}τpλq}2HS |λ|n`sdλ ă `8,

where } ¨ }HS :“ } ¨ }HSpFλq. We also define H2
s as the subspace of τ P L2

s such that

(i) τpλq “ 0 for λ ą 0;

(ii) ranpτpλqq Ď spant1u, when λ ă 0 .

If E Ď p´8, 0q, then H2
spEq “

 
τ P H2

s : supp τ Ď E
(
. Finally, when s “ 0 we simply write L2

and H2 in place of L2
0 and H2

0, resp.

Our first result provide the expected characterization of the spaces PWa and PWs
a, 0 ď s ă

n` 1.

Theorem 1.4. Let 0 ď s ă n` 1. If F P PWs
a, then βλp rF0q P H2

s

`
r´a, 0q

˘
,

F pζq “ rFhrz, ts “ 1

p2πqn`1

ż 0

´a

eλh tr
`
βλp rF0qβλrz, ts˚

˘
|λ|ndλ ,

and }F }PWs
a

“ }βλp rF0q}L2
s
. Conversely, let τ P H2

s

`
r´a, 0q

˘
, and define

F pζq “ rFhrz, ts “ 1

p2πqn`1

ż 0

´a

eλh tr
`
τpλqβλrz, ts˚

˘
|λ|ndλ . (5)

Then F P PWs
a, βλp rF0q “ τpλq and }F }PWs

a
“ }τ}L2

s
.

We show that for functions in PWa a sampling result holds true, extending the classical
Whittaker–Kotelnikov–Shannon Theorem in dimension 1. We recall that given a reproducing
kernel Hilbert space K of holomorphic functions on a domain Ω, a sequence Γ “ tγu Ď Ω is a
sampling sequence for K if there exist constants A,B ą 0 such that for all F P K

A
ÿ

γPΓ

|F pγq|2}Kγ}´1
K

ď }F }2K ď B
ÿ

γPΓ

|F pγq|2}Kγ}´1
K
,

where Kγ denotes the reproducing kernel at γ P Ω.
We now define the sequences for which we establish our sampling theorem. For b ą 0 let

Lb Ď C be the square lattice

Lb “
!
γℓ,m P C : γℓ,m “

b
2π
b

pℓ` imq, pℓ,mq P Z
2
)
. (6)

Definition 1.5. For pb1, . . . , bnq P R
n
` and a P R`, consider the sequence of points Γ Ď bU

Γ “
!`
γ1, π

a
k ` i

4
|γ1|2

˘
P C

n ˆ C : γ1 P Lpb1,...,bnq :“ Lb1 ˆ ¨ ¨ ¨ ˆ Lbn , k P Z

)
.
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Since the lattice Γ Ď bU , we can use Heisenberg coordinates and observe that Γ has a product
structure; precisely

Γ “
 

rγ1, kπ{as P Hn : γ1 P Lpb1,...,bnq, k P Z
(
.

Theorem 1.6. Let Γ Ď bU be as in Definition 1.5 and suppose bj ą a, j “ 1, . . . , n. Then,
there exist constants AΓ, BΓ ą 0 such that for all F P PWn

a we have

AΓ

ÿ

γPΓ

|Bn{2
t F pγq|2 ď }F }2PWn

a
ď BΓ

ÿ

γPΓ

|Bn{2
t F pγq|2,

where t “ Re ζn`1. As a consequence, for every G P PWa we have the sampling

AΓ

ÿ

γPΓ

|Gpγq|2 ď }G}2PWa
ď BΓ

ÿ

γPΓ

|Gpγq|2.

Conversely, if there exists j0 P t1, . . . , nu such that bj0 ď a, then the sequence Γ fails to be
sampling for PWa.

We point out that Theorem 1.6 most likely could be generalized to more general sequences of
points, see the comments in the last Section 7.

We emphasize here one peculiar difference between the 1-dimensional and the several variables
settings: in the 1-dimensional setting the Fourier transform of a function in the fractional Paley–
Wiener space PW s

a is supported on a symmetric interval r´a, as ([19, Theorem 1]), whereas in
several variables the non-commutative Fourier transform of a function in PWs

a is supported on
an interval of the form r´a, 0s. In fact, the upper half-plane U “ tζ “ x ` iy P C : y ą 0u
and its complement U c “ tζ “ x ` iy P C : y ď 0u have the same geometry. However, our
result is modeled on the Siegel upper-half space U and the geometries of U and U c are clearly
different. We will see (Lemma 3.2) that a function F P PWs

a is bounded in U , whereas grows
exponentially in U c.

The classical Paley–Wiener and Whittaker–Kotelnikov–Shannon Theorems have a natural
and straightforward extension in several variables at least when we consider entire functions in
C
d of exponential type with respect to the cube r´a, asd and the sampling on the lattice π

a
Z
d.

More generally, it is possible to consider entire functions of exponential type with respect to a
symmetric body K. A symmetric body is a convex, compact and symmetric subset of Rd with
non-empty interior. Then, if f P HolpCdq and f |Rd P L2, f is of exponential type with respect to
K if and only if the Fourier transform of f |Rd is supported on K, see [26, Chapter III]. Notice
that in this case R

d is a totally real submanifold of real co-dimension d. Sampling theorems for
entire functions in several variables in more general sets than a dilation of the lattice Z

d have
drawn considerable interest in recent times. In [21] the authors discuss the sampling for the
Paley–Wiener space of entire functions in several variables with convex spectrum. In [15] the
authors obtain very interesting results concerning some necessary and some sufficient condition
for sampling in Fock spaces in C

2 in connection with existence of Gabor frames in R
2. In [13]

the authors prove strict density inequalities for sampling and interpolation in Fock spaces in C
d

defined by a plurisubharmonic weight. See also [14] for related results, and the references in the
cited papers.

The paper is organized as follows. In Section 2 we recall some facts about representation
theory and the fractional Laplacian on the Heisenberg group. In Section 3 we prove a Plancherel–
Pólya type inequality and the Paley–Wiener type result, Theorem 1.4. We also compute the
reproducing kernels for the spaces PWs

a, 0 ď s ă n ` 1 and show in Section 3 a resemble
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between the classical Paley–Wiener space PWapCq in one variable and the fractional space
PWn

a . In Section 4 we prove a representation theorem for functions in PWs
a that we shall use

in the proof of our sampling theorem, but that we believe is of interest in its own. Section 5 is
devoted to a careful estimate of the sampling constants for the Fock space Fλ when λ varies in
the bounded interval p0, as. In Section 6 we prove our main result and we conclude with some
final remarks and open questions in Section 7.

2. Preliminaries and basic facts

2.1. The Sobolev space 9W s,p and the Fourier transform. We consider the fractional op-
erator ∆s{2 defined following [16, 10] as

∆s{2ϕ “ lim
εÑ0

1

Γpk ´ s
2
q

ż 8

ε

rk´ s
2

´1e´r∆∆kϕdr , (7)

where k ą s{2 is an integer, whose domain is the set of ϕ P LppHnq for which the limit exists

in Lp. Then ∆s{2 is a closed operator on Lp, 1 ă p ă 8 and its domain contains the Schwartz
space S, see [10, Thm. (3.15)]. When 0 ă s ă 2n` 2, the operator ∆s{2 has an inverse given by
convolution with a locally integrable homogeneous function. We denote such convolution opera-
tor by Is. The following result in contained in [10, (1.11), (3.18)]. Recall that the homogeneous

Sobolev spaces 9W s,p is the completion of S with respect to the norm }∆s{2ϕ}Lp .

