
Addictive  manipulation:  a  perspective  on  the  role  of 

reproductive  parasitism  in  the  evolution  of  bacteria-

eukaryote symbioses

Michele Castelli1*, Tiago Nardi1, Michele Giovannini2,3, Davide Sassera1,4

1. Department of Biology and Biotechnology, University of Pavia, Italy

2. Department of Biology, University of Pisa, Italy

3. Department of Biology, University of Florence, Italy

4. IRCCS Policlinico San Matteo, Pavia, Italy

* corresponding author: michele.castelli@unipv.it

1

2

3

4

5

6

7

8

9

10

11

12

1



Abstract

Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which 

influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. 

Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable 

manipulative capabilities.

Here we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on 

protists, primary models for evolutionary investigations on eukaryotes due to their diversity and 

antiquity, but still overall under-investigated.

After a thorough re-examination of the literature on bacterial-protist interactions with this question in 

mind, we conclude that such bacterial “addictive manipulators” of protists do exist, are probably 

widespread, and have been overlooked until now as a consequence of the fact that investigations are  

commonly host-centred, thus ineffective to detect such behaviour.

Additionally,  we posit  that  toxin-antitoxin systems are crucial  in these phenomena of addictive 

manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing 

functional analogy and molecular homology with plasmid-bacterial interplays.

Finally, we remark that multiple addictive manipulators are affiliated to specific bacterial lineages 

with  ancient  associations  with  diverse  eukaryotes.  This  suggests  a  possible  role  of  addictive 

manipulation of protists in paving the way to the evolution of bacteria associated with multicellular  

organisms.
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Overview and purposes

Multiple diverse bacteria live in association with a great variety of eukaryotic hosts  [1–3]. Such 

symbiotic associations are widespread, exhibiting different shades of effects on the involved partners, 

ranging  from  mutualism  to  parasitism  [4],  with  the  same  partnership  varying  depending  on 

physiological states or on external conditions [5,6]. Along evolution, the functional properties of the 

symbiotic partners can be deeply influenced by the association [7]. 

A noteworthy and peculiar type of bacterial-host interaction is reproductive manipulation, exerted by 

some phylogenetically diverse bacteria (e.g., Wolbachia) on their arthropod hosts, with cytoplasmic 

incompatibility (CI) as the most distinctive instance [8,9]. As a result, the new host generation from an 

infected male cannot survive unless it receives the bacterium from the female (Figure 1). This tight 

association might superficially resemble an obligatory mutualism. However, it is due to the ability of 

the bacterium to make the host unable to get rid of it, namely to “addict” the host, rather than to the 

provision of benefits.

A recent work explored the concept of “evolutionary addiction” from the host perspective  [10], 

proposing that, after prolonged associations with their microbiome, hosts may evolve dependence on 

the bacteria, thus becoming secondarily addicted (see Box 1).

Still, addiction may also be the consequence of active mechanisms exerted by the bacteria on their  

hosts, as in the case of CI. One could wonder whether such primary addictions are evolutionary 

oddities restricted to a few specific cases, or the phenomenon has wider evolutionary and ecological  

significance. Following this line of thought,  here we explore the presence of addiction in host-

bacterial  interactions  from  the  perspective  of  the  bacteria,  rather  than  sticking  to  a  more 

“conventional” host-centric approach. We focus on unicellular eukaryotic hosts (i.e., protists), which 

constitute the vast majority of eukaryotes including the most ancestral lineages [11,12], thus being 

fundamental for understanding the eukaryotic features and their evolution  [13].  Bacterial-protist 

symbioses are widespread [1], but neglected, and in most cases their foundations still await to be 
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understood. Given the distinctive and diverse physiology and ecology of protists  [14–16], these 

associations only partly fit to “reference” models of bacterial-host symbioses, chiefly nutritional 

mutualists of animal hosts [1].

