A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS

MATTIA CALZI

ABSTRACT. Given a quadratic CR manifold \mathcal{M} embedded in a complex space, and a holomorphic function f on a tubular neighbourhood of \mathcal{M} , we show that the L^p -norms of the restriction of f to the translates of \mathcal{M} is decreasing for the ordering induced by the closed convex envelope of the image of the Levi form of \mathcal{M} .

1. INTRODUCTION

Let f be a holomorphic function on the upper half-plane $\mathbb{C}_+ = \mathbb{R} + i\mathbb{R}^*_+$. If f belongs to the Hardy space $H^p(\mathbb{C}_+)$, that is, if $\sup_{y>0} ||f_y||_{L^p(\mathbb{R})}$ is finite, where $f_y \colon x \mapsto f(x+iy)$, then it is well known that the function $y \mapsto ||f_y||_{L^p(\mathbb{R})}$ is decreasing on \mathbb{R}^*_+ , for every $p \in]0, \infty]$. Nontheless, if f is simply holomorphic, then the lower semicontinuous function $y \mapsto ||f_y||_{L^p(\mathbb{R})}$ need not be decreasing. Actually, the set where it is finite may be any interval in \mathbb{R}^*_+ , or even a disconnected set.

Now, replace the upper half-plane \mathbb{C}_+ with a Siegel upper half-space

$$D \coloneqq \left\{ \left(\zeta, z \right) \in \mathbb{C}^n \times \mathbb{C} \colon \operatorname{Im} z - \left| \zeta \right|^2 > 0 \right\},\$$

and define

$$f_h \colon \mathbb{C}^n \times \mathbb{R} \ni (\zeta, x) \mapsto f(\zeta, x + i|\zeta|^2 + h)$$

for every h > 0 and for every function on D. This definition is motivated by the fact that

$$bD \coloneqq \left\{ \left(\zeta, x + i |\zeta|^2 \right) \colon (\zeta, x) \in \mathbb{C}^n \times \mathbb{R} \right\}$$

is the boundary of D, and the sets bD + (0, ih), for h > 0, foliate D as the sets $\mathbb{R} + iy$, for y > 0, foliate \mathbb{C}_+ . If f is holomorphic on D, then the mapping $h \mapsto ||f_h||_{L^p(\mathbb{C}^n \times \mathbb{R})}$ is always decreasing (though not necessarily finite), in contrast to the preceding case (cf. Theorem 1). This fact is closely related with the fact that every holomorphic function defined in a neighbourhood of bD automatically extends to D. More precisely, if one observes that bD has the structure of a CR submanifold of $\mathbb{C}^n \times \mathbb{C}$, one may actually prove that every CR function (of class C^1) is the boundary values of a unique holomorphic function on D (cf. [2, Theorem 1 of Section 15.3]).

In this note we show that an analogous property holds when bD is replaced by a general quadratic, or quadric, CR submanifold of a complex space, and then discuss some examples of Šilov boundaries of (homogeneous) Siegel domains.

2. Preliminaries

We fix a complex hilbertian space E of dimension n, a real hilbertian space F of dimension m, and a hermitian map $\Phi: E \times E \to F_{\mathbb{C}}$. Define

$$\mathcal{M} \coloneqq \{ (\zeta, x + i\Phi(\zeta)) \colon \zeta \in E, x \in F \} = \{ (\zeta, z) \in E \times F_{\mathbb{C}} \colon \operatorname{Im} z - \Phi(\zeta) = 0 \},\$$

Math Subject Classification 2020: Primary: 32V20, 32A35; Secondary: 32A10, 32M10.

Key words and phrases. Hardy spaces, CR manifolds, Siegel domains.

