A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS

MATTIA CALZI

ABsTrRACT. Given a quadratic CR manifold M embedded in a complex space, and a holomorphic function
f on a tubular neighbourhood of M, we show that the LP-norms of the restriction of f to the translates of
M is decreasing for the ordering induced by the closed convex envelope of the image of the Levi form of M.

1. INTRODUCTION

Let f be a holomorphic function on the upper half-plane C; = R + iR%. If f belongs to the Hardy
space HP(C,), that is, if supy>0||fy||Lp(]R) is finite, where fy,:  — f(z + iy), then it is well known that the
function y — || fy || Lo(R) 1S decreasing on R, for every p €]0,00]. Nontheless, if f is simply holomorphic,
then the lower semicontinuous function y — || f|| Lo (R) need not be decreasing. Actually, the set where it is
finite may be any interval in R’ , or even a disconnected set.

Now, replace the upper half-plane C; with a Siegel upper half-space

D::{(C,z)GC”XC:Imzf|C|2>O},

and define
fu: € xRS (G ) = f(GtilC) + h)
for every h > 0 and for every function on D. This definition is motivated by the fact that

bD = { (C,z +ilC): (C,x) e C ><]R}

is the boundary of D, and the sets D + (0, ih), for h > 0, foliate D as the sets R + iy, for y > 0, foliate C.
If f is holomorphic on D, then the mapping h — || || Lr(C" xR) is always decreasing (though not necessarily
finite), in contrast to the preceding case (cf. Theorem . This fact is closely related with the fact that evey
holomorphic function defined in a neighbourhood of bD automatically extends to D. More precisely, if one
observes that bD has the structure of a CR submanifold of C™ x C, one may actually prove that every CR
function (of class C') is the boundary values of a unique holomorphic function on D (cf. [2 Theorem 1 of
Section 15.3]).

In this note we show that an analogous property holds when bD is replaced by a general quadratic,
or quadric, CR submanifold of a complex space, and then discuss some examples of Silov boundaries of
(homogeneous) Siegel domains.

2. PRELIMINARIES

We fix a complex hilbertian space F of dimension n, a real hilbertian space F' of dimension m, and a
hermitian map @: E x E — Fg. Define

M={((,z4+iP(): (€ FE,xc e F}={((,2) e ExFg:Imz—®(() =0},
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where Fg denotes the complexification of F', while &({) := &((, () for every ¢ € E. We define
p: ExFg3(¢2)—»Imz—9(() € F.
We endow E x Fg with the product

(€ 2)(¢2) = (C+ {2+ 2 +2i9(, ()
for every (¢, 2),(¢’,2') € E x Fg, so that E x Fg becomes a 2-step nilpotent Lie group, and M a closed
subgroup of E x Fg. In particular, the identity of E x Fg is (0,0) and (¢, 2)7! = (=¢, —2 + 2i®(()) for
every ((,z) € E x Fg. It will be convenient to identify M with the 2-step nilpotent Lie group N := E x F,
endowed with the product

(€, 2)(¢,a") = (¢ + {2+ 2"+ 2Im P(¢, ()
for every (¢, ), (¢',z') € N, by means of the isomorphism

t: N3 ((x) = (¢z+1P(C)) € E x Fg.

In particular, the identity of A is (0,0) and ((,z)~! = (=(, —x) for every ((,z) € N. Notice that, in this
way, N acts holomorphically (on the left) on E X Fg. Given a function f on E X Fg, we shall define

i N3 (¢ x)— f(¢z+iD() +ih) € C

for every h € F'.
Observe that the preceding groups structures show that, if we define the complex tangent space of M at
(¢, z2) as
HigyM =T g M N (iT(¢ ) M)
for every (¢, z) € M, where T{¢ )M denotes the real tangent space to M at (¢, ), identified with a subspace
of F x Fg, then

Hi )M = dL ) Ho,0)M,

where L. .y denotes the left translation by (¢, 2) (in E x F¢), and dL(c ) its differential at (0,0). Therefore,
dimg H(¢ ) = n for every (¢,2) € M, so that M is a CR submanifold of E x Fg¢ (cf. [2, Chapter 7]), called
a qudratic or quadric CR manifold (cf. [2], Section 7.3] and [10), 11]).

