
A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS
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Abstract. Given a quadratic CR manifoldM embedded in a complex space, and a holomorphic function
f on a tubular neighbourhood ofM, we show that the Lp-norms of the restriction of f to the translates of
M is decreasing for the ordering induced by the closed convex envelope of the image of the Levi form ofM.

1. Introduction

Let f be a holomorphic function on the upper half-plane C+ = R + iR∗+. If f belongs to the Hardy
space Hp(C+), that is, if supy>0‖fy‖Lp(R) is finite, where fy : x 7→ f(x+ iy), then it is well known that the
function y 7→ ‖fy‖Lp(R) is decreasing on R∗+, for every p ∈]0,∞]. Nontheless, if f is simply holomorphic,
then the lower semicontinuous function y 7→ ‖fy‖Lp(R) need not be decreasing. Actually, the set where it is
finite may be any interval in R∗+, or even a disconnected set.

Now, replace the upper half-plane C+ with a Siegel upper half-space

D :=
{

(ζ, z) ∈ Cn × C : Im z − |ζ|2 > 0
}
,

and define
fh : Cn ×R 3 (ζ, x) 7→ f(ζ, x+ i|ζ|2 + h)

for every h > 0 and for every function on D. This definition is motivated by the fact that

bD :=
{

(ζ, x+ i|ζ|2) : (ζ, x) ∈ Cn ×R
}

is the boundary of D, and the sets bD+ (0, ih), for h > 0, foliate D as the sets R+ iy, for y > 0, foliate C+.
If f is holomorphic on D, then the mapping h 7→ ‖fh‖Lp(Cn×R) is always decreasing (though not necessarily
finite), in contrast to the preceding case (cf. Theorem 1). This fact is closely related with the fact that evey
holomorphic function defined in a neighbourhood of bD automatically extends to D. More precisely, if one
observes that bD has the structure of a CR submanifold of Cn × C, one may actually prove that every CR
function (of class C1) is the boundary values of a unique holomorphic function on D (cf. [2, Theorem 1 of
Section 15.3]).

In this note we show that an analogous property holds when bD is replaced by a general quadratic,
or quadric, CR submanifold of a complex space, and then discuss some examples of Šilov boundaries of
(homogeneous) Siegel domains.

2. Preliminaries

We fix a complex hilbertian space E of dimension n, a real hilbertian space F of dimension m, and a
hermitian map Φ : E × E → FC. Define

M := { (ζ, x+ iΦ(ζ)) : ζ ∈ E, x ∈ F } = { (ζ, z) ∈ E × FC : Im z − Φ(ζ) = 0 },
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where FC denotes the complexification of F , while Φ(ζ) := Φ(ζ, ζ) for every ζ ∈ E. We define

ρ : E × FC 3 (ζ, z) 7→ Im z − Φ(ζ) ∈ F.

We endow E × FC with the product

(ζ, z)(ζ ′, z′) := (ζ + ζ ′, z + z′ + 2iΦ(ζ ′, ζ))

for every (ζ, z), (ζ ′, z′) ∈ E × FC, so that E × FC becomes a 2-step nilpotent Lie group, and M a closed
subgroup of E × FC. In particular, the identity of E × FC is (0, 0) and (ζ, z)−1 = (−ζ,−z + 2iΦ(ζ)) for
every (ζ, z) ∈ E × FC. It will be convenient to identifyM with the 2-step nilpotent Lie group N := E × F ,
endowed with the product

(ζ, x)(ζ ′, x′) := (ζ + ζ ′, x+ x′ + 2ImΦ(ζ, ζ ′))

for every (ζ, x), (ζ ′, x′) ∈ N , by means of the isomorphism

ι : N 3 (ζ, x) 7→ (ζ, x+ iΦ(ζ)) ∈ E × FC.

In particular, the identity of N is (0, 0) and (ζ, x)−1 = (−ζ,−x) for every (ζ, x) ∈ N . Notice that, in this
way, N acts holomorphically (on the left) on E × FC. Given a function f on E × FC, we shall define

fh : N 3 (ζ, x) 7→ f(ζ, x+ iΦ(ζ) + ih) ∈ C

for every h ∈ F .
Observe that the preceding groups structures show that, if we define the complex tangent space ofM at

(ζ, z) as
H(ζ,z)M := T(ζ,z)M∩ (iT(ζ,z)M)

for every (ζ, z) ∈M, where T(ζ,z)M denotes the real tangent space toM at (ζ, z), identified with a subspace
of E × FC, then

H(ζ,z)M = dL(ζ,z)H(0,0)M,

where L(ζ,z) denotes the left translation by (ζ, z) (in E×FC), and dL(ζ,z) its differential at (0, 0). Therefore,
dimCH(ζ,z) = n for every (ζ, z) ∈M, so thatM is a CR submanifold of E × FC (cf. [2, Chapter 7]), called
a qudratic or quadric CR manifold (cf. [2, Section 7.3] and [10, 11]).