The author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and is partially supported by the 2020 GNAMPA grant *Fractional Laplacians and subLaplacians on Lie groups and trees.*

where $F_{\mathbb{C}}$ denotes the complexification of F, while $\Phi(\zeta) := \Phi(\zeta, \zeta)$ for every $\zeta \in E$. We define

$$\rho \colon E \times F_{\mathbb{C}} \ni (\zeta, z) \mapsto \operatorname{Im} z - \Phi(\zeta) \in F_{\mathbb{C}}$$

We endow $E \times F_{\mathbb{C}}$ with the product

$$(\zeta, z)(\zeta', z') \coloneqq (\zeta + \zeta', z + z' + 2i\Phi(\zeta', \zeta))$$

for every $(\zeta, z), (\zeta', z') \in E \times F_{\mathbb{C}}$, so that $E \times F_{\mathbb{C}}$ becomes a 2-step nilpotent Lie group, and \mathcal{M} a closed subgroup of $E \times F_{\mathbb{C}}$. In particular, the identity of $E \times F_{\mathbb{C}}$ is (0,0) and $(\zeta, z)^{-1} = (-\zeta, -z + 2i\Phi(\zeta))$ for every $(\zeta, z) \in E \times F_{\mathbb{C}}$. It will be convenient to identify \mathcal{M} with the 2-step nilpotent Lie group $\mathcal{N} := E \times F$, endowed with the product

$$(\zeta, x)(\zeta', x') \coloneqq (\zeta + \zeta', x + x' + 2\operatorname{Im} \Phi(\zeta, \zeta'))$$

for every $(\zeta, x), (\zeta', x') \in \mathcal{N}$, by means of the isomorphism

$$\iota \colon \mathcal{N} \ni (\zeta, x) \mapsto (\zeta, x + i\Phi(\zeta)) \in E \times F_{\mathbb{C}}.$$

In particular, the identity of \mathcal{N} is (0,0) and $(\zeta, x)^{-1} = (-\zeta, -x)$ for every $(\zeta, x) \in \mathcal{N}$. Notice that, in this way, \mathcal{N} acts holomorphically (on the left) on $E \times F_{\mathbb{C}}$. Given a function f on $E \times F_{\mathbb{C}}$, we shall define

$$f_h: \mathcal{N} \ni (\zeta, x) \mapsto f(\zeta, x + i\Phi(\zeta) + ih) \in \mathbb{C}$$

for every $h \in F$.

Observe that the preceding groups structures show that, if we define the complex tangent space of \mathcal{M} at (ζ, z) as

$$H_{(\zeta,z)}\mathcal{M} \coloneqq T_{(\zeta,z)}\mathcal{M} \cap (iT_{(\zeta,z)}\mathcal{M})$$

for every $(\zeta, z) \in \mathcal{M}$, where $T_{(\zeta, z)}\mathcal{M}$ denotes the real tangent space to \mathcal{M} at (ζ, z) , identified with a subspace of $E \times F_{\mathbb{C}}$, then

$$H_{(\zeta,z)}\mathcal{M} = \mathrm{d}L_{(\zeta,z)}H_{(0,0)}\mathcal{M}_{z}$$

where $L_{(\zeta,z)}$ denotes the left translation by (ζ, z) (in $E \times F_{\mathbb{C}}$), and $dL_{(\zeta,z)}$ its differential at (0,0). Therefore, dim_C $H_{(\zeta,z)} = n$ for every $(\zeta, z) \in \mathcal{M}$, so that \mathcal{M} is a CR submanifold of $E \times F_{\mathbb{C}}$ (cf. [2, Chapter 7]), called a quartic or quadric CR manifold (cf. [2, Section 7.3] and [10, 11]).

We observe explicitly that \mathcal{M} is generic (that is, $\dim_{\mathbb{R}} \mathcal{M} - \dim_{\mathbb{R}} H_{(0,0)}\mathcal{M} = \dim_{\mathbb{R}} E \times F_{\mathbb{C}} - \dim_{\mathbb{R}} \mathcal{M}$, cf. [2, Definition 5 and Lemma 4 of Section 7.1]) and that its Levi form may be canonically identified with Φ (cf. [2, Chapter 10] and [11]).