Here we reason on whether the origin and maintenance of some bacterial-protist associations could be 

explained by a process similar to the known cases of animals addicted by their bacterial symbionts, 

namely by an “addictive manipulation” of host reproduction. Therefore, we examine the literature on 

bacterial-protist  associations  looking  for  indications  of  potential  addictive  phenomena  and 

mechanisms. According to several lines of evidence, we propose that addictive manipulation (Figure 

1; Box 1) is quite common, though not properly recognised, among bacterial-protist associations, 

possibly being fundamental in the evolution of many such interactions.

We will start by presenting the most relevant features of well-studied addictive manipulators in 

arthropods, exemplified by Wolbachia. Then, we will move to bacterial-protist symbioses, reasoning 

on the expected features of addictive manipulation in those associations, and on why, in our view, 

available clues have not been properly recognised. Subsequently, we will focus on selected cases in  

which we found convincing signs of addictive manipulation, showing how their re-interpretation 

allowed us to draw an evolutionary framework that also accounts for possible underlying molecular 

mechanisms.  We  will  then  conclude  with  a  general  evolutionary  perspective  on  addictive 

manipulation  and  its  role  in  the  evolution  of  bacterial  lineages  with  evolutionarily  conserved 

interactions with protists and other eukaryotes.

Wolbachia, a prototypical addictive manipulator

Reproductive manipulation is a quite well known phenomenon in arthropod hosts, which can be made 

addicted by multiple diverse bacterial symbionts, including Rickettsiales (Wolbachia, Rickettsia and 

Mesenetia  -  formerly  Mesenet  [17])  [8,9,18–23],  Mollicutes  (Spiroplasma)  [24],  Cytophagales  

(Cardinium) [25], and Legionellales (Rickettsiella) [26].
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Wolbachia is the most studied, and noteworthy enough to deserve the title of “master manipulator of 

invertebrate biology”  [8]. We will use this symbiont to delineate the major features of addictive 

manipulators. Wolbachia is widespread in insects and other arthropods [27,28], thanks to multiple 

strategies  enhancing  its  vertical  transmission  through  host  generations,  namely  feminisation, 

parthenogenesis, male killing, and the intriguing CI [8]. CI makes crosses between infected males and 

non-infected females non-viable, thus favouring the fitness of infected females. In this way, since the 

symbionts’ vertical inheritance relies solely on transovarial transmission from the mother to the 

offspring, the bacteria massively increase their own fitness (Figure 1). The effect of CI is so powerful 

that it is being successfully used for biocontrol of arthropod vectors of pathogens  [29,30].

While reproductive manipulation has been known for a long time, its molecular mechanisms were 

elusive until recently [9,19,31,32]. A modification-rescue model had been proposed for CI [33], under 

which  some  bacterial-derived  factor  “poisons”  the  male  gametes,  leading  to  the  unsuccessful 

development of the zygote, and can be counteracted only by a rescue factor present in the infected  

female gametes. Two Wolbachia proteins responsible for these mechanisms were recently discovered 

[34,35] and shown to form a complex, which can act by a toxin-antitoxin (or “toxin-antidote”) 

regulation [36] (Figure 1). The toxic effect is probably dysregulation of ubiquitination [35,37,38], 

linked to defects in condensation of the male pronuclei [9,39]. Interestingly, the two involved genes 

are adjacent in the Wolbachia genome, within a putative phage-derived region, and their expression 

appears to be linked to prophage induction  [34]. Several paralogs to these genes are present in 

different  Wolbachia strains, and may account for mechanisms of reproductive manipulation other 

than CI,  host  specificities,  and/or competition between strains  [31,34,40].  Among the very few 

homologs of these genes outside Wolbachia, notable are those found in Rickettsia and Spiroplasma [2

2]. Taken together, these data indicate a spread of CI-inducing factors by horizontal gene transfer 

(HGT),  possibly  driven  by  phages,  suggesting  that  other  symbionts  could,  by  molecularly 

homologous mechanisms, be analogous “master manipulators”.
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Addictive manipulation of unicellular eukaryotic hosts

Drawing an ideal parallel with the cases involving arthropod hosts listed above, one could wonder  

whether some bacterial symbionts associated with protists could exert addictive manipulation on their 

hosts, possibly exploiting analogous modification-rescue processes.

