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Abstract

In the era of big data, advanced computational techniques are needed to process,
analyze and visualize increasing amounts of data generated by high-throughput tech-
nologies. In this context, analyzing biomedical Knowledge Graphs that embrace bio-
logical and medical concepts structured in ontologies and data generated from high-
throughput bio-technologies represents a central Machine Learning and Computational
Biology challenge.

Indeed several compelling problems in Network Medicine, ranging from gene-disease
prioritization to drug-target prediction or drug repurposing, can be modelled as node
label or edge prediction problems in graphs, where nodes represent bio-medical enti-
ties as genes, drugs or diseases and edges interactions or relationships between them.
Recently Graph Representation Learning (GRL) methods opened new possibilities for
addressing complex, real-world problems represented by graphs. However, many graphs
used in these applications comprise millions of nodes and billions of edges and are be-
yond the capabilities of current methods and software implementations.

To deal with this open problem, the first contribution of this thesis is the design and
development of the GRAPE (Graph Processing and Embedding) resource for GRL,
able to scale with big graphs thanks to specialized and innovative data structures
and algorithms, efficiently implemented through parallel computation. Compared with
state-of-the-art software resources, GRAPE shows an improvement of orders of magni-
tude in empirical space and time complexity, as well as a substantial and statistically
significant improvement in edge prediction and node label prediction performance.
GRAPE provides over 80, 000 graphs from the literature and other sources, standard-
ized interfaces allowing a straightforward integration of third-party libraries, 61 node
embedding methods, 25 inference models, and 3 modular pipelines to allow a findable,
accessible, interoperable, and reusable (FAIR) and reproducible comparison of methods
and libraries for graph processing and embedding. GRAPE can quickly generate billions
of sampled random walks for random-walk-based GRL algorithms, such as DeepWalk
of Node2vec, thus leading to very accurate embedded graphs and boosting machine
learning methods’ performance that learns from the embedded vector representation
of nodes and edges. The scaling properties of GRAPE with respect to state-of-the-
art resources have been analyzed through extensive experiments with real-world big
graphs, including, e.g. Wikipedia, the Comparative Toxicogenomic Database (CTD)
and a big biomedical Knowledge Graph generated by PheKnowLator. GRAPE sig-
nificantly outperforms state-of-the-art libraries in terms of empirical time and space
complexity, edge prediction performance, and can process big graphs even when the
other competing state-of-the-art resources fail.

As a second contribution for efficiently processing and analyzing big graphs, this the-
sis proposes a novel algorithmic framework, efficiently implemented in GRAPE, that
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we named ALPINE: Abstract Landmark Properties-Inferred Node Embedding. The
breakthrough characteristics of this algorithmic framework allow us to deal with several
issues affecting SOTA GRL methods:

1. The embedding features are independently computed, each from the others, thus
overcoming the space and time complexity limitations due to their dependent
computation.

2. Feature computation is based on the "landmarks", i.e. sets of nodes representing
meaningful concepts about the structure or the semantics of the underlying graph,
thus assuring the interpretability of the embeddings.

3. Small integers are used for embedded features values: this assures a small memory
footprint, hardware acceleration, and a good compression ratio because of the
scale-free distribution of node degrees that often characterize biomedical networks

4. "Democratic" feature representation, thus avoiding the bias towards high degree
nodes characteristic of embedding methods based on topological sampling.

We present two algorithms based on the ALPINE framework: a) SPINE (Shortest
Paths Inferred Node Embedding), based on the efficient computation of the shortest
path distance from the landmarks; b) WINE (Windows Inferred Node Embedding)
based on the efficient computation of the co-occurrences of each node with the land-
marks within windows of a given size during a breadth-first search. The breakthrough
scaling properties of the proposed algorithms are shown in experiments with real-world
big graphs.

GRAPE and ALPINE implementations are available from https://github.com/AnacletoLAB/
grape.

The thesis is organized as follows. In chapter 2, the architecture of GRAPE, the graph-
processing, and graph-representation learning algorithms it provides are described. In
chapter 3, we sketch both the open libraries for graph processing and the datasets that
have been used to perform the experiments for comparing GRAPE to state-of-the-art
works. In chapter 4, all the experimental settings and all the achieved comparative
evaluation results are described in detail. In chapter 5, we focus on the novel ALPINE
algorithmic framework and compare its performance with those of to state-of-the-art
models. The conclusions summarize the main contributions of the thesis, as well as
the drawbacks and limitations of the proposed methods and depict ongoing and future
work on scalable GRL methods and their application to Network Medicine.
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Introduction

In fields such as biology, medicine, data and network science, graphs can naturally
model available knowledge as interrelated concepts, represented by a network of (pos-
sibly attributed) nodes connected by edges. The wide range of graph applications
has motivated the development of a rich literature on Graph Representation Learning
(GRL) and inference models. GRL models compute embeddings, i.e. vector represen-
tations (usually in a metric space) of the graph and its constituent elements, capturing
their topological, structural, and semantic relationships. Graph inference models can
use such embeddings and available additional features for several tasks, e.g., visualiza-
tion, clustering, node-label, edge-label, and edge prediction problems [57, 77].

GRL methods available in the literature include, among others, matrix factorization-
based methods (section 2.3.1), random walk-based methods (section 2.3.2) and triple-
sampling methods (section 2.4) [57]. They have shown their effectiveness in analyzing
networks from sociology, biology, medicine, and many other disciplines [77].

Although a great deal of research has been devoted to the development of libraries
to process and analyze graphs (e.g., iGraph [32], GraphLab [74], NetworkX [55],
GraphX [50] and SNAP [70]), as well as GRL software resources (e.g., PecanPy [72],
PyKeen [3], DGL [127], Pytorch Geometric [43], Spektral [51]), real-world networks
often include millions of nodes and billions of edges, thus raising the problem of the
scalability of existing software resources implementing Graph Representation Learning
algorithms [77, 131].