3. A Property of Hardy Spaces

We denote by C the convex envelope of $\Phi(E)$.

Theorem 1. Let Ω be an open subset of F such that $\Omega = \Omega + \overline{C}$, and set $D \coloneqq \rho^{-1}(\Omega)$. Then, for every $f \in \operatorname{Hol}(D)$, for every $p \in [0, \infty]$, for every $h \in \Omega$ and for every $h' \in \overline{C}$,

$$\|f_{h+h'}\|_{L^p(\mathcal{N})} \leq \|f_h\|_{L^p(\mathcal{N})}$$

The proof is based on the 'analtic disc technique' presented in [2, Section 15.3].

Observe that the assumption that $\Omega = \Omega + \overline{C}$ is not restrictive. Indeed, if Ω is connected and C has a non-empty interior Int C, then every function which is holomorphic on $\rho^{-1}(\Omega)$ extends (uniquely) to a holomorphic function on $\rho^{-1}(\Omega + (\operatorname{Int} C \cup \{ 0 \}))$ by [2, Theorem 1 of Section 15.3], and $\Omega + (\operatorname{Int} C \cup \{ 0 \}) =$ $\Omega + \overline{C}$ since Ω is open and $\overline{C} = \operatorname{Int} \overline{C}$ by convexity. The case in which $\operatorname{Int} C = \emptyset$ may be treated directly using similar techniques.

We also mention that, if $p < \infty$ and either Φ is degenerate or the polar of $\Phi(E)$ has an empty interior (that is, the closed convex envelope of $\Phi(E)$ contains a non-trivial vector subspace), then either $f_h = 0$ or $f_h \notin L^p(\mathcal{N})$ (at least for $p \ge 1$ when Φ is non-degenerate). Cf. [6] for more details in a similar case. *Proof.* For every $\mathbf{v} = (v_j) \in E^m$, consider

$$A_{\mathbf{v}} \colon \mathbb{C} \ni w \mapsto \left(\sum_{j=1}^{m} v_j w^j, i \sum_{j=1}^{m} \Phi(v_j) + 2i \sum_{k < j} \Phi(v_j, v_k) w^{j-k}\right) \in E \times F_{\mathbb{C}}$$

and

$$\Psi(\mathbf{v}) \coloneqq \sum_{j=1}^m \Phi(v_j) \in C,$$

and observe that the following hold:

- $A_{\mathbf{v}}(0) = (0, i\Psi(\mathbf{v}));$
- $\Psi(E^m)$ is the convex envelope of $\Phi(E)$, thanks to [12, Corollary 17.1.2];
- $\rho(A_{\mathbf{v}}(w)) = 0$ for every $w \in \mathbb{T}$;
- the mapping $A: E^m \ni \mathbf{v} \mapsto A_{\mathbf{v}} \in \operatorname{Hol}(\mathbb{C}; E \times F_{\mathbb{C}})$ is continuous (actually, polynomial).

Now, take $h \in \Omega$. By continuity, there is $\varepsilon > 0$ such that $A_{\mathbf{v}}(\overline{U}) + ih \subseteq D$ for every $\mathbf{v} \in B_{E^m}(0,\varepsilon)$, where U denotes the unit disc in \mathbb{C} , and \overline{U} its closure. Then, $A_{\mathbf{v}}(\overline{U}) + ih' \subseteq D$ for every $\mathbf{v} \in B_{E^m}(0,\varepsilon)$ and for every $h' \in h + \overline{C}$. For every $h' \in \Psi(B_{E^m}(0,\varepsilon))$, denote by $\nu_{h'}$ the image of the normalized Haar measure on \mathbb{T} under the mapping $\pi \circ A_{\mathbf{v}}$, for some $\mathbf{v} \in B_{E^m}(0,\varepsilon) \cap \Psi^{-1}(h')$, where $\pi \colon E \times F_{\mathbb{C}} \ni (\zeta, z) \mapsto (\zeta, x) \in \mathcal{N}$. Observe that, for every $(\zeta, x) \in \mathcal{N}$ and for every $h'' \in h + \overline{C}$, the mapping