At first glance, it might seem surprising that, despite the diversity and abundance of protists and their 

bacterial  symbionts,  an  actual  addictive  manipulation  has  never  been  clearly  recognised  and 

demonstrated. However, in our view, several aspects should be taken into account, in particular the 

strong bias in the hosts investigated in most studies. Indeed, despite valuable past (e.g., [41–46]) and 

recent  (e.g.,  [5,47–58])  investigations,  bacterial-protist  partnerships  are  still  profoundly  under-

investigated compared to symbioses involving bacteria and multicellular hosts.

Moreover,  studying such associations present  multiple  inherent  limitations,  making any hint  of 

addictive  manipulation  difficult  to  detect  and  likely  disregarded.  In  metazoan  hosts,  vertical  

transmission is accomplished during sexual reproduction, allowing researchers a clear observation of 

the effects of potential addictive manipulation exerted by the symbionts (particularly, distortion of sex 

ratio  in  the  progeny).  On  the  other  hand,  unicellular  eukaryotes  most  frequently  (though  not 

exclusively, see also Box 2) reproduce asexually by cell division, which may nuance and completely 

“hide” the effect of addiction, such as, plausibly, the death of daughter cells that did not receive the 

bacteria. Indeed, this is inherently hard to distinguish from a primary obligatory mutualism, in which 

the  host  is  “simply”  dependent  on  the  bacteria  (see  Box  2  for  potential  proof-of-principle 

experiments). 

Actually,  while  a  number  of  bacterial-protist  partnerships  appear  to  be  transient  and  unstable 

[1,59,60], several others have been stably maintained, even for decades  [49,61,62], with targeted 

attempts to remove the bacteria frequently unsuccessful [47,63–65]. These data clearly indicate the 

presence of a “bond” between those bacteria and their hosts, which in some cases could be assimilated 

to  “true” mutualisms  [56,57].  However,  multiple  other  cases  display additional  and differential 

features, which, we argue, are suggestive of ongoing addictive manipulation. Closely related bacteria, 
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even belonging to the same species [61,62,66], are hosted by phylogenetically, physiologically and 

ecologically diverse hosts. For instance, the Rickettsiales bacterium Megaera (formerly, Megaira [67]

) polyxenophila can  be  associated  with  heterotrophic  protists  such  as  ciliates,  multiple 

photoautotrophic algae, and even cnidarians [49,51,52,68]. Although the bacteria may be in principle 

able to provide universal mutualistic benefits to such host arrays, it seems meaningful to consider a 

potential involvement of addictive manipulation, which could enable tight associations to diverse 

hosts thanks to effector molecules with broad specificity on eukaryotic targets.

Moreover, protists that have been repeatedly found as hosts for stably-associated bacteria (e.g., 

Paramecium aurelia, Paramecium caudatum, Acanthamoeba) are also commonly found devoid of 

any bacterium[41,65] [41,65].  This reminds of  Wolbachia present in multiple diverse arthropod 

species, with variable prevalence [27]. Eventually, many bacteria could be experimentally removed 

from their protist hosts by elaborate but potentially fluky approaches  [69,70], with the hosts then 

surviving and often thriving  [65,70]. This is sharply different from a primary dependence on the 

bacteria, being instead reminiscent of addictive manipulators, which are not required by their hosts  

inherently.

Addictive manipulative mechanisms are also unlikely to be “all-or-nothing” phenomena in every 

condition (Figure 2; Box 2). Even for  Wolbachia, reproductive manipulation does not show full 

penetrance, being dependent on host genetic background [71] and age [72], as well as on external 

factors [73], so that in some hosts it was initially completely overlooked [9].