Proposition 2.1. Let 1 ă p ă 8, 0 ă s ă p2n ` 2q{p and p˚ given by 1
p˚ “ 1

p
´ s

2n`2
. Then,

Is : L
p Ñ Lp˚

is bounded. Therefore, if 1 ă p ă 8, 0 ă s ă p2n ` 2q{p,

9W s,p “
 
f P Lp˚

: ∆s{2f P Lp, }f} 9W s,p :“ }∆s{2f}Lp

(
.

In particular, we emphasize that if f P 9W s,p, then there exists a sequence tϕkuk Ď S such

that ϕk Ñ f in Lp˚
and t∆s{2ϕkuk admits a limit in Lp. The fractional Laplacian ∆s{2f of f is

set by definition to be such a limit.
Our goal now is to extend the definition of the Fourier transform to 9W s,2 when 0 ă s ă n`1.

The differentials of the Bargmann representations, that are defined in (2) , can be computed to
give:

(i) for all λ ‰ 0, dβλpT q “ iλ;

(ii) for λ ą 0, dβλpZjq “ Bwj
, dβλpZjq “ ´λ

2
wj ;

(iii) for λ ă 0, dβλpZjq “ λ
2
wj , and dβλpZjq “ Bwj

;

see [11] or [28]. It is important to recall that, with our choice of normalization of the Fourier
transform, if f, g P L1pHnq, βλpf ˚ gq “ βλpfqβλpgq, so that for any right-invariant vector field
D

βλpDfq “ ´dβλpDqβλpfq . (8)

Since ∆ “ ´ 2
n

řn
j“1pZjZj ` ZjZjq, we obtain that dβλp∆q is the operator on Fλ such that

dβλp∆qeα “ |λ|p1 ` |α|{nqeα. In particular, dβλp∆q is a diagonal operator on Fλ with respect
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to the standard basis teαu. Therefore, from (7) it follows that

dβλp∆s{2qeα “ 1

Γpk ´ s
2

q

ż 8

0

rk´ s
2

´1dβλ
`
e´r∆∆k

˘
eα dr

“ 1

Γpk ´ s
2

q

ż 8

0

rk´ s
2

´1e´rdβλp∆qdβλp∆kqeα dr

“ 1

Γpk ´ s
2

q

ż 8

0

rk´ s
2

´1e´r|λ|p1`|α|{nqq|λ|kp1 ` |α|{nqkeα dr

“
“
|λ|p1 ` |α|{nq

‰s{2
eα . (9)

Lemma 2.2. Let 0 ď s ă n`1. Then, the Fourier transform on Hn defines a bounded operator
β : 9W s,2 Ñ L2

s.

Proof. If ϕ P S, then ϕ,∆s{2ϕ P L2, so that both βλpϕq, βλp∆s{2ϕq P HSpFλq. The identities (8)
and (9) now give that

βλpϕq “ |λ|´s{2Mλβλp∆s{2ϕq, (10)

where Mλ is the bounded operator on Fλ such that Mλpeαq “ p1 ` |α|{nq´s{2eα. Then,

}βpϕq}2
L2
s

“
ż

R˚

}βλpϕq}2HS |λ|n`sdλ

“
ż

R˚

}Mλβλp∆s{2ϕq}2HS |λ|ndλ

ď
ż

R˚

}βλp∆s{2ϕq}2HS |λ|ndλ

“ }ϕ}29W s,2 . �

Following [23] and using the above differentials (i-iii) it is possible to see how the holomorphic-
ity forces some constraints on the support of the Fourier transform. In particular the following
lemma holds, see also [2, Section 2.3] and [5].

Lemma 2.3. Let c P R and set

Uc “
!
ζ “ pζ 1, ζn`1q : Im ζn`1 ą 1

4
|ζ 1|2 ` c

)
.

Let F P HolpUcq, rF “ F ˝ Ψ´1 and set rFhrz, ts “ rF pz, t, hq. If h ą c and rFh P L2pHnq, then
βλp rFhq “ 0 for λ ą 0 and ran

`
βλp rFhq

˘
Ď spante0u.

Remark 2.4. As a consequence of the lemma, if

V “
!
ζ P C

n`1 : |ζ1|2

4
` c´ δ ă Im ζn`1 ă |ζ1|2

4
` c` δ

)

is a neighborhood of bUc, F P HolpVq and rFt P L2pHnq for t P pc ´ δ, c ` δq, then

σλp rFc`hq “ eλhσλp rFcq

for any h P p´δ, δq, see e.g. [2, 22, 20].
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We now recall that the operators i´1T and ∆ admit commuting self-adjoint extensions on
L2pHnq, see [27] or [29, Ch. 2]. If F P HolpVq, where V is a tubular neighborhood of bU , and
rF0 P L2pHnq, then p∆ ` iT q rF0 “ 0, that is, ∆ rF0 “ ´iT rF0. Therefore,

∆s{2 rF0 “ p´iT qs{2 rF0 (11)

for all such F ’s and s ą 0. Hence,

βλp∆s{2 rF0q “ βλpp´iT qs{2 rF0q “ |λ|s{2βλp rF0q . (12)

2.2. Fock spaces, lattices and Weierstrass σ-functions. We now recall some facts on
lattices and the associated Weierstrass σ-functions.

For b ą 0, we let Lb to be the square lattice

Lb “
 
γℓm P C : γℓm “

b
2π
b

pℓ ` imq, pℓ,mq P Z
2
(
, (13)

For such a lattice Lb we consider the Weierstrass σ-function associated to Lb,

σLb
pzq “ z

ź

pℓ,mqPZ2zp0,0q

ˆ
1 ´ z

γℓm

˙
exp

"
z

γℓm
` z2

2γ2ℓm

*
.

We recall a few well-known properties of the the Weierstrass σ-function σLb
for any b ą 0,

see e.g. [31, Ch.1]:

(i) σLb
is an entire function of order 2 and type b

4
that vanishes exactly at the points of Lb;

(ii) for all z P C, |σLb
pzq|e´ b

4
|z|2 is double periodic with periods

a
2π{b and i

a
2π{b and it is

bounded above and below by constants Cb, cb resp., depending only on b times dpz, Lbq,
the euclidean distance of z from the lattice Lb, for all z P C;

(iii) there exists a constant c1
b ą 0 depending only on b, such that for all γℓm P Lb,

|σ1
Lb

pγℓmq|e´ b
4

|γℓm|2 ě c1
b. (14)

We also recall that given the lattice Lb, then for any any f P Fb1
with b1 ă b we have the

decomposition

fpzq “
ÿ

γℓmPLb

fpγℓmq
σ1
Lb

pγℓmq
σLb

pzq
z ´ γℓm

(15)

where the series converges in HolpCq, see e.g. [31, Proposition 4.24].

3. The Plancherel–Pólya inequality

In this section we prove our first results. We begin with a Plancherel–Pólya type inequality
adapted to the Siegel half-space. This result implies in particular that the spaces PWs

a are
complete, for 0 ď s ă n` 1.

3.1. The Plancherel–Pólya inequality. We now prove a Phrangém–Lindelöf type result for
the Siegel half-space. We first need the following modified version of the classical result in the
complex plane.

Lemma 3.1. Let g P HolpCq and suppose that there exist constants c, a,M ą 0 such that:

(i) |gptq| ď M ,
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(ii) for every ε ą 0 there exists Cε ą 0 such that

|gpwq| ď Cεe
pa`εqpc|t|`|u|q,

where w “ t` iu.

Then,

|gpwq| ď Mea|u| .

The classical proof applies also here and we skip the details; see, for instance, [30]. In the
Siegel half-space we have the following variation.

Lemma 3.2. Let F P HolpCn`1q and suppose that there exists constant c, a,M ą 0 such that:

(i) |F|bU pζq| “ | rF0rz, ts| ď M ,
(ii) for every ε ą 0 there exists Cε ą 0 such that

|F pζq| “ | rF pz, t, hq| ď Cεe
pa`εqpc|rz,ts|2`|h|q.

Then, setting h´ “ ´minp0, hq, we have

|F pζq| “ | rF pz, t, hq| ď Meah´ .

Proof. For w “ t` iu P C and for every fixed ζ 1 P C
n we define

gζ1pwq “ F pζ 1, w ` i
4
|ζ 1|2q “ rF pz, t, uq.

Then, gζ1 is entire and from piiq above we get

|gζ1pwq| ď Cεe
pa`εqpc|rz,ts|2`|u|q ď Cεe

pa`εqpc |z|2

4
`c|t|`|u|q

ď C 1
εpζ 1qepa`εqpc|t|`|u|q

where the constant C 1
εpζ 1q depends on the fixed ζ 1 P C

n. Moreover,

|gζ1ptq| “ |F pζ 1, t` i
4
|ζ 1|2q| ď M,

where M is an absolute constant not depending on ζ 1. Lemma 3.1 implies

|gζ1pwq| ď Mea|u| .

Thus, setting w “ ζn`1 ´ i
4
|ζ 1|2 we have h “ ρpζq “ u and

|F pζ 1, ζn`1q| “ |F pζ 1, w ` i
4
|ζ 1|2q| “ |gζ1pwq| ď Mea|h| .

In order to complete the proof, we need to show that we can improve the above inequality when
h ą 0, by showing that in fact |F pζq| ď M when ζ P U . For each ζn`1 fixed we have

sup
ζ1:

|ζ1|2

4
ďIm ζn`1

|F pζ 1, ζn`1q| “ sup
ζ1:

|ζ1|2

4
“Im ζn`1

|F pζ 1, ζn`1q| ď sup
ζPbU

|F pζ 1, ζn`1q| .

Therefore,

sup
ζPU

|F pζq| “ sup
pζ1,ζn`1q: |ζ1|2

4
ďIm ζn`1

|F pζq| ď sup
ζPbU

|F pζ 1, ζn`1q| ď M ,

as we wished to show. l

From this Phragmén–Lindelöf principle we deduce a version of the Plancherel–Pólya inequality

in this setting. For c P R we set Uc “
 
ζ “ pζ 1, ζn`1q : Im ζn`1 ą |ζ1|2

4
` c

(
.
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Proposition 3.3. (Plancherel–Pólya Inequality) Let F P Ea be such that rF0 P LppHnq, 1 ă
p ă 8. Then, for all h P R,

ż

Hn

| rFhrz, ts|p dzdt ď eaph´} rF0}p
LppHnq ,

where pz, t, hq “ Ψpζq and h´ “ ´minp0, hq. In particular, F P HppUcq, the Hardy space on Uc,
for all c P R.

Proof. Let ϕ P C8
c pHnq, 0 ď ϕ ď 1, }ϕ}Lp1 pHnq ď 1, where 1

p
` 1

p1 “ 1, and define

Gpζq “
ż

Hn

rFh

`
rz, tsrw, ss

˘
ϕrw, ss dwds .

Then, if ζ P bU , i.e. Ψpζq “ pz, t, 0q ” rz, ts P Hn,

|Gpζq| ď } rF0}LppHnq}ϕ}Lp1 pHnq ď } rF0}LppHnq .

Moreover, for ζ P C
n`1, using [7] (with a slight abuse of notation) we have

}
`
rz, tsrw, ss, h

˘
}U “

ˇ̌
rz, tsrw, ss

ˇ̌2 ` |h| ď
`
|rz, ts| ` |rw, ss|

˘2 ` |h|
ď 2

`
rz, ts|2 ` |rw, ss|2

˘
` |h| .

Therefore,

|Gpζq| ď Cε

ż

Hn

epa`εqp2rz,ts|2`|h|`2|rw,ss|2q|ϕrw, ss| dwds

ď C 1
εe

pa`εqp2|rz,ts|2`|h|q , (16)

since ϕ has compact support. By Lemma 3.2 we obtain

|Gpζq| ď eah´} rF0}LppHnq ,

that is, ˇ̌
ˇ
ż

Hn

rFh

`
rz, tsrw, ss

˘
ϕrw, ss dwds

ˇ̌
ˇ ď eah´} rF0}LppHnq ,

for every ϕ P C8
c pHnq, }ϕ}Lp1 pHnq ď 1. Therefore,

} rFh}LppHnq “ } rFhpr¨, ¨srw, ssq}LppHnq ď eah´} rF0}LppHnq .

The conclusions follow. l

Proof of Theorem 1.4. We begin with the case s “ 0. Let F P PWa. By Proposition 3.3 it

follows that } rFh}L2pHnq ď eah´} rF0}L2pHnq and F P H2pUcq for all c P R. In particular, arguing
as in Remark 2.4 we obtain that

βλp rFhq “ eλhβλp rF0q
for all h P R. Thus, thanks to the Paley–Wiener characterization of H2, we have σλp rF0q “ 0 for
λ ą 0. By Plancherel’s formula it then follows that

} rFh}2L2pHnq “
ż 0

´8
}βλp rFhq}2HS|λ|n dλ “

ż 0

´8
e2λh}βλp rF0q}2HS|λ|n dλ ,
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whereas, by Proposition 3.3

} rFh}2L2pHnq ď e2ah´

ż 0

´8
}βλp rF0q}2HS|λ|n dλ .

Therefore, for all h P R,
ż 0

´8
e2λh}βλp rF0q}2HS|λ|n dλ ď e2ah´

ż 0

´8
}βλp rF0q}2HS|λ|n dλ ,

and, by letting h Ñ ´8, this easily implies that suppβλp rF0q Ď r´a, 0q.
To prove the converse direction, given τ P H2

`
r´a, 0q

˘
, arguing as [2, Lemma 3.1], we see

that for every λ ă 0,
ˇ̌
tr
`
τpλqβλrz, ts˚

˘ˇ̌
ď }τpλq}HS. Therefore,

ż 0

´a

eλh
ˇ̌
tr
`
τpλqβλrz, ts˚

˘ˇ̌
|λ|n dλ ď

ż 0

´a

eλh}τpλq}HS|λ|n dλ

ď }τ}L2

ˆż 0

´a

e2λh|λ|n dλ
˙1{2

ď C}τ}L2eah´ ,

This shows that the integral in (5) converges absolutely. Let F be given by (5). The same
argument as in [2, Lemma 3.1] now shows that F is entire, hence in Ea by the previous estimate.

Moreover, F is such that βλp rF0q “ τpλq P L2, so that by Plancherel’s formula rF0 P L2pHnq, that
is, F P PWa.

We now consider the case s ą 0. If F P PWs
a, then by Lemma 2.2 βλpĂF0q is well defined and

βpĂF0q P L2
s. Let ϕ be a Schwartz function on Hn such that βλpϕq “ ϕ0pλqx¨, e0ye0 for ϕ0 P C8

having support in r´N,´1{N s, for some N ą 0.

We define rGhrz, ts “ p rFh ˚ ϕqrz, ts, so that

Gpζq “
ż

Hn

rFh

`
rz, tsrw, ss´1

˘
ϕrw, ss dwds .

We claim that G P Ea. Indeed, observe that βλp rG0q “ βλp rF0qβλpϕq “ ϕ0pλqβλp rF0q, has compact

support contained in r´N,´1{N s. Since βp rF0q P L2
s, it follows that βp rG0q P L2, which in

turns gives rG0 P L2pHnq. The first part of the theorem now shows that G is entire function of
exponential type at most N . However, since F P Ea, arguing as in (16) we also have

|Gpζq| ď
ż

Hn

| rFh

`
rz, tsrw, ss´1

˘
| |ϕrw, ss| dwds

ď Cepa`εqp2|rz,ts|2`|h|q .

Since rG0 P L2pHnq, by the previous case s “ 0, G P PWa and supppβλp rG0qq Ď r´a, 0q. By the

choice of ϕ, this easily implies that also supppβλp rF0qq Ď r´a, 0q, and that ran βλp rF0q Ď spante0u.
By Lemma 2.2, in particular by (10), we have

βλ
`
∆s{2 rF0

˘
eα “ |λ|s{2r1 ` |α|{nss{2βλp rF0qeα .
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Then,

}βλ
`
∆s{2 rF0

˘
}2HS “

ÿ

α

ˇ̌
xβλ

`
∆s{2 rF0

˘
eα, eαyFλ

ˇ̌2 “ |λ|s}βλp rF0q}2HS .

Hence,

}F }2PWs
a

“
ż

Hn

|∆s{2 rF0rz, ts|2 dzdt

“
ż 0

´8
}βλp∆s{2 rF0q}2HS|λ|n dλ

“
ż 0

´8
}βλp rF0q}2HS|λ|n`s dλ .

In particular, βλp rF0q P H2
s, with equality of norms.

Conversely, let τ P H2
s

`
r´a, 0q

˘
and F be given by (5). We have that

ż 0

´a

eλh
ˇ̌
tr
`
τpλqβλrz, ts˚

˘ˇ̌
|λ|n dλ ď

ż 0

´a

eλh}τpλq}HS|λ|n dλ

ď }τ}L2
s

ˆż 0

´a

e2λh|λ|n´s dλ

˙1{2

ď C}τ}L2
s
eah´ , (17)

where C ă `8 if and only if s ă n ` 1. In this case we can conclude that F P Ea. Now, we

claim that βλp∆s{2 rF0q “ |λ|s{2τpλq, so that

}∆s{2 rF0}2L2pHnq “
ż 0

´a

}βλp∆s{2 rF0q}2HS|λ|n dλ

“
ż 0

´a

}τpλq}2HS|λ|n`s dλ

“ }τ}2
L2
s
,

as we wished to show. It remains to prove the claim. It is easy to construct fields of operators
ηε such that ηε P L2p´a` ε,´εq be smooth in λ and ηε Ñ τ in H2

sp´a, 0q as ε Ñ 0. Then, the
function

Gεpζq “ rGε,hrz, ts :“ 1

p2πqn`1

ż ´ε

´a

eλh tr
`
ηεpλqβλrz, ts˚

˘
|λ|ndλ

is in SpHnq. Hence, using (12) and (4), we have that

βλp∆s{2p rGε,0qq “ |λ|s{2βλp rGε,0q “ |λ|s{2ηεpλq.

Since ηε Ñ τ in H2
sp´a, 0q, |λ|s{2ηε Ñ |λ|s{2τ in H2p´a, 0q, so that ∆s{2p rGε,0q converges in

L2pHnq to a function G such that βλpGq “ |λ|s{2τpλq. Moreover, since 9W 2,s embeds continuously

in L2˚
, we also have that rGε,0 is a Cauchy in L2˚

and its limit is rF0. Then, by definition,

∆s{2 rF0 “ G and the claim follows. l
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As a consequence of the Paley–Wiener theorems we obtain that the space PWs
a, 0 ď s ă n`1,

is a reproducing kernel Hilbert space and we explicitly compute its kernel. We set

Qpω, ζq “ 1
2i

pωn`1 ´ ζn`1q ´ 1
4
ω1 ¨ ζ 1

,

so that, by writing ζ “
`
z, t ` iph ` |z|2

4
q
˘
, ω “

`
w, u ` ipk ` |w|2

4
q
˘
,

rQpz, t, h;w, u, kq “ 1
2i

´
u´ t` 1

2
Impw ¨ z̄q ` i

`
h` k ` 1

4
|w ´ z|2

˘¯
.

Corollary 3.4. Let s P r0, n ` 1q. Then, the space PWs
a is a reproducing kernel Hilbert space

with reproducing kernel

Kpω, ζq “ Kζpωq “ 1

p2πqn`1

ż 0

´a

e2iλQpω,ζq|λ|n´s dλ , (18)

and βλ
`ĆKζ,0

˘
“ χr´a,0qpλqeλh|λ|´sP0βλrz, ts, where P0 denotes the orthogonal projection onto

the subspace generated by e0.

Proof. The Plancherel–Pólya Inequality, Proposition 3.3, implies that PWs
a continuously embeds

into HolpCn`1q. Hence, the completeness of PWs
a and the boundedness of the point-evaluation

functionals follow.
The explicit computation of the kernel follows from a standard argument. Let τ denote the

element of H2
spr´a, 0qq and define

F pζq “ rFhrz, ts “ 1

p2πqn`1

ż 0

´a

eλh tr
`
τpλqβλrz, ts˚

˘
|λ|ndλ

“ 1

p2πqn`1

ż 0

´a

eλh tr
`
τpλqP0βλrz, ts˚

˘
|λ|ndλ.

The last identity holds since ran τF pλq Ď spante0u. We also have

F pζq “ rFhrz, ts “ xF,KζyPWs
a

“ 1

p2πqn`1

ż 0

´a

tr
`
τpλqβλpp rKζq0q˚

˘
|λ|n`s dλ.

Since the above identities hold for all τ P H2
spr´a, 0qq it follows that

βλpp rKζq0q “ eλhχr´a,0qpλq|λ|´sP0βλrz, ts.
From the inversion formula (5), and arguing as in the proof of [2, Corollary 4.3] to compute
tr
`
P0βλrz, tsβλrw, ss˚

˘
, we obtain that

Kζpωq “ 1

p2πqn`1

ż 0

´a

eλph`kq tr
`
P0βλrz, tsβλrw, ss˚

˘
|λ|n´sdλ

“ 1

p2πqn`1

ż 0

´a

eλph`k` 1

4
|w´z|2`ipt´s´ 1

2
Imw¨z̄qq |λ|n´sdλ

and the conclusion follows. �

Remark 3.5. In particular, in the case s “ n the reproducing kernel Kpω, ζq of PWn
a takes a

more familiar expression, that involves the sinc function, sinc z “ sin z
z

. Namely,

Kpω, ζq “ p2πq´n´1ae´iaQpω,ζq sinc
`
aQpω, ζq

˘
.
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We also observe that

}Kζ}2PWs
a

“ 1

p2πqn`1

ż 0

´a

e2hλ} |λ|´sP0βλrz, ts}2HS |λ|n`sdλ “ 1

p2πqn`1

ż 0

´a

e2hλ |λ|n´sdλ

«s,a e
2ah´ .

In particular, }Kζ}PWs
a

«s,a 1 for ζ P bU .

4. A representation theorem for PWs
a

In this section we prove a representation theorem for functions in PWs
a, for s P r0, n` 1q. We

denote by F the 1-dimensional Euclidean Fourier transform, that is, for f P L1pRq,

Ffpξq “
ż

R

fpxqeixξ dx.

We also write Ff “ pf . Recall that F extends to a surjective isomorphism F : L2pRq Ñ L2pRq
where

}f}2L2pRq “ 1

2π
}Ff}2L2pRq

and the inverse F´1 is defined as

F
´1fpxq “ 1

2π

ż

R

fpξqe´iξx dξ.

We recall that if f P L2 and pf has compact support, then f extends to an entire function F and

F
`
F p¨ ` iyq

˘
pλq “ pfpλqeyλ. (19)

Theorem 4.1. Let F P PWs
a, 0 ď s ă n` 1. For ζ 1 P C

n fixed, define fζ1pκq “ F pζ 1, κq, where
κ “ x` iy P C. Then there exists φ : Cn ˆR Ñ C such that the function F´1φpζ 1, ¨qpxq extends
to an entire function in the variable κ and it holds that

F pζ 1, ζn`1q “ F
´1φpζ 1, ¨qpζn`1q , (20)

Moreover, the function φ satisfies the following:

(i) φp¨, λq P Fλ for a.e. λ P r´a, 0q;
(ii) }φp¨, λq}Fλ P L2

`
r´a, 0q, |λ|s´ndλ

˘
;

(iii) }F }2PWs
a

“ p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ |λ|s´n dλ.

If s “ n we also have

(iv) φpζ 1, ¨q P L2pr´a, 0qq for all ζ 1 P C
n; in particular F pζ 1, ¨q belongs to the one-dimensional

Paley–Wiener space PWapCq for all ζ 1 P C
n.

Proof. Observe that from Theorem 1.4 it follows that PWa X PWs
a is dense in both spaces.

Then, if F P PWa X PWs
a, the computations that follow are all justified. By Theorem 1.4 we
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have

F pζ 1, ζn`1q “ rFhrz, ts “ 1

p2πqn`1

ż 0

´a

eλh tr
`
βλp rF0qβλrz, ts˚

˘
|λ|n dλ

“ 1

2π

ż 0

´a

´ |λ|
2π

¯n

tr
`
βλp rF0qβλrz, 0s˚

˘
e´iλpt`ihq dλ ,

“ 1

2π

ż 0

´a

´ |λ|
2π

¯n

tr
`
βλp rF0qβλrζ 1, 0s˚

˘
e´λ

4
|ζ1|2e´iλζn`1 dλ .

Therefore, setting

φpζ 1, λq “
´ |λ|
2π

¯n

tr
`
βλp rF0qβλrζ 1, 0s˚

˘
e´λ

4
|ζ1|2χr´a,0qpλq ,

it follows that F pζ 1, ζn`1q “ F´1φpζ 1, ¨qpζn`1q, that is, (20) holds. From (2) we deduce that
φp¨, λq is entire, and by (20), using (19) and (11), it follows that

}F }2PWs
a

“
ż

Hn

|∆s{2 rF0rz, ts|2 dzdt

“
ż

Hn

| |T |s{2 rF0rz, ts|2 dzdt

“
ż

Cn

ż

R

| |T |s{2F pz, t ` i
4

|z|2q|2 dt dz

“ 1

2π

ż

Cn

ż

R

|F
`
|T |s{2F pz, ¨ ` i

4
|z|2q

˘
pλq|2 dλ dz

“ 1

2π

ż 0

´a

|λ|s
ż

Cn

ˇ̌
φpz, λq

ˇ̌2
e´ |λ|

2
|z|2 dz dλ

“ p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ |λ|s´n dλ.

The conclusions (i-iii) now follow. About (iv), if P0 denotes the orthogonal projection onto the
subspace generated by e0, we have

|φpζ 1, λq|2 “ |
`
|λ|{p2πq

˘n
tr
`
βλp rF0qβλrζ 1, 0s˚

˘
e´λ

4
|ζ1|2χr´a,0qpλq|2

“ |
`
|λ|{p2πq

˘n
tr
`
βλp rF0qP0βλrζ 1, 0s˚

˘
e´λ

4
|ζ1|2χr´a,0qpλq|2

ď }βλp rF0q}2HS}P0βλrζ 1, 0s}2HSe
´λ

2
|ζ1|2|

`
|λ|{p2πq

˘n
χr´a,0qpλq|2

ď e
a
2

|ζ1|2}βλp rF0q}2HS|
`
|λ|{p2πq

˘n
χr´a,0qpλq|2

where we used λ ă 0 and the identity }P0βλrζ 1, 0s}2HS “ 1. Since F P PWn
a

ż 0

´a

}βλp rF0q}2HS

`
|λ|{p2πq

˘2n
dλ ă 8,

and this completes the proof. l
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As a consequence, we have the following. For 0 ď s ă n` 1 we set

Υs “
!
φ : Cn ˆ r´a, 0q Ñ C : piqφp¨, λq P F

λ for a.e. λ P r´a, 0q,

piiq }φ}2Υ :“ p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ |λ|s´n dλ ă 8

)
.

Corollary 4.2. For 0 ď s ă n` 1, the mapping

U : PW
s
a Q F ÞÑ F

`
F|Im ζn`1“0

˘
P Υs

is a unitary map (where F denotes the Euclidean Fourier transform in the real part of the
variable ζn`1); in particular

}F }2PWs
a

“ p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ |λ|s´n dλ.

Proof. We only need to prove that the mapping is onto. Given φ P Υs, setting F pζ 1, ζn`1q “
F´1φpζ 1, ¨qpζn`1q it is easy to see that F P PWs

a and the conclusion follows. �

5. Sampling in the Fock space

In this section we prove a result, Theorem 5.3, that it may be considered as folklore. We
consider the 1-dimensional case and make explicit the dependence on λ of the sampling constant
in the case of square lattices for the Fock space FλpCq. However, we believe that the result is
not completely obvious and it is key for our Theorem 1.6. We recall that a square lattice Lb in
C is sampling for FapCq if and only if b ą a ([24, 25]) and that the behavior of the sampling
constants as b Ñ a` are obtained in [3].

Lemma 5.1. Let a ą 0 be given, let b ą a and let Lb be the square lattice (6). Let f P Fλ with
0 ă λ ď a. Then, for any η P Lb, the function

F λ
η pzq :“ e

λ
2
zηfpz ´ ηq

belongs to the Fock space Fb1
with a ă b1 ă b.

Proof. We have
ż

C

|F λ
η pzq|2e´ b1

2
|z|2 dz “

ż

C

|eλ
2

pz`ηqηfpzq|2e´ b1

2
|z`η|2 dz

“ e
λ
2

|η|2
ż

C

|fpzq|2e´ b1´λ
2

|z`η|2e´λ
2

|z|2 dz

ď e
λ
2

|η|2
ż

C

|fpzq|2e´λ
2

|z|2 dz

and the conclusion follows. �

Lemma 5.2. Let a ą 0 be given, let b ą a and let Lb be the square lattice (6). For 0 ă λ ď a

define the positive measure

µλLb
:“

ÿ

γPLb

e´λ
2

|γ|2δγ
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where δγ is the unit point measure at γ and consider the integral operator

f ÞÑ Tf “
ż

C

Ktp¨, ηqfpηq dµλLb
pηq

with positive kernel

Ktpγ, ηq “ e
λ
4

p|γ|2`|η|2qe´ t´λ
4

|γ`η|2 , a ă t ă b.

Then, the operator T extends to a bounded operator T : L2pLb, µ
λ
Lb

q Ñ L2pLb, µ
λ
Lb

q with operator
norm uniformly bounded for 0 ă λ ď a.

Proof. For γ P Lb we have

Tfpγq “
ÿ

ηPLb

Ktpγ, ηqfpηqe´λ
2

|η|2 .

By Schur’s test [12, Appendix A.2] it is enough to find ϕ ą 0 and C ą 0 such that
ÿ

ηPLb

Ktpγ, ηqϕpηqe´λ
2

|η|2 ď Cϕpγq.

This would also guarantee that the operator norm of T is bounded by C. Choosing ϕpγq “ e
λ
4

|γ|2

the conclusion follows with a constant C independent of λ as we wished to show. �

Theorem 5.3. Let a ą 0 be given, let b ą a and let Lb be the square lattice (6). Then there
exist constants A,B ą 0 such that for all 0 ă λ ď a and all f P FλpCq we have

Aλ
ÿ

γPLb

|fpγq|2e´λ
2

|γ|2 ď }f}2
Fλ ď Bλ

ÿ

γPLb

|fpγq|2e´λ
2

|γ|2 .

Proof. Let 0 ă λ ď a and let f P Fλ be given. Let RLb
be the fundamental region of the square

lattice Lb and let RLb,η be the translated region RLb
` η where η P Lb. Then, C “ Ť

ηPLb
RLλ,η

and the intersections of the RLλ,η’s have Lebesgue measure zero. Therefore,

}f}2
Fλ “ λ

2π

ÿ

ηPLb

ż

RLb,η

|fpzq|2e´λ
2

|z|2 dz

“ λ

2π

ÿ

ηPLb

ż

RLb

|fpz ´ ηq|2e´λ
2

|z´η|2 dz

“ λ

2π

ÿ

ηPLb

e´λ
2

|η|2
ż

RLb

|eλ
2
zηfpz ´ ηq|2e´λ

2
|z|2 dz. (21)

In particular the factor e´λ
2

|z|2 is bounded above and below on the region RLb
with positive

constants uniformly on z and λ. Hence, we conclude that

}f}2
Fλ « λ

ÿ

ηPLb

e´λ
2

|η|2
ż

RLb

|eλ
2
zηfpz ´ ηq|2 dz, (22)

that is, the two quantities are comparable up to some positive constants which do not depend
on λ.

Now, setting F λ
η pzq “ e

λ
2
zηfpz ´ ηq, Lemma 5.1 guarantees the decomposition

F λ
η pzq “

ÿ

γPLb

F λ
η pγq

σ1
Lb

pγq
σLb

pzq
z ´ γ

.
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Since
ˇ̌
ˇσLb

pzq

z´γ

ˇ̌
ˇ ď C for a constant C which does not depend on z P RLb

and γ P Lb, we have

}f}2
Fλ ď Cλ

ÿ

ηPLb

e´λ
2

|η|2
ż

RLb

|eλ
2
zηfpz ´ ηq|2 dz

ď Cλ
ÿ

ηPLb

e´λ
2

|η|2
ż

RLb

ˆ ÿ

γPLb

ˇ̌
ˇ
F λ
η pγq

σ1
Lb

pγq
ˇ̌
ˇ
˙2

dz

ď C
2πλ

b

ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

ˇ̌
F λ
η pγqe´ t

4
|γ|2

ˇ̌˙2

where a ă t ă b and we used the estimate (14). Now,

2πλ

b

ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

ˇ̌
F λ
η pγqe´ t

4
|γ|2

ˇ̌˙2

“
ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

ˇ̌
e

λ
2

|η|2`λ
2
γη´ t

4
|γ`η|2fpγq

ˇ̌˙2

“ 2πλ

b

ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

Ktpγ, ηq|fpγq|e´λ
2

|γ|2
˙2

,

where we have set

Ktpγ, ηq “ e
λ
4

p|γ|2`|η|2qqe´ t´λ
4

|γ`η|2 .

Thus, from Lemma 5.2 we get

ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

Ktpγ, ηq|fpγq|e´λ
2

|γ|2
˙2

ď C
ÿ

ηPLb

|fpηq|2e´λ
2

|η|2

where C does not depend on λ. In conclusion, we have

}f}2
Fλ ď Bλ

ÿ

ηPLb

e´λ
2

|η|2
ˆ ÿ

γPLb

ˇ̌
F λ
η pγqe´ t

4
|γ|2

ˇ̌˙2

ď Bλ
ÿ

ηPLb

|fpηq|2e´λ
2

|η|2

with B independent of λ as we wished to show.
Next, denoting by Dpγ, rq the disk centered at γ P C with radius r ą 0, we show that for all

f P HolpCq and d ą 0 we have

|fpγq|2e´d|γ|2 ď d

π
`
1 ´ e´dr2

˘
ż

Dpγ,rq
|fpwq|2e´d|w|2 dw . (23)

For, by the mean value formula we have that

|fpγq|2 ď 1

2π

ż 2π

0

|fpγ ` reiθq|2 dθ ,
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so that,
ż

Dpγ,rq
|fpwq|2e´d|w|2 dw “

ż

Dp0,rq
|fpw ` γq|2e´d|w`γ|2 dw

“
ż

Dp0,rq

ˇ̌
fpw ` γqe´dwγ

ˇ̌2
e´dp|w|2`|γ|2q dw

“
ż r

0

e´dps2`|γ|2q

ż 2π

0

ˇ̌
fpseiθ ` γqe´dseiθγ

ˇ̌2
dθsds

ě 2π|fpγq|2e´d|γ|2
ż r

0

e´ds2 sds

“ π

d

`
1 ´ e´dr2

˘
|fpγq|2e´d|γ|2 ,

and (23) follows. Finally, given the lattice Lb, we let 0 ă r ă inft|γ1 ´ γ2| : γ1, γ2 P Lbu. Then,
the disks tDpγ, rq : γ P Lbu are disjoint so that, by (23) we have

λ
ÿ

γPLb

|fpγq|2e´λ
2

|γ|2 ď λ
`
1 ´ e´λ

2
r2
˘
ÿ

γPLb

λ

2π

ż

Dpγ,rq
|fpwq|2e´λ

2
|w|2 dw

ď sup
λPp0,as

λ
`
1 ´ e´λ

2
r2
˘}f}2

Fλ,

and the conclusion follows with A “
ˆ
supλPp0,as

λ`
1´e´ λ

2
r2
˘
˙´1

. l

The following result now follows easily.

Corollary 5.4. For j “ 1, . . . , n let a ą 0 be given, let bj ą a and set Lpb1,...,bnq “ Lb1 ˆ¨ ¨ ¨ˆLbn.

Then, there exist constants A,B ą 0 such that for all λ P p0, as and f P FλpCnq we have

Aλn
ÿ

γPLpb1,...,bnq

|fpγq|2e´λ
2

|γ|2 ď }f}2
Fλ ď Bλn

ÿ

γPLpb1,...,bnq

|fpγq|2e´λ
2

|γ|2 .

We remark that the main point in Theorem 5.3 and Corollary 5.4 is to estimate the dependence
of the constants as λ approaches 0. In fact, if we restrict the parameter λ to vary in a compact
interval rδ, as for some 0 ă δ ă a ă b, then we can replace the square lattice Lb by a general
sampling sequence for Fa. In [24] and [25] it was shown that a sequence Z Ď C is a sampling
sequence for Fa if and only if Z is the union of finitely many separated sequences and Z contains
a separated subsequence Z 1 such that D´pZ 1q ą a{p2πq; see also [31]. Here

D´pZ 1q “ lim
rÑ8

inf
wPC

#
`
Dpw, rq X Z 1

˘

πr2
,

and Z 1 is said to be separated if

inf
w,w1PZ 1

|w ´ w1| ě cZ 1 ą 0 .

In fact, the following result holds.

Proposition 5.5. Let 0 ă δ ă a be given. For j “ 1, . . . , n let Zj be a sampling sequence for
FapCq and let Z “ Zp1,...,nq :“ Z1 ˆ ¨ ¨ ¨ ˆZn and let b :“ 2πminj“1,...,nD´pZjq ą a. Then, there
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exist constants A,B ą 0 depending only on δ, b and the separation constants of Zj , j “ 1, . . . , n,

such that for all λ P rδ, as and f P FλpCnq we have

Aλn
ÿ

γPZ

|fpγq|2e´λ
2

|γ|2 ď }f}2
Fλ ď Bλn

ÿ

γPZ

|fpγq|2e´λ
2

|γ|2 .

Proof. This follows from the arguments in [24, 25] (see also [31, Chapter4]). Notice that we may
assume that n “ 1 and then that Z is separated. Then, Z is a sampling sequence for FλpCq, for
any λ P rδ, as with constants A1, B1 ą 0 that depend only on the separation constant of Z and
on D´pZq such that

A1
ÿ

γPZ

|fpγq|2e´λ
2

|γ|2 ď }f}2
Fλ ď B1

ÿ

γPZ

|fpγq|2e´λ
2

|γ|2 .

The conclusion now follows since we are assuming λ P rδ, as. l

6. Sampling in PWa

Before proving Theorem 1.6, we study a few properties of PWn
a . In particular we present

some elements and produce an explicit orthonormal basis of such space. We also remark that
because of the Fourier transform characterization of PWn

a the Fock spaces Fλ that will appear

in this section are defined for negative λ in r´a, 0q and that, by definition, Fλ “ F |λ|.
We use both the notation Fg and pg to denote the 1-dimensional Euclidean Fourier transform

of g P L2pRq. Let g P L2pRq such that supppg Ď r´a, 0s, we set Gpζ 1, ζn`1q “ gpζn`1q, where
we denote by g its entire extension to C (notice that G is independent of ζ 1 P C

n). Then we
compute

}G}2PWn
a

“
ż

Hn

ˇ̌
∆n{2ĂG0rz, ts

ˇ̌2
dzdt “

ż

Cn

ż

R

ˇ̌
Bn{2
t G

`
z, t` i

4
|ζ 1|2

˘ˇ̌2
dzdt

“ 1

2π

ż

Cn

ż 0

´a

|λ|n
ˇ̌
pFGqpz, λq

ˇ̌2
e

λ
2

|z|2 dλdz “ 1

2π

ż

Cn

ż 0

´a

|λ|n|pgpλq|2eλ
2

|z|2 dλdz

“ p2πqn´1

ż 0

´a

|pgpλq|2 dλ .

Hence, G P PWn
a and }G}2

PWn
a

“ p2πqn}g}2
L2pRq. More generally, given a multiindex α, we set

Gαpζ 1, ζn`1q “ 1?
2|α|α!

pζ 1qαB|α|{2
t gpζn`1q .

Lemma 6.1. The following properties hold.

(i) For every α we have

}Gα}2PWn
a

“ p2πqn}g}2L2pRq “ p2πqn
ÿ

kPZ

ˇ̌
g
`
π
a
k
˘ˇ̌2
.

(ii) Let gℓ P L2pRq be such that suppppgℓq Ď r´a, 0s, tpgℓ : ℓ P Zu is an orthonormal basis of
L2p´a, 0q and set

Gα,ℓpζ 1, ζn`1q “ 1?
2|α|α!

pζ 1qαB|α|{2
t gℓpζn`1q.

Then
 
Gα,ℓ : α P N

n, ℓ P Z
(
is an orthonormal basis of PWn

a .
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Proof. We observe that for any r ą 0, pBtqrg “ F´1
`
|λ|rpg

˘
P PWa. Then, by (19) again,

}Gα}2PWn
a

“
ż

Cn

ż

R

ˇ̌
Bpn`|α|q{2
t Gα

`
z, t ` i

4
|z|2

˘ˇ̌2
dzdt

“ 1

2π

1

2|α|α!

ż

Cn

|zα|2
ż 0

´a

|λ|n`|α||pgpλq|2eλ
2

|z|2 dλdz

“ p2πqn´1

ż 0

´a

|pgpλq|2 dλ “ p2πqn}g}2L2pRq .

Conclusion (i) now follows from the classical Whittaker–Kotelnikov–Shannon theorem. In order
to prove (ii) we argue in a similar fashion:

xGα, GβyPWn
a

“
ż

Hn

∆n{2ČpGαq0rz, ts∆n{2ČpGβq0rz, ts dzdt

“
ż

Cn

ż

R

ˇ̌
Bpn`|α|q{2
t Gα

`
z, t ` i

4
|z|2

˘
Bpn`|β|q{2
t Gβ

`
z, t` i

4
|z|2

˘
dzdt

“ 1a
2|α|`|β|α!β!

ż

Cn

zαzβ
ż

R

Bpn`|α|q{2
t gℓ

`
t` i

4
|z|2

˘
Bpn`|β|q{2
t gm

`
t` i

4
|z|2

˘
dtdz

“ 1

2π

1a
2|α|`|β|α!β!

ż

Cn

zαzβ
ż 0

´a

|λ|n`p|α|`|β|q{2pgℓpλqpgmpλqeλ
2

|z|2 dλdz

“ δα,βxgℓ, gmyL2pRq .

Thus, tGα,ℓu is an orthonormal system. We show that it also complete. Let F P PWn
a be

orthogonal to tGα,ℓ : α P N
n, k P Zu. Using the same computation as above we see that

xF, Gα,ℓyPWn
a

“ 1

2π

1?
2|α|α!

ż

Cn

zα
ż 0

´a

|λ|n`|α|{2pFF qpz, λqpgℓpλqeλ
2

|z|2 dλdz

“ 1

2π

1?
2|α|α!

ż 0

´a

|λ|n`|α|{2

ż

Cn

pFF qpz, λqzαeλ
2

|z|2 dz pgℓpλq dλ

“ p2πqn´1

ż 0

´a

pFF qα,λpλqpgℓpλq dλ,

where we denote by pFF qα,λpλq the Fourier coefficient of FF p¨, λq in Fλ w.r.t. the basis
teα,λu, that is, eα,λ “ zα{}zα}Fλ . Since F is orthogonal to tGα,ℓu for all ℓ P Z, it follows that
pFF qα,λpλq “ 0 λ-a.e., and then by Proposition 4.2 that F “ 0. l

We now prove a necessary condition for certain sequences in C
n`1. The sequence we consider

are more general than the ones in Definition 1.5, but, again in Heisenberg coordinates, are still
Cartesian product of sequences in C

n and R, resp. Precisely, for a ą 0 and a separated sequence
Z 1 in C

n given, let

Z “
 
γ P C

n`1 : γ “ pγ1, π
a
k ` i

4
|γ1|2q : γ P Z 1, k P Z

(
. (24)

Theorem 6.2. Let a ą 0 be fixed and let Z be as in (24). If Z is a sampling sequence for PWa,
then Z 1 is a sampling sequence for FapCnq.
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Proof. Let ε ą 0, f P Fa´εpCnq and gε P L2pRq, }gε}L2 “ 1, and such that suppppgεq Ď
r´a,´a ` εs. Note that f P Fλ for all λ ě a ´ ε, and that λ ÞÑ }f}Fλ is continuous in
ra ´ ε,8q. Also, gε is in PWapCq.

Let

Fεpζ 1, ζn`1q :“ fpζ 1qgεpζn`1q.
Using Plancherel theorem and (19), we compute

}Fε}2PWa
“
ż

Hn

ˇ̌
Bn{2
t Fεpz, t ` i

4
|z|2q

ˇ̌2
dzdt

“ 1

2π

ż

Cn

|fpzq|2
ż

R

|λ|n|pgεpλq|2eλ
2

|z|2 dλdz

“ 1

2π

ż ´a`ε

´a

|pgεpλq|2|λ|n
ż

Cn

|fpzq|2e´ |λ|
2

|z|2 dzdλ

“ p2πqn´1

ż ´a`ε

´a

|pgεpλq|2}f}2
F |λ| dλ.

Now, in addition, suppose also that |pgεpλq|2 Ñ δa in the vague topology as ε Ñ 0` (e.g. we may
take pgε “ ε´1{2χr´a,´a`εs). Then, the right hand side above tends to p2πqn´1}f}2

Fa as ε Ñ 0`

(since λ ÞÑ }f}2
F |λ| is continuous). It follows that

lim
εÑ0`

}Fε}2PWa
“ p2πqn´1}f}2Fa. (25)

Suppose now Z as in (24) is a sampling sequence for PWa with sampling constants A,B ą 0.
Then, by also applying Whittaker–Kotelnikov–Shannon theorem to gε, we have

}Fε}2PWa
ď B

ÿ

γPZ

|Fεpγq|2 “ B
ÿ

γ1PZ 1

|fpγ1q|2
ÿ

kPZ

|gεpπ
a
k ` i

4
|γ1|2q|2

“ B
ÿ

γ1PZ 1

|fpγ1q|2
ż

R

|gεpt` i
4
|γ1|2q|2 dt

“ B

2π

ÿ

γ1PZ 1

|fpγ1q|2
ż ´a`ε

´a

|pgεpλq|2eλ
2

|γ1|2 dλ.

Therefore, using the fact that }pgε}L2 “ 1 and that Z 1 is separated, we obtain

}Fε}2PWa
ď B

2π

ÿ

γ1PZ 1

|fpγ1q|2e´ a´ε
2

|γ1|2 ď C}f}2
Fa´ε,

where the last inequality follows from the fact that Z 1 is separated. Analogously,

ÿ

γ1PZ 1

|fpγ1q|2e´ a
2

|γ1|2 ď
ÿ

γ1PZ 1

|fpγ1q|2
ż ´a`ε

´a

|pgεpλq|2eλ
2

|γ1|2 dλ

“ 2π
ÿ

γPZ

|Fεpγq|2

ď 2π

A
}Fε}2PWa

.
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Letting ε Ñ 0` and using (25) we have

A

p2πqn
ÿ

γ1PZ 1

|fpγ1q|2e´ a
2

|γ1|2 ď }f}2Fa ď B

p2πqn
ÿ

γ1PZ 1

|fpγ1q|2e´ a
2

|γ1|2 (26)

for all f P Fa´εpCnq. We now claim that
Ť

εą0F
a´εpCnq is contained and dense in FapCnq.

Once the claim is proven, from (26) it follows that Z 1 is a sampling sequence for FapCnq and
the desired conclusion will follow. We observe that:

‚ for 0 ă r ă 1, }fp?
r¨q}Far “ }f}Fa and }fp?

r¨q}Fa “ }f}Fa{r ď }f}2
Fa;

‚ limrÑ1´ }fp?
r¨q}Fa “ }f}Fa;

‚ fp?
r¨q Ñ f pointwise as r Ñ 1´.

Notice that the last two conditions imply that fp?
r¨q Ñ f also in Fa-norm. The claim is then

proven, so is the theorem. l

Proof of Theorem 1.6. For F P PWn
a , let φpζ 1, λq “ FF pζ 1, λq. By Theorem 4.1

}F }2PWn
a

“ p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ dλ .

Given the sequence of points Γ as in the statement, we write Γ1 “ Lpb1,...,bnq. By Corollary 5.4
and denoting by A,B ą 0 the constants therein, we have

}F }2PWn
a

ď Bp2πqn´1

ż 0

´a

|λ|n
ÿ

γ1PΓ1

|φpγ1, λq|2e´ |λ|
2

|γ1|2 dλ

“ Bp2πqn´1
ÿ

γ1PΓ1

ż 0

´a

|λ|n|φpγ1, λq|2e´ |λ|
2

|γ1|2 dλ

“ Bp2πqn
ÿ

γ1PΓ1

ż

R

|Bn{2
t F pγ1, t` i

4
|γ1|2q|2 dt

“ Bp2πqn
ÿ

γ1PΓ1

ÿ

ℓPZ

|Bn{2
t F pγ1, π

a
ℓ` i

4
|γ1|2q|2 ,

where the last identity follows from (iv) in Theorem 4.1, the fact that PWapCq is closed under
(fractional) differentiation and the classical Whittaker–Kotelnikov–Shannon Theorem.

Conversely, by the same sequences of equalities, using Corollary 5.4 again,

Ap2πqn
ÿ

γ1PΓ1

ÿ

ℓPZ

|Bn{2
t F pγ1, π

a
ℓ` i

4
|γ1|2q|2 “ Ap2πqn´1

ż 0

´a

ÿ

γ1PΓ1

|λ|n|φpγ1, λq|2e´ |λ|
2

|γ1|2 dλ

ď p2πqn´1

ż 0

´a

}φp¨, λq}2
Fλ dλ

“ }F }2PWn
a
.

This proves the sufficient condition in the case of PWn
a .

Finally, let G P PWa be given. Consider rG0 and for ε ą 0 define

Ψεrz, ts “ 1

p2πqn`1

ż ´ε

´a

tr
`
βλp rG0qβλrz, ts˚

˘
|λ|n{2 dλ .
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By (4) it follows that Ψε P L2pHnq and that

βλpΨεq “ χr´a,´εspλq|λ|´n{2βλp rG0q and βλp∆n{2Ψεq “ αχr´a,´εspλqβλp rG0q
for some constant α, |α| “ 1. Since F rG0 P H2

`
r´a,´εq

˘
, Theorem 1.4 implies that Ψε extends

to a function Fε P PWa X PWn
a . Moreover, the sequence t∆n{2Ψεu is a Cauchy sequence in

L2pHnq, that is, tFεu is a Cauchy sequence in PWn
a . Let F be its limit. It is clear that rF0 “ In

rG0,

where In is the inverse of ∆n{2 (see Proposition 2.1), that is, ∆n{2 rF0 “ rG0. Therefore, by the
first part of the theorem,

A
ÿ

γPΓ

|Gpγq|2 “ A
ÿ

γPΓ

|∆n{2
t F pγq|2 “ A

ÿ

γPΓ

|Bn{2
t F pγ1q|2 ď }F }2PWn

a
“ }G}2PWa

“ }F }2PWn
a

ď B
ÿ

γPΓ

|Bn{2
t F pγq|2 “ B

ÿ

γPΓ

|∆n{2
t F pγq|2 “ B

ÿ

γPΓ

|Gpγq|2.

This proves the sufficient condition for PWa.
In order to prove the necessary condition, we have to show that if bj0 ď a for a j0 P t1, . . . , nu,

Γ fails to be sampling. By the previous Theorem 6.2, if Γ is sampling for PWa, then Lpb1,...,bnq is
sampling for FapCnq. Since Lpb1,...,bnq is the cartesian product of the square lattices Lb1 , . . . , Lbn ,
Lpb1,...,bnq is sampling for FapCnq if and only if Lbj is sampling for FapCq, for j “ 1, . . . , n. But
this happens if and only if bj ą a for j “ 1, . . . , n. This proves the theorem. l

As a consequence we have

Corollary 6.3. The space PWn
a admits a frame of reproducing kernels, namely tKγ : γ P Γu,

where Γ is a lattice as in Theorem 1.6.

7. Final remarks and open questions

We believe that the spaces we introduced are worth investigating and arise quite naturally in
our multi-dimensional setting.

The present work leaves some open questions. First of all, it should be proved a more general
version of Theorem 1.6 by combining the characterization of sampling sequences for the 1-
dimensional Paley–Wiener space PWa and some sufficient conditions for sampling sequences for
the Fock space FpCnq as in [15].

Moreover, in this paper we essentially dealt with the Hilbert case and we left the case p ‰ 2
for future studies.

This analysis is based on the growth condition on entire function given by the p-integrability of
their restriction to submanifold bU , that is the boundary of the Siegel domain U . It is certainly
possibile to consider also the growth condition given by the p-integrability of restrictions to
Shilov boundary of Siegel domains of type II. In order to extend this theory, it is likely that the
results and techniques developed in [5, 6, 4] will play an important role.

Finally, our formulas and results suggest that the space PWn
a might have a privileged role, as

for the case of the Drury–Arveson space, see [1] for a study of such space on the Siegel domain
U .
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