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Abstract. We consider the minimization property of a Gagliardo-Slobodeckij seminorm which
can be seen as the fractional counterpart of the classical problem of functions of least gradient and
which is related to the minimization of the nonlocal perimeter functional.

We discuss continuity properties for this kind of problem. In particular, we show that, under
natural structural assumptions, the minimizers are bounded and continuous in the interior of the
ambient domain (and, in fact, also continuous up to the boundary under some mild additional
hypothesis).

We show that these results are also essentially optimal, since in general the minimizer is not
necessarily continuous across the boundary.

1. Introduction

The most intensively studied topic in the calculus of variations is probably the minimization of
a functional in a suitable Lp-type space. In this line of research, the case p = 1 is customarily
“exceptional”, due to the peculiar functional properties of L1-type spaces.

A framework of special interest is that provided by the “functions of least gradient”, i.e. by
the functions u minimizing the total variation of the vector-valued measure ∇u. This setting is
important for at least two reasons: on the one hand, it provides the appropriate L1-type functional
framework for Dirichlet energies by formulating the question in the bounded variation sense; on
the other hand, it relates the problem to another classical one, namely the theory of parametric
minimal surfaces (the connection arising from to the coarea formula). See in particular [18–21] for
classical results on functions of least gradient and their connections with minimal surfaces.

The recent literature has also considered the fractional counterpart of this type of problems, in
the setting of a suitable minimization of a Gagliardo-Slobodeckij seminorm, see in particular [3,4].
These problems are relevant also in view of their connections with the nonlocal minimal surfaces
introduced by Caffarelli, Roquejoffre, and Savin in [7]: indeed, as established in [4], a function is a
minimizer for the fractional Gagliardo-Slobodeckij seminorm of W s,1-type (with s ∈ (0, 1)) if and
only if its level sets are minimizers for the corresponding fractional perimeter.

The goal of this article is to continue the investigation of the minimizers of the W s,1-type semi-
norm and prove (or disprove) their continuity and check if they satisfy some comparison principle.

In the classical case, these results were obtained in [20, 21]. The fractional framework is how-
ever structurally different, since calibration methods are at the moment not available, and the
comparison principle for fractional minimal surfaces is a delicate issue which has been established
only very recently (see [17]). Besides, fractional minimal surfaces are highly sensitive to their
data “at infinity” in terms of their “boundary stickiness” features (see [5, 13–16]) and this special
characteristic also influences the type of assumptions required at the level of minimization of the
Gagliardo-Slobodeckij seminorm.

The mathematical setting in which we work is the following. Given s ∈ (0, 1), let Ω ⊂ Rn be a
bounded open set with Lipschitz boundary and define

Ws,1(Ω) :=
{
u : Rn → R s.t. u|Ω ∈ W s,1(Ω)

}
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and, for φ : CΩ → R,

Ws,1
φ (Ω) :=

{
u : Rn → R s.t. u ∈ Ws,1(Ω), u = φ in CΩ

}
.

Here above and in what follows, we use the notation CΩ to denote the complement of Ω, namely CΩ :=
Rn \ Ω. Also, for every r > 0, we set

Ωr := {x ∈ Rn s.t. dist(x,Ω) < r}.

We also denote by Q(Ω) := R2n \ (CΩ)2.
Our main object of interest here is the set of minimizers in Ws,1(Ω), according to the following

terminology:

Definition 1.1. We say that u ∈ Ws,1(Ω) is an s-minimal function in Ω if∫∫
Q(Ω)

(
|u(x)− u(y)| − |v(x)− v(y)|

) dx dy

|x− y|n+s
⩽ 0, (1.1)

for any competitor v ∈ Ws,1(Ω) such that u = v almost everywhere in CΩ.

In this framework, our first result states that s-minimal functions are bounded and continuous:

Theorem 1.2. There exists Θ = Θ(n, s) > 1 such that the following statement holds true.
If Ω ⊂ Rn is a bounded open set with Lipschitz boundary such that

the set ΩD \ Ω is connected, (1.2)

for some D > Θdiam(Ω), and if φ : CΩ → R is such that

φ ∈ C(ΩD \ Ω), (1.3)

then any s-minimal function u ∈ Ws,1
φ (Ω) belongs to C(Ω) ∩ L∞(Ω).

The continuity up to the boundary of the domain is also established separately, according to the
following result:

Theorem 1.3. Let Ω ⊂ Rn be a bounded open set with boundary of class C2 and u be an s-minimal
function in Ω.

If u|Ω ∈ C(Ω) ∩ L∞(Ω) and u = φ almost everywhere in CΩ, with φ : CΩ → R such that φ ∈
C(Ωδ \ Ω) for some δ > 0, then u|Ω can be extended to a function ū ∈ C(Ω).

Gathering together Theorems 1.2 and 1.3, one obtains:

Corollary 1.4. There exists Θ = Θ(n, s) > 1 such that the following statement holds true.
If Ω ⊂ Rn is a bounded open set with C2 boundary such that (1.2) holds true, and if φ : CΩ → R

is such that (1.3) holds true, then any s-minimal function u ∈ Ws,1
φ (Ω) belongs to C(Ω). More

precisely, u|Ω ∈ C(Ω) can be extended to a function ū ∈ C(Ω).

