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A Fourier expansion is a special 
case of signal decomposition that 
decomposes a signal into oscilla

tory components. In this method, the 
signal is represented as a linear combi
nation of trigonometric or exponential 
basis functions. The expansion coeffi
cients (or weights) are then computed 
by correlating the signal with the cor
responding basis functions [1], [2]. The 
process of computing the coefficients 
is known as Fourier analysis. In real 
applications, we are interested in using 
a few terms of a Fourier expansion, 
or it may be impossible to use all of 
the terms to approximate the signal. 
Therefore, a truncated Fourier expan
sion is used instead [3]. However, 
when a truncated Fourier expansion 
is used to approximate a signal with 
a jump discontinuity, an overshoot/
undershoot at the discontinuity occurs, 
which is known as the Gibbs phenom-
enon. The correct size of the overshoot 
and the undershoot of a truncated 
Fourier expansion near the point of 
discontinuity was computed by Gibbs; 
the size of the overshoot/undershoot is 
approximately 9% of the magnitude of 
the jump [4].

This article demonstrates that the 
size of the overshoot depends mainly 
on the approach used for computing 
the Fourier analysis. It shows that, 
in the traditional approach, the Fou
rier analysis is computed based on the 

minimization of the mean square error 
(MSE) between the signal and its Fou
rier expansion (i.e., the -2, norm mini
mization of the model error). Then it 
presents a new method to compute the 
Fourier analysis. In the new approach, 
the Fourier analysis (expansion coeffi
cients) is obtained by minimizing the 
mean absolute error (MAE) between 
the reconstructed signal and the origi
nal signal. Since the new approach is 
defined based on the -1, norm minimi
zation, we call it 1,  Fourier analysis. 
Similarly, the traditional approach is 
called 2,  Fourier analysis. 

Using 1,  Fourier analysis, we 
observed that the size of the over
shoot/undershoot for a truncated Fou
rier expansion of signals with jump 
discontinuities is decreased to 4% 
of the magnitude of the jump. The 
effectiveness of the proposed 1,  Fou
rier analysis, in terms of reduction of 
the Gibbs phenomenon in a truncated 
Fourier series expansion and filtering 
of the impulsive noise from the signals 
and images, is showcased using numer
ical examples.

Relevance
In signal analysis, one often encounters 
Fourier analysis. It is one of the most 
important tools in mathematics, com
puter science, and signal processing 
and is used where one needs to solve 
a partial differential equation [5], com
press music in MP3 players [6], com
press digital images in JPEG form [7], 
or perform digital spectral analysis 

[8] and filter design [9], to name just 
a few applications. The method con
sists of two steps: 1) decomposing the 
signal into oscillatory components by 
expanding it based on a linear combi
nation of a set of trigonometric or ex 
ponential functions with fundamental 
frequencies and 2) computing the Fou
rier analysis or finding the expansion 
coefficients. It was first introduced by 
Baron Jean Baptiste Joseph Fourier in 
1807 to derive equations of heat prop
agation using some series of trigono
metric functions [10]. The original 
derivation by Fourier was proposed for 
representing a continuoustime (CT) 
signal. Today, because of the power 
of digital computers, Fourier analysis 
is mainly presented in the context of 
discretetime signals (sequences) and 
systems. The most important trans
form that performs Fourier analysis for 
discrete signals is the discrete Fourier 
transform (DFT). The formulations of 
discrete Fourier analysis (or the DFT) 
and their CT counterparts (continuous 
Fourier series) are quite similar with 
some differences. In 1965, Cooley and 
Tukey jointly developed an imple
mentation of DFT for highspeed 
computers, which is known as the fast 
Fourier transform [11].

In this article, we concern our
selves mainly with the DFT, which is 
of great practical importance in the 
analysis of discrete signals and other 
data. We study the Gibbs phenom
enon in truncated Fourier expansions 
of functions with jump discontinuities 
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and propose a new approach to com
pute a DFT (Fourier coefficients) that 
reduces the Gibbs effect. The method 
is based on the replacement of an -2,

norm with an -1, norm. It minimizes 
the MAE between the signal and its 
Fourier expansion. The replacement 
of the -2, norm with the -1, norm is a 
treatment that has been studied for two 
decades in sparse solutions [12], [13] 
and compressed sensing [14]. Especial
ly in many applications in compressed 
sensing, the measurement matrix is a 
Fourier matrix [15]. Compressive sens
ing shows that a compressed signal 
can be reconstructed from much fewer 
incoherent measurements. Its aim is 
to represent a sparse signal without 
going through the intermediate stage of 
acquiring all of the samples. It is also 
related to the problem of reconstruct
ing a signal from incomplete frequency 
information [16]. 