$$\overline{U} \ni w \mapsto f((\zeta, x + i\Phi(\zeta)) \cdot [A_{\mathbf{v}}(w) + (0, ih'')]) \in \mathbb{C}$$

is continuous and holomorphic on U, so that, by subharmonicity (cf., e.g., [13, Theorem 15.19]),

$$\begin{aligned} \left| f(\zeta, x + i\Phi(\zeta) + i(h' + h'')) \right|^{\min(1,p)} &\leqslant \int_{\mathbb{T}} \left| f((\zeta, x + i\Phi(\zeta)) \cdot [A_{\mathbf{v}}(w) + (0, ih'')]) \right|^{\min(1,p)} \mathrm{d}u \\ &= \int_{\mathcal{N}} \left| f_{h''}((\zeta, x)(\zeta', x')) \right|^{\min(1,p)} \mathrm{d}\nu_{h'}(\zeta', x') \\ &= \left| f_{h''} \right|^{\min(1,p)} * \check{\nu}_{h'}, \end{aligned}$$

where $\check{\nu}_{h'}$ denotes the reflection of $\nu_{h'}$, while **v** is a suitable element of $B_{E^m}(0,\varepsilon) \cap \Psi^{-1}(h')$. Since $\nu_{h'}$ is a probability measure, by Young's inequality (cf., e.g., [4, Chapter III, § 4, No. 4]) we then infer that

$$\|f_{h'+h''}\|_{L^p(\mathcal{N})} = \||f_{h'+h''}|^{\min(1,p)}\|_{L^{\max(1,p)}}^{1/\min(1,p)} \le \||f_{h''}|^{\min(1,p)}\|_{L^{\max(1,p)}(\mathcal{N})}^{1/\min(1,p)} = \|f_{h''}\|_{L^p(\mathcal{N})}^{1/\min(1,p)}$$

for every $h' \in \Psi(B_{E^m}(0,\varepsilon))$ and for every $h'' \in h + \overline{C}$. Since every element of C may we written as a finite sum of elements of $\Psi(B_{E^m}(0,\varepsilon))$, the arbitrariness of h'' shows that

$$\|f_{h+h'}\|_{L^p(\mathcal{N})} \leq \|f_h\|_{L^p(\mathcal{N})}$$

for every $h' \in C$, hence for every $h' \in \overline{C}$ by lower semi-continuity. The proof is complete.

Corollary 2. Assume that C has a non-empty interior Ω , and set $D \coloneqq \rho^{-1}(\Omega)$. Then, for every $p \in]0, \infty]$ and $f \in Hol(D)$,

$$\sup_{h\in\Omega} \|f_h\|_{h\in L^p(\mathcal{N})} = \liminf_{h\to 0, h\in\Omega} \|f_h\|_{L^p(\mathcal{N})}.$$

In particular, if we define the Hardy space $H^p(D)$ as the set of $f \in \operatorname{Hol}(D)$ such that $\sup_{h \in \Omega} ||f_h||_{h \in L^p(\mathcal{N})}$ is finite, the preceding result states that $H^p(D)$ may be equivalently defined as the set of $f \in \operatorname{Hol}(D)$ such that $\liminf_{h \to 0, h \in \Omega} ||f_h||_{L^p(\mathcal{N})}$ is finite. This result should be compared with [3], where the boundary values of the elements of $H^p(D)$ are characterized as the CR elements of $L^p(\mathcal{N})$, for $p \in [1, \infty]$. In particular, Corollary 2 could be deduced from the results of [3], when $p \in [1, \infty]$, though at the expense of some further technicalities.

This result extends [7, Corollary 1.43].

3

M. CALZI

4. Examples

We shall now present some examples of homogeneous Siegel domains $D = \rho^{-1}(\Omega)$ for which $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$, so that Corollary 2 applies.

