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We address our interest to the development of a theory of viscosity solutions à la Crandall–Lions for path-
dependent partial differential equations (PDEs), namely PDEs in the space of continuous paths C([0, T ];Rd).
Path-dependent PDEs can play a central role in the study of certain classes of optimal control problems, as for
instance optimal control problems with delay. Typically, they do not admit a smooth solution satisfying the corre-
sponding HJB equation in a classical sense, it is therefore natural to search for a weaker notion of solution. While
other notions of generalized solution have been proposed in the literature, the extension of the Crandall–Lions
framework to the path-dependent setting is still an open problem. The question of uniqueness of the solutions,
which is the most delicate issue, will be based on early ideas from the theory of viscosity solutions and a suitable
variant of Ekeland’s variational principle. This latter is based on the construction of a smooth gauge-type function,
where smooth is meant in the horizontal/vertical (rather than Fréchet) sense. In order to make the presentation
more readable, we address the path-dependent heat equation, which in particular simplifies the smoothing of its
natural “candidate” solution. Finally, concerning the existence part, we provide a functional Itô formula under
general assumptions, extending earlier results in the literature.

Keywords: Path-dependent partial differential equations; viscosity solutions; functional Itô formula

1. Introduction

Path-dependent heat equation refers to the second-order partial differential equation in the space of
continuous paths⎧⎨

⎩−∂H
t v(t,x) − 1

2
tr
[
∂V
xxv(t,x)

] = 0, (t,x) ∈ [0, T ) × C
([0, T ];Rd

)
,

v(T ,x) = ξ(x), x ∈ C
([0, T ];Rd

)
.

(1.1)

Here C([0, T ];Rd) denotes the Banach space of continuous paths x : [0, T ] → R
d equipped with

the supremum norm ‖x‖∞ := supt∈[0,T ] |x(t)|, with | · | denoting the Euclidean norm on R
d . The

terminal condition ξ : C([0, T ];Rd) → R is assumed to be continuous and bounded. We refer to
equation (1.1) as path-dependent heat equation. Similarly as for the usual heat equation, it admits
the following Feynman–Kac representation formula in terms of the d-dimensional Brownian motion
W = (W s)s∈[0,T ]:

v(t,x) = E
[
ξ
(
W t,x

)]
, ∀(t,x) ∈ [0, T ] × C

([0, T ];Rd
)
, (1.2)

where

W t,x
s :=

{
x(s), s ≤ t,

x(t) + W s − W t , s > t.
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In the case of the classical heat equation ξ only depends on the terminal value W t,x
T .

The peculiarity of equation (1.1) is the presence of the so-called functional or pathwise derivatives
∂H
t v, ∂V

xxv, where ∂H
t v is known as horizontal derivative, while ∂V

xxv is the matrix of second-order ver-
tical derivatives. Those derivatives appeared in [54,55] (under the name of coinvariant derivatives) as
building block of the so-called i-smooth analysis, and independently in [1], where they were denoted
Clio derivatives; later, they were rediscovered by [32] (from which we borrow terminology and defini-
tions), which adopted a slightly different definition based on the space of càdlàg paths and in addition
developed a related stochastic calculus, known as functional Itô calculus, including in particular the
so-called functional Itô formula. Differently from the classical Fréchet derivative on C([0, T ];Rd), the
distinguished features of the pathwise derivatives are their finite-dimensional nature and the property
of being non-anticipative, which follow from the interpretation of t in x(t) as time variable. This means
that v(t,x) only depends on the values of the path x up to time t ; moreover, the horizontal and vertical
derivatives at time t are computed keeping the past values frozen, while only the present value of the
path (that is x(t)) can vary. The related functional Itô calculus was rigorously investigated in [12–14].
[15,18] also gave a contribution in this direction, exploring the relation between pathwise derivatives
and Banach space stochastic calculus, built on an appropriate notion of Fréchet type derivative and first
conceived in [27], see also [26,28–30].

Partial differential equations in the space of continuous paths (also known as functional or Clio
or path-dependent partial differential equations) are mostly motivated by optimal control problems
of deterministic and stochastic systems with delay (or path-dependence) in the state variable. Such
control systems arise in many fields, as for instance optimal advertising theory [48,49], chemical engi-
neering [45], financial management [39,72], economic growth theory [2], mean field game theory [5],
biomedicine [46,80], systemic risk [10]. The underlying deterministic or stochastic controlled differen-
tial equations with delay can be studied in two ways: first using a direct approach (see for instance [51,
52,54,56,81]), second by lifting them into a suitable infinite-dimensional framework, leading to evolu-
tion equations in Hilbert (as in [11,25,42]) or Banach spaces (as in [27,69,70]). The latter methodology
turned out to be preferable to address general optimal control problems with delay (see for instance [38,
40,41,44,48,50,87]), although such an infinite-dimensional reformulation may require some additional
artificial assumptions to be imposed on the original control problem. On the other hand, the direct
approach was adopted for special problems where the Hamilton–Jacobi–Bellman equation reduces
to a finite-dimensional differential equation, as in [37,57]. This approach can now regain relevance
thanks to a well-grounded theory of path-dependent partial differential equations. To this regard, the
path-dependent heat equation represents the primary test for such a theory, it indeed requires the main
building blocks of the methodology, without overloading the proofs with additional technicalities.

Path-dependent partial differential equations represent a quite recent area of research. Typically,
they do not admit a smooth solution satisfying the equation in a classical sense, mainly because of
the awkward nature of the underlying space C([0, T ];Rd). This happens also for the path-dependent
heat equation, which in particular does not have the smoothing effect characterizing the classical heat
equation, except in some specific cases (as shown in [27,31]) with ξ belonging to the class of so-called
cylinder or tame functions (therefore depending specifically on a finite number of integrals with respect
to the path) or ξ being smoothly Fréchet differentiable. It is indeed quite easy, relying on the proba-
bilistic representation formula (1.2), to see that the function v is not smooth (in the horizontal/vertical
sense mentioned above) for terminal conditions of the form

ξ(x) = sup
0≤t≤T

x(t), ξ(x) = x(t0),

for some fixed t0 ∈ (0, T ). For a detailed analysis of the first case above we refer to Section 3.2 in [17],
see also Remark 3.8 in [18]. Concerning the second case, see for instance Example 11.1.3 of [88]. It
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is however worth mentioning that some positive results on smooth solutions were obtained in [18,75].
We also refer to Chapter 9 of [27] and [31], where smooth solutions were investigated using a Fréchet
type derivative formulation.

It is therefore natural to search for a weaker notion of solution, as the notion of viscosity solution,
commonly used in the standard finite-dimensional case. The theory of viscosity solutions, firstly in-
troduced in [22,23] for first-order equations in finite dimension and later extended to the second-order
case in [59–61], provides a well-suited framework guaranteeing the desired existence, uniqueness, and
stability properties (for a comprehensive account see [21]). The extension of such a theory to equations
in infinite dimension was initiated by [24,62–64,82,85]. One of the structural assumption is that the
state space has to be a Hilbert space or, slightly more general, certain Banach space with smooth norm,
not including for instance the Banach space C([0, T ];Rd) (notice however that in this paper we do not
directly generalize those results to C([0, T ];Rd), as we adopt horizontal/vertical, rather than Fréchet,
derivatives on C([0, T ];Rd)).