We also stress that the connectedness assumption in (1.2) is not merely technical and cannot be
removed from Theorem 1.2, as the next result points out:

Theorem 1.5. There exist a bounded domain Ω with Lipschitz boundary and s1 ∈ (0, 1) such that,
for all s ∈ [s1, 1), there exists an s-minimal function which is not continuous in Ω.

A more delicate issue, also in view of stickiness results which appear to be typical for nonlocal
objects, is the continuity of s-minimal functions across the boundary. We exhibit some positive
results in Propositions 4.1 and 4.2, however we stress that discontinuities across the boundary may
arise. In particular, we have:
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Theorem 1.6. Let
Ω :=

{
(x, y) ∈ R2 s.t. (x+ 1)2 + y2 < 1

}
and let φ : CΩ → R be such that φ ∈ Cc(CΩ), supp φ ⊂ B1 \ Ω and φ(0, 0) = 1.

Then, there exists some s̃ ∈ (0, 1) such that, for all s ∈ (0, s̃), any s-minimal function us ∈
Ws,1

φ (Ω) is not continuous across the boundary.

We also present a comparison principle between maximum/minimum solutions:

Theorem 1.7. There exists Θ = Θ(n, s) > 1 such that the following statement holds true.
If Ω ⊂ Rn is a bounded open set with Lipschitz boundary such that (1.2) holds true and if

φ1, φ2 : CΩ → R satisfy (1.3) and are such that

φ1 ⩾ φ2,

then
u1 ⩾ u2 and u1 ⩾ u2,

where ui and ui, with i ∈ {1, 2}, are the maximum, respectively the minimum, s-minimal functions
with respect to the exterior data φi.

The rest of this paper is organized as follows. In Section 2 we collect some notation, basic
definitions and preliminary results that will be used throughout the paper.

Section 3 contains the proofs of the continuity statements in Theorems 1.2 and 1.3, while Section 4
is devoted to examples of continuity and lack of continuity across the boundary and to the proof
of Theorem 1.6.

The necessity of the connectedness assumption (1.2) in Theorem 1.2 is discussed in Section 5,
together with the example constructed in Theorem 1.5.

Section 6 is devoted to the comparison statement of Theorem 1.7.
The paper concludes with Appendices A and B, in which we discuss technical details pertaining

to Theorem 1.2 in the first appendix and Theorem 1.6 in the latter.

2. Definitions and preliminaries

We use, along this paper, the following notations for measure theoretic interior, exterior and
boundary. Given a measurable set E ⊂ Rn, we define its measure theoretic boundary as

∂−E := {x ∈ Rn s.t. 0 < |E ∩Br(x)| < |Br(x)| for every r > 0}.

This is the topological boundary of the set E(1) of points of density 1 of E, i.e.

E(1) :=

{
x ∈ Rn s.t. lim

r→0

|E ∩Br(x)|
|Br(x)|

= 1

}
.

We recall that |E∆E(1)| = 0 by the Lebesgue Differentiation Theorem.
The measure theoretic interior and exterior of E are defined respectively as

Eint := {x ∈ Rn s.t. |E ∩Br(x)| = |Br(x)| for some r > 0}
and

Eext := {x ∈ Rn s.t. |E ∩Br(x)| = 0 for some r > 0}.
These are open sets and Eint is the topological interior of E(1). Denote also

cl(E) = Eint ∪ ∂−E

as the measure theoretic closure of the set E.

Regarding the Definition 1.1, we point out that an s-minimal function u ∈ Ws,1(Ω) is well
defined without a priori conditions on the exterior data (and this is due to a fractional Hardy
inequality, see [4]). In [4, Theorem 1.5], we proved the existence of an s-minimal function whenever
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the “nonlocal tail” of the exterior data in a large enough neighborhood of Ω is summable in Ω. To
be more precise, there exists Θ > 1 such that, whenever

∥Tails(φ,ΩΘdiam(Ω) \ Ω; ·)∥L1(Ω) :=

∫
Ω

[ ∫
ΩΘdiam(Ω)\Ω

|φ(y)|
|x− y|n+s

dy

]
dx < +∞, (2.1)

then there exists an s-minimal function u ∈ Ws,1
φ (Ω). In particular, if φ ∈ L∞(ΩΘd \Ω), then (2.1)

holds true.
If (2.1) stands and we consider the energy functional

E(u) := 1

2

∫∫
Q(Ω)

|u(x)− u(y)|
|x− y|n+s

dx dy, (2.2)

we see that E(u) is finite for all u ∈ Ws,1
φ (Ω). According to [4, Lemma 2.1], we have that u is an

s-minimal function if and only if u is a minimizer of E in Ω, i.e.

E(u) ⩽ E(v), for all v ∈ Ws,1
φ (Ω).