We observe explicitly that M is generic (that is, dimg M — dimg Hg )M = dimgr E x F¢ — dimg M,
cf. |2 Definition 5 and Lemma 4 of Section 7.1]) and that its Levi form may be canonically identified with
& (cf. [2, Chapter 10] and [I1]).

3. A PROPERTY OF HARDY SPACES

We denote by C the convex envelope of $(F).

Theorem 1. Let £2 be an open subset of F such that 2 = 2 + C, and set D = p~'(§2). Then, for every
f € Hol(D), for every p €]0, 0], for every h € 2 and for every h' € C,

||fh+h/HLp(/\/) < Hfh”Lp(N)-

The proof is based on the ‘anaytic disc technique’ presented in [2], Section 15.3].

Observe that the assumption that 2 = 2 4+ C is not restrictive. Indeed, if {2 is connected and C has
a non-empty interior Int C, then every function which is holomorphic on p~1(£2) extends (uniquely) to a
holomorphic function on p=1(£2+ (Int CU{ 0 })) by [2, Theorem 1 of Section 15.3|, and 2+ (Int CU{ 0 }) =
2 + C since {2 is open and C = Int C by convexity. The case in which Int C' = () may be treated directly
using similar techniques.

We also mention that, if p < co and either @ is degenerate or the polar of #(E) has an empty interior
(that is, the closed convex envelope of ¢(E) contains a non-trivial vector subspace), then either f, = 0 or
fn & LP(N) (at least for p > 1 when & is non-degenerate). Cf. [6] for more details in a similar case.




A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS 3

Proof. For every v = (v;) € E™, consider

Ay: Cowr (Zvjwj,iZQ(vj) + QiZQ(vj,vk)wj_k) € E x Fg,
j=1 j=1 k<j
and
w(v) =Y &) €C,
j=1

and observe that the following hold:

A4(0) = (0,1 (v));

W(E™) is the convex envelope of ¢(F), thanks to [12, Corollary 17.1.2];

p(Ay(w)) = 0 for every w € T;

the mapping A: E™ > v — A, € Hol(C; E x Fg) is continuous (actually, polynomial).

Now, take h € 2. By continuity, there is € > 0 such that A, (U) + ih C D for every v € Bgm(0,¢), where
U denotes the unit disc in C, and U its closure. Then, A, (U) + ik’ C D for every v € Bgm(0,¢) and for
every h' € h+ C. For every h' € W(Bgn(0,¢)), denote by vy, the image of the normalized Haar measure on
T under the mapping 7 o Ay, for some v € Bgn(0,e) NWL(R), where m: E x F¢ 3 ((,2) — ((,z) € N.
Observe that, for every (¢,z) € N and for every h”” € h + C, the mapping

Uswe f((C 2 +1i@(C)) - [Av(w) + (0,ih")]) € C

is continuous and holomorphic on U, so that, by subharmonicity (cf., e.g., [I3, Theorem 15.19]),

[F(Gow +iB(Q) + (W + )™ < /Tlf((c,x +i2(C)) - [Av (w) + (0, i)™ duw

- /N o (€ 2) (¢ ) dug (¢ )

= | [P s

where 7, denotes the reflection of v/, while v is a suitable element of Bgn(0,) NW~1(h/). Since v is a
probability measure, by Young’s inequality (cf., e.g., [4, Chapter III, § 4, No. 4]) we then infer that

min(1,p) Hl/ min(1,p) < ” ‘fh” |min(1,p) ”1/ min(1l,p)

||fh,+h,/||LP(N) = |||fh/+h”| [ max(1,p) Lmax(l,p)(N) - Hfh”HLP(N)

for every h' € ¥(Bgm(0,¢)) and for every h” € h+ C. Since every element of C' may we written as a finite
sum of elements of ¥(Bgm (0,¢)), the arbitrariness of A” shows that