One of the limitations of current state-of-the-art random walk-based graph embedding
algorithms is the inability to generate enough data to accurately represent the topology
of the underlying graph. This can be a significant issue, as the performance of node and
edge label prediction methods heavily depends on the informativeness of the embedded
graph representation.

ìTo address this limitation, it is necessary to develop methods for efficiently generating
a large number of random walks from the graph. This will allow for the creation of
more accurate embedded representations of the graph, which can in turn improve the
performance of machine learning methods that rely on these representations for node
and edge label prediction tasks.

By generating billions of sampled random walks, we can construct more comprehensive
and informative representations of the underlying graph. This can be beneficial for
a wide range of downstream tasks, such as node classification, link prediction, and
community detection. Overall, the efficient generation of large amounts of data is
crucial for improving the performance of graph embedding algorithms and the machine
learning methods that depend on these representations.

One of the important challenges in the field of graph machine learning is the lack of tools
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for fairly and reproducibility comparing different methods under different experimen-
tal conditions. This issue is often not addressed by current state-of-the-art libraries,
making it difficult to accurately evaluate the performance of different algorithms and
libraries for graph-based data analysis.

To address this issue, it is necessary to develop standardized interfaces that allow
for the easy integration of methods from different libraries, as well as standardized
experimental pipelines that can be used to evaluate the performance of these methods
in a consistent and reproducible manner. This will enable researchers to easily compare
different algorithms and libraries, and provide a more accurate and comprehensive
understanding of the strengths and limitations of each approach.

The ability to easily and fairly compare different graph-based methods is crucial for
the advancement of the field of graph machine learning. Standardized interfaces and
experimental pipelines can facilitate this comparison, making it more accessible and
enabling researchers to make informed decisions about which methods and libraries to
use for different tasks and datasets.

In this thesis, we present the GRAPE library for working with graph representation
learning, which involves learning a low-dimensional representation of nodes in a graph
that captures the underlying structure of the graph. This can be used for a variety of
tasks, such as predicting the labels of nodes or edges in the graph, or for unsupervised
analysis of the graph structure.

Ensmallen and Embiggen are two core modules within the GRAPE library. Ens-
mallen is designed to efficiently load and process large graphs, using efficient data
structures and parallel computation to scale to graphs with billions of nodes and edges.
This module also provides a range of graph processing methods, such as algorithms for
computing random and minimum spanning arborescence, and methods for node and
edge filtering. Ensmallen allows graphs to be loaded from a variety of formats, and
includes a large collection of pre-loaded graphs from the literature and elsewhere.

Embiggen, on the other hand, focuses on generating node embeddings from processed
graphs. Node embedding is the process of learning a low-dimensional representation
of nodes in a graph, and Embiggen implements exact and approximated versions of
popular node embedding algorithms, such as DeepWalk, Walklets, and Node2Vec. In
particular, the approximated versions of the algorithms are able to handle graphs with
high-degree nodes, which are otherwise difficult to work with using the exact versions
of these algorithms. The resulting node embeddings can be used for tasks such as
graph visualization or prediction tasks, such as predicting node labels or edge labels.

Together, Ensmallen and Embiggen provide a powerful set of tools for working with
large graphs and generating high-quality node embeddings. The emphasis on scalability
and performance makes the GRAPE library well-suited for working with even very large
graphs on commodity hardware.

One of the benefits of using the GRAPE library for graph machine learning is that
it facilitates the fair and reproducible comparison of different methods under different
experimental conditions. This is possible through the use of standardized interfaces
that allow for the easy integration of methods from different libraries, as well as stan-
dardized experimental pipelines that can be used to evaluate the performance of these
methods in a consistent and reproducible manner.

The use of the GRAPE library can greatly enhance the ability of researchers to compare
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different graph-based methods and make informed decisions about which algorithms
and libraries to use for different tasks and datasets. This can be a valuable tool for
advancing the field of graph machine learning and improving the performance of these
methods on real-world data.

GRAPE provides re-implementations of many graph representation learning methods,
and it is significantly faster than the implementations available from the state of the
art, yet this is not enough to run embedding of billion-scale graphs. As last result of
this thesis, we will introduce ALPINE. ALPINE is a framework for extremely scalable
graph representation learning built on top of GRAPE that addresses these limitations
and improves upon previous methods, such as DeepWalk. ALPINE improves upon
these methods by addressing limitations in their applicability to real-world graphs
with many nodes and edges. By overcoming these limitations, ALPINE enables the
use of graph representation learning in a wider range of applications, and can embed
graphs with billions of nodes and edges, such as the internet.

One of the core ideas of the ALPINE framework is the novel concept of abstract
landmarks and their properties, which we use to ensure feature interpretability by
design in ALPINE. A landmark is a group of nodes in a graph that share a distinctive
trait or characteristic, such as similar node degree or common labels. This group of
nodes can be thought of as a single, abstract node that represents one of the graph’s
key ideas or central themes. We stress that the interpretability present in ALPINE
embedding is not inherent in ALPINE itself nor an emergent property, but derives from
the selection of meaningful landmarks and features with a clear interpretable meaning.

In the first chapter of the thesis, we will introduce the GRAPE library, which provides
highly efficient and scalable implementations of popular graph representation learning
methods. We will describe the design and implementation of GRAPE, and present a
number of experiments that demonstrate its performance and capabilities.

In the subsequent chapter, we will introduce the ALPINE framework, which allows
for the execution of node embedding tasks on graphs with billions of nodes. ALPINE
addresses the limitations of existing methods, such as gradient descent-based models
and matrix factorization techniques.