First-order path-dependent partial differential equations were deeply investigated in [68] using
a viscosity type notion of solution, which differs from the Crandall–Lions definition as the maxi-
mum/minimum condition is formulated on the subset of absolutely continuous paths. Such a modifica-
tion does not affect existence in the first-order case, however it is particularly convenient for unique-
ness, which is indeed established under general conditions. Other notions of generalized solution de-
signed for first-order equations were adopted in [1] as well as in [65–67], where the minimax frame-
work introduced in [83,84] was implemented. We also mention [4], where such a minimax approach
was extended to first-order path-dependent Hamilton–Jacobi–Bellman equations in infinite dimension.
Concerning the second-order case, a first attempt to extend the Crandall–Lions framework to the path-
dependent case was carried out in [73], even though a technical condition on the semi-jets was imposed,
namely condition (16) in [73], which narrows down the applicability of such a result. In the literature,
this was perceived as an almost insurmountable obstacle, so that the Crandall–Lions definition was
not further investigated, while other notions of generalized solution were devised, see [3,9,20,34,58,
74,86]. We mention in particular the framework designed in [34] and further investigated in [16,35,36,
77–79], where the notion of sub/supersolution adopted differs from the Crandall–Lions definition as
the tangency condition is not pointwise but in the sense of expectation with respect to an appropriate
class of probability measures. On the other hand, in [20] we introduced the so-called strong-viscosity
solution, which is quite similar to the notion of good solution for partial differential equations in finite
dimension, that in turn is known to be equivalent to the definition of Lp-viscosity solution, see for
instance [53]. We also mention [3], where the authors deal with semilinear path-dependent equations
and propose the notion of decoupled mild solution, formulated in terms of generalized transition semi-
groups; such a notion also adapts to path-dependent equations with integro-differential terms. Finally,
we mention [89], which appeared only recently, some time after the present paper was posted on arXiv,
but apparently uses the same methodology proposed in this paper to study path-dependent Hamilton–
Jacobi–Bellman equations. Unfortunately, it seems that the present version of that paper (v1) contains
a relevant gap in the proof of two crucial lemmas (Lemmas 4.2 and 4.3), see for instance, (4.39) in
[89].

In the present paper we adopt the natural generalization of the well-known definition of viscosity
solution à la Crandall–Lions given in terms of test functions and, under this notion, we establish exis-
tence and uniqueness for the path-dependent heat equation (1.1). The uniqueness property is derived,
as usual, from the comparison theorem. The proof of this latter, which is the most delicate issue, is
known to be quite involved even in the classical finite-dimensional case (see, for instance, [21]), and in
its latest form is based on Ishii’s lemma. Here we follow instead an earlier approach (see, for instance,
Theorem II.1 in [61] or Theorem IV.1 in [62]), which in principle can be applied to any path-dependent
equation admitting a “candidate” solution v, for which a probabilistic representation formula holds.
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This is the case for equation (1.1), where the candidate solution is given by formula (1.2), but it is also
the case for Kolmogorov type equations or, more generally, for Hamilton–Jacobi–Bellman equations.
This latter is the class of equations studied in [61] and [62], whose methodology in a nutshell can
be described as follows. Let u (resp. w) be a viscosity subsolution (resp. supersolution) of the same
path-dependent equation. The desired inequality u ≤ w follows if we compare both u and w to the
“candidate” solution v, that is if we prove the two inequalities u ≤ v and v ≤ w. Let us consider for
instance the first inequality u ≤ v. In the non-path-dependent and finite-dimensional case (as in [61]),
this is proved proceeding as follows: firstly, performing a smoothing of v through its probabilistic rep-
resentation formula; secondly, taking a local maximum of u− vn (here it is used the local compactness
of the finite-dimensional underlying space), with vn being a smooth approximation of v; finally, the
inequality u ≤ vn is proved proceeding as in the so-called partial comparison theorem (comparison
between a viscosity subsolution/supersolution and a smooth supersolution/subsolution), namely ex-
ploiting the viscosity subsolution property of u with vn playing the role of test function. In [62], where
such a methodology was extended to the infinite-dimensional case, the existence of a maximum of
u − vn is achieved relying on Ekeland’s variational principle, namely exploiting the completeness of
the space instead of the missing local compactness.

In this paper, we generalize the methodology sketched above to the path-dependent case. There are
however at least two crucial mathematical issues required by such a proof, still not at disposal in the
path-dependent framework.

First, given a candidate solution v, it is not a priori obvious how to perform a smooth approximation
of v itself starting from its probabilistic representation formula. Here we rely on Lemma 4.1, which in
turn exploits the results proved in [18] (Theorem 3.5) and [20] (Theorem 3.12), which are reported and
adapted to the present framework in Appendix D of [19] (Lemma D.1 and Lemma D.2, respectively).
Notice that such results apply to the case of the path-dependent heat equation (1.1), where there is only
the terminal condition ξ in the probabilistic representation formula (1.2) for v. More general results
are at disposal in [18] and [20], which cover the case of semilinear path-dependent partial differential
equations, characterized by the presence of four coefficients b, σ , F , ξ (see, in particular, Theorem
3.16 in [20] for more details). However, when those other coefficients appear in the path-dependent
partial differential equation, we need more information on the sequence {vn}n approximating v. For
instance, we also have to estimate the derivatives of vn in order to proceed as in [61] or [62]. Since
such results are still not at disposal in the path-dependent setting, in order to make the paper more
readable and not excessively lengthy, here we address the case of the path-dependent heat equation.

Secondly, concerning the existence of a maximum of u − vn, we rely on a generalized version
of Ekeland’s variational principle for which we need a smooth gauge-type function with bounded
derivatives, as explained below. Our equation is in fact formulated on the non-locally compact space
[0, T ] × C([0, T ];Rd) endowed with the pseudometric

d∞
(
(t,x),

(
t ′,x′)) := ∣∣t − t ′

∣∣ + ∥∥x(· ∧ t) − x′(· ∧ t ′
)∥∥∞.

Recall that Ekeland’s variational principle, in its original form, applied to ([0, T ]×C([0, T ];Rd), d∞)
states that a perturbation u(·, ·) − vn(·, ·) − δd∞((·, ·), (t̄ , x̄)) of u(·, ·) − vn(·, ·) has a strict global
maximum, with the perturbation being expressed in terms of the distance d∞ (the point (t̄ , x̄) is fixed).
As the map (t,x) 
→ d∞((t,x), (t̄ , x̄)) is not smooth, it cannot be a test function. In order to have a
smooth map instead of d∞, we need a smooth variational principle on [0, T ] × C([0, T ];Rd). To this
end, the starting point is a generalization of the so-called Borwein-Preiss smooth variant of Ekeland’s
variational principle (see for instance [8]), which works when d∞ is replaced by a so-called gauge-type
function (see Definition 3.1). For the proof of the comparison theorem, we have to construct a gauge-
type function which is also smooth and with bounded derivatives, recalling that smooth in the present
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context means in the horizontal/vertical (rather than in the Fréchet) sense. In Section 3 such a gauge-
type function is built through a smoothing of d∞ itself (more precisely, of the part concerning the
supremum norm). This latter smoothing is performed by convolution, firstly in the vertical direction,
that is in the direction of the map 1[t,T ] (Lemma 3.1), then in the horizontal direction (Lemma 3.2), the
ordering of smoothings being crucial. Notice in particular that the supremum norm is already smooth
in the horizontal direction; however, after the vertical smoothing, we lose in general the horizontal
regularity because of the presence of the term 1[t,T ]; for this reason, we have also to perform the
horizontal smoothing. The resulting smooth gauge-type function with bounded derivatives corresponds
to the function ρ∞ defined in (3.8).