We recall that D is said to be a Siegel domain if Ω is an open convex cone not containing affine lines, Φ is non-degenerate, and $\Phi(E) \subseteq \overline{\Omega}$. In addition, D is said to be homogeneous if the group of its biholomorphisms acts transitively on D. It is known (cf., e.g., [5, Proposition 1]) that D is homogeneous if and only if there is a triangular Lie subgroup T_+ of GL(F) which acts simply transitively on Ω , and for every $t \in T_+$ there is $g \in GL(E)$ such that $t\Phi = \Phi(g \times g)$.

If T'_+ is another Lie subgroup of GL(F) with the same properties as T_+ , then T_+ and T'_+ are conjugated by an automorphism of F preserving Ω . Thanks to this fact, we may use the results of [7] even if a different T_+ is chosen. In particular, there is a surjective (open and) continuous homomorphism of Lie groups

$$\Delta: T_+ \to (\mathbb{R}^*_+)^*$$

for some $r \in \mathbb{N}$, called the rank of Ω , so that

$$\Delta^{\mathbf{s}} = \Delta_1^{s_1} \cdots \Delta_r^{s_r}$$

 $\mathbf{s} \in \mathbb{C}^r$, are the characters of T_+ . Once a base point $e_{\Omega} \in \Omega$ has been fixed, $\Delta^{\mathbf{s}}$ induces a function $\Delta^{\mathbf{s}}_{\Omega}$ on Ω , setting $\Delta^{\mathbf{s}}_{\Omega}(t(e_{\Omega})) = \Delta^{\mathbf{s}}(t)$ for every $t \in T_+$.

Up to modify Δ , we may then assume that the functions $\Delta_{\Omega}^{\mathbf{s}}$ are bounded on the bounded subsets of Ω if and only if $\operatorname{Re} \mathbf{s} \in \mathbb{R}^{r}_{+}$ (cf. [7, Lemma 2.34]). In particular, there is $\mathbf{b} \in \mathbb{R}^{r}_{-}$ such that $\Delta^{-\mathbf{b}}(t) = |\operatorname{det}_{\mathbb{C}} g|^{2}$ for every $t \in T_{+}$ and for every $g \in GL(E)$ such that $t\Phi = \Phi(g \times g)$ (cf. [7, Lemma 2.9]), and one may prove that $\mathbf{b} \in (\mathbb{R}^{*}_{-})^{r}$ if and only if $\Phi(E)$ generates F as a vector space, in which case Ω is the interior of the convex envelope of $\Phi(E)$ (cf. [7, Proposition 2.57 and its proof, and Corollary 2.58]). Therefore, we are interested in finding examples of homogeneous Siegel domains for which $\mathbf{b} \in (\mathbb{R}^{*}_{-})^{r}$.

Notice, in addition, that if $\mathbf{b} \notin (\mathbb{R}^*_{-})^r$, then $\Phi(E)$ is contained in a hyperplane, so that the interior of its convex envelope is empty.

The Siegel domain D is said to be symmetric if it is homogeneous and admits an involutive biholomorphism with a unique fixed point (equivalently, if for every $(\zeta, z) \in D$ there is an involutive biholomorphism of Dfor which (ζ, z) is an isolated (or the unique) fixed point). The domain D is said to be irreducible if it is not biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to a product of irreducible ones, and that the irreducible symmetric Siegel domains can be classified in four infinite families plus two exceptional domains (cf., e.g., [1, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain, either $\mathbf{b} = \mathbf{0}$ (that is, $E = \{0\}$, in which case D is 'of tube type'), or $\mathbf{b} \in (\mathbb{R}^*_{-})^r$ (cf., e.g., [7, Example 2.11]). Hence, when Dis a symmetric Siegel domain, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if none of the irreducible components of D is of tube type. Note that these domains can be also characterized as those which do not admit any non-constant *rational* inner functions, thanks to [8].

We now present some examples of (homogeneous) Siegel domains.