Thus, the best indications for an “elusive” trait such as addictive manipulation in protist hosts likely  

need comprehensive comparative investigations aimed at evidencing general trends, as herein.

Bacteria addictively manipulating protist hosts

Here we highlight those cases showing, in our view, the most distinctive and convincing signs of 

addictive manipulation of protist hosts exerted by associated bacteria.
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The first instance pertains to  Legionella jeonii (initially termed “X-bacteria”  [43]), on which an 

interesting set of experiments was performed decades ago [74]. When introduced in symbiont-free 

Amoeba cells, it repeatedly produced harmful effects (reduced size, fragility, poor clonability, slower 

growth, or even death) [42]. However, after some time, surviving subpopulations of amoebas became 

healthier and, surprisingly, dependent on the symbiont [75], so that antibiotic treatments led not only 

to bacterial death, but also to demise of the host [76]. In principle, these findings could be interpreted 

as the consequence of an experimentally induced mutualism (or an evolutionary addiction  sensu 

Hammer [10]).

The  observed  effects  were  partly  correlated  with  specific  pairings  of  nucleus  and  cytoplasm 

(containing the bacteria), as experimental combinations of nuclei from infected cells with cytoplasms 

from non-infected ones were mostly unviable. However, such combinations survived in a minority of 

cases, thus not presenting an absolute “all or nothing” outcome, as would be most probable in an 

“idealised” obligatory mutualism.

Even more remarkably, the same series of effects were observed when L. jeonii was transferred to 

other amoeba cells, which in turn eventually became dependent on the bacteria [75,77]. These data 

strongly indicate that the factor(s) leading to the non-breakability of the association are derived from 

L. jeonii. The mechanism of this interaction is unknown, but was tentatively linked to a plasmid-

encoded 29 kDa protein [43], which can influence host gene expression [78] after being translocated 

to the host cytoplasm and nucleus [79].

To summarise, available data point to L. jeonii possessing the ability to manipulate its Amoeba host, 

making it addicted through context-dependent gene regulation involving plasmids, and resulting in 

host epigenetic mechanisms (Figure 1).

Other noteworthy and long-time known cases are those of Caedibacter taeniospiralis (Thiotrichales)

 and Caedimonas varicaedens (Holosporales) [80,81], which, although phylogenetically unrelated, 

were originally grouped together in a single genus for their many shared traits [82]. These bacteria are 
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typically intracellularly hosted by ciliate protists of the genus Paramecium, and are able to confer 

them a “killer trait”.

Under certain conditions such as starvation, part of the bacteria arrest their replication and produce R-

bodies, i.e. large proteinaceous elements shaped as coiled ribbons [44]. Some bacteria are released 

extracellularly, and, if endocytosed by Paramecium cells lacking the symbiont, the acidification of the 

digestive vacuoles causes the unrolling of the R-bodies and the release of a still uncharacterised toxin 

[81]. This leads to  Paramecium cell death by multiple alternative mechanisms, depending on the 

bacterial  and host  strain/species,  namely hump killing,  spin killing,  vacuolisation,  and paralysis 

[44,81]. These multifaceted lethal effects are reminiscent of the multiple reproductive manipulation 

phenomena by  Wolbachia in  arthropods.  The  Caedimonas/Caedibacter bacteria  are  assumed to 

produce an antitoxin that  rescues the toxicity,  thus protecting their  natural  hosts.  R-bodies and 

possibly also toxin-antitoxin genes are encoded into plasmids that also bear phage genes [45,46], and 

the presence of R-bodies was associated with prophage induction [83].

The killer trait was proposed to provide a competitive advantage to the Paramecium hosts towards 

non-infected conspecifics, thus being indicative of mutualism [81]. In addition, we propose that it is 

an addictive manipulation phenomenon, in which the host that loses the symbionts is “punished” 

indirectly, thanks to the probable close presence of “sister cells” still bearing the bacteria (Figure 1).  