We observe explicitly that M is generic (that is, dimRM− dimRH(0,0)M = dimRE × FC − dimRM,
cf. [2, Definition 5 and Lemma 4 of Section 7.1]) and that its Levi form may be canonically identified with
Φ (cf. [2, Chapter 10] and [11]).

3. A Property of Hardy Spaces

We denote by C the convex envelope of Φ(E).

Theorem 1. Let Ω be an open subset of F such that Ω = Ω + C, and set D := ρ−1(Ω). Then, for every
f ∈ Hol(D), for every p ∈]0,∞], for every h ∈ Ω and for every h′ ∈ C,

‖fh+h′‖Lp(N ) 6 ‖fh‖Lp(N ).

The proof is based on the ‘anaytic disc technique’ presented in [2, Section 15.3].
Observe that the assumption that Ω = Ω + C is not restrictive. Indeed, if Ω is connected and C has

a non-empty interior IntC, then every function which is holomorphic on ρ−1(Ω) extends (uniquely) to a
holomorphic function on ρ−1(Ω+ (IntC ∪{ 0 })) by [2, Theorem 1 of Section 15.3], and Ω+ (IntC ∪{ 0 }) =
Ω + C since Ω is open and C = IntC by convexity. The case in which IntC = ∅ may be treated directly
using similar techniques.

We also mention that, if p < ∞ and either Φ is degenerate or the polar of Φ(E) has an empty interior
(that is, the closed convex envelope of Φ(E) contains a non-trivial vector subspace), then either fh = 0 or
fh 6∈ Lp(N ) (at least for p > 1 when Φ is non-degenerate). Cf. [6] for more details in a similar case.
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Proof. For every v = (vj) ∈ Em, consider

Av : C 3 w 7→
( m∑
j=1

vjw
j , i

m∑
j=1

Φ(vj) + 2i
∑
k<j

Φ(vj , vk)wj−k
)
∈ E × FC,

and

Ψ(v) :=

m∑
j=1

Φ(vj) ∈ C,

and observe that the following hold:
• Av(0) = (0, iΨ(v));
• Ψ(Em) is the convex envelope of Φ(E), thanks to [12, Corollary 17.1.2];
• ρ(Av(w)) = 0 for every w ∈ T;
• the mapping A : Em 3 v 7→ Av ∈ Hol(C;E × FC) is continuous (actually, polynomial).

Now, take h ∈ Ω. By continuity, there is ε > 0 such that Av(U) + ih ⊆ D for every v ∈ BEm(0, ε), where
U denotes the unit disc in C, and U its closure. Then, Av(U) + ih′ ⊆ D for every v ∈ BEm(0, ε) and for
every h′ ∈ h+C. For every h′ ∈ Ψ(BEm(0, ε)), denote by νh′ the image of the normalized Haar measure on
T under the mapping π ◦ Av, for some v ∈ BEm(0, ε) ∩ Ψ−1(h′), where π : E × FC 3 (ζ, z) 7→ (ζ, x) ∈ N .
Observe that, for every (ζ, x) ∈ N and for every h′′ ∈ h+ C, the mapping

U 3 w 7→ f((ζ, x+ iΦ(ζ)) · [Av(w) + (0, ih′′)]) ∈ C

is continuous and holomorphic on U , so that, by subharmonicity (cf., e.g., [13, Theorem 15.19]),

|f(ζ, x+ iΦ(ζ) + i(h′ + h′′))|min(1,p) 6
∫
T

|f((ζ, x+ iΦ(ζ)) · [Av(w) + (0, ih′′)])|min(1,p)
dw

=

∫
N
|fh′′((ζ, x)(ζ ′, x′))|min(1,p)

dνh′(ζ
′, x′)

= |fh′′ |min(1,p) ∗ ν̌h′ ,

where ν̌h′ denotes the reflection of νh′ , while v is a suitable element of BEm(0, ε) ∩ Ψ−1(h′). Since νh′ is a
probability measure, by Young’s inequality (cf., e.g., [4, Chapter III, § 4, No. 4]) we then infer that

‖fh′+h′′‖Lp(N ) = ‖|fh′+h′′ |min(1,p)‖1/min(1,p)

Lmax(1,p) 6 ‖|fh′′ |
min(1,p)‖1/min(1,p)

Lmax(1,p)(N )
= ‖fh′′‖Lp(N )

for every h′ ∈ Ψ(BEm(0, ε)) and for every h′′ ∈ h+ C. Since every element of C may we written as a finite
sum of elements of Ψ(BEm(0, ε)), the arbitrariness of h′′ shows that

‖fh+h′‖Lp(N ) 6 ‖fh‖Lp(N )

for every h′ ∈ C, hence for every h′ ∈ C by lower semi-continuity. The proof is complete. �

Corollary 2. Assume that C has a non-empty interior Ω, and set D := ρ−1(Ω). Then, for every p ∈]0,∞]
and f ∈ Hol(D),

sup
h∈Ω
‖fh‖h∈Lp(N ) = lim inf

h→0,h∈Ω
‖fh‖Lp(N ).