The work presented in this thesis aims to improve the scalability and performance
of graph representation learning methods, and to enable the analysis of large-scale,
real-world graphs in a variety of applications.
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Chapter 1

State of the art

In this section, we provide an overview of the state of the art in graph representation
learning, focusing on the most relevant approaches and their limitations. We begin
by describing graphs, ontologies, and knowledge graphs, the building blocks of graph
representation learning tasks, and their role in various fields such as natural language
processing, social network analysis, and computational biology. We then introduce the
concept of graph embedding, which aims to learn low-dimensional representations of
nodes in a graph that capture the underlying structure and semantics of the graph.
Finally, we discuss the various algorithms and software libraries that have been devel-
oped for graph representation learning and their limitations in terms of scalability and
performance.

1.1 Graphs, ontologies and knowledge graphs
A graph is a mathematical structure used to represent relationships between objects.
It consists of a set of vertices V , which represent the objects, and a set of edges E,
which represent the relationships between the objects.

Graphs are widely used in many different fields, including computer science, engineer-
ing, and social sciences. In the field of machine learning, graphs are often used to
represent data that has a natural structure or hierarchy, such as networks of intercon-
nected nodes or relationships between entities.

One of the key applications of graph machine learning is in the analysis of complex net-
works, such as social networks or the internet. These networks are often too large and
complex to be understood using traditional methods, so machine learning algorithms
can be used to analyze and understand the structure and dynamics of the network.

Another important application of graph machine learning is in the analysis of structured
data, such as customer transactions or interactions between proteins in a biological
system. In these cases, the graph structure can be used to encode the relationships
between the data points, allowing machine learning algorithms to learn and make
predictions about the data.

In addition to the applications mentioned above, graphs are also widely used in the
field of network medicine and biology. In these fields, graphs are often used to represent
networks of biological entities, such as proteins, genes, or cells.

In network medicine, graphs can be used to represent the interactions between different
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proteins or genes in a biological system, such as a cell or an organism. By analyzing
the structure of these networks, researchers can gain insights into the functions of the
proteins and genes, and how they contribute to the overall functioning of the system.

In biology, graphs are also used to represent the relationships between different species
in an ecosystem. By analyzing the structure of these ecological networks, researchers
can gain insights into the interactions between different species and how they affect
each other’s populations and habitats.

An ontology is a formal representation of a set of concepts within a domain, and the
relationships between those concepts. It can be used to represent the shared under-
standing of a domain that is agreed upon by a group of people, and can be used to
reason about the objects, concepts, and relationships within that domain [54, 53, 87].

A knowledge graph is a graphical representation of knowledge that is structured in the
form of interconnected nodes and edges. The nodes represent entities, such as peo-
ple, places, or things, and the edges represent relationships between those entities. A
knowledge graph can be used to represent a wide range of knowledge, including infor-
mation about people, places, events, and concepts. A knowledge graph is a powerful
tool for organizing and making sense of large amounts of information, and can be used
to answer complex queries, provide recommendations, and support various types of
decision-making tasks [6].

Ontologies and knowledge graphs are both representations of knowledge that can be
used to organize and make sense of large amounts of information. However, there are
some key differences between the two.

One key difference is the way in which the knowledge is represented. Ontologies are
typically represented using a formal language, such as the Web Ontology Language
(OWL), and are used to define the structure and meaning of the concepts within
a domain. Knowledge graphs, on the other hand, are graphical representations of
knowledge that are structured in the form of interconnected nodes and edges. The
nodes represent entities, such as people, places, or things, and the edges represent
relationships between those entities. Another key difference is the purpose for which
the knowledge representation is used. Ontologies are often used to represent the shared
understanding of a domain that is agreed upon by a group of people, and can be
used to reason about the objects, concepts, and relationships within that domain.
Knowledge graphs, on the other hand, are often used to support complex queries,
provide recommendations, and support various types of decision-making tasks [87].

In the field of network medicine and biology, ontologies and knowledge graphs can be
used to represent and organize the complex relationships between different biological
entities, such as genes, proteins, diseases, and pathways. This can facilitate the inte-
gration and analysis of large-scale biological data and support the development of new
computational tools and approaches for studying the mechanisms of disease and the
effects of treatments.

For example, the Gene Ontology (GO) [29] is a widely used ontology for representing
knowledge about the functions and relationships of genes in different organisms. The
GO includes a hierarchy of terms that describe the different aspects of gene function,
such as cellular component, molecular function, and biological process. This allows
researchers to annotate and classify genes based on their known or predicted functions,
and to analyze the data in a consistent and standardized way.
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Another example is the Human Phenotype Ontology (HPO) [103], which is an ontology
for representing knowledge about human diseases and phenotypic abnormalities. The
HPO includes a hierarchy of terms that describe different aspects of disease, such as
symptoms, signs, and diagnostic findings. This allows researchers to annotate and
classify diseases based on their phenotypic characteristics, and to analyze the data in
a consistent and standardized way.

Examples of large-scale knowledge graphs include Google Knowledge Graph and Wiki-
Data. These knowledge graphs require scalable implementations of software to process
and manage the large amounts of information they contain. For example, Google
Knowledge Graph uses machine learning algorithms and natural language processing
techniques to extract and organize information from the web and to generate answers
to user queries in a way that is easy for people to understand.

In the field of network medicine and biology, large-scale knowledge graphs can provide
a rich and comprehensive source of information about genes, proteins, diseases, and
other biological entities. This can support the development of new computational tools
and approaches for studying the mechanisms of disease and the effects of treatments,
and can facilitate the integration and analysis of large-scale biological data.

For example, researchers could use a large-scale knowledge graph to identify connections
between different genes and proteins, and to explore the relationships between different
diseases and their underlying mechanisms. This could help to identify potential targets
for new therapies and to design more effective treatments for a variety of diseases.

Large-scale knowledge graphs are important resources for representing and organizing
knowledge and information on a broad range of topics. In the field of network medicine
and biology, they can provide a rich and comprehensive source of information that
motivates the development of new computational tools and approaches for studying
the mechanisms of disease and the effects of treatments.