Furthermore, in [4], we discussed the connection between s-minimal functions and nonlocal min-
imal surfaces. Nonlocal minimal surfaces were introduced in [7] as objects mimimizing a nonlocal
perimeter. More precisely, given a fractional parameter s ∈ (0, 1), the s-fractional perimeter of a
measurable set E ⊂ Rn in an open set Ω ⊂ Rn is defined as

Pers(E,Ω) :=
1

2

∫∫
Q(Ω)

|χE(x)− χE(y)|
|x− y|n+s

dx dy

= Ls(E ∩ Ω,Ω \ E) + Ls(E ∩ Ω, CE \ Ω) + Ls(Ω \ E,E \ Ω),
(2.3)

where the interaction Ls of two measurable sets A and B ⊂ Rn such that |A∆B| = 0 is given by

Ls(A,B) :=

∫
A

∫
B

dx dy

|x− y|n+s
.

When Ω = Rn, we simply have that Pers(E,Rn) = 1
2 [χE ]W s,1(Rn).

We say that E is an s-minimal set for the fractional perimeter in Ω (and ∂E is a nonlocal minimal
surface) if Pers(E,Ω) < +∞ and

Pers(E,Ω) ⩽ Pers(F,Ω)

for all F ⊂ Rn such that F \ Ω = E \ Ω. In this context, [4, Theorem 1.3] gives that a function is
s-minimal if and only if all of its level sets are s-minimal sets.

We also recall that, as pointed out in [7], nonlocal minimal surfaces satisfy a fractional mean
curvature equation, that is, if E is s-minimal for the fractional perimeter in Ω, then, for every x ∈
(∂E) ∩ Ω,

Hs[E](x) = 0,

in the sense given by

Hs[E](x) = lim
ρ→0

Hρ
s [E](x), Hρ

s [E](x) =

∫
Rn\Bρ(x)

χRn\E(y)− χE(y)

|x− y|n+s
dx. (2.4)

3. Continuity up to the boundary and proofs of Theorems 1.2 and 1.3

In this section, we establish the continuity results stated in Theorems 1.2 and 1.3.
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Proof of Theorem 1.2. By [4, Theorem 4.8], there exists an s-minimal function u ∈ Ws,1
φ (Ω). Also,

from [4, formula (4.33) and Theorem 4.4] we have that u ∈ L∞(Ω) and

ess sup
Ω

u ⩽ sup
ΩΘd\Ω

φ and ess inf
Ω

u ⩾ inf
ΩΘd\Ω

φ. (3.1)

As customary, by u being continuous we mean that there exists a function ũ ∈ C(Ω) such that u = ũ
almost everywhere in Ω. This is equivalent to having

ℓ−(x0) = ℓ+(x0) for every x0 ∈ Ω,

where

ℓ−(x0) := ess liminf
x→x0

u(x) := lim
r↘0

ess inf
Br(x0)

u

and ℓ+(x0) := ess limsup
x→x0

u(x) := lim
r↘0

ess sup
Br(x0)

u.

By (3.1) we have that
inf

ΩD\Ω
φ ⩽ ℓ− ⩽ ℓ+ ⩽ sup

ΩD\Ω
φ. (3.2)

We point out that the claim of Theorem 1.2 is proved if we check that ℓ−(x) = ℓ+(x) for all x ∈ Ω.
To establish this, we suppose by contradiction that there exists some x0 ∈ Ω such that

ℓ−(x0) < ℓ+(x0).

In light of this, we take t ∈ (ℓ−(x0), ℓ
+(x0)) and notice that this implies that there exists some ε > 0

such that
ess inf
Bε(x0)

u < t < ess sup
Bε(x0)

u. (3.3)

Moreover, from [4, Theorem 1.3] we have that Et := {u ⩾ t} is s-minimal for the fractional
perimeter in Ω.

We claim that

there exists some r0 > 0 such that Br0(x0) ⊂ Ω and, for all r ∈ (0, r0),

0 < |Et ∩Br(x0)| < |Br(x0)|.
(3.4)

Indeed, the lack of these strict inequalities would imply that either u ⩾ t or u < t almost everywhere
in Br(x0), for all r ∈ (0, r0), which would contradict (3.3). This establishes (3.4).

We point out that the claim in (3.4) ensures that x0 ∈ ∂−Et.
In light of these considerations, we have that, taking t1 < t2 ∈ (ℓ−(x0), ℓ

+(x0)), then

x0 ∈ ∂−Et1 ∩ ∂−Et2

and Et1 and Et2 are s-minimal in Br0(x0). But [17, Theorem 1.1] implies that Et1 = Et2 , and in
particular

{φ ⩾ t1} = {φ ⩾ t2}
(up to sets of measure zero), which is in contradiction with the continuity of φ on a connected set
and the fact that t1, t2 ∈ (infΩD\Ω φ, supΩD\Ω φ), thanks to (3.2) (see Remark A.2 for full details

about this technical point). □

We now establish boundary continuity of s-minimal functions:

Proof of Theorem 1.3. The argument is an adaptation of the proof of [10, Proposition 8.2] and
relies on the regularity theory for the obstacle problem for the s-perimeter developed by Caffarelli,
De Silva and Savin [6].