In particular, if we define the Hardy space Hp(D) as the set of f ∈ Hol(D) such that suph∈Ω‖fh‖h∈Lp(N )

is finite, the preceding result states that Hp(D) may be equivalently defined as the set of f ∈ Hol(D) such
that lim inf

h→0,h∈Ω
‖fh‖Lp(N ) is finite. This result should be compared with [3], where the boundary values of the

elements of Hp(D) are characterized as the CR elements of Lp(N ), for p ∈ [1,∞]. In particular, Corollary 2
could be deduced from the results of [3], when p ∈ [1,∞], though at the expense of some further technicalities.

This result extends [7, Corollary 1.43].
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4. Examples

We shall now present some exmples of homogeneous Siegel domains D = ρ−1(Ω) for which Ω is the closed
convex envelope of Φ(E), so that Corollary 2 applies.

We recall that D is said to be a Siegel domain if Ω is an open convex cone not containing affine lines, Φ is
non-degenerate, and Φ(E) ⊆ Ω. In addition, D is said to be homogeneous if the group of its biholomorphisms
acts transitively on D. It is known (cf., e.g., [5, Proposition 1]) that D is homogeneous if and only if there
is a triangular Lie subgroup T+ of GL(F ) which acts simply transitively on Ω, and for every t ∈ T+ there is
g ∈ GL(E) such that tΦ = Φ(g × g).

If T ′+ is another Lie subgroup of GL(F ) with the same properties as T+, then T+ and T ′+ are conjugated
by an automorphism of F preserving Ω. Thanks to this fact, we may use the results of [7] even if a different
T+ is chosen. In particular, there is a surjective (open and) continuous homomorphism of Lie groups

∆ : T+ → (R∗+)r

for some r ∈ N, called the rank of Ω, so that

∆s = ∆s1
1 · · ·∆sr

r ,

s ∈ Cr, are the characters of T+. Once a base point eΩ ∈ Ω has been fixed, ∆s induces a function ∆s
Ω on

Ω, setting ∆s
Ω(t(eΩ)) = ∆s(t) for every t ∈ T+.

Up to modify ∆, we may then assume that the functions ∆s
Ω are bounded on the bounded subsets of Ω if

and only if Re s ∈ Rr+ (cf. [7, Lemma 2.34]). In particular, there is b ∈ Rr− such that ∆−b(t) = |detC g|2 for
every t ∈ T+ and for every g ∈ GL(E) such that tΦ = Φ(g× g) (cf. [7, Lemma 2.9]), and one may prove that
b ∈ (R∗−)r if and only if Φ(E) generates F as a vector space, in which case Ω is the interior of the convex
envelope of Φ(E) (cf. [7, Proposition 2.57 and its proof, and Corollary 2.58]). Therefore, we are interested
in finding examples of homogeneous Siegel domains for which b ∈ (R∗−)r.

Notice, in addition, that if b 6∈ (R∗−)r, then Φ(E) is contained in a hyperplane, so that the interior of its
convex envelope is empty.

The Siegel domainD is said to be symmetric if it is homogeneous and admits an involutive biholomorphism
with a unique fixed point (equivalently, if for every (ζ, z) ∈ D there is an involutive biholomorphism of D
for which (ζ, z) is an isolated (or the unique) fixed point). The domain D is said to be irreducible if it is not
biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to a product of irreducible ones, and
that the irreducible symmetric Siegel domains can be classified in four infinite families plus two exceptional
domains (cf., e.g., [1, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain, either b = 0 (that
is, E = { 0 }, in which case D is ‘of tube type’), or b ∈ (R∗−)r (cf., e.g., [7, Example 2.11]). Hence, when D
is a symmetric Siegel domain, Ω is the closed convex envelope of Φ(E) if and only if none of the irreducible
components of D is of tube type. Note that these domains can be also characterized as those which do not
admit any non-constant rational inner functions, thanks to [8].

We now present some examples of (homogeneous) Siegel domains.