1.2 Graph representation learning
In recent years, the task of learning meaningful representations of the nodes and edges
in a graph has garnered significant attention, as it allows for the application of machine
learning techniques to graph structured data. This field, known as Graph Representa-
tion Learning (GRL), has a wide range of applications, including node classification,
link prediction, and graph classification. In this subsection, we will review the state
of the art in GRL and we will then delve into the various methods that have been
proposed for learning graph representations, including matrix factorization, random
walk based approaches, and neural network based approaches [57, 77].

1.2.1 Random walk-based models

Random-walk based models for node embedding are a class of algorithms that are used
to represent the nodes in a network in a low-dimensional matrix, i.e. the embedding.
An embedding matrix should capture the structural relationships between the nodes in
the network, such as the patterns of connectivity and the strength of the connections.
Moreover, the embeddings should capture the overall structure of the network, rather
than just the local structure around individual nodes. Random-walk based node em-
bedding models are important because they allow us to analyze and understand the
structure of complex networks. For example, they can be used to identify groups of
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nodes that are densely connected, or to find nodes that are similar to each other in
terms of their connections. Additionally, random-walk based models are often used
as a preprocessing step for other machine learning algorithms, as they can provide a
more structured representation of the data. In summary, these models are useful for
analyzing and understanding complex networks, and are frequently used in a variety
of applications.

Word2Vec

Word2Vec is a widely used model for learning distributed word representations [79]. It
is commonly used in natural language processing tasks and has been extensively em-
ployed in network representation learning algorithms such as DeepWalk, Walklets, and
Node2Vec, which we will describe shortly in the following sections. These algorithms
rely on the ability of Word2Vec to capture the semantic relationships between words,
which allows them to learn latent representations of nodes in a network. We will focus
on the use of Word2Vec in network representation learning and discuss its effectiveness
in this context.

Word2Vec is a method for representing words in a way that captures their meanings
and relationships with other words. It does this by creating dense, numerical vectors
(or "embeddings") for each word. These vectors capture the meanings of words in a
way that can be used in natural language processing tasks such as translation, text
classification, and text similarity comparison.

In Word2Vec, words that have similar meanings or are often used in similar contexts
are represented by vectors that are close together in vector space. This allows the
model to capture the relationships between words and use these relationships to make
predictions about the meanings of new words that it encounters.

Word2Vec is trained on large amounts of text data and uses a neural network to learn
the vector representations of words. The training process involves predicting the words
that are likely to appear in a context surrounding a given word, based on the vector
representations of those words. This allows the model to learn the relationships between
words and improve its predictions over time.

DeepWalk

The DeepWalk model is a graph representation learning algorithm that was introduced
in 2014 by Perozzi et al. [94]. It is based on the concept of random walks, which are
sequences of nodes in a graph that are generated by randomly transitioning from a
current node to one of its neighboring nodes. These random walks are used to generate
node sequences, which are then treated as sentences in natural language processing. A
Word2Vec model is trained on these node sequences, which results in a low-dimensional
vector representation for each node in the graph. This vector representation, also known
as a node embedding, captures the local and global structure of the graph.

One of the key advantages of the DeepWalk model is that it is able to capture the
local structure of the graph, which is important for tasks such as node classification
and link prediction. This is because the random walks allow the model to explore
the neighborhood of each node, which provides information about the connections and
relations between nodes. In contrast, traditional graph representation learning methods
such as matrix factorization only capture the global structure of the graph, which can
be less effective for these tasks.
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The DeepWalk model has proven to be a successful approach for learning node rep-
resentations in large networks. However, there are some limitations to this model,
such as the inability to model the hierarchy existing in nodes neighbours, that can be
addressed by the introduction of the Walklets model.

Walklets

The Walklets model [96] is a variant of the DeepWalk model that uses a multi-scale
approach, where multiple random walks of varying lengths are generated from each node
in the network. This allows for a more comprehensive representation of the network,
capturing both local and global structure. Additionally, the Walklets model uses a
hierarchical sampling strategy, which often results in more improved performance on
downstream tasks.

More specifically, to generate node sequences, the Walklets model first samples a set of
starting nodes from the graph. For each starting node, the model performs a random
walk on the graph, sub-sampling the nodes by skipping a provided amount of nodes
for each sampled node. This process generates a hierarchical sequence of nodes, which
is then used to learn a set of latent features that capture the underlying structure of
the graph.

Node2Vec

Node2Vec [52] is yet another model for learning low-dimensional representations of
nodes in a graph. Both DeepWalk and Walklets are similar to the Node2Vec model in
that they all use random walks to learn node representations. Node2Vec uses a biased
sampling strategy that allows for the control of the trade-off between local and global
structure in the learned representations.

The bias in the random walk is controlled by two parameters, p and q, which determine
the likelihood of the walk returning to the current node or moving to a node that is
farther away in the graph.

The relationship between the p and q parameters and the graph’s triangles (i.e. sets
of three nodes connected by three edges) is an important factor in the performance of
Node2Vec. In general, a smaller value of p and a larger value of q will lead to more
exploration of the graph’s triangles, resulting in embeddings that are more sensitive to
the local structure of the graph. Conversely, a larger value of p and a smaller value
of q will lead to less exploration of triangles, resulting in embeddings that are more
sensitive to the global structure of the graph.

1.2.2 Spectral and matrix factorization methods

Spectral and matrix factorization methods for node embedding start by computing
weighted adjacency matrices, which encode information about the connectivity and
similarity between pairs of nodes in the graph. These matrices are, most commonly,
extremely sparse. These methods may include one or more factorization steps, in which
the adjacency matrix is factorized into several matrices that capture different aspects
of the graph’s structure.