To show that u is continuous up to the boundary of Ω, it is enough to prove that

for every x ∈ ∂Ω, the limit ℓ(x) := lim
Ω∋y→x

u(y) exists and is finite. (3.5)
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Indeed, if this is the case, then it is easy to see that ℓ ∈ C(∂Ω) and thus that the extension of u|Ω
by ℓ defines a continuous function in the whole Ω.

To prove (3.5), we define

ℓ−(x) := lim inf
Ω∋y→x

u(y) ∈ R and ℓ+(x) := lim sup
Ω∋y→x

u(y) ∈ R,

for every x ∈ ∂Ω. These are indeed well-defined, since u|Ω ∈ C(Ω) ∩ L∞(Ω). Claim (3.5) is then
equivalent to showing that ℓ−(x) = ℓ+(x) for all x ∈ ∂Ω.

We argue by contradiction and suppose that ℓ−(x0) < ℓ+(x0) at some x0 ∈ ∂Ω. Then, at least
one between ℓ−(x0) and ℓ+(x0) is different from φ(x0). We assume that ℓ−(x0) < φ(x0), the other
cases being proved in a similar way.

Consider the level sets Et := {u ⩾ t} ⊂ Rn, which are s-minimal for the fractional perimeter in Ω
for every t ∈ R, by [4, Theorem 1.3]. We begin by observing that, for every t ∈ (ℓ−(x0), ℓ

+(x0)),

0 <
∣∣Et ∩ (Br(x0) ∩ Ω)

∣∣ < |Br(x0) ∩ Ω| for every r > 0. (3.6)

Indeed, if there exists r > 0 such that
∣∣Et ∩ (Br(x0) ∩ Ω)

∣∣ = 0, then u < t in Br(x0) ∩ Ω. This

implies that ℓ+(x0) ⩽ t, thus giving a contradiction. Similarly,
∣∣Et∩(Br(x0)∩Ω)

∣∣ = |Br(x0)∩Ω| for
some r > 0 would yield that ℓ−(x0) ⩾ t. This completes the proof of (3.6), and gives additionally
that x0 ∈ ∂−Et.

Now we claim that

x0 ∈ ∂−Et and there exist xtk ∈ ∂−Et ∩ Ω such that xtk
k→+∞−−−−→ x0. (3.7)

To prove this, we first observe that, by the regularity of Ω, there exists r0 > 0 such that Ω∩Br(x0)
is a connected open set for every r ∈ (0, r0). Then, notice that we can write Ω ∩ Br(x0) as the
disjoint union

Ω ∩Br(x0) =
(
Ω ∩Br(x0) ∩ (Et)int

)
∪
(
Ω ∩Br(x0) ∩ (Et)ext

)
∪
(
Ω ∩Br(x0) ∩ ∂−Et

)
.

Suppose now that Ω ∩ Br(x0) ∩ ∂−Et = ∅. Then, the connectedness of Ω ∩ Br(x0) implies that
either

Ω ∩Br(x0) ∩ (Et)int = ∅,

or

Ω ∩Br(x0) ∩ (Et)ext = ∅.

However, both eventualities are in contradiction with (3.6). Therefore, Ω ∩Br(x0) ∩ ∂−Et ̸= ∅ for
every r ∈ (0, r0), which completes the proof of (3.7).

Consider now t1, t2 ∈ (ℓ−(x0), φ(x0)), with t1 < t2. By the definition of Et and the continuity
of u in Ω, we have that

Et2 ⊂ Et1 and
∣∣Et1 \ Et2

∣∣ ⩾ ∣∣(Et1 \ Et2) ∩ Ω
∣∣ > 0. (3.8)

Moreover, since x0 ∈ ∂−Et2 , by the continuity of φ in Ωδ \ Ω, we can find ϱ ∈ (0, δ) small enough
such that

Bϱ(x0) \ Ω ⊂ Et2 ⊂ Et1 .

We can thus apply [13, Theorem 5.1] to conclude that the boundaries ∂Et2 and ∂Et1 are of

class C1, 1+s
2 in Bϱ(x0), up to considering a smaller ϱ. Actually, the interior regularity of s-minimal

sets ensures that these boundaries are of class C∞ in Ω ∩Bϱ(x0) (see [1]).

Therefore, the Euler-Lagrange equation of s-minimal sets implies that Hs[Eti ](x
ti
k ) = 0 for ev-

ery k ∈ N and i = 1, 2, with xtik as in (3.7). Since the regularity of class C1, 1+s
2 of the boundaries is

enough to guarantee the continuity of the fractional mean curvature (see e.g. [9]), we obtain that

Hs[Eti ](x0) = lim
k→+∞

Hs[Eti ](x
ti
k ) = 0, for i = 1, 2.
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Then, we can conclude the proof by making use of the strong comparison principle. Indeed, we
see that

0 = Hs[Et2 ](x0)−Hs[Et1 ](x0)

= P.V.