One  could  say  that  Caedimonas/Caedibacter kills  paramecia  that  have  lost  it  pretty  much  as 

Wolbachia sterilises females that do not have it.  From an evolutionary perspective, competitive 

advantages would then represent an exaptation of a pre-existing control mechanism acting on the host 

cells, further strengthening the association.

Interestingly, in the past decades several other bacteria were found to cause killer effects in protists 

hosts  [84]. Among them, more recent molecular and phylogenetic characterisations revealed that 

Lyticum spp. are part of the Rickettsiales [85], which also encompass Wolbachia and other addictive 

manipulators of arthropods.
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Mechanisms and evolution of addictive manipulation

The  cases  exposed  above  present  common  molecular  traits,  all  involving  modification/rescue 

mechanisms  and  mobile  elements  (plasmids  and  phages),  which  equate  them  to  addictive 

manipulators of arthropods (Figure 1).

Accordingly, we posit that modification/rescue mechanisms, mediated by toxin-antitoxin systems, 

could lie behind these and potentially many other cases of addictive manipulation of protist hosts. In 

the broadest sense [86], multiple types of molecules could be involved through various mechanisms, 

such as post-transcriptional and/or post-translational regulation. In bacteria, toxin-antitoxin systems 

are also involved in the addictive control exerted by plasmids [86,87]. Moreover, they were shown to 

be active on eukaryotic cells  [88,89], and are thus plausible candidates for “exaptation” towards 

addictive manipulation of eukaryotic host cells in general, as already hypothesised for some specific 

cases [81,90]. Multiple independent events of development/exaptation of molecular determinants of 

addictive manipulation could be envisioned in different bacterial symbionts of protists. Noteworthy is 

the Holosporales bacterium Bodocaedibacter, which expresses toxin and antitoxin genes, and whose 

suppression by antibiotics leads to death of its host, the flagellate Bodo saltans, thus suggesting an 

addictive role and its determinants [47].

Under this framework, mobile elements, found in multiple bacterial symbionts of protists [44,91–93]

, could play a fundamental part, due to their well-recognised role in HGT [94], including specifically 

in protist-associated bacteria  [50,95].  A single protist  cell  is  frequently co-infected by different 

bacteria, which could easily exchange genes [96,97], thereby acquiring determinants for addictively 

manipulating  their  hosts.  Accordingly,  we  can  expect  the  presence  of  multiple  alternative 

determinants in the same bacterium, with even significant variations between closely related bacteria. 

Such patterns could account for broad host ranges and their variation (which may be also explained by 

the molecular specificity of toxins towards targets in different hosts), as well as for competition  

among symbionts, such as in the case of Wolbachia [90]. Therefore, it seems highly intriguing the 
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discovery of plasmid-encoded R-bodies, possibly linked with an addictive killer trait, in several 

protist-associated Holosporales bacteria other than Caedimonas [98].

Additionally, it would be alluring to investigate the impact of potential HGT events from addictively 

manipulating bacteria towards their protist hosts, similar to known cases of  Wolbachia in insects 

[99,100].  Indeed, in principle these events could provide the host with molecular determinants to 

modulate and counteract addiction.

Evolution of addictive manipulators

From the perspective of bacterial evolution, it is interesting that many of the bacteria with signs of 

addictive manipulation of different eukaryotes are phylogenetically akin. Particularly, it is remarkable 

to find multiple representatives of the Rickettsiales, the Legionellales, and the Holosporales. Along 

with  other  independent  lineages,  these  phylogenetically  unrelated  bacteria  share  some  peculiar  

functional and evolutionary traits making them noteworthy for the study of bacterial-eukaryotic 

symbioses in general, which also led some authors to categorise them as “professional symbionts” [1]

. Their recurrent involvement in addictive manipulation suggests to examine them further.