Example 3. Let K be either C or the division ring of the quaternions. In addition, fix r, k, p ∈ N with
p 6 r, and define

• E as the space of k × r matrices over K whose j-th columns have zero entries for j = p+ 1, . . . , r;
• F as the space of self-adjoint r × r matrices over K;
• Ω as the cone of non-degenerate positive self-adjoint r × r matrices over K;
•

Φ : E × E 3 (ζ, ζ ′) 7→ 1

2
[(ζ ′∗ζ + ζ∗ζ ′) + i(ζ∗iζ ′ − ζ ′∗iζ)] ∈ FC;

• T+ as the group of upper triangular r × r-matrices over K with strictly positive diagonal entries,
acting on Ω (and F ) by the formula t · h := tht∗;

• ∆ : T+ 3 t 7→ (t1,1, . . . , tr,r) ∈ (R∗+)r.
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Then, Ω is an irreducible symmetric cone1 of rank r on which T+ acts simply transitively by [7, Example 2.6].
In addition, Φ is well defined, since ζ ′∗ζ + ζ∗ζ ′, ζ∗iζ ′ − ζ ′∗iζ ∈ F for every ζ, ζ ′ ∈ E, and clearly Φ(ζ) ∈ Ω
and

t · Φ(ζ) = t · (ζ∗ζ) = (ζt∗)∗(ζt∗) = Φ(ζt∗)

for every t ∈ T+ and for every ζ ∈ E (with ζt∗ ∈ E), so that D is homogeneous. Then, b = (bj), with
bj = −k dimCK for j = 1, . . . , p and bj = 0 for j = p + 1, . . . , r. Consequently, Ω is the closed convex
envelope of Φ(E) if and only if p = r and k > 0.

Notice that D is irreducible since Ω is irreducible (cf. [9, Corollary 4.8]), and that D is symmetric if
kp = 0 or if p = r and K = C (cf. [7, Examples 2.14 and 2.15]). If kp(r − p) > 0, or if K 6= C, r > 3, and
k > 2, then D cannot be symmetric.

Example 4. Take k, p, q ∈ N, p 6 2. Define:

• E as the space of formal k × 2 matrices whose entries of the first column belong to C (and are 0 if
p = 0), and whose entires of the second column belong to Cq (and are 0 if p 6 1);

• F as the space of formally self-adjoint 2× 2 matrices whose diagonal entries belong to R, and whose
non-diagonal entries belong to Cq;

• Ω as the cone of
(
a b
b c

)
∈ F with a, c > 0, b ∈ Cq, and ac− |b|2 > 0;

• Φ so that

Φ

a1 b1
...

...
ak bk

 =

(∑
j |aj |

2 ∑
j ajbj∑

j ajbj
∑
j |bj |

2

)

for every

(
a1 b1
...

...
ak bk

)
∈ E;

• T+ as the group of formal 2 × 2 upper triangular matrices with diagonal entries in R∗+ and non-
diagonal entries in Cq, with the action2(

a b
0 c

)
·
(
a′ b′

b
′

c′

)
:=

(
a′a2 + c′|b|2 + 2aRe 〈b, b′〉 acb′ + cc′b

acb′ + cc′b c2c′

)
;

• ∆ : T+ 3 t 7→ (t1,1, t2,2).

Then, Ω is an irreducible symmetric cone of rank 2 on which T+ acts simply transitively (cf. [7, Example
2.7]). In addition, Φ(ζ) ∈ Ω for every ζ ∈ E, and

t · Φ(ζ) = Φ(ζt∗)

for every t ∈ T+ and ζ ∈ E (with ζt∗ ∈ E), provided that p 6 1. Then, D is an irreducible Siegel domain,
and it is homogeneous if p 6 1 (it is symmetric if p = 0). In addition, b = 0 if p = 0, while b = (k, 0) if

p = 1. Further, if p = 2, then Φ(E) contains the boundary of Ω, since
(
a b
b c

)
= Φ

 a1/2 a−1/2b
0 0
...

...
0 0

, for every

a > 0, for every c > 0 and for every b ∈ Cq such that |b|2 = ac (the case a = 0, b = 0, c > 0 is treated
similarly). Then, Ω is the closed convex envelope of Φ(E) if and only if p = 2.

1A cone is said to be homogeneous if the group of its linear automorphisms acts transitively on it. It is said to be symmetric
if, in addition, it is self-dual for some scalar product. A convex cone is said to be irreducible if it is not isomorphic to a product
of non-trivial convex cones.

2Formally,
(
a b
0 c

)
·
(
a′ b′

b
′
c′
)
=

(
a b
0 c

)(
a′ b′

b
′
c′
)(

a b
0 c

)∗.
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