∫
Rn

χRn\Et2
(x)− χEt2

(x)− χRn\Et1
(x) + χEt1

(x)

|x− x0|n+s
dx

= 2P.V.

∫
Rn

χEt1\Et2
(x)

|x− x0|n+s
.

Now we remark that the integrand χEt1\Et2
⩾ 0, thanks to the first claim in (3.8). Therefore,

this computation shows that χEt1\Et2
= 0, and thus E1 = E2, in contradiction with the second

statement in (3.8).
Hence, we have proved that ℓ−(x) = ℓ+(x) for every x ∈ ∂Ω, which entails (3.5), thus concluding

the argument. □

4. Lack of continuity across the boundary and proof of Theorem 1.6

We build in this section examples of both continuity and lack of it across the boundary.
The first example, quite elementary, is one of continuity across the boundary and uniqueness.

Proposition 4.1. Let Ω be a bounded open set and let φ : CΩ → R be a constant function, say φ ≡
c ∈ R.

Then, there exists a unique s-minimal function u ∈ Ws,1
φ (Ω), which is the constant function u ≡ c.

Proof. The fact that there exists an s-minimal function is a consequence of [4, Theorem 1.5].
Also, [4, Theorem 1.3] gives that the set {u ⩾ t} is s-minimal for the fractional perimeter in Ω with
respect to the exterior datum {φ ⩾ t}.

However, thanks to [4, Theorem 1.7], for all t ⩽ c, we have that {φ ⩾ t} = CΩ, and thus {u ⩾
t} ∩ Ω = Ω, and, for all t > c, we have that {φ ⩾ t} = ∅, and hence {u ⩾ t} ∩ Ω = ∅. It follows
that u ≡ c, concluding the proof. □

Notice the similarity of the given example with non-local minimal sets. Indeed, if the exterior
datum is the half-plane, the unique s-minimal set is the half-plane itself.

What is more, for non-local minimal surfaces, a very interesting feature of stickiness arises
(see [14,16]). In particular, in [14, Theorem 1.4] one constructs an exterior datum in R2 looking at
two compactly supported bumps, with support away from Ω, that push the s-minimal surface to
stick to the boundary in Ω (see [14, Figure 4]). Our second example, showcasing again continuity
across the boundary, is in contrast with this construction for nonlocal minimal surfaces.

Proposition 4.2. Let Ω ⊂ Rn be a bounded and connected open set with C2 boundary, and let φ ∈
Cc(Ω) be such that φ ⩾ 0 and supp φ ⊂ CΩδ, for some δ > 0.

Then, there exists s̃ ∈ (0, 1) such that, for all s ∈ (0, s̃), if us ∈ Ws,1
φ (Ω) is an s-minimal function,

then us ≡ 0 in Ω.

Proof. Denote byK := supp φ and B := maxK φ. By [4, Theorem 4.4], we have that 0 ⩽ us(x) ⩽ B
for all x ∈ Ω.

The conclusion follows from Proposition B.1, recalling the notation (B.1). Since for all t ∈ (0, B]
it holds that Et := {φ ⩾ t} ⊂ K, while α(K) = 0 and K does not completely surround Ω, there is
some s0 := s0(n,Ω,K) ∈ (0, 1/2) such that for all s < s0,

Et
s ∩ Ω := {us ⩾ t} ∩ Ω = ∅.

It follows that us ≡ 0 in Ω, concluding the proof. □

We now address an example of lack of continuity across the boundary:
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Proof of Theorem 1.6. The proof is basically the same as that of Proposition 4.2. Denote by B :=
maxB1

φ and notice that 0 ⩽ us ⩽ B in Ω. For all t ∈ (0, B], as in the proof of Proposition 4.2,

there exists some s̃ independent of t such that, for all s ∈ (0, s̃),

{u ⩾ t} ∩ Ω = ∅.

This gives that u ≡ 0 in Ω, and therefore u(0, 0) ̸= φ(0, 0). □

An example of a function φ satisfying the assumptions of Theorem 1.6 is φ(x, y) :=
(
1 −√

x2 + y2
)
+
. Notice that a finite number of compactly supported bumps, with support away

from Ω, can be added without changing the conclusion. Also, more general examples can be con-
structed with the same procedure.

5. Necessity of the connectedness assumption in (1.2) and proof of Theorem 1.5

We recall that the classical perimeter of E in Ω is

Per(E,Ω) = [χE ]BV (Ω) = Hn−1(∂∗E ∩ Ω),

where ∂∗E denotes the reduced boundary of E. If E ⊂ Rn is a bounded set with finite classical
perimeter, then

lim
s→1

(1− s) Pers(E,Rn) = cn Per(E,Rn), (5.1)

for some dimensional constant cn > 0, see [11] and also [2].
We consider now the closed set K ⊂ R2 with Lipschitz boundary defined as

K :=
{
(x1, x2) ∈ R2 s.t. x21 + x22 ⩽ 1 and x2 ⩽ 5|x1|

}
,

and the open set Ω := B2\K, see Figure 1. Notice that Ω is bounded and connected, with Lipschitz
(disconnected) boundary. In particular, the assumption in (1.2) is violated.