Given a target embedding dimensionality, these methods generally use as node em-
beddings the eigenvectors or singular vectors corresponding to spectral or singular
values of interest. For example, spectral methods such as Laplacian Eigenmap (LE)
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and Geometric Laplacian Eigenmap Embedding (GLEE) use the eigenvectors corre-
sponding to the smallest or largest eigenvalues of the graph’s Laplacian matrix as node
embeddings. Matrix factorization methods such as High-Order Proximity preserved
Embedding (HOPE) and Social Dimensions (SocioDim) use the singular vectors cor-
responding to the most significant singular values of a proximity matrix or modularity
matrix as node embeddings.

In this section, we will describe and compare several spectral and matrix factorization
node embedding methods, including LE, GLEE, HOPE, SocioDim, Alternating Di-
rection Method of Multipliers for Non-Negative Matrix Factorization (NMFADMM),
Iterative Random Projection Network Embedding (RandNE), Graph Representations
(GraRep), and Network Matrix Factorization (NetMF). We will discuss how each
method computes weighted adjacency matrices and performs factorization steps, and
how they use spectral or singular vectors to compute node embeddings. We will also
discuss the strengths and weaknesses of each method, and compare their performance
on various graph datasets. All of these methods are available in GRAPE, both as new
implementations from scratch, and also as integrated implementations from third party
libraries to facilitate comparisons.

Laplacian matrices

Since many of the following methods are based on Laplacian matrices derived from the
graph adjacency matrix, we define first what a Laplacian matrix is.

The Laplacian matrix of a graph is a square matrix that encodes the connectivity
of the graph. It is defined as the difference between the degree matrix and the adjacency
matrix of the graph. The degree matrix is a diagonal matrix that contains the degree of
each vertex in the graph, and the adjacency matrix is a matrix that contains the edge
weights between all pairs of vertices in the graph, or a one in the case of an unweighted
graph.

The symmetrically normalized Laplacian matrix is a variant of the Laplacian
matrix that is often used in spectral graph theory. It is defined as the inverse square root
of the degree matrix times the Laplacian matrix. This normalization helps to ensure
that the eigenvalues of the matrix lie in the range [−1, 1], which can be useful for some
applications, including data clustering, network analysis, and machine learning.

The symmetrically normalized Laplacian has several important properties, including
being positive semi-definite and having the smallest possible number of zero eigenvalues
among all possible Laplacian matrices for a given graph. This makes it a useful tool for
studying the structure of a graph and for solving various problems in graph theory [27].

Laplacian Eigenmap

Laplacian Eigenmap (LE) [11] computes the symmetrically normalized Laplacian of
the graph, which is a matrix that encodes information about the connections between
nodes in the graph. Next, LE computes the eigenvectors of the Laplacian matrix
that correspond to the smallest eigenvalues. These eigenvectors are then used as the
embeddings of the nodes in the graph.

One potential strength of Laplacian Eigenmap (LE) is that it uses the eigenvectors
corresponding to the smallest eigenvalues, which are often believed to capture the most
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important structural information about the graph. This can lead to LE producing node
embeddings that accurately reflect the underlying structure of the graph, with direct
applications in protein structure prediction [28].

However, a potential weakness of LE is that the choice of which eigenvectors to use as
node embeddings is somewhat arbitrary. In particular, there is no theoretical guarantee
that the eigenvectors corresponding to the smallest eigenvalues will always produce the
most accurate node embeddings.

Geometric Laplacian Eigenmap Embedding

Geometric Laplacian Eigenmap Embedding (GLEE) [122] is a variation of LE that
builds on the same principles. Like LE, GLEE computes the symmetrically normalized
Laplacian of the graph and uses this to compute eigenvectors. However, instead of using
the eigenvectors corresponding to the smallest eigenvalues, GLEE uses the eigenvectors
corresponding to the largest eigenvalues. This difference in the eigenvectors used leads
to GLEE producing node embeddings with different properties than those obtained by
using LE.

Geometric Laplacian Eigenmap Embedding (GLEE) can potentially overcome this
weakness by using the eigenvectors corresponding to the largest eigenvalues. This
choice of eigenvectors is less arbitrary, as it is based on the idea that the largest
eigenvalues are the most "spread out" in the graph, and therefore capture the most
global information about the graph. However, a potential weakness of GLEE is that
it may not always produce the most accurate node embeddings, as the eigenvectors
corresponding to the largest eigenvalues may not always capture the most important
structural information about the graph.

High-Order Proximity preserved Embedding

High-Order Proximity preserved Embedding (HOPE) [90] starts by computing a node-
proximity matrix, which encodes information about the proximity or similarity between
pairs of nodes in the graph. The proximity between two nodes can be defined in different
ways, such as by using the number of common neighbors or the Adamic-Adar index.

Next, HOPE computes the singular vectors of the proximity matrix that correspond
to the most significant singular values. These singular vectors are then used as the
embeddings of the nodes in the graph. In particular, the left and right product of the
singular values with the singular vectors are used as the embeddings of the source and
destination nodes, respectively.

HOPE differs from LE and GLEE in that it uses a node-proximity matrix to compute
node embeddings, rather than the Laplacian matrix. This means that HOPE can
potentially produce more accurate node embeddings by using more detailed and task-
related information about the proximity between nodes in the graph. On the other
hand, the choice of which proximity measure to use in the node-proximity matrix
is somewhat arbitrary, which could potentially limit the accuracy of HOPE’s node
embeddings.

Social Dimensions

The Social Dimensions (SocioDim) [120] Like High-Order Proximity preserved Embed-
ding (HOPE), SocioDim computes a node-proximity matrix that encodes information
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about the similarity between pairs of nodes in the graph. However, instead of using an
arbitrary proximity measure, SocioDim uses the modularity matrix, which is a dense
matrix that encodes information about the modular structure of the graph.

Next, SocioDim computes the eigenvectors of the modularity matrix that correspond
to the largest eigenvalues. These eigenvectors are then used as the node embeddings.