The representatives of such “professional symbionts” live in association with eukaryotes, most likely 

since extremely ancient times (even over 1 bya) [54,101,102]. Each lineage collectively displays a 

broad host range, colonising diverse protists, as well as multicellular organisms [47,51,54,55,103–

114].  The  most  thoroughly  investigated  representatives  of  each  lineage  are  arthropod-borne 

pathogens [115–118]. However, the majority are hosted by aquatic protists, which are considered the 

ancestral  hosts,  with  multiple  independent  secondary  adaptations  to  multicellular  hosts 

[103,104,108,119].

Despite being unable to multiply in the absence of host cells (though with few possible exceptions  

[93,120,121]), “professional symbionts” are not strictly host-confined. Indeed, along with vertical 

transmission,  many of  them can also  perform horizontal  transmission  [122–125],  even shifting 

between very different host species [104,126].
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Consistently with their complex lifestyles, “professional symbionts” bear rich repertoires of still  

largely uncharacterised molecular effectors [92,127–131], enabling them to actively modulate, and 

possibly even “control” [1] those multifaceted interactions. In light of what is presented above, it  

seems intriguing to speculate that, among those molecular mechanisms, some capable of inducing 

addictive manipulation could be significant and widespread. Varied interactions with a wide array of 

eukaryotic hosts, as in the lineages of “professional symbionts”, would indeed be a plausible outcome 

for the descendants of hypothetical ancestral bacteria capable of addictive manipulation. Accordingly, 

addictive manipulation could have taken an active part in the evolution of these lineages, possibly 

even “determining” it. Variations in the repertoire and/or specificity of toxin-antitoxin modules would 

allow to achieve such a breadth and evolutionary variability of host ranges, including in particular  

shifts from protist to multicellular hosts.

Addictive manipulation and other interactions might concur in the establishment and maintenance of 

tight bacterial-host associations, and might repeatedly supersede each other over evolutionary times. 

Such  alternative  interactions  include  more  conventional  mutualisms,  as  exemplified  by  some 

Wolbachia, which have become necessary for filarial nematodes [8,20] and for some insects [132–

136].

Concluding remarks

Through a targeted literature review and re-interpretation, here we propose a novel framework for the 

evolution  and  persistence  of  bacterial-protist  associations,  namely  by  addictive  manipulation 

mechanisms enacted by many of those bacteria (Box 1), comparable to the reproductive manipulation 

in arthropods [18,19,22,24]. This would result in the death of those hosts that have recently lost the 

symbionts, through toxic activity exerted by the bacteria under those specific circumstances, rather 

than due to some inherent inability of the hosts to cope with the lack of the symbionts.

Such addictive manipulators of protists or other asexual hosts would behave as selfish addictive 

elements (Figure 2), with intriguing analogies with plasmid-bacteria interplays [137,138], especially 
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when considering  the  repurposing of  the  same kind of  molecular  determinants  (toxin-antitoxin 

systems)  [36,43,81,90] and  the  probable  involvement  of  mobile  elements  in  spreading  such 

determinants among eukaryote-associated bacteria. Notwithstanding significant differences in sexual 

processes between animals and protists, e.g., conjugation in ciliates [139], it seems also worthwhile to 

consider that addictive manipulators may influence the relative frequency of sexual and asexual 

reproduction in protists, analogous to Wolbachia in arthropods [8,140].

Considering the inherent difficulties in distinguishing addictive manipulation from other interactions 

among bacterial-protist associations, we posit that the herein presented examples represent only the 

“tip of the iceberg” of a widespread phenomenon. Thus, we underline the need for dedicated research 

to  elucidate  the  diffusion,  mechanisms,  impact,  and  evolutionary  significance  of  addictive 

manipulation, in particular targeted experimental analyses (Box 2). 

Given  the  fundamental  roles  of  protists  in  a  broad  range  of  ecosystems  [14–16],  addictive 

manipulation likely has deep ecological impacts as well. As exemplified by Wolbachia, addictive 

manipulators can provide fundamental insights on the eco-physiology and evolution of each host [8], 

which may become the basis for innovative applications [29,30].