The -1, norm has also been attracting 
an increasing amount of attention for 
the interpolation and approximation of 
functions and irregular geometric data. 
In [17], the authors show that the Gibbs 
phenomenon can be reduced by using 

1,  spline fits. In [18], some theoreti
cal results are provided to explain the 
potential of such methods in avoiding 
Gibbs phenomena. While none of the 
previous algorithms uses the -1, norm 
to identify the expansion coefficients, 
in this article, the process of computing 
the Fourier analysis is defined based on 
the -1, norm minimization of the error 
between the reconstructed signal and 
the original signal. The main problem 
is that there is no analytic formula for 
its solution. Therefore, a majorization–
minimization (MM) approach [19] is 
used to solve the problem, which results 
in a linear iterative algorithm.

Prerequisites
This article requires a basic knowledge of 
signals and systems, engineering mathe
matics, and optimization problems.

The DFT
The inverse DFT states that a discrete 
signal can be represented as a linear 
combination of trigonometric/exponen
tial functions with fundamental fre

quencies. That is, a given signal [ ],x n  
, , ,n N0 1 1ZN f! = -" , can be rep

resented as [9], [20]
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where ,i 1= -  and the expansion coef
ficients ck  are given by
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Some authors include the factor /N1  
in the definition of [ ]x n  and not in the 
definition of Fourier analysis [21], [22], 
[23]. Equation (2) is simply obtained by 
multiplying both sides of (1) by ,e /( )i nj N2r  
taking the sum of the result from 0 to 

,N 1-  and simplifying it while consid
ering the following relation:
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Note that when x is real valued, its 
Fourier expansion is usually written in 
terms of sines and cosines:
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where the coefficients ka  and kb  are 
computed as
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Note that ,ck  ,ka  and kb  are related 
as /( ) .c i 2k k ka b= -  In real applica
tions, we are interested in using a few 
terms of a Fourier expansion, or it may 
be impossible to use all of the terms 
to approximate the signal. Therefore, 
a truncated Fourier expansion is used 
instead. In the following section, the 
problem of representing the signals with 
a truncated Fourier expansion and its 
limitations are discussed.

Problem statement
Let us consider the problem of approxi
mating [ ]x n  by a truncated Fourier 
expansion [ ],x nM  defined by
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In a truncated Fourier expansion, 
the number of expansion terms is less 
than the length of the signal. When (6) 
is used to approximate a signal with a 
jump discontinuity, an overshoot at the 
discontinuity occurs. This phenom
enon was observed by Michelson when 
he was using his mechanical machine 
(called a harmonic analyzer) to pro
duce graphs of truncated trigonomet
ric series with terms of up to 80 sines 
and cosines. He published his report 
[24], and the problem was explained 
by Gibbs [25], [26] in 1899; thus it is 
known as the Gibbs phenomenon. 
However, the history of studying the 
overshoot and undershoot in the neigh
borhood of discontinuities of the sums 
of Fourier series goes back to 1848, 
when Wilbraham published an article 
on this topic for the first time [27]. The 
Gibbs effect is also seen in other sig
nal decomposition approaches, such as 
wavelet expansion and spline and cubic 
spline interpolation [17], [18], [28]. 

As an illustration of the Gibbs phe
nomenon, we consider a step function 
with 10 s duration sampled at 0.0098 s 
(i.e., ,N 1 024= ) and its Fourier expan
sion using the truncated model (6). The 
step function and its truncated Fourier 
expansion with the first M modes, i.e., 

[ ],x nM  for , , ,M 8 32 64=  and 128, are 
shown via the blue and red lines in Fig
ure 1. The first plot includes only the first 
eight modes in the Fourier expansion, 
while the last plot includes up to 128 
modes. The more modes we include, the 
more the curve looks like a step function. 
However, it introduces strange wiggles 
(overshoots) near the discontinuity. As the 
number of modes grows, the wiggles are 
pushed increasingly closer to the disconti
nuity, in the sense that the amplitude in a 
given region decreases as the number of 
modes, M, increases. So, in some sense, 
the wiggles go away as M approaches 
N. However, the overshoot unfortunately 
never goes away, but it remains roughly 
the same size (about 9% of the magni
tude of the jump). It is provable that this 
9% result holds for a discontinuity in any 
function, not just a step function [4]. So, 
the question arises as to whether this 9% 
overshoot is due to the Fourier expansion 
or to the approach used for computing the 
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expansion coefficients. If it is the latter 
case, is it possible to decrease the Gibbs 
effect by employing a different compu
tation approach? This article shows that 
the 9% overshoot of the Fourier expan
sion reported in the literature is due to the 
approach used for computing the Fourier 
analysis, and it can be decreased if we 
employ the proper approach to compute 
the coefficients.