Hfh—&-h’”Lp(N) < ”fh”LP(,/\/')
for every h' € C, hence for every h' € C by lower semi-continuity. The proof is complete. O
Corollary 2. Assume that C has a non-empty interior 2, and set D = p~(£2). Then, for every p €]0, o0
and f € Hol(D),

= liminf .
Sgg“fh”hemu\/) hg{i;ﬁrég”fh||Lp<N>

In particular, if we define the Hardy space HP(D) as the set of f € Hol(D) such that sup,c |l fnllnerra)
is finite, the preceding result states that HP(D) may be equivalently defined as the set of f € Hol(D) such
that hlirg }Lan [ fnll oy 1s finite. This result should be compared with [3], where the boundary values of the

—0,he

elements of HP(D) are characterized as the CR elements of LP(N), for p € [1,00]. In particular, Corollary
could be deduced from the results of [3], when p € [1, 0o}, though at the expense of some further technicalities.
This result extends [7, Corollary 1.43].
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4. EXAMPLES

We shall now present some exmples of homogeneous Siegel domains D = p~1(2) for which §2 is the closed
convex envelope of @(E), so that Corollary [2] applies.

We recall that D is said to be a Siegel domain if {2 is an open convex cone not containing affine lines, @ is
non-degenerate, and @(E) C §2. In addition, D is said to be homogeneous if the group of its biholomorphisms
acts transitively on D. It is known (cf., e.g., [5l Proposition 1]) that D is homogeneous if and only if there
is a triangular Lie subgroup T of GL(F') which acts simply transitively on {2, and for every t € T, there is
g € GL(E) such that t& = &(g x g).

If T} is another Lie subgroup of GL(F') with the same properties as T, then T and T", are conjugated
by an automorphism of F' preserving {2. Thanks to this fact, we may use the results of [7] even if a different
T, is chosen. In particular, there is a surjective (open and) continuous homomorphism of Lie groups

ATy — (RY)"
for some 7 € IN, called the rank of (2, so that

A0 = A7 A
s € C", are the characters of 7.. Once a base point e, € {2 has been fixed, A% induces a function A§, on
2, setting A%, (t(en)) = A3(t) for every ¢t € T'..

Up to modify A, we may then assume that the functions A%, are bounded on the bounded subsets of (2 if
and only if Res € R'} (cf. [7, Lemma 2.34]). In particular, there is b € R” such that A=P(¢) = |detc g? for
every t € Ty and for every g € GL(E) such that t& = ¢(g x g) (cf. [7, Lemma 2.9]), and one may prove that
b € (R*)" if and only if $(F) generates F' as a vector space, in which case {2 is the interior of the convex
envelope of @(F) (cf. [1, Proposition 2.57 and its proof, and Corollary 2.58|). Therefore, we are interested
in finding examples of homogeneous Siegel domains for which b € (R*)".

Notice, in addition, that if b & (R* )", then ¢(F) is contained in a hyperplane, so that the interior of its
convex envelope is empty.

The Siegel domain D is said to be symmetric if it is homogeneous and admits an involutive biholomorphism
with a unique fixed point (equivalently, if for every ({,z) € D there is an involutive biholomorphism of D
for which (¢, 2z) is an isolated (or the unique) fixed point). The domain D is said to be irreducible if it is not
biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to a product of irreducible ones, and
that the irreducible symmetric Siegel domains can be classified in four infinite families plus two exceptional
domains (cf., e.g., [T, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain, either b = 0 (that
is, E = {0}, in which case D is ‘of tube type’), or b € (R-)" (cf., e.g., [7, Example 2.11]). Hence, when D
is a symmetric Siegel domain, £2 is the closed convex envelope of ®(E) if and only if none of the irreducible
components of D is of tube type. Note that these domains can be also characterized as those which do not
admit any non-constant rational inner functions, thanks to [§].