Regarding existence, we prove that the candidate solution v in (1.2) solves in the viscosity sense
equation (1.1). We proceed essentially as in the classical non-path-dependent case, relying as usual
on Itô’s formula, which in the present context corresponds to the functional Itô formula. Such a
formula was first stated in [32] and then rigorously proved in [12,13], see also [14,18,43,58,71].
In the present paper, we provide a functional Itô formula under general assumptions (Theorem
2.2). In particular, we do not require any boundedness assumption on the functional u : [0, T ] ×
C([0, T ];Rd) → R, thus improving (when the semimartingale process is continuous) the results stated
in
[12,13].

The paper is organized as follows. Section 2 is devoted to pathwise derivatives and functional Itô
calculus. In particular, there is the functional Itô formula (Theorem 2.2) whose complete proof is re-
ported in Appendix A of [19] (notice that [19] coincides with the present paper and contains in addition
the Appendices). In Section 3, we prove the smooth variational principle on [0, T ] × C([0, T ];Rd),
constructing the smooth gauge-type function with bounded derivatives. In Section 4, we provide the
(path-dependent) Crandall–Lions definition of viscosity solution for a general path-dependent par-
tial differential equation. We then study in detail the path-dependent heat equation. In particular, we
prove existence showing that the so-called candidate solution v solves in the viscosity sense the path-
dependent heat equation (Theorem 4.1). We conclude Section 4 proving the comparison theorem (The-
orem 4.2) and uniqueness (Corollary 4.1).

2. Pathwise derivatives and functional Itô calculus

In the present section, we define the pathwise derivatives and state the functional Itô formula under
general assumptions.

2.1. Maps on càdlàg paths

Given T > 0 and d ∈ N
∗, we denote by D([0, T ];Rd) the set of càdlàg functions x̂ : [0, T ] → R

d .
We denote by x̂(t) the value of x̂ at t ∈ [0, T ]. We also denote by 0 the function x̂ : [0, T ] → R

d

identically equal to zero. We consider on D([0, T ];Rd) the supremum norm ‖ · ‖∞, namely ‖x̂‖∞ :=
supt∈[0,T ] |x̂(t)|, where | · | denotes the Euclidean norm on R

d (we use the same symbol | · | to denote
the Euclidean norm on R

k , for any k ∈N). We refer to Chapter V in [76] and to Section 15 of Chapter 3
in [6] for a study of the set of càdlàg functions endowed with the uniform metric and a comparison
with the Skorokhod space.

We set �̂ := [0, T ] × D([0, T ];Rd) and define d̂∞ : �̂ × �̂ → [0,∞) as

d̂∞
(
(t, x̂),

(
t ′, x̂′)) := ∣∣t − t ′

∣∣ + ∥∥x̂(· ∧ t) − x̂
′(· ∧ t ′

)∥∥∞.
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Notice that d̂∞ is a pseudometric on �̂, that is d̂∞ is not a true metric because one may have
d̂∞((t, x̂), (t ′, x̂′

)) = 0 even if (t, x̂) �= (t ′, x̂′
). We recall that one can construct a true metric space

(�̂
∗
, d̂∗∞), called the metric space induced by the pseudometric space (�̂, d̂∞), by means of the equiv-

alence relation which follows from the vanishing of the pseudometric. We also observe that (�̂, d̂∞)

is a complete pseudometric space. Finally, we denote by B(�̂) the Borel σ -algebra on �̂ induced
by d̂∞.

Definition 2.1. A map (or functional) û : �̂ → R is said to be non-anticipative (on �̂) if it satisfies

û(t, x̂) = û
(
t, x̂(· ∧ t)

)
, ∀(t, x̂) ∈ �̂.

Remark 2.1. (i) The property of being non-anticipative is crucial and automatically true if the map
û : �̂ →R is continuous with respect to d̂∞.

(ii) More generally, it holds that whenever û : �̂ → R is Borel measurable, namely û is measurable
with respect to B(�̂), then û is non-anticipative on �̂. As a matter of fact, notice that every open
subset B of �̂, endowed with d̂∞, satisfies the following property: if (t, x̂) ∈ B , then (t, x̂(· ∧ t)) ∈ B

(this follows from the fact that d̂∞((t, x̂), (t, x̂(· ∧ t))) = 0). As a consequence, by a monotone class
argument, the same property holds true for every Borel subset of �̂. Now, let û : �̂ → R be Borel
measurable. For every (t, x̂) ∈ �̂, denote

Bû(t,x̂) := {
(s, ŷ) ∈ �̂ : û(s, ŷ) = û(t, x̂)

}
.

Notice that Bû(t,x̂) ∈ B(�̂) and since (t, x̂) ∈ Bû(t,x̂) we deduce that (t, x̂(· ∧ t)) ∈ Bû(t,x̂). This means
that û(t, x̂(· ∧ t)) = û(t, x̂), namely the map û is non-anticipative.

Definition 2.2. We denote by C(�̂) the set of maps û : �̂ → R which are continuous on �̂ with respect
to d̂∞.

Definition 2.3 (Pathwise derivatives). Let û : �̂ →R be non-anticipative.

(i) Given (t, x̂) ∈ �̂, with t < T , the horizontal derivative of û at (t, x̂) (if the corresponding limit
exists) is defined as

∂H
t û(t, x̂) := lim

δ→0+
û(t + δ, x̂(· ∧ t)) − û(t, x̂)

δ
.

At t = T the horizontal derivative is defined as

∂H
t û(T , x̂) := lim

t→T − ∂H
t û(t, x̂).

(ii) Given (t, x̂) ∈ �̂, the vertical derivatives of first and second-order of û at (t, x̂) (if the corre-
sponding limits exist) are defined as

∂V
xi

û(t, x̂) := lim
h→0

û(t, x̂ + hei1[t,T ]) − û(t, x̂)

h
,

∂V
xixj

û(t, x̂) := ∂V
xj

(
∂V
xi

û
)
(t, x̂),
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where e1, . . . , ed is the standard orthonormal basis of Rd .
Finally, we denote ∂V

x û = (∂V
x1

û, . . . , ∂V
xd

û) and ∂V
xx û = (∂V

xixj
û)i,j=1,...,d .

Definition 2.4. We denote by C1,2(�̂) the set of û ∈ C(�̂) such that ∂H
t û, ∂V

x û, ∂V
xx û exist everywhere

on �̂ and are continuous.

For later use, we also introduce the following set of maps on càdlàg paths.

Definition 2.5. We denote by C0,2(�̂) the set of û ∈ C(�̂) such that ∂V
x û, ∂V

xx û exist everywhere on
�̂ and are continuous.

We can finally state the functional Itô formula for maps on càdlàg paths, whose proof is reported in
Appendix A of [19].