Solution
As will become clear in the following 
discussion, the Fourier analysis (expan
sion coefficients) computed by (2) min
imizes the MSE between the signal and 
its Fourier expansion. The MSE corre
sponds to the -2, norm. It also gives the 
maximum likelihood (ML) estimate 
of the coefficients, under the assump
tion of a white Gaussian distribution 
for the modeling error. The problem 
is that this assumption does not hold 
in practice. Specifically, for the pre
vious example, the estimation error 
confirms a nonGaussian distribution. 
We will see that, for the truncated Fou
rier expansion of the step function, the 
Gibbs phenomenon can be reduced if 
the Fourier coefficients are computed 
by minimizing the MAE between the 
signal and its model.

MSE-based Fourier analysis 
computation
Equation (6) can be written in the fol
lowing form:
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An important property for the ex 
pansion model is its ability in signal 
approximation; that is, the error signal 
should be within an acceptable range. 
Let us consider that the parameters are 
found by minimizing the power of the 
residual error signal, [ ]:e n
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Then the minimization of (9) with 
respect to the coefficients ck  leads to 
the following solution:

 c xopt
1U= -  (10)

where RM M!U #  and x RM!  are, res 
pectively, matrices and vectors with the 
following entries: 
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Since the Fourier basis functions 
[ ]nkz  form an orthonormal basis, the 

matrix U  becomes an identity matrix, 
and the coefficients are found as

 ,c xopt =  (12)

which is exactly the same as (2) when 
we set .M N=  This means that the 
Fourier analysis obtained by (2) mini
mizes the MSE between the signal and 
its expansion (i.e., the -2, norm of the 
error). Note that (10) is also the ML 
estimate of the coefficient vector ,c  
under the assumption of a white Gauss
ian distribution for the modeling error 

[ ].e n  In the following, we compute the 
Fourier analysis by minimizing the 
MAE between the signal and its Fourier 
expansion (i.e., the -1, norm minimiza
tion of the error).

MAE-based Fourier analysis 
computation
An alternative method is to estimate the 
expansion coefficients using the follow
ing cost function:
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which substitutes a mean of absolute 
errors for the mean of square errors 
used in the traditional Fourier analysis. 
Using the proposed Fourier analysis, the 
truncated Fourier expansion can approx
imate a function with a jump discontinu
ity with a more robust behavior against 
the amplitude changes at discontinuous 
points. We call this 1,  Fourier analysis 
or MAE Fourier analysis. Similarly, the 
traditional Fourier analysis is called 2,  
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FIGURE 1. The result of the truncated Fourier expansion when the coefficients are computed using 2,  Fourier analysis ( [ ]x nM  for , , ,M 8 32 64=  and 
128 ) in approximating a step function with , .N 1 024=  (a) ,M 8=  (b) ,M 32=  (c) ,M 64=  and (d) .M 812=  
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Fourier analysis or MSE Fourier analy
sis as the coefficients are computed by 
minimizing the MSE. The optimization 
problem (13) is convex, but there is no 
analytic formula for its solution (i.e., it 
is difficult to minimize because the last 
term is nondifferentiable). However, it 
can be solved numerically in a linear 
computational complexity. 

In this article, optimization problem 
(13) is solved using the MM approach 
[19]. The key idea of the MM approach 
is to convert the intractable original 
problem into a simpler one that can be 
solved. Specifically, the original cost 
function is approximated by an itera
tive tractable surrogate function. Then 
a solution is found by minimizing the 
surrogate function with nonincreasing 
cost. The obtained solution converges 
to a stationary point of the original opti
mization problem. To solve problem 
(13), we use a majorizer for the absolute 
value. That is,
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The minimization of (15) with res
pect to the coefficients ck  leads to the 
following solution:
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where R( )r M M!W #  and x R( )r M!u  are, 
respectively, matrices and vectors with 
the following entries: 
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In this study, we consider the ini
tial condition [ ]x n( )

M
0
=  [ ]x n l+  where 

l  is a nonzero constant value. In this 
case, the traditional approach (i.e., 2,  
Fourier analysis) is a special case of 1,  
Fourier analysis when l  and the num
ber of iterations, r, are both set to one 
( ).r 1l = =  The proposed approach ( 1,  
Fourier analysis) was used to compute 
the coefficients of the truncated Fou
rier expansion of the step function in 
the previous example. 