Example 3. Let K be either C or the division ring of the quaternions. In addition, fix $r, k, p \in \mathbb{N}$ with $p \leq r$, and define

- E as the space of $k \times r$ matrices over K whose j-th columns have zero entries for $j = p + 1, \ldots, r$;
- F as the space of self-adjoint $r \times r$ matrices over K;
- Ω as the cone of non-degenerate positive self-adjoint $r \times r$ matrices over K;
- •

$$\Phi \colon E \times E \ni (\zeta, \zeta') \mapsto \frac{1}{2} [(\zeta'^* \zeta + \zeta^* \zeta') + i(\zeta^* i \zeta' - \zeta'^* i \zeta)] \in F_{\mathbb{C}};$$

- T_+ as the group of upper triangular $r \times r$ -matrices over \mathbb{K} with strictly positive diagonal entries, acting on Ω (and F) by the formula $t \cdot h \coloneqq tht^*$;
- $\Delta: T_+ \ni t \mapsto (t_{1,1}, \dots, t_{r,r}) \in (\mathbb{R}^*_+)^r.$

Then, Ω is an irreducible symmetric cone¹ of rank r on which T_+ acts simply transitively by [7, Example 2.6]. In addition, Φ is well defined, since $\zeta'^*\zeta + \zeta^*\zeta', \zeta^*i\zeta' - \zeta'^*i\zeta \in F$ for every $\zeta, \zeta' \in E$, and clearly $\Phi(\zeta) \in \overline{\Omega}$ and

$$t \cdot \Phi(\zeta) = t \cdot (\zeta^* \zeta) = (\zeta t^*)^* (\zeta t^*) = \Phi(\zeta t^*)$$

for every $t \in T_+$ and for every $\zeta \in E$ (with $\zeta t^* \in E$), so that D is homogeneous. Then, $\mathbf{b} = (b_j)$, with $b_j = -k \dim_{\mathbb{C}} \mathbb{K}$ for $j = 1, \ldots, p$ and $b_j = 0$ for $j = p + 1, \ldots, r$. Consequently, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if p = r and k > 0.

Notice that D is irreducible since Ω is irreducible (cf. [9, Corollary 4.8]), and that D is symmetric if kp = 0 or if p = r and $\mathbb{K} = \mathbb{C}$ (cf. [7, Examples 2.14 and 2.15]). If kp(r-p) > 0, or if $\mathbb{K} \neq \mathbb{C}$, $r \ge 3$, and $k \ge 2$, then D cannot be symmetric.

Example 4. Take $k, p, q \in \mathbb{N}, p \leq 2$. Define:

- *E* as the space of formal $k \times 2$ matrices whose entries of the first column belong to \mathbb{C} (and are 0 if p = 0), and whose entires of the second column belong to \mathbb{C}^q (and are 0 if $p \leq 1$);
- F as the space of formally self-adjoint 2 × 2 matrices whose diagonal entries belong to \mathbb{R} , and whose non-diagonal entries belong to \mathbb{C}^q ;
- Ω as the cone of $\begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix} \in F$ with $a, c > 0, b \in \mathbb{C}^q$, and $ac |b|^2 > 0$;
- $\bullet \ \varPhi$ so that

$$\Phi\begin{pmatrix}a_1 & b_1\\ \vdots & \vdots\\ a_k & b_k\end{pmatrix} = \begin{pmatrix}\sum_j |a_j|^2 & \sum_j \overline{a_j} b_j\\ \sum_j a_j \overline{b_j} & \sum_j |b_j|^2\end{pmatrix}$$

for every $\begin{pmatrix} a_1 & b_1 \\ \vdots & \vdots \\ a_k & b_k \end{pmatrix} \in E;$

• T_+ as the group of formal 2×2 upper triangular matrices with diagonal entries in \mathbb{R}^{*}_+ and nondiagonal entries in \mathbb{C}^{q} , with the action²