Theorem 2.1. Let û ∈ C1,2(�̂). Then, for every d-dimensional continuous semimartingale X =
(Xt )t∈[0,T ], where X = (X1, . . . ,Xd), defined on some filtered probability space (�,F, (Ft )t∈[0,T ],P),
with (Ft )t∈[0,T ] satisfying the usual conditions, the following functional Itô formula holds:

û(t,X) = û(0,X) +
∫ t

0
∂H
t û(s,X) ds + 1

2

d∑
i,j=1

∫ t

0
∂V
xixj

û(s,X) d
[
Xi,Xj

]
s

+
d∑

i=1

∫ t

0
∂V
xi

û(s,X) dXi
s, for all 0 ≤ t ≤ T ,P-a.s.

Proof. See Appendix A in [19]. �

2.2. Maps on continuous paths

Let C([0, T ];Rd) denote the set of continuous functions x : [0, T ] → R
d . Notice that C([0, T ];Rd) is

a subset of D([0, T ];Rd). We set � := [0, T ] × C([0, T ];Rd) and denote d∞ the restriction of d̂∞ to
� × �. Then, d∞ is a pseudometric on � and (�,d∞) is a complete pseudometric space. We denote
by B(�) the Borel σ -algebra on � induced by d∞.

Definition 2.6. Let û : �̂ → R be non-anticipative and consider u : � →R. We say that û is consistent
with u if

u(t,x) = û(t,x), ∀(t,x) ∈ �.

The following consistency property is crucial as it implies that, given u admitting two maps û1 and
û2, both being consistent with u, their pathwise derivatives coincide on continuous paths (see also
Remark 2.2).

Lemma 2.1. If û1, û2 ∈ C1,2(�̂) satisfy

û1(t,x) = û2(t,x), ∀(t,x) ∈ �,
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then, for all (t,x) ∈ �,

∂H
t û1(t,x) = ∂H

t û2(t,x),

∂V
x û1(t,x) = ∂V

x û2(t,x),

∂V
xx û1(t,x) = ∂V

xx û2(t,x).

Proof. See Appendix B in [19]. �

Thanks to Lemma 2.1 we can now give the following definition (see also Remark 2.2).

Definition 2.7. Let u : � → R. We say that u ∈ C1,2(�) if there exists û : �̂ → R consistent with u

and satisfying û ∈ C1,2(�̂). Moreover, we define, for all (t,x) ∈ �,

∂H
t u(t,x) := ∂H

t û(t,x),

∂V
x u(t,x) := ∂V

x û(t,x),

∂V
xxu(t,x) := ∂V

xx û(t,x).

Remark 2.2. Notice that, by Lemma 2.1, if u ∈ C1,2(�) then the definition of the pathwise derivatives
of u is independent of the map û ∈ C1,2(�̂) consistent with u.

Theorem 2.2. Let u ∈ C1,2(�). Then, for every d-dimensional continuous semimartingale X =
(Xt )t∈[0,T ], where X = (X1, . . . ,Xd), defined on some filtered probability space (�,F, (Ft )t∈[0,T ],P),
with (Ft )t∈[0,T ] satisfying the usual conditions, the following functional Itô formula holds:

u(t,X) = u(0,X) +
∫ t

0
∂H
t u(s,X) ds + 1

2

d∑
i,j=1

∫ t

0
∂V
xixj

u(s,X) d
[
Xi,Xj

]
s

+
d∑

i=1

∫ t

0
∂V
xi

u(s,X) dXi
s, for all 0 ≤ t ≤ T ,P-a.s. (2.1)

Proof. Since u ∈ C1,2(�), by Definition 2.7 there exists a map û : �̂ → R consistent with u and
satisfying û ∈ C1,2(�̂). Then, by Theorem 2.1, the following functional Itô formula holds:

û(t,X) = û(0,X) +
∫ t

0
∂H
t û(s,X) ds + 1

2

d∑
i,j=1

∫ t

0
∂V
xixj

û(s,X) d
[
Xi,Xj

]
s

+
d∑

i=1

∫ t

0
∂V
xi

û(s,X) dXi
s, for all 0 ≤ t ≤ T ,P-a.s.

The claim follows identifying the pathwise derivatives of û with those of u. �
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3. Smooth variational principle on �

The goal of the present section is the proof of a smooth variational principle on �, which plays a
crucial role in the proof of the comparison theorem (Theorem 4.2). To this end, we begin recalling a
generalization of the so-called Borwein-Preiss smooth variant ([7]) of Ekeland’s variational principle
([33]), corresponding to Theorem 3.1 below. We state it for the case of real-valued (rather than R ∪
{+∞}-valued as in [8]) maps on �. We first recall the definition of gauge-type function for the specific
set �.

Definition 3.1. We say that � : � × � → [0,+∞) is a gauge-type function provided that the proper-
ties below hold:

(a) � is continuous on � × �;
(b) �((t,x), (t,x)) = 0, for every (t,x) ∈ �;
(c) for every ε > 0 there exists η > 0 such that, for all (t ′,x′), (t ′′,x′′) ∈ �, the inequality

�((t ′,x′), (t ′′,x′′)) ≤ η implies d∞((t ′,x′), (t ′′,x′′)) < ε.

Theorem 3.1. Let G : � → R be an upper semicontinuous map, bounded from above. Suppose that
� : �×� → [0,+∞) is a gauge-type function (according to Definition 3.1) and {δn}n≥0 is a sequence
of strictly positive real numbers. For every ε > 0, let (t0,x0) ∈ � such that

supG − ε ≤ G(t0,x0).

Then, there exists a sequence {(tn,xn)}n≥1 ⊂ � which converges to some (t̄ , x̄) ∈ � satisfying the
following properties.

(i) �((t̄, x̄), (tn,xn)) ≤ ε
2nδ0

, for every n ≥ 0.

(ii) G(t0,x0) ≤ G(t̄, x̄) − ∑+∞
n=0 δn�((t̄, x̄), (tn,xn)).

(iii) For every (t,x) �= (t̄ , x̄),

G(t,x) −
+∞∑
n=0

δn�
(
(t,x), (tn,xn)

)
< G(t̄, x̄) −

+∞∑
n=0

δn�
(
(t̄ , x̄), (tn,xn)

)
.

Proof. Theorem 3.1 follows trivially from Theorem 2.5.2 in [8], the only difference being that the
latter result is stated on complete metric spaces, while here � is a complete pseudometric space. �

The main ingredient of Theorem 3.1 is the gauge-type function � . In the proof of the compari-
son theorem we need such a gauge-type function to be also smooth as a map of its first pair, namely
(t,x) 
→ �((t,x), (t0,x0)), and with bounded derivatives. The most important example of gauge-type
function is the pseudometric d∞ itself, which unfortunately is not smooth enough. The major contri-
bution of the present section is the construction of such a smooth gauge-type function with bounded
derivatives, which corresponds to the function ρ∞ in (3.8). In order to do it, we perform a smoothing
of the pseudometric d∞ itself (more precisely of the part concerning the supremum norm), first in
the vertical direction, and then in the horizontal direction. In particular, the next result concerns the
smoothing in the vertical direction. The precise form of the mollifier ζ in (3.1) is used to get explicit
bounds on κ̂

(t0,x0)∞ and its derivatives.
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Lemma 3.1. Let ζ : Rd → R be the probability density function of the standard normal multivariate
distribution

ζ(z) := 1

(2π)
d
2

e− 1
2 |z|2 , ∀z ∈R

d . (3.1)

For every fixed (t0,x0) ∈ �, define the map κ̂
(t0,x0)∞ : �̂ → R as

κ̂(t0,x0)∞ (t, x̂) :=
∫
Rd

∥∥x̂(· ∧ t) − x0(· ∧ t0) − z1[t,T ]
∥∥∞ζ(z) dz −

∫
Rd

|z|ζ(z) dz, (3.2)

for all (t, x̂) ∈ �̂. Moreover, let κ
(t0,x0)∞ : � → R be given by

κ(t0,x0)∞ (t,x) := κ̂(t0,x0)∞ (t,x),

for every (t,x) ∈ �. Then, the following properties hold.