Figure 2 illustrates the performance 
of the truncated Fourier series with the 
first eight modes. The solid blue and red 
curves in Figure 2 denote the theoretical 
step function (i.e., [ ])x n  and its Fourier 

expansion using 2,  Fourier analysis (i.e., 
[ ]),x n8  respectively, and are the same as 

those in Figure 1. The truncated Fou
rier expansion with the expansion coef
ficients obtained by 1,  Fourier analysis 
after , , ,r 3 5 10 50= " , iterations (i.e., 

[ ])x n( )r
8  is plotted in Figure 2 with a black 

solid line. The overshoot of the truncated 
Fourier expansion is reduced when the 
expansion coefficients are computed 
using 1,  Fourier analysis. Specifically, 
the overshoot is decreased as the number 
of iterations is increased. The cost func
tion evolution of the MM approach is 
illustrated in Figure 3. It is seen that the 
algorithm converges well within a few 
iterations. In Figure 4(a) and (b), we illus
trate the performance of the truncated 
Fourier series with the first 128 modes. 
The coefficients are computed by 1,  
Fourier analysis after three and 10 itera
tions, respectively. The results show that 
the overshoot can be decreased to 4% of 
the magnitude of the jump. 

Since the matrices ( )rW  in (16) are 
nonorthogonal, the 1,  Fourier analysis 
involves matrix inversion, which has 
a complexity of ( )O M MN3 + . There 
are three special spaces in convex 
optimization: 1) the -1, norm, which 
mostly replaces the -0, norm as the 

-0, norm is not convex and not well 
defined, 2)  the celebrated -2, norm 
that everybody knows and uses, and 
3)  the -,3 norm. Other norm spaces 
mostly produce performances that 
are in between those of these spac
es. We also employed the -,3 norm 
minimization to compute the Fou
rier analysis. The truncated  Fourier 
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FIGURE 2. The result of the truncated Fourier expansion of M 8=  terms when the coefficients are computed using 1,  Fourier analysis after a certain 
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expansion of the step function when 
the coefficients are computed using ,3  
Fourier analysis is shown via the red 
color in Figure 5. The -8,  and -4, norm 
minimizations are also employed to 
compute the Fourier analysis. The trun
cated Fourier expansion using 8,  and 4,  
Fourier analyses are respectively shown 
via yellow and purple. As expected, 
these two norms produce a performance 
in between those of -1,  and -,3 norm 
minimization. In other words, the size 
of the overshoot/undershoot for trun
cated Fourier expansion decreases when 
we decrease the norm of minimization 
in a Fourier analysis computation.

Applications
The new Fourier analysis can find var
ious applications in signal  processing. 
As a proof of concept, we focus on 
two examples.

Reduction of the Gibbs phenomenon 
in image filtering
Signal decompositionbased meth
ods, such as the Fourier transform, 
discrete cosine transform (DCT), and 
the wavelet transform, are common 
approaches to image filtering. In this 
section, we consider the DCT for low
pass filtering of an image. For a 2D 
signal [ , ],x n n1 2  , , , ,n N0 1 11 1f= -  

, , , ,n N0 1 12 2f= -  one possible 2D  

inverse discrete cosine transform (iDCT) 
is defined as
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where (19), listed in the box at the bot
tom of the page. 

When we represent an image by 
an iDCT, the Gibbs phenomenon is 
the most common image artifact that 
arises from the truncated iDCT of the 

image. For instance, consider the origi
nal image shown in Figure 6(a). We 
contaminated it with saltandpepper 
noise, as shown in Figure 6(b). Saltand
pepper noise is an impulse noise that is 
sometimes seen on images. This noise 
can be caused by sharp and sudden  
disturbances in the image signal. We 
employed a truncated iDCT to reconstruct 
the original image, and the result is shown 
in Figure 6(c). The truncated iDCT is 
not a good model for reconstructing the  
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original image. The noise is not eliminated 
by the model, and the Gibbs effect is clear 
in the output. The weak performance of 
the truncated iDCT model is due to the 

approach used for the DCT computation. 
To show this, we computed the DCT using 
the 1,  optimization approach. The results 
of the truncated iDCT using the 1,  DCT 

after a certain iteration ( , , )r 2 5 15=  
are shown in Figure 7. It is seen that the 
reconstructed image becomes close to the 
original image as the number of iterations 
increases. In other words, the Gibbs effect 
is reduced when 1,  optimization is used to 
compute the coefficients (i.e., the DCT). 
Therefore, the Gibbs effect is mainly due 
to the DCT computation approach but not 
the iDCT model. It is decreased in low
pass filtering of images while maintain
ing the sharpedged features.

