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Two main subtypes of colorectal cancer (CRC) exist; one
subtype displays active wingless (Wnt) signaling through
inactivating mutations targeting the Wnt negative regulator
adenomatous polyposis coli (APC). The other subtype origi-
nates from sessile serrated adenomas and is enriched in
activating mutations of the V-raf murine sarcoma viral
oncogene homolog B (BRAF) oncogene, whereby a valine to
glutamate substitution at codon 600 causes constitutive
activation of the BRAF kinase and the downstream mitogen-
activated protein kinase (MAPK) pathway [1–3].
Cholesterol biosynthesis through the mevalonate pathway is

associated with an increased risk of developing CRC [4].
Tumorigenesis in mice carrying mutations in the Apc gene
(Apcmin) displays augmented cholesterol biosynthesis and is
reversed by genetic or pharmacologic inhibition of the pathway
[5]. Evidence suggests that mutant BRAF regulates the transcrip-
tion factor sterol regulatory element binding protein-1 (SREBP1),
a master regulator of cholesterol and lipid metabolism, in
several malignancies, including CRC [6]. Nevertheless, whether
cholesterol metabolism contributes to BRAF-mutant serrated
neoplasia has not been thoroughly investigated. Recently, we
identified increased expression of the mevalonate and choles-
terol metabolism signature in datasets of human BRAF-mutant
and/or serrated neoplasias as compared to normal tissues or
CRCs harboring a wild-type BRAF oncogene. Using a mouse
model carrying inducible expression of BrafV600E in the intestinal
epithelium, we confirmed transcriptional activation of the same
signature, which was reversed by pharmacologic inhibition of
the MAPK pathway [7]. Moreover, inhibition of the mevalonate
pathway with statins, a class of drugs widely prescribed in the
treatment of cardiovascular conditions, which inhibit the rate-
limiting enzyme 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA)
reductase, prevented the establishment of hyperplastic crypts
in the intestine of BrafV600E-mutant mice [7]. Thus, even in the
context of serrated CRC, cholesterol biosynthesis is increased
and pro-tumorigenic. However, since a subset of serrated lesions
does not harbor mutations in the BRAF oncogene, the
dependence of the signature’s expression on the MAPK pathway
should be further investigated. The mevalonate pathway also
synthesizes isoprenoids, fueling the biosynthesis of Coenzyme Q
and protein farnesylation. Currently, it is unclear whether the
anti-cancer efficacy of statins depends on their impact on the
biosynthesis of sterols and/or isoprenoids [4, 5, 8]. Moreover,
when comparing the expression of the cholesterol gene
signature between BRAF wild-type adenomas and normal
tissues, we did not observe enrichment in the neoplastic
specimens, suggesting that transcriptional regulation might
play a lesser role in the activation of cholesterol metabolism in
wnt-driven CRC.

An interesting observation distinguishes serrated and non-
serrated neoplasia. During Wnt-driven tumorigenesis in Apcmin

mice, sterols act as mitogens and stimulate the proliferation of
intestinal stem cells (ISCs) without affecting survival [5]. In contrast,
in BRAF-mutant intestinal epithelium, we observed that cholesterol
biosynthesis protects crypt cells from apoptosis without affecting
proliferation [7]. This result, which agrees with known anti-
apoptotic properties of statins [9], might highlight biological
differences between crypt cells with constitutively activated Wnt
or MAPK pathways, which could shape the role of ISCs in tumor
progression. Indeed, whereas Wnt-driven tumors originate from
LGR5+ canonical ISCs, serrated lesions likely develop through the
dedifferentiation of intestinal cells [2]. In addition, serrated CRCs
encompass a population of LGR5-negative cancer cells character-
ized by a fetal-like gene signature driven by the Hippo-pathway
effectors YAP/TAZ [2, 10, 11]. We have shown that the expression of
BrafV600E suffices to enrich the fetal gene signature in an MAPK-
dependent fashion [7]. However, whether cholesterol metabolism
contributes to the establishment of this subtype of fetal-like cells
remains to be investigated.
Finally, what is the clinical relevance of these observations?

Can statin treatment reduce the incidence of BRAF-mutant
CRC? Although statin administration reverses crypt hyperplasia
in BRAF-mutant mice, we could not formally demonstrate an
anti-tumor impact of statins in this subtype of CRC. This may be
related to the inherent limitations of the BrafV600E mouse model
we employed, which displays restrained tumor burden and
long latency, hindering efforts aimed at assessing a direct
impact on tumor development [7, 12–14]. Assessment of the
preventive efficacy of statins in mouse models with higher
disease penetrance [11–14] would resolve this conundrum.
However, recent data indicate that the sensitivity of CRC cell
lines to statin-induced cell death relies on an intact Bone
Morphogenetic Protein (BMP) pathway [15]. CRC cell lines
sensitive to statins display activation of the BMP pathway.
Inhibiting the BMP pathway abolishes statin-induced apoptosis
in otherwise sensitive cells. More specifically, statin-sensitive
cell lines (e.g., RKO, HCT116, DLD1) express the BMP-related
protein suppressor of mothers against decapentaplegic
(SMAD4), which is lost/mutated in resistant cells (e.g., HT29,
SW480). In a follow-up epidemiological study, no association
between statin use and the risk of developing CRC with a
mutation in BRAF was reported, but statins were associated
with an overall reduced risk of CRC and with a larger reduction
of SMAD4-positive CRC [16]. We confirmed these findings,
showing that BRAFV600E CRC cells with mutations in SMAD4 are
resistant to statin treatment in vitro [7]. Therefore, despite the
fact that mutant BRAF drives cholesterol biosynthesis, the
mutational status of SMAD4 is likely to be a more accurate
predictor of the protection conferred by the use of statins than
mutated BRAF. Further insights into the biochemical scenarios
linking cholesterol metabolism with CRC may help refine the
targeted treatment of this disease.
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