One potential advantage of SocioDim over LE and GLEE is that it uses the modu-
larity matrix, which encodes information about the modular structure of the graph,
rather than the Laplacian matrix, which encodes information about the connectivity
of the graph. This could potentially lead to SocioDim producing more accurate node
embeddings than LE and GLEE. On the other hand, the use of the modularity matrix
is somewhat arbitrary, and there is no guarantee that it will always produce the most
accurate node embeddings.

Alternating Direction Method of Multipliers for Non-Negative Matrix Fac-
torization

Alternating Direction Method of Multipliers for Non-Negative Matrix Factorization
(NMFADMM) [116] is yet another method for mapping nodes in a graph to a low-
dimensional space in a way that preserves the distances between nodes. Unlike the
other methods discussed so far, NMFADMM uses non-negative matrix factorization
(NMF) to compute node embeddings.

Non-negative matrix factorization [67] is a technique in linear algebra that allows a
given matrix to be approximated as the product of two non-negative matrices. This
factorization has a number of useful properties and applications, particularly in the
fields of data mining and machine learning.

NMF is often used as a dimensionality reduction technique, as it can decompose a
high-dimensional matrix into two matrices with fewer dimensions, while preserving the
non-negative property of the original matrix. This can be useful for tasks such as
clustering and feature extraction, as it allows the original data to be represented in a
lower-dimensional space.

NMF has also been applied to a variety of other problems, including collaborative
filtering, document clustering, and data visualization. It has been shown to be effective
in a range of applications, and has become a popular tool in the field of data mining
and machine learning.

NMFADMM first computes the left Laplacian matrix of the graph, which encodes
information about the connectivity of the graph. Next, NMFADMM uses NMF to
factorize the left Laplacian matrix into two non-negative matrices, which correspond
to the embeddings of the source and destination nodes, respectively.

Iterative Random Projection Network Embedding

Similar to NMFADMM, Iterative Random Projection Network Embedding (RandNE) [133]
applies an iterative procedure to factorize the dot product of the left Laplacian and
an (initially) random matrix; after a user defined number of factorization the matrix
is used as the node embeddings.
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Graph Representations

Graph Representations (GraRep) [24] analogously factorizes the left Laplacian matrix
and, at every iteration, computes the singular vectors corresponding to the k most
significant singular values, hence producing several embeddings equal to the number
of iterations.

One potential advantage of GraRep over the other methods is that it produces several
sets of node embeddings, which can potentially improve the accuracy of the embeddings
by averaging over multiple sets of embeddings.

Network Matrix Factorization

The Network Matrix Factorization (NetMF), given a window size, first computes a
sparse log co-occurrence matrix by using first-order random walks and then proceeds
to compute the singular vectors corresponding to the k largest singular values [99].

The use of a sparse log co-occurrence matrix allows NetMF to capture more detailed
information about the relationships between nodes in the graph.

1.2.3 Edge sampling methods

The key idea behind edge-sampling based methods is to use edge information to learn
node embeddings. This is typically done by training a shallow neural network on
triples consisting of a source node, a destination node, and a property of the edge that
connects them. For example, the property might be a binary value indicating whether
the edge exists, or it might be a weight that represents the strength of the connection
between the nodes.

Large-scale Information Network Embedding

One example of an edge-sampling based method is the LINE (Large-scale Information
Network Embedding) model [119]. This model samples node tuples and evaluates
whether they are connected by an edge in the graph.

There are two main variations of the LINE model: first-order and second-order. In first-
order LINE, only a single node embedding embedding layer is optimized. This means
that connected nodes will have similar embeddings, while disconnected nodes will have
dissimilar embeddings, with no possibility for the model to learn the directionality of
the edge interaction. In second-order LINE, two node embeddings layers are optimized:
one for the source nodes and one for the destination nodes (or contextual nodes). This
allows the model to capture more complex patterns in the graph structure, such as
higher-order connectivity between nodes.

1.2.4 Corrupted triple sampling methods

Similar to edge sampling methods, corrupted -triple sampling methods are shallow neu-
ral networks trained on the (true) triples (v, ℓ, s) defined by the existing edges in the
graph (where v is the source node, ℓ is the property of the edge (v, s), and s is the
destination node, see section 2.4), but also on corrupted triples, that are obtained
by corrupting the original triples by substituting the source and/or destination nodes
{v, s} with randomly sampled nodes {v′, s′}, while maintaining the attribute unchanged
(v′, ℓ, s′).
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The shallow neural network models used on corrupted-triple sampling batches include
a weight matrix representing the node embedding, plus one or more matrices for rep-
resenting the edge attributes, which are composed to capture the attribute meaning as
algebraic operations (e.g. woman+is_royal = queen). For this reason, they are particu-
larly well suited to compute node and edge properties embedding of attributed graphs
were the edge properties represent meaningful directed transitions (e.g. is_royal),
while being out of scope when dealing with local undirected properties (e.g. interacts
with). Given a distance metric defined for the triples the shallow models are generally
optimized to minimize the distance of true triples while maximizing the distance of the
corrupted ones.

The distance defined for triples is often a feature-wise distance, whose advantage is
that the computation of the gradient of each feature is independent from any other
feature. This allows for particularly effective data-racing-aware and synchronization-
free parallel implementations [132].

TransE

TransE [132] is among the first and possibly one of the most commonly used of the
corrupted-triple sampling methods presented in the literature, from which a large family
of variations has been defined. The model trains a shallow neural network composed of
two weight matrices representing the node embedding and the edge type embedding. It
generally uses as distance metric a feature-wise euclidean distance (though any element-
wise distance metric may be used) and defines its energy loss as:

LTransE =
∑

(v,v′,ℓ,s,s′)

ReLU
[
constant + (v + ℓ− s)2 − (v′ + ℓ− s′)2

]

There are a number of graph representation learning models that are derived from
the TransE model. These derivative models include TransH, TransR, TransD, and
others, which seek to improve upon the original TransE model by introducing addi-
tional mechanisms for modeling relationships between entities. For example, TransH
introduces a hyperplane to capture the different types of relationships that can exist
between entities, while TransR introduces a rotation matrix to allow for more flexible
relationships.