It is a quite accepted notion that, due to their antiquity, diversity and diffusion, protists may act as 

“Trojan horses” or “melting pots” for the evolution of bacteria associated with multicellular hosts 

[97,141]. Thus, it seems thought-provoking to examine the evolutionary significance of addictive 

manipulation  of  protists,  in  particular  when  considering  the  recurrent  occurrence  of  addictive 

manipulators within lineages that encompass bacteria associated with both protists and multicellular 

organisms [93,104,119].
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Figures and legends

Figure  1.  Addictive  manipulation  mechanisms exerted  by  bacterial  symbionts  on  their  diverse 

eukaryotic hosts, involving molecular determinants linked to mobile genetic elements. This way, the 

bacteria  ensure  their  own  proliferation  by  promoting  their  vertical  transmission.  Wolbachia 

(Rickettsiales) manipulates the reproduction of its vertebrate hosts by CI (and other mechanisms). The 

bacterium is vertically transmitted to the offspring only by the females. Gametes from infected males 

carry a prophage-linked toxin that kills the embryos, unless female gametes carry the bacterium with a 

cognate antitoxin, thus favouring the spread and maintenance of the bacterium in the host populations. 

Similarly, L. jeonii  (Legionellales) manipulates the asexual life cycle of its unicellular eukaryotic 

hosts. When healthy amoebas get infected, they become unable to get rid of the bacteria. Most likely, 

a plasmid-encoded toxin by the bacteria epigenetically acts on host gene expression, a modification 

that persists after bacterial loss, and that can be rescued only in presence of live bacteria. Caedimonas

 (Holosporales) and Caedibacter (Thiotrichales) counteract their loss by Paramecium hosts by an 

indirect mechanism. The bacteria produce a plasmid-encoded toxin, against which their hosts are 
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protected by the cognate antitoxin. If a host loses the symbiont, it becomes sensitive to the toxin, and 

will be killed when ingesting symbionts released by its, still infected, sister cells.
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Figure 2. Comparisons of idealised fitness responses of a protist (or another asexually reproducing 

host) to the removal (dotted vertical line) of an addictive manipulator (B, D) in comparison to the 

removal of a canonical parasite (A) or a canonical mutualist (C). In turn, depending on other potential 

concomitant  interactions,  a  manipulator  may  have  overall  detrimental  or  beneficial  effects, 

respectively behaving as a parasitic (B) or mutualistic (D) addictive manipulator.
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Box 1. Addictive symbiont-host interactions

Addictive symbiont-host interactions imply that the host receives damage, up to potential death, if 

symbionts are lost, regardless of direct benefits provided by the symbionts. As a consequence, the 

association results  tightened, with potential  advantages for the symbionts.  The most thoroughly 

studied cases are those of reproductive manipulation exerted by Wolbachia, Spiroplasma and other 

bacteria on arthropods, through CI, male killing, feminisation, or parthenogenesis.

Additionally, the concept of evolutionary addiction was recently proposed, namely that coexistence 

with the symbionts will cause different evolutionary processes in the host, which would eventually 

result in dysregulation in case the bacteria are removed [10]. Specifically, according to Hammer, 

“adaptive accommodation” implies the irreversible accommodation of host regulatory mechanisms in 

the presence of bacteria,  while  “compensated trait  loss” implies that  the redundancy of  certain 

metabolic and functional features in host and symbionts may result in the loss of the respective genes 

in the host, which would need compensation by the symbionts.

On the other hand, in case of reproductive manipulation, the addiction would depend directly on 

active  properties  exerted  by  the  bacteria,  specifically,  in  the  experimentally  validated  cases  of 

Wolbachia and Spiroplasma, by the action of toxins and antitoxins [9,19,31].