Figure 1. The sets K and Ω.

We point out that

Per(K,R2) > Per(B1,R2).

Thus, as a consequence of (5.1), we know that there exists s1 = s1(K) ∈ (0, 1) such that

Pers(K,R2) > Pers(B1,R2) (5.2)
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for every s ∈ [s1, 1).
We then obtain the following result:

Proposition 5.1. Let s ∈ [s1, 1) and let E ⊂ R2 be any set minimizing Pers( · ,Ω) among all
measurable sets F ⊂ R2 such that F \ Ω = K.

Then,

0 < |E ∩ Ω| < |Ω|. (5.3)

Proof. We observe that

|E ∩ Ω| = 0 if and only if |E∆K| = 0

and

|E ∩ Ω| = |Ω| if and only if |E∆B2| = 0.

Thus, to establish the desired result in (5.3), it is enough to prove that

Pers(B1,Ω) < min
{
Pers(K,Ω),Pers(B2,Ω)

}
. (5.4)

For this, recall the notation in (2.3) and notice that

Pers(B1,Ω) = Ls(B1 \K,B2 \B1) + Ls(B1 \K, CB2) + Ls(B2 \B1,K)

= Ls(B1 \K, CB1) + Ls(K, CB1)− Ls(K, CB2)

= Ls(B1, CB1)− Ls(K, CB2)

= Pers(B1,R2)− Ls(K, CB2).

Similarly,

Pers(K,Ω) = Ls(K,B2 \K) = Pers(K,R2)− Ls(K, CB2)

and

Pers(B2,Ω) = Ls(B2 \K, CB2) = Pers(B2,R2)− Ls(K, CB2) = 22−s Pers(B1,R2)− Ls(K, CB2).

These identities, together with (5.2), show the validity of (5.4), concluding the proof. □

With this preliminary work, we can complete the proof of Theorem 1.5 by arguing as follows:

Proof of Theorem 1.5. In the setting of Proposition 5.1, we consider φ := χK and u := χE . We
observe that {u ⩾ λ} is either empty, the whole space R2, or equal to E, which minimizes Pers( · ,Ω)
with respect to its datum outside Ω. Hence, by [4, Theorem 1.3], we have that u is an s-minimal
function in Ω.

Even if φ = χK ∈ C(R2 \ Ω), Proposition 5.1 yields that u = χE ̸∈ C(Ω), thus providing the
desired example. □

6. Proof of the comparison result in Theorem 1.7

To deal with the proof of Theorem 1.7, we now build suitable maximal and minimal solutions.
For this purpose, for all t ∈ R we denote by

Et := {φ ⩾ t}.
Then, there exists Θ = Θ(n, s) > 1 such that, if

φ ∈ L∞(ΩΘdiam(Ω) \ Ω),
there exist Et and Ft which are the unique s-minimal sets in Ω of maximum and minimum volume,
respectively (see [4, Proposition 4.6]).

We then denote

u(x) :=

{
sup{θ s.t. x ∈ Eθ}, if x ∈ Ω,

φ(x), if x ∈ CΩ,
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and

u(x) :=

{
sup{θ s.t. x ∈ Fθ}, if x ∈ Ω,

φ(x), if x ∈ CΩ,

and we refer to them as maximal and minimal solutions, respectively.
Moreover, we observe that

u ⩽ u almost everywhere in Rn

and that, by [4, Theorem 4.8], both u and u are s-minimal functions belonging to L∞(Ω).
Additionally, up to enlarging Θ, if φ ∈ C(ΩΘdiam(Ω) \Ω), then u and u are continuous in Ω, and

if Ω is of class C2 then u and u can be extended with continuity to functions belonging to C(Ω).
With this, we can now proceed with the proof of Theorem 1.7.

Proof of Theorem 1.7. By Theorem 1.2, we have that ui and ui, with i ∈ {1, 2}, are continuous
in Ω (more precisely, we identify them with a continuous representative as in Proposition A.1).

We prove that u1 ⩾ u2 (the other claim being similar). Suppose by contradiction that there
exists x0 ∈ Ω such that u1(x0) < u2(x0) and let t be such that

u1(x0) < t < u2(x0).

By continuity, there exists ε > 0 such that Bε(x0) ⊂ Ω with

|{u1 < t} ∩Bε(x0)| = |Bε(x0)| and |{u2 > t} ∩Bε(x0)| = |Bε(x0)|. (6.1)

Notice that

E2
t := {φ2 ⩾ t} ⊂ E1

t := {φ1 ⩾ t}.