The field of graph representation learning has seen significant advances in recent years,
with a range of approaches being proposed to effectively capture the underlying struc-
ture and semantics of graphs. These approaches range from traditional matrix factor-
ization methods, to random walk based methods, to more recent approaches such as
graph neural networks. However, many of these approaches struggle with scalability
and are unable to effectively process large real-world graphs. In the next chapter, we
begin with the novelties introduced with this thesis, starting with the introduction of
the GRAPE library, a software library developed to address these scalability issues and
enable the effective processing of large graphs.
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Chapter 2

The GRAPE resource

GRAPE is a graph representation learning library for executing node embedding, ob-
taining novel predictions and evaluating the obtained predictions. GRAPE has been
developed in Rust, with Python bindings to enhance user accessibility, and its main
focus is scalability, i.e. making possible the execution of tasks such as node embed-
ding on large graphs even on commodity hardware, through an holistic attention to
synchronization-free parallelism, instruction-level parallelism based on SSE and AVX,
efficient data structures, numerical stability, and where necessary mixed precision and
MMAP. Among the many high-performance algorithms provide by GRAPE, the library
implements approximated weighted DeepWalk, Walklets & Node2Vec embedding mod-
els, able to process graphs containing high-degree nodes (degree > 106), an otherwise
unmanageable task when using the analogous exact algorithms, and allow one to obtain
edge-prediction performance comparable to those achieved by using the exact version
(Section 4.1.1).

Finally, GRAPE can optionally employ succinct data structures based on Elias-Fano [38]
(see section 2.2) to load graphs that would not otherwise fit within main memory, with
memory usage close to the theoretical minimum. Rank and Select operations on suc-
cinct data structures are slower than their CSR analogues, nevertheless these operations
have average constant-time complexity.

The node embeddings are then used for graph visualization or to solve graph-prediction
tasks [77], including node-label prediction, edge and edge-label prediction, unsupervised
graph analysis (e.g. node clustering).

2.1 GRAPE overview

GRAPE is a fast graph processing and embedding library; it extensively uses parallel
computation and efficient data structures to scale with big graphs. The library’s high-
level structure, overall functionalities, and its two core modules, Ensmallen (ENabler
of SMAll computational resources for LargE Networks) and Embiggen (EMBeddInG
GENerator), are depicted in figure 2.1a.

Ensmallen efficiently loads big graphs and executes graph processing operations, owing
to the design of efficient data structures and its Rust [93] implementation, with fully
documented Python bindings for ease of use.

Rust is a compiled language gaining importance in the scientific community [93] thanks
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to its robustness, reliability, and speed. Rust allows threads and data parallelism to be
exploited robustly and safely. To further improve efficiency, some core functionalities of
the library, such as the generation of pseudo-random numbers and sampling procedures
from a discrete distribution, use traditional map-reduce thread-based parallelism and
branch-less Single Instruction Multiple Data (SIMD) parallelism (see Appendixes A
and B).

Among the wide spectrum of implemented graph processing methods, Ensmallen also
provides Bader and Kruskal algorithms for computing random and minimum spanning
arborescence and connected components, stress and betweenness centrality [8], node
and edge filtering methods, and algebraic set operations on graphs. Ensmallen allows
graphs to be loaded from a wide variety of node and edge list formats (section 4.1).

As a result, users can automatically load data from an ever-increasing list of over
80, 000 graphs from the literature and elsewhere (Fig. 2.1b, detailed in section 4.2.2).

Importantly, Ensmallen also provides multiple (graph) holdout techniques, efficient
node embedding methods (sections 2.3.1, 2.3.2, 2.4, based on, e.g., first and second-
order random walks [70], triple [119] and corrupted-triple sampling [132], plus a wide
range of graph processing algorithms that nicely scale with big graphs. Importantly
Ensmallen also allows to compute edge embedding from the source and destination
node embeddings using several different methods, such as Hadamard, concatenation,
and element-wise L1 and L2 (section 2.5).

Once computed, the edge/node embeddings can be used as input of dimensionality
reduction techniques (e.g. t-SNE [124]), to obtain lower-dimensional representations
allowing to visualize graphs and their properties (fig. 2.1 c) or may be ingested any of
the node-label, edge-label and edge prediction models (section 2.6) implemented into
the Embiggen module or integrated by third-party libraries.

Embiggen provides GRL and inference models (sections 4.2.1), including an exhaustive
set of node embedding methods, e.g., spectral and matrix factorization models such
as HOPE [90], NetMF [99] and their variations (GLEE [122], SocioDim [120] - section
2.3.1), CBOW, SkipGram and GloVe embedding methods [80, 92] exploiting random
walk-based methods such as DeepWalk, Node2Vec and Walklets [52, 96] (section 2.3.2),
triple sampling methods such as LINE [119] and corrupted-triple sampling methods
such as TransE [132] (section 2.4), and, more generally, a wide range of inference
methods (sections 2.6).