(1) For every (t, x̂) ∈ �̂, the vertical derivatives of first and second-order of κ̂
(t0,x0)∞ at (t, x̂) (namely

∂V
xi

κ̂
(t0,x0)∞ (t, x̂) and ∂V

xixj
κ̂

(t0,x0)∞ (t, x̂), for every i, j = 1, . . . , d) exist.

(2) For every i, j = 1, . . . , d , ∂V
xi

κ̂
(t0,x0)∞ is bounded by the constant 1 and ∂V

xixj
κ̂

(t0,x0)∞ is bounded

by the constant
√

2
π

.

(3) κ̂
(t0,x0)∞ ≥ −Cζ and κ

(t0,x0)∞ (t,x) ≥ ‖x(· ∧ t) − x0(· ∧ t0)‖∞ − Cζ , for every (t,x) ∈ �, with

Cζ :=
∫
Rd

|z|ζ(z) dz = √
2
�(d

2 + 1
2 )

�(d
2 )

> 0, (3.3)

where �(·) is the Gamma function.
(4) For every fixed d , there exists some constant αd > 0 such that

αd

(∥∥x(· ∧ t) − x0(· ∧ t0)
∥∥d+1

∞ ∧ ∥∥x(· ∧ t) − x0(· ∧ t0)
∥∥∞

)
≤ κ(t0,x0)∞ (t,x) ≤ ∥∥x(· ∧ t) − x0(· ∧ t0)

∥∥∞, (3.4)

for all (t,x) ∈ �. In particular, it holds that κ
(t0,x0)∞ ≥ 0.

Proof. See Appendix C in [19], Section C.1. �

We now address the problem of smoothing the map κ̂
(t0,x0)∞ in the horizontal direction. This is re-

quired by the fact that the presence of 1[t,T ] in the definition of κ̂
(t0,x0)∞ is an obstruction to horizontal

regularity, therefore a further convolution in the time variable t is needed. The latter convolution also
provides the continuity on �̂ (notice that the map (t, x̂) 
→ κ̂

(t0,x0)∞ (t, x̂) is not continuous on �̂, see
Remark 3.1).

We perform such a horizontal smoothing to κ̂
(t0,x0)∞ /(1 + Cζ + κ̂

(t0,x0)∞ ). We apply it to such a map

(rather than to κ̂
(t0,x0)∞ directly) in order to have bounded derivatives (see item 3 of Lemma 3.2). More-

over, we consider 1 + Cζ + κ̂
(t0,x0)∞ (instead of 1 + κ̂

(t0,x0)∞ ) in order to have a denominator greater than

or equal to 1 (this follows from inequality κ̂
(t0,x0)∞ ≥ −Cζ , see item 3 of Lemma 3.1). The precise form

of the mollifier η in (3.5) is used to get explicit bounds on χ̂
(t0,x0)∞ and its derivatives.
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Remark 3.1 ([47]). Notice that the map (t, x̂) 
→ κ̂
(t0,x0)∞ (t, x̂) is not continuous on �̂. As a matter

of fact, consider the following example. Take d = 1, T = 2, t0 = 0, x0 ≡ 0, t = 1, x̂ = 1[1,2]. Then, it
holds that

κ̂(t0,x0)∞ (t, x̂) =
∫
R

∥∥x̂(· ∧ t) − x0(· ∧ t0) − z1[t,T ]
∥∥∞ζ(z) dz −

∫
R

|z|ζ(z) dz

=
∫
R

|1 − z|ζ(z) dz −
∫
R

|z|ζ(z) dz.

Now, take δ ∈ (0,1), then

κ̂ (t0,x0)∞ (t + δ, x̂) =
∫
R

∥∥x̂
(· ∧ (t + δ)

) − x0(· ∧ t0) − z1[t+δ,T ]
∥∥∞ζ(z) dz −

∫
R

|z|ζ(z) dz

=
∫
R

max
{
1, |1 − z|}ζ(z) dz −

∫
R

|z|ζ(z) dz.

In conclusion, we have

∣∣κ̂(t0,x0)∞ (t + δ, x̂) − κ̂(t0,x0)∞ (t, x̂)
∣∣ =

∫
R

{
max

{
1, |1 − z|} − |1 − z|}ζ(z) dz

=
∫ 2

0

(
1 − |1 − z|)ζ(z) dz =: ε∗ > 0,

where ε∗ is a constant independent of δ. This proves that |κ̂(t0,x0)∞ (t + δ, x̂) − κ̂
(t0,x0)∞ (t, x̂)| � 0 as

δ → 0+ and shows that κ̂
(t0,x0)∞ is not continuous on �̂.

Lemma 3.2. Let η : R→R be given by

η(s) := se−s , ∀s ∈R. (3.5)

∀(t0,x0) ∈ �, let κ̂
(t0,x0)∞ be as in Lemma 3.1 and define the map χ̂

(t0,x0)∞ : �̂ → R as

χ̂ (t0,x0)∞ (t, x̂) :=
∫ +∞

0

κ̂
(t0,x0)∞ ((t + s) ∧ T , x̂(· ∧ t))

1 + Cζ + κ̂
(t0,x0)∞ ((t + s) ∧ T , x̂(· ∧ t))

η(s) ds,

for all (t, x̂) ∈ �̂, with Cζ as in (3.3), where we recall that 1 + Cζ + κ̂
(t0,x0)∞ ≥ 1 (see item 3 of

Lemma 3.1). Moreover, let χ
(t0,x0)∞ : � →R be given by

χ(t0,x0)∞ (t,x) := χ̂ (t0,x0)∞ (t,x), ∀(t,x) ∈ �. (3.6)

Then, the following properties hold.

(1) For every (t, x̂) ∈ �̂, the horizontal and vertical derivatives of first and second-order of
χ̂

(t0,x0)∞ at (t, x̂) (namely ∂H
t χ̂

(t0,x0)∞ (t, x̂), ∂V
xi

χ̂
(t0,x0)∞ (t, x̂) and ∂V

xixj
χ̂

(t0,x0)∞ (t, x̂), for every
i, j = 1, . . . , d) exist.