In the proof of [4, Theorem 4.8], we have obtained that up to sets of measure zero,

Ei
t = {ui ⩾ t},

where Ei
t is the s-minimal set in Ω with maximum volume, with respect to the exterior data Ei

t ∩
CΩ = E i

t , for i = 1, 2.
Moreover, it holds that

Pers(E
1
t ∪ E2

t ,Ω) + Pers(E
1
t ∩ E2

t ,Ω) ⩽ Pers(E
1
t ,Ω) + Pers(E

2
t ,Ω), (6.2)

see [8]. Since
(
E1

t ∩ E2
t

)
∩ CΩ = E2

t , we have that E1
t ∩ E2

t is a competitor for E2
t , hence

Pers(E
2
t ,Ω) ⩽ Pers(E

1
t ∩ E2

t ,Ω).

Plugging this information into (6.2), we find that

Pers(E
1
t ∪ E2

t ,Ω) ⩽ Pers(E
1
t ,Ω).

Now, we have that (E1 ∪ E2
t ) ∩ CΩ = E1

t , hence E1
t ∪ E2

t is s-minimal in Ω with respect to the
exterior datum E1

t . Also, (
E1

t ∪ E2
t

)
∩ Ω = E1

t ∩ Ω,

since E1
t is of maximum volume. It follows that, up to sets of measure zero, E2

t ∩Ω ⊂ E1
t ∩Ω, thus

contradicting (6.1). □
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Appendix A. Continuous functions in the sense of Lebesgue

This appendix elaborates on the proof of Theorem 1.2. There, in order to obtain the continuity
of an s-minimal function, we used the fact that, roughly speaking, the superlevel sets at different
levels are properly contained one inside the other. We point out that such a property is not related
to the s-minimality of a function, but rather it is a characterization of continuity. This is made
precise in the following result. Then, in the proof of Theorem 1.2 the s-minimality was used to
ensure the validity of (A.1), through the strict maximum principle [17, Theorem 1.1].

Proposition A.1. Let Ω be a bounded open set. A measurable, locally essentially bounded func-
tion u : Ω → R is continuous in Ω, more precisely, there exists ũ : Ω → R such that ũ = u almost
everywhere in Ω and ũ ∈ C(Ω), if and only if, for all t ̸= τ ∈ R,

∂−{u ⩾ t} ∩ ∂−{u ⩾ τ} ∩ Ω = ∅. (A.1)

Proof. We remark that u is continuous in the precise sense given by Proposition A.1 if and only if

ess liminf
x→x0

u(x) = ess limsup
x→x0

u(x)

for all x0 ∈ Ω. Moreover, since u is locally essentially bounded, both these limits are well-defined
real numbers.

Suppose now that u is continuous in Ω, and suppose by contradiction that for some t < τ there
exists

x0 ∈ ∂−{u ⩾ t} ∩ ∂−{u ⩾ τ} ∩ Ω.

Then, there exists r0 > 0 such that Br0(x0) ⊂ Ω and

|{u < t} ∩Br(x0)| > 0 and |{u ⩾ τ} ∩Br(x0)| > 0

for all r ∈ (0, r0). Hence,

ess inf
Br(x0)

u < t < τ ⩽ ess sup
Br(x0)

for all r ∈ (0, r0),

which contradicts the continuity of u.
To prove the opposite, suppose by contradiction that u is not continuous. Then, there exists x0 ∈

Ω such that

ess liminf
x→x0

u(x) < ess limsup
x→x0

(x).

For all t such that

ess liminf
x→x0

u(x) < t < ess limsup
x→x0

(x),

there exists r small enough such that

ess inf
Br(x0)

u(x) < t < ess sup
Br(x0)

u(x)

which implies that

x0 ∈ ∂−{u ⩾ t}.
Now consider

ess liminf
x→x0

u(x) < t1 < t2 < ess limsup
x→x0

u(x)

and observe that

x0 ∈ ∂−{u ⩾ t1} ∩ ∂−{u ⩾ t2},
which gives the desired contradiction. □

On a related note, it is convenient to point out the following well-known property of continuous
functions, which was used in the end of the proof of Theorem 1.2.
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Remark A.2. Let O ⊂ Rn be a bounded connected open set and let φ : O → R be a continuous
function. Then, for all t1 ̸= t2 ∈ (infO φ, supO φ) it holds that

{φ ⩾ t1} ≠ {φ ⩾ t2}, (A.2)

and moreover

|{φ ⩾ t1}∆{φ ⩾ t2}| > 0. (A.3)

Indeed, since φ is continuous and O is connected, we have that also φ(O) is connected. This implies
that

{φ = t} ≠ ∅ for any t ∈
(
inf
O

φ, sup
O

φ
)
.

Consider now two values t1 > t2 within (infO φ, supO φ). Then, we clearly have

{φ ⩾ t1} ⊂ {φ > t2},

and

∅ ̸= {φ = t2} ⊂
(
{φ ⩾ t2} \ {φ ⩾ t1}

)
,

thus (A.2) is proved. Moreover, considering t̃ := (t1 + t2)/2 and letting x ∈ {φ = t̃}, by continuity
we can find δ > 0 such that Bδ(x) ⊂ {φ ⩾ t2} \ {φ ⩾ t1}, and we obtain the claim.