GRAPE currently provides 49 unique node embedding models (61 considering redun-
dant implementations, important for benchmarks), with 19 being “by-scratch” imple-
mentations and 30 integrated from third-party libraries. The list of available node
embedding methods is constantly growing, with the ultimate goal to provide a com-
plete set of efficient node embedding models. The input for the various models (e.g.
random walks and triples) are provided by Ensmallen in a scalable, highly efficient,
and parallel way (Fig. 2.1a). All models were designed according to the “composi-
tion over inheritance” paradigm, to ensure a better user experience through increased
modularity and polymorphic behaviour [47]. More specifically, Embiggen provides in-
terfaces, specific for either the embedding or each of the prediction-tasks, that must be
implemented by all models; third-party models, such as PyKeen [3], KarateClub [106]
and Scikit-Learn [91] libraries, are already integrated within GRAPE by implementing
these interfaces. GRAPE users can straightforwardly create their models and wrap
them by implementing the appropriate interface.
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GRAPE provides three modular pipelines to compare and evaluate node-label, edge-
label and edge prediction performance under different experimental settings (section
4.2.2, fig. 2.1b), as well as utilities for graph visualization (fig. 2.1c). These pipelines
allow non-expert users to tailor their desired experimental setup and easily obtain ac-
tionable and reproducible results (Fig. 2.1b). Furthermore, GRAPE provides interfaces
to integrate third-party models and libraries (e.g., KarateClub [106] and PyKeen [3]
libraries). In this way, the evaluation pipelines can be used to obtain a fair comparison
between models implemented or integrated in GRAPE.

The possibility to integrate external models and the availability of graphs for testing
them on the same datasets allows to answer a still open and crucial issue in liter-
ature, which regards the FAIR (Findable, Accessible, Interoperable, and Reusable),
objective, reproducible, and efficient comparison of graph-based methods and software
implementations (Section 4.2.2).

GRAPE has a comprehensive test suite. However, to thoroughly test it against many
scenarios, we also employed fuzzers, that is tools that iteratively generate inputs to
find corner cases in the library.

In the next section we describe the succinct data structures used in the library and de-
tail their efficient GRAPE implementation (Section 2.2). We then summarize the spec-
tral and matrix factorization (Section 2.3.1), the random walk-based (Section 2.3.2),
the triple and corrupted triples-based (Section 2.4) embedding methods and their
GRAPE implementation. In section 2.5 we describe the edge embedding methods
and in Section 2.6 the node and edge label prediction methods available in GRAPE.
Finally in Section 2.7 we detail the GRAPE standardized pipelines to evaluate and
compare models for graph prediction tasks.

In Chapter 4 we report some of the experimental results we conducted to assess the
efficiency and efficacy of GRAPE.

2.2 Succinct data structures for adjacency matrices
Besides heavy exploitation of parallelism, the second pillar of our efficient implementa-
tion is the careful design of the data structures for using as little memory as possible and
quickly performing operations on them. The naive representation of graphs explicitly
stores its adjacency matrix, with a O(|V |2) time and memory complexity, being |V | the
number of nodes, which leads to intractable memory costs on large graphs. However,
since most large graphs are highly sparse, this problem can be mitigated by storing
only the existing edges. Often, the adopted data structure is a Compressed Sparse
Rows matrix (CSR [107]), which stores the source and destination indices of existing
edges into two sorted vectors. In Ensmallen we further compressed the graph adjacency
matrix by adopting the Elias-Fano succinct data scheme, to efficiently store the edges
(Supplementary section 2.2.2). Since Elias-Fano representation stores a sorted set of
integers using memory close to the information-theoretical limit, we defined a bijective
map from the graph-edge set and a sorted integer set. To define such encoding, we
firstly assigned a numerical id from a dense set to each node, and then we defined the
encoding of an edge as the concatenation of the binary representations of the numerical
ids of the source and destination nodes. This edge encoding has the appealing prop-
erty of representing the neighbours of a node as a sequential and sorted set of numeric
values, and can therefore be employed in the Elias-Fano data structure. Elias-Fano has
faster sequential access than random access (Supplementary section S7.1.1) and is well
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Figure 2.1: Schematic diagram of GRAPE (Ensmallen + Embiggen) function-
alities. a. High level structure of the GRAPE software resource. b. Pipelines for
an easy, fair, and reproducible comparison of graph embedding techniques, graph-
processing methods, and libraries. c. Visualization of KGCOVID19 graph, obtained
by displaying the first two components of the t-SNEdecomposition of the embeddings
computed by using a Node2Vec SkipGram model that ignores the node and edge type
during the computation. The clusters colors indicate: (left) the Biolink category [123]
for each node; (center) the Biolink category for each edge; (right) the predicted edge
existence.

suited for graph processing tasks such as retrieving neighbours during random walk
computation and executing negative sampling using the outbound or inbound node
degrees distributions.
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2.2.1 Edge Encoding

In this subsection we describe how Ensmallen converts all the edges of a graph G(V,E)
into a sorted list of integers. In particular, considering an edge e = (v, x) ∈ E con-
necting nodes v and x represented with, respectively, integers a and b, the binary
representation of a and b are concatenated through the function ϕk(a, b) to generate
an integer index uniquely representing the edge e itself:

ϕk(a, b) = a 2k + b, where k = ⌈log2 |V |⌉ ⇒ a =

⌊
ϕk(a, b)− b

2k

⌋
, b = ϕk(a, b)− a 2k

This implementation is particularly fast because it requires only few bit-wise instruc-
tions:

ϕk(a, b) = a << k|b ⇒ a = ϕk(a, b) >> k, b = ϕk(a, b) & (2k − 1)

where << is the left bit-shift, | is the bit-wise OR and & is the bit-wise AND. Since
the encoding uses 2k bits, it has the best performances when it fits into a CPU word,
which is usually 64-bits on modern computers, meaning that the graph must have less
than 232 nodes and and less than 264 edges. However, by using multi-word integers
it can be easily extended to even larger graphs [63]. As an example, considering a
graph with at most 8 nodes, encoded with integers numbers (v ∈ [0, . . . , 7]) In figure
2.2 we schematize the encoding of the edge (2, 6) which has 2 as source node, and 6 as
destination node. On the right we report the Rust implementation of the edge encoding
and decoding. Once the edges are encoded, we can sort them and use Elias-Fano to
store them.

fn encode(src: u64, dst: u64, k: u64) -> u64 {
(src << k) | dst

}
fn decode(edge: u64, k