(2) χ̂
(t0,x0)∞ ∈ C1,2(�̂) and the map ((t0,x0), (t, x̂)) 
→ χ̂

(t0,x0)∞ (t, x̂) is continuous on � × �̂.
(3) The horizontal derivative of χ̂

(t0,x0)∞ is bounded by the constant 2
e ; the first-order vertical deriva-

tives of χ̂
(t0,x0)∞ are bounded by the constant 1 + Cζ ; the second-order vertical derivatives of

χ̂
(t0,x0)∞ are bounded by the constant (1 + Cζ )(

√
2
π

+ 2).
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(4) For every (t,x) ∈ �,

αd

‖x(· ∧ t) − x0(· ∧ t0)‖d+1∞ ∧ ‖x(· ∧ t) − x0(· ∧ t0)‖∞
1 + Cζ + ‖x(· ∧ t) − x0(· ∧ t0)‖∞

≤ χ(t0,x0)∞ (t,x) ≤ ∥∥x(· ∧ t) − x0(· ∧ t0)
∥∥∞ ∧ 1, (3.7)

with the same constant αd as in (3.4). In particular, it holds that χ
(t0,x0)∞ ≥ 0.

Proof. See Appendix C in [19], Section C.2. �

In conclusion, by Lemma 3.2 it follows that the map ρ∞ : � × � → [0,+∞) given by

ρ∞
(
(t,x), (t0,x0)

) = |t − t0|2 + χ(t0,x0)∞ (t,x), ∀(t,x), (t0,x0) ∈ �, (3.8)

with χ∞ as in (3.6), is a gauge-type function, which is also smooth as a map of the first pair, namely
(t,x) 
→ ρ∞((t,x), (t0,x0)), and with bounded derivatives.

We now apply Theorem 3.1 to the smooth gauge-type function ρ∞ with bounded derivatives defined
by (3.8), taking δ0 := δ > 0 and δn := δ/2n, for every n ≥ 1.

Theorem 3.2 (Smooth variational principle on �). Let δ > 0 and G : � → R be an upper semicon-
tinuous map, bounded from above. For every ε > 0, let (t0,x0) ∈ � satisfy

supG − ε ≤ G(t0,x0).

Then, there exists a sequence {(tn,xn)}n≥1 ⊂ � which converges to some (t̄ , x̄) ∈ � fulfilling the prop-
erties below.

(i) ρ∞((t̄ , x̄), (tn,xn)) ≤ ε
2nδ

, for every n ≥ 0.
(ii) G(t0,x0) ≤ G(t̄, x̄) − δϕε(t,x), where the map ϕε : � → [0,+∞) is defined as

ϕε(t,x) :=
+∞∑
n=0

1

2n
ρ∞

(
(t,x), (tn,xn)

)
, ∀(t,x) ∈ �.

(iii) For every (t,x) �= (t̄ , x̄), G(t,x) − δϕε(t,x) < G(t̄, x̄) − δϕε(t̄ , x̄).

Finally, the map ϕε satisfies the following properties.

(1) ϕε ∈ C1,2(�) and is bounded.
(2) ∂H

t ϕε is bounded by the constant 2(2T + 2
e ).

(3) For every i, j = 1, . . . , d , ∂V
xi

ϕε is bounded by the constant 2(1 +Cζ ) and ∂V
xixj

ϕε is bounded by

the constant 2(1 + Cζ )(

√
2
π

+ 2).

Proof. Items (i)–(ii)–(iii) follow directly from Theorem 3.1, while items (1)–(2)–(3) follow easily from
items (2)–(3)–(4) of Lemma 3.2. �
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4. Crandall–Lions (path-dependent) viscosity solutions

4.1. Viscosity solutions

In the present section, we consider the second-order path-dependent partial differential equation{
∂H
t u(t,x) = F

(
t,x, u(t,x), ∂V

x u(t,x), ∂V
xxu(t,x)

)
, (t,x) ∈ [0, T ) × C

([0, T ];Rd
)
,

u(T ,x) = ξ(x), x ∈ C
([0, T ];Rd

)
,

(4.1)

with F : [0, T ] × C([0, T ];Rd) × R
d × S(d) → R and ξ : C([0, T ];Rd) → R, where S(d) is the set

of symmetric d × d matrices.

Definition 4.1. We denote by C1,2
pol(�) the set of ϕ ∈ C1,2(�) such that ϕ, ∂H

t ϕ, ∂V
x ϕ, ∂V

xxϕ satisfy a
polynomial growth condition.

Definition 4.2. We say that an upper semicontinuous map u : � → R is a (path-dependent) viscosity
subsolution of equation (4.1) if the following holds.

• u(T ,x) ≤ ξ(x), for all x ∈ C([0, T ];Rd);
• for any (t,x) ∈ [0, T ) × C([0, T ];Rd) and ϕ ∈ C1,2

pol(�), satisfying

(u − ϕ)(t,x) = sup
(t ′,x′)∈�

(u − ϕ)
(
t ′,x′),

we have

−∂H
t ϕ(t,x) + F

(
t,x, u(t,x), ∂V

x ϕ(t,x), ∂V
xxϕ(t,x)

) ≤ 0.

We say that a lower semicontinuous map u : � → R is a (path-dependent) viscosity supersolution
of equation (4.1) if:

• u(T ,x) ≥ ξ(x), for all x ∈ C([0, T ];Rd);
• for any (t,x) ∈ [0, T ) × C([0, T ];Rd) and ϕ ∈ C1,2

pol(�), satisfying:

(u − ϕ)(t,x) = inf
(t ′,x′)∈�

(u − ϕ)
(
t ′,x′),

we have

−∂H
t ϕ(t,x) + F

(
t,x, u(t,x), ∂V

x ϕ(t,x), ∂V
xxϕ(t,x)

) ≥ 0.

We say that a continuous map u : � → R is a (path-dependent) viscosity solution of equation (4.1)
if u is both a (path-dependent) viscosity subsolution and a (path-dependent) viscosity supersolution of
(4.1).

4.2. Path-dependent heat equation

In the present section, we focus on the path-dependent heat equation, namely when F(t,x, r,p,M) =
− 1

2 tr[M] ⎧⎨
⎩∂H

t u(t,x) + 1

2
tr
[
∂V
xxu(t,x)

] = 0, (t,x) ∈ [0, T ) × C
([0, T ];Rd

)
,

u(T ,x) = ξ(x), x ∈ C
([0, T ];Rd

)
.

(4.2)
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In the sequel, we denote

Lu(t,x) := ∂H
t u(t,x) + 1

2
tr
[
∂V
xxu(t,x)

]
. (4.3)

On the terminal condition ξ , we impose the assumption

(A) The function ξ : C([0, T ];Rd) → R is continuous and bounded.

4.2.1. Existence

The “candidate solution” to equation (4.2) is

v(t,x) := E
[
ξ
(
W t,x

)]
, ∀(t,x) ∈ �, (4.4)

where W = (W s)s∈[0,T ] is a d-dimensional Brownian motion on some complete probability space
(�,F,P), and the stochastic process W t,x = (W t,x

s )s∈[0,T ] is given by

W t,x
s :=

{
x(s), s ≤ t,

x(t) + W s − W t , s > t.
(4.5)

Remark 4.1. The boundedness of ξ in Assumption (A) will be used in the proof of (the comparison)
Theorem 4.2. On the other hand, the proof that the function v in (4.4) is continuous and is a viscosity
solution of equation (4.2) (see the proof of Theorem 4.1) holds under weaker growth condition on ξ

(for instance, ξ having polynomial growth).