We also point out that if O is not connected, then the thesis does not necessarily hold. One can
take for instance O = B1(x) ∪ B1(y) with |x− y| = 3 and φ = 0 on B1(x), φ = 3 on B2(y). Then
{φ ⩾ 1} = {φ ⩾ 2}.

Appendix B. Some observations on the proofs of Theorem 1.6 and Proposition 4.2

We recall the set function α, introduced in [12], as

α(E0) := lim
s→0

s

∫
CB1

χE0(x)

|x|n+s
dx,

– whenever such limit exist – which is significant when dealing with the s-perimeter when s → 0.
Notice that such a limit may not exist even for smooth sets E0, and this observation led in [5] to
define

α(E0) = lim sup
s→0

s

∫
CB1

χE0(x)

|x|n+s
dx. (B.1)

In [5, Theorem 1.7], the authors proved that if E0 does not completely surround Ω and if α(E0) is
strictly smaller than ωn/2 (which is the function α of the half-space), then for s small enough, the
only s-minimal set in Ω with respect to E0 is the empty set. The next result establishes some sort
of monotonicity with respect to the exterior data: there is some s0 := s0(n,Ω, E0) such that for all
s < s0, if one considers the s-minimal set with respect to any subset of E0, then still E ∩ Ω = ∅.
The proof follows with a careful reading of [4, Theorem 1.2, Theorem 1.7], we insert a sketch for
the reader’s benefit.

Proposition B.1. Let Ω ⊂ Rn be a bounded and connected open set with C2 boundary and let
E0 ⊂ CΩ be be such that

α(E0) <
ωn

2
and such that there exists p ∈ ∂Ω and r > 0 with

Br(p) \ Ω ⊂ CE0.

Then there exists s0 := s0(n,Ω, E0) ∈ (0, 1/2), such that for all s ∈ (0, s0), given any E1 ⊂ E0, the
s-minimal set E for the fractional perimeter with respect to E1 is empty inside Ω, i.e.

E ∩ Ω = ∅.
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Proof. We let

R > 2max{1, diam(Ω)},
and using [5, Proposition 2.1], we first notice that

lim inf
s→0

(
ωnR

−s − 2s sup
x∈Ω

∫
CBR(x)

χE0(y)

|x− y|n+s
dy

)
= ωn − 2α(E0) := 4β.

Then there is some s′ = s′(n,E0) such that for all s < s′,

7β

2
⩽ ωnR

−s − 2s sup
x∈Ω

∫
CBR(x)

χE0(y)

|x− y|n+s
dy ⩽ ωnR

−s − 2s sup
x∈Ω

∫
CBR(x)

χE1(y)

|x− y|n+s
dy. (B.2)

We prove at first that there is some s0 := s0(n,Ω, E0) ∈ (0, 1/2) such that if any set E that coincides
with E1 ⊂ E0 outside of Ω has a tangent exterior ball of radius at least

δs0 := e
− 1

s0
log ωn+2β

ωn+β

at some point x ∈ ∂E ∩ Ω, then for all s ∈ (0, s0),

lim inf
ρ→0

Hρ
s [E](x) ⩾

β

s
. (B.3)

Using (2.4) we write for ρ > 0 small,

Hρ
s [E](x) =

∫
BR(x)\Bρ(x)

χCE(y)− χE(y)

|x− y|n+s
dy +

∫
CBR(x)

χCE(y)− χE(y)

|x− y|n+s
dy := Is[E](x) + Js[E](x).

With the same estimates as in the proof of [5, Theorem 1.2] – see equation [5, (3.3)], we have that
there is C0 := C0(n) > 0 such that on the one hand

Is[E](x) ⩾
1

s

(
ωnR

−s − ωnδ
−s − C0s

1− s
δ−s

)
,

and on the other hand

Js[E](x) ⩾
ωn

s
R−s − 2 sup

x∈Ω

∫
CBR(x)

χE1(y)

|x− y|n+s
dy.

Using (B.2) and that, as s → 0,

R−s ↗ 1,

we find that there is some s0 := s0(n,Ω, E0) < s′ such that for all s ∈ (0, s0) and all δ ⩾ δs0 ,

ωnR
−s ⩾ ωn − β

2
, δ−s ⩽ δ−s0

s0 =
ωn + 2β

ωn + β
,

C0s

1− s
⩽ β,

and we obtain (B.3). We reason by contradiction and suppose there is some boundary of E inside
Ω. We continue with the strategy of [5, Theorem 1.7], without providing full technical details.
Notice at first that

Br(p) \ Ω ⊂ CE1.

We consider s0 eventually smaller such that we can take a ball of radius at least δs0 , tangent to ∂Ω
at p and contained in Br(p) \ Ω. We slide this ball along the interior normal to ∂Ω at p, until we
first encounter ∂E. At the first contact point x ∈ ∂E ∩ Ω, we have the Euler-Lagrange equation

Hs[E](x) = 0,

which gives a contradiction to (B.3). Once the ball, moved along the normal, is contained in Ω, we
can ”move it around” all Ω, excluding any contact point between the ball and ∂E ∩ Ω. □
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