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ \overline{b}' & c' \end{pmatrix} \coloneqq \begin{pmatrix} a'a^2 + c'|b|^2 + 2a\operatorname{Re}\langle b, b' \rangle & acb' + cc'b \\ ac\overline{b'} + cc'\overline{b} & c^2c' \end{pmatrix};$$

• $\Delta: T_+ \ni t \mapsto (t_{1,1}, t_{2,2}).$

Then, Ω is an irreducible symmetric cone of rank 2 on which T_+ acts simply transitively (cf. [7, Example 2.7]). In addition, $\Phi(\zeta) \in \overline{\Omega}$ for every $\zeta \in E$, and

$$t \cdot \Phi(\zeta) = \Phi(\zeta t^*)$$

for every $t \in T_+$ and $\zeta \in E$ (with $\zeta t^* \in E$), provided that $p \leq 1$. Then, D is an irreducible Siegel domain, and it is homogeneous if $p \leq 1$ (it is symmetric if p = 0). In addition, $\mathbf{b} = \mathbf{0}$ if p = 0, while $\mathbf{b} = (k, 0)$ if

and it is homogeneous if $p \ge 1$ (it is symmetric if p = 0). In decision, p = 1. Further, if p = 2, then $\Phi(E)$ contains the boundary of Ω , since $\left(\frac{a}{b} \frac{b}{c}\right) = \Phi\left(\begin{array}{c} a^{1/2} a^{-1/2}b\\ 0\\ \vdots\\ 0\\ 0\end{array}\right)$, for every

a > 0, for every $c \ge 0$ and for every $b \in \mathbb{C}^q$ such that $|b|^2 = ac$ (the case $a = 0, b = 0, c \ge 0$ is treated similarly). Then, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if p = 2.

 $^{^{1}}$ A cone is said to be homogeneous if the group of its linear automorphisms acts transitively on it. It is said to be symmetric if, in addition, it is self-dual for some scalar product. A convex cone is said to be irreducible if it is not isomorphic to a product of non-trivial convex cones.

²Formally, $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^*$.

M. CALZI

References

- Arazy, J., A Survey of Invariant Hilbert Spaces of Analytic Functions on Bounded Symmetric Domains, Contemp. Math. 185 (1995), p. 7–65.
- [2] Boggess, A., CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, 1991.
- [3] Boggess, A., CR Extension for L^p CR Functions on a Quadric Submanifold of \mathbb{C}^n , Pac. J. Math. 201 (2001), p. 1–18.
- [4] Bourbaki, N., Integration II, Chap. 7–9, Springer, 2004.
- [5] Calzi, M., Besov Spaces of Analytic Type: Interpolation, Convolution, Fourier Multipliers, Inclusions, preprint (2021), arXiv:2109.09402.
- [6] Calzi, M., Paley–Wiener–Schwartz Theorems on Quadratic CR Manifolds, in preparation.
- [7] Calzi, M., Peloso, M. M., Holomorphic Function Spaces on Homogeneous Siegel Domains, Diss. Math. 563 (2021), p. 1–168.
- [8] Korányi, A., Vági, S., Rational Inner Functions on Bounded Symmetric Domains, Trans. Amer. Math. Soc. 254 (1979), p. 179–193.
- [9] Nakajima, K., Some Studies on Siegel Domains, J. Math. Soc. Japan 27 (1975), p. 54-75.
- [10] Peloso, M. M., Ricci, F., Tangential Cauchy–Riemann Equations on Quadratic CR Manifolds, Rend. Mat. Acc. Lincei 13 (2002), p. 125–134.
- [11] Peloso, M. M., Ricci, F., Analysis of the Kohn Laplacian on Quadratic CR Manifolds, J. Funct. Anal. 203 (2003), p. 321– 355.
- [12] Rockafellar, R. T., Convex Analysis, Princeton University Press, 1970.
- [13] Rudin, W., Real and Complex Analysis, McGraw-Hill, 1987.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI MILANO, VIA C. SALDINI 50, 20133 MILANO, ITALY *E-mail address*: mattia.calzi@unimi.it