Theorem 4.1. Under Assumption (A), the function v in (4.4) is continuous and bounded. Moreover, v

is a (path-dependent) viscosity solution of equation (4.2).

Proof. STEP I. Continuity of v. Given (t,x), (t ′,x′) ∈ �, with t ≤ t ′, from (4.5) we have

W t,x
s − W t ′,x′

s =

⎧⎪⎨
⎪⎩

x(s) − x′(s), s ≤ t,

x(t) − x′(s) + W s − W t , t < s ≤ t ′,
x(t) − x′(t ′) + W t ′ − W t , s > t ′.

Hence,

sup
s∈[0,T ]

∣∣W t,x
s − W t ′,x′

s

∣∣ ≤ ∥∥x(· ∧ t) − x′(· ∧ t ′
)∥∥∞ + sup

s∈[t,t ′]
|W s − W t |

≤ ∥∥x(· ∧ t) − x′(· ∧ t ′
)∥∥∞ +

d∑
i=1

sup
s∈[t,t ′]

∣∣Wi
s − Wi

t

∣∣,
where W = (W 1, . . . ,Wd) and the second inequality follows from the fact the Euclidean norm on
R

d is estimated by the 1-norm. By the reflection principle, sups∈[t,t ′] |Wi
s − Wi

t | has the same law as
|Wi

t ′ − Wi
t |, therefore

E

[
sup

s∈[0,T ]
∣∣W t,x

s − W t ′,x′
s

∣∣] ≤ ∥∥x(· ∧ t) − x′(· ∧ t ′
)∥∥∞ +

d∑
i=1

E
[∣∣Wi

t ′ − Wi
t

∣∣]

= ∥∥x(· ∧ t) − x′(· ∧ t ′
)∥∥∞ + d

√
2

π

√∣∣t − t ′
∣∣.
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Then, since ξ is bounded and continuous, the continuity of v follows from the above estimate together
with the Lebesgue dominated convergence theorem.

STEP II. v is a viscosity solution of equation (4.2). For every t ∈ [0, T ], let Ft = (F t
s )s∈[t,T ] be the

completion of the filtration generated by (W s −W t )s∈[t,T ]. Now, fix (t,x) ∈ � and t ′ ∈ [t, T ]. We first
prove that

v(t,x) = E
[
v
(
t ′,W t,x

)]
. (4.6)

To this end, we begin noticing that by (4.5) we have

W t,x· = x(· ∧ t) + W ·∨t − W t . (4.7)

Therefore,

v(t,x) = E
[
ξ
(
x(· ∧ t) + W ·∨t − W t

)]
. (4.8)

Now, notice that, by (4.7),

W t ′,W t,x

· = W t,x
·∧t ′ + W ·∨t ′ − W t ′ = W t,x· .

This proves the flow property W t,x· = W t ′,W t,x

· . Then, by the freezing lemma for conditional expecta-
tion and formula (4.8), we obtain

v(t,x) = E
[
ξ
(
W t,x

)]
= E

[
ξ
(
W t ′,W t,x )] = E

[
ξ
(
W t,x

·∧t ′ + W ·∨t ′ − W t ′
)]

= E
[
E

[
ξ
(
W t,x

·∧t ′ + W ·∨t ′ − W t ′
)|F t

t ′
]] = E

[
v
(
t ′,W t,x

·∧t ′
)]

.

Finally, recalling that v is non-anticipative, we deduce that v(t ′,W t,x
·∧t ′) = v(t ′,W t,x), which concludes

the proof of formula (4.6).
Let us now prove that v is a viscosity solution of equation (4.2). We only prove the viscos-

ity subsolution property, as the supersolution property can be proved in a similar way. We pro-
ceed along the same lines as in the proof of the subsolution property in Theorem 3.66 of [38]. Let
(t,x) ∈ [0, T ) × C([0, T ];Rd) and ϕ ∈ C1,2

pol(�), satisfying:

(v − ϕ)(t,x) = sup
(t ′,x′)∈�

(v − ϕ)
(
t ′,x′).

We suppose that (v − ϕ)(t,x) = 0 (if this is not the case, we replace ϕ by ψ(·, ·) := ϕ(·, ·) + v(t,x) −
ϕ(t,x)). Take

ϕ(t,x) = v(t,x) = E
[
v
(
t + ε,W t,x

)] ≤ E
[
ϕ
(
t + ε,W t,x

)]
, (4.9)

where the latter inequality follows from the fact that sup(v − ϕ) = 0, so that v ≤ ϕ on �. Notice that
the last expectation in (4.9) is finite, as ϕ has polynomial growth. Now, by the functional Itô formula
(2.1), we have

ϕ
(
t + ε,W t,x

) = ϕ(t,x) +
∫ t+ε

t

Lϕ
(
s,W t,x

)
ds +

d∑
i=1

∫ t+ε

t

∂V
xi

ϕ
(
s,W t,x

)
dWi

s ,
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where L was defined in (4.3). Since ∂V
xi

ϕ has polynomial growth, the corresponding stochastic integral
is a martingale. Then, plugging the above formula into (4.9) and dividing by ε, we find

−E

[
1

ε

∫ t+ε

t

Lϕ
(
s,W t,x

)
ds

]
≤ 0.

Letting ε → 0+, we conclude that

−Lϕ(t,x) ≤ 0,

which proves the viscosity subsolution property. �

4.2.2. Comparison theorem and uniqueness

Lemma 4.1. Suppose that Assumption (A) holds. Then, there exists a sequence {ξN }N , with ξN being
a map from C([0, T ];Rd) into R, such that the following holds.

(I) {ξN }N converges pointwise to ξ as N → +∞.
(II) ξN is bounded uniformly with respect to N .

(III) For every N , let

vN(t,x) := E
[
ξN

(
W t,x

)]
,∀(t,x) ∈ �.

Then, vN ∈ C1,2(�) and is a classical (smooth) solution of equation (4.2) with terminal condi-
tion ξN .

(IV) vN is bounded uniformly with respect to N .
(V) {vN }N converges pointwise to v as N → +∞.

Proof. Items (I) and (II) follow from Lemma D.2 in [19], while item (III) follows from Lemma D.1
in [19]. Item (IV) is a consequence of item (II). Finally, by items (I)–(II) we can apply the Lebesgue
dominated convergence theorem, from which we deduce that item (V) holds. �

Theorem 4.2. Suppose that Assumption (A) holds. Let u,w : � → R be respectively upper and lower
semicontinuous, satisfying

supu < +∞, infw > −∞.

Suppose that u (resp. w) is a (path-dependent) viscosity subsolution (resp. supersolution) of equation
(4.2). Then u ≤ w on �.

Proof. The proof consists in showing that u ≤ v and v ≤ w on � (with v given by (4.4)), from which
we immediately deduce the claim. In what follows, we only report the proof of the inequality u ≤ v, as
the other inequality (that is v ≤ w) can be deduced from the first one replacing u, v, ξ with −w, −v,
−ξ , respectively.

We proceed by contradiction and assume that sup(u − v) > 0. Then, there exists (t0,x0) ∈ � such
that

(u − v)(t0,x0) > 0.