Here we propose the concept of “addictive manipulation”, by generalising the case of reproductive 

manipulation of arthropods to other eukaryotes, in particular protists. Under this condition, the hosts 

are addicted to bacterial symbionts as a result of some active property evolved and exerted by the 

symbionts themselves, without directly implying any evolutionary change in the hosts. As in the 

specific cases of reproductive manipulators of arthropods, addictive manipulation likely takes place 

thanks to molecular toxin-antitoxin systems, and may consist in different phenomena depending on 

the  physiology  and  ecology  of  host  and  symbionts  (see  also  Box  2  “How  to  test  addictive 

manipulation”).
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Accordingly,  host-symbionts  interactions in  case of  addictive manipulation expectedly result  in 

complex interplays, which, to be fully delineated, should require accounting for several other features, 

such as the potential capability of symbionts to spread horizontally, and the interaction of host and/or 

professional symbionts with other organisms, including non-infected hosts (see the case of Wolbachia

 or Caedimonas/Caedibacter) [8,81]. 

At an evolutionary scale, we highlight the possibility that addictive manipulation could have had 

important consequences in the evolution of bacterial lineages with ancient and evolutionarily stable  

interactions with eukaryotic hosts (e.g., Rickettsiales, Legionellales, Holosporales, Chlamydiae).

Box 2: How to test addictive manipulation

The inherent complexity of addictive manipulation hampers its  proper identification in protists. 

Possible approaches to discern it  could involve modelling bacterial-host  interactions in case of  

addictive  manipulation,  for  instance by analogy with  models  of  addiction of  bacterial  cells  on 

plasmids [138], and then subject those models to experimental validation.

Herein, it seems appropriate to outline some simple general criteria as a starting ground, in particular 

by evaluating the effect of symbiont removal on the host. For this purpose, we assume that: i) the host 

is reproducing asexually, ii) host survival, reproductive success and/or well-being can be measured 

(here collectively termed as “fitness”),  iii)  a  method for removing the addictive manipulator is 

available (e.g. antibiotics), iv) any addictive manipulation phenomenon is not 100% effective. The 

latter  assumption  seems  reasonable  based  on  the  available  knowledge  on  Wolbachia, 

Caedibacter/Caedimonas,  and  L.  jeonii,  for  which  the  addictive  manipulation  mechanisms  are 

conditionally regulated (e.g. by prophage inductions) according to physiological states or external 

factors such as temperature [9,43,81]. Although this may represent a confounding factor, it can also be 

instrumental in discriminating an addictive manipulator from a necessary mutualist (see below).

If an addictive manipulator is removed, we expect an initial reduction of host fitness, up to complete 

death, or followed by a subsequent recovery (by hosts escaping from non-100% effective addictive 
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manipulation) (Figure 2). The post-recovery fitness level would depend on whether the overall effect 

of  the  addictive  manipulator  is  mutualistic  or  parasitic.  Notably,  the  end  results  would  be 

indistinguishable from canonical parasites or canonical mutualists, and, if taken alone, may mislead in 

the classification of the interaction. This seems to be the case of L. jeonii, originally interpreted as a 

necessary mutualist [76]. Rather, it is the temporal trajectory of the variation of fitness that matters, as 

the fitness “reduction-recovery” process would be distinctive for an addictive manipulator (Figure 2).

Inevitably, such an approach is prone to confounding factors and to detection limits (in particular 

relative to the speed of the process and the effect size). We put forward that identifying molecular  

determinants could complement such limits, not only demonstrating the mechanism for addiction 

manipulation of protists (or other asexual hosts), but also validating that it is actually taking place.

Additionally, it should be accounted that several protist hosts have relatively common and discernible 

sexual processes,  e.g.,  dictyosteliid amoebae and ciliates  [139,142,143].  Thus,  approaches more 

comparable to those traditionally employed to investigate addictive manipulators of insects could be 

attempted to investigate possible addictive manipulators of these protists (e.g., [41,81,85,143,144]).
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