We now present some examples of (homogeneous) Siegel domains.

Example 3. Let K be either C or the division ring of the quaternions. In addition, fix r, k,p € IN with
p < r, and define

E as the space of k x r matrices over K whose j-th columns have zero entries for j =p+1,...,7;
F' as the space of self-adjoint r x r matrices over IK;

{2 as the cone of non-degenerate positive self-adjoint r x r matrices over K;

P:ExE> () 5[(( C+ ) +i(¢ric = ¢MiQ)] € Fe
T, as the group of upper triangular r X r-matrices over IK with strictly positive diagonal entries,

acting on (2 (and F') by the formula ¢ - h = tht*;
A: T+ St — (tl,h S ,tr}r) € (]Riy
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Then, {2 is an irreducible symmetric coneﬂ of rank r on which T’} acts simply transitively by [7, Example 2.6].
In addition, @ is well defined, since ¢"*¢ + ¢*¢’, ¢*i¢’ — ("*i¢ € F for every (,(’ € E, and clearly ®(¢) € 2
and

t-D(C) =t (C7¢) = (¢t7)"(Ct") = D(Ct")

for every t € T and for every { € E (with (t* € E), so that D is homogeneous. Then, b = (b;), with
bj = —kdim¢K for j = 1,...,pand b; = 0 for j = p+1,...,7. Consequently, {2 is the closed convex
envelope of @(F) if and only if p = r and k > 0.

Notice that D is irreducible since (2 is irreducible (cf. [9 Corollary 4.8]), and that D is symmetric if
kp=0orif p=r and K = C (cf. [7, Examples 2.14 and 2.15]). If kp(r —p) > 0, or if K # C, r > 3, and
k > 2, then D cannot be symmetric.

Example 4. Take k,p,q € IN, p < 2. Define:

e E as the space of formal k x 2 matrices whose entries of the first column belong to C (and are 0 if
p = 0), and whose entires of the second column belong to C? (and are 0 if p < 1);

F as the space of formally self-adjoint 2 x 2 matrices whose diagonal entries belong to IR, and whose
non-diagonal entries belong to C¢;

2 as the cone of (% i) € F with a,¢> 0, b e €7, and ac — |b|* > 0;

e & so that

ay bl
of 0 ) (el
' 25 a0 325004l

aq bl
for every ( | ek,
a'k b'k
e T as the group of formal 2 x 2 upper triangular matrices with diagonal entries in R” and non-
diagonal entries in C9, with the actiorﬂ

<a b> . (a’ b’) . (a’a2 + ¢ |b]* + 2aRe (b, b)  acl/ +cc’b).

0 c v act! + cc'd e ’
o A: T+ St (t1,17t2,2)'

Then, (2 is an irreducible symmetric cone of rank 2 on which 7' acts simply transitively (cf. [7, Example
2.7]). In addition, ¢({) € 12 for every ¢ € E, and

t-B(Q) = BCH)

for every t € Ty and ¢ € E (with (t* € F), provided that p < 1. Then, D is an irreducible Siegel domain,
and it is homogeneous if p < 1 (it is symmetric if p = 0). In addition, b = 0 if p = 0, while b = (k,0) if
al/? q—1/2p
0 0
p = 1. Further, if p = 2, then ®(E) contains the boundary of {2, since (% i) =\ . . , for every
0 0
a > 0, for every ¢ > 0 and for every b € C? such that \b|2 = ac (the case a = 0, b = 0, ¢ > 0 is treated

similarly). Then, {2 is the closed convex envelope of ®(F) if and only if p = 2.

LA cone is said to be homogeneous if the group of its linear automorphisms acts transitively on it. It is said to be symmetric
if, in addition, it is self-dual for some scalar product. A convex cone is said to be irreducible if it is not isomorphic to a product
of non-trivial convex cones.

2 b Ty b iy b)*

Formally, (§2) - (3 %) = (§2) (5 ) (52)"

=
b
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