Notice that t0 < T , since u(T , ·) ≤ ξ(·) = v(T , ·). We split the rest of the proof into five steps.
STEP I. Let {ξN }N and {vN }N be the sequences given by Lemma 4.1. Then, we notice that there

exists N0 ∈N such that

(u − vN0)(t0,x0) > 0. (4.10)
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We also suppose that (possibly enlarging N0)

∣∣ξ(x0) − ξN0(x0)
∣∣ ≤ 1

2
(u − vN0)(t0,x0). (4.11)

STEP II. For every λ > 0, we set

uλ(t,x) := eλtu(t,x), ξλ(x) := eλT ξ(x),

vλ
N0

(t,x) := eλtvN0(t,x), ξλ
N0

(x) := eλT ξN0(x).

for all (t,x) ∈ �. Notice that uλ is a (path-dependent) viscosity subsolution of the path-dependent
partial differential equation⎧⎨

⎩∂H
t uλ(t,x) + 1

2
tr
[
∂V
x uλ(t,x)

] = λuλ(t,x), (t,x) ∈ [0, T ) × C
([0, T ];Rd

)
,

uλ(T ,x) = ξλ(x), x ∈ C
([0, T ];Rd

)
.

(4.12)

Similarly, vλ
N0

is a classical (smooth) solution of equation (4.12) with ξλ replaced by ξλ
N0

. We finally
notice that by (4.10) we have (

uλ − vλ
N0

)
(t0,x0) > 0.

So, in particular,

sup
(
uλ − vλ

N0

) − ε = (
uλ − vλ

N0

)
(t0,x0) ≤ sup

(
uλ − vλ

N0

)
, (4.13)

where ε := sup(uλ − vλ
N0

) − (uλ − vλ
N0

)(t0,x0).

STEP III. Notice that uλ − vλ
N0

is upper semicontinuous and bounded from above. Then, by (4.13)

and the smooth variational principle (Theorem 3.2) with G = uλ − vλ
N0

, we deduce that for every
δ > 0 there exists a sequence {(tn,xn)}n≥1 ⊂ � converging to some (t̄ , x̄) ∈ � (possibly depending on
ε, δ, λ,N0) such that the following holds.

(i) ρ∞((tn,xn), (t̄ , x̄)) ≤ ε
2nδ

, for every n ≥ 0, where ρ∞ is the smooth gauge-type function with
bounded derivatives defined by (3.8).

(ii) (uλ − vλ
N0

)(t0,x0) ≤ (uλ − (vλ
N0

+ δϕε))(t̄ , x̄), where

ϕε(t,x) :=
+∞∑
n=0

1

2n
ρ∞

(
(t,x), (tn,xn)

) ∀(t,x) ∈ �.

(iii) It holds that (
uλ − (

vλ
N0

+ δϕε

))
(t̄ , x̄) = sup

(t,x)∈�

(
uλ − (

vλ
N0

+ δϕε

))
(t,x). (4.14)

We also recall from Theorem 3.2 that ϕε satisfies the following properties.

(1) ϕε ∈ C1,2(�) and is bounded.
(2) |∂H

t ϕε(t,x)| ≤ 2(2T + 2
e ), for every (t,x) ∈ [0, T ) × C([0, T ];Rd).

(3) For every i, j = 1, . . . , d , ∂V
xi

ϕε is bounded by the constant 2(1 +Cζ ) and ∂V
xixj

ϕε is bounded by

the constant 2(1 + Cζ )(

√
2
π

+ 2).
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In particular, ϕε ∈ C1,2
pol(�).

STEP IV. We prove below that t̄ < T . As a matter of fact, by item (ii) of STEP III we have(
uλ − (

vλ
N0

+ δϕε

))
(t̄ , x̄) ≥ (

uλ − vλ
N0

)
(t0,x0). (4.15)

On the other hand, if t̄ = T we obtain(
uλ − (

vλ
N0

+ δϕε

))
(t̄ , x̄) = eλT

(
ξ(x̄) − ξN0(x̄)

) − δϕε(T , x̄) ≤ eλT
(
ξ(x̄) − ξN0(x̄)

)
, (4.16)

where the latter inequality comes from the fact that ϕε ≥ 0. Hence, by (4.15) and (4.16) we get

eλt0(u − vN0)(t0,x0) ≤ eλT
(
ξ(x̄) − ξN0(x̄)

)
.

Letting ε → 0, it follows from item (i) above with n = 0 and (3.7) that d∞((t̄ , x̄), (t0,x0)) → 0. There-
fore, letting ε → 0 in the previous inequality, we obtain

eλt0(u − vN0)(t0,x0) ≤ eλT
(
ξ(x0) − ξN0(x0)

)
.

By (4.11), we end up with eλt0 ≤ 1
2 eλT . Letting λ → 0, we find a contradiction.

STEP V. Here again λ > 0 is fixed. By (4.14) and the definition of viscosity subsolution of (4.12)
applied to uλ at the point (t̄ , x̄) with test function vλ

N0
+ δϕε , we obtain

−L
(
vλ
N0

+ δϕε

)
(t̄ , x̄) + λuλ(t̄ , x̄) ≤ 0.

Recalling that vλ
N0

is a classical (smooth) solution of equation (4.12) with ξλ replaced by ξλ
N0

, we find

λ
(
uλ − vλ

N0

)
(t̄ , x̄) ≤ δLϕε(t̄ , x̄).

By item (ii) in STEP III (namely (4.15)), subtracting from both sides the quantity λδϕε(t̄ , x̄), we obtain

λ
(
uλ − vλ

N0

)
(t0,x0) ≤ λ

(
uλ − (

vλ
N0

+ δϕε

))
(t̄ , x̄) ≤ δLϕε(t̄, x̄) − λδϕε(t̄ , x̄).

Recalling that ϕε ≥ 0, we see that

λ
(
uλ − vλ

N0

)
(t0,x0) ≤ λ

(
uλ − (

vλ
N0

+ δϕε

))
(t̄ , x̄) ≤ δLϕε(t̄, x̄).

From items (2) and (3) above, it follows that Lϕε(t̄, x̄) is bounded by a constant (not depending on ε,
δ, λ). Therefore, letting δ → 0+, taking into account the notations of STEP II, we have

λeλt0(u − vN0)(t0,x0) = λ
(
uλ − vλ

N0

)
(t0,x0) ≤ 0,

which gives a contradiction to (4.10). �

As a direct consequence of the comparison theorem (Theorem 4.2), we obtain the following unique-
ness result.

Corollary 4.1. Under Assumption (A), the function v in (4.4) is the unique (path-dependent) viscosity
solution of equation (4.2), where uniqueness holds in the class of all continuous and bounded functions
from � to R.
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Proof. By Theorem 4.1, we know that v is continuous and bounded, moreover it is a (path-dependent)
viscosity solution of equation (4.2).

Now, let u : � → R be a continuous and bounded function such that u is a (path-dependent) viscosity
solution of equation (4.2). Then, in particular, u (resp. v) is a (path-dependent) viscosity subsolution
(resp. supersolution) of equation (4.2). As a consequence, by the comparison theorem (Theorem 4.2)
we deduce that u ≤ v on �. Changing the roles of u and v we get the opposite inequality, from which
we conclude that u ≡ v. �
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