Audio filtering
In this section, we compare the trun
cated Fourier expansion (when the 
coefficients are computed using 2,  or 

1,  Fourier analysis) and a zerophase 
Butterworth filter for denoising audio 
signals corrupted by randomvalued 
impulse noise. For this purpose, we 
consider “guitartune.wav,” the standard 
sample tune that ships with MATLAB. 
The signal contains 661,500 samples, 
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which we split into subsignals, each 
containing 10,000 samples. Therefore, 
we have 66 signals. The signals were 
contaminated with impulse noise. For 
this purpose, we produced signals vary
ing the power of noise. The signalto
noise ratio (SNR) was modulated from 
–5 dB to 10 dB. The truncated Fou
rier expansion (using 2,  or 1,  Fourier 
analysis) and a thirdorder zerophase 
Butterworth filter were then used to 
reconstruct the desired signals from 
the noisy signals. The cutoff frequency 
was set to 800 Hz. As an example, the 
first 10,000 samples of “guitartune.
wav” and its noisy signal with SNR = 
5 dB are shown in Figure 8(a) and (b), 
respectively. The results of audio signal 
filtering with these three methods are 
illustrated in Figure 8(c)–(e). For evalu
ating the performance of the methods, 
we used the average square relative 
error (SRE) and the average absolute 
relative error (ARE) of the estimation 
accuracy, defined by
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where x and xt  are the original and 
the estimated signal, respectively. The 
results of the reconstruction procedures 

using these metrics are reported in Fig
ure 9(a) and (b). The SRE and ARE for 
the truncated Fourier expansion when 
the coefficients are computed using 

1,  Fourier analysis are less than those 
of the zerophase Butterworth filter 
and truncated Fourier expansion when 
the coefficients are computed using 2,  
Fourier analysis, which means that the 
proposed 1,  Fourier expansion outper
forms the other two methods.

What we have learned
In a Fourier decomposition, the signal 
is represented as a linear combination 
of trigonometric or exponential basis 
functions, and the expansion weights 
(or coefficients) are computed such that 
they best fit the signal. In the traditional 
approach, the Fourier analysis (expan
sion coefficient) is computed based on 
the minimization of the MSE between 
the signal and its expansion (i.e., -2,

norm minimization of the error). In 
this approach, when a truncated Fou
rier expansion is used to approximate 
a signal with a jump discontinuity, an 
overshoot/undershoot at the discontinu
ity occurs, which is known as the Gibbs 
phenomenon. Using 2,  Fourier analysis, 
the size of the overshoot/undershoot is 
approximately 9% of the magnitude of 
the jump. We have learned that the size 
of the overshoot/undershoot is mainly 
due to the approach used for comput
ing the Fourier analysis. The Fourier 
analysis can be computed using other 

-p, norm minimizations. The size of 
the overshoot/undershoot changes if the 
Fourier analysis is computed based on 
the -p, norm minimization of the model 
error. For ,p 1$  other -p, norm minimi
zations mostly produce performances 
in between those of the -1,  and -,3
norm minimizations.

Some future directions are summa
rized as follows:

 ■ Although different -p, norm optimi
zation approaches ( )p 1$  were used 
to compute the Fourier analysis, and 

1,  Fourier analysis is the best choice 
for reducing the size of overshoot/
undershoot in the truncated Fourier 
expansion of the step function, there 
are some improvements that can be 
done in the future.

 ■ The extension of the proposed com
puting approach to p,  Fourier analy
sis for p0 11#  is interesting. For 
instance, it would be interesting to 
see what the result would be by 
using -0, norm minimization.

 ■ The extension of the proposed 
method to compute the expansion 
coefficients of other signal decom
positionbased methods, such as the 
wavelet transform, polynomial inter
polation, and spline interpolation, is 
another possibility.

 ■ Finally, 1,  Fourier analysis can be used 
to improve the accuracy of the Fourier 
expansion at the cost of increasing the 
computational complexity. Improving 
the computational complexity of the 
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proposed approach can be considered 
as a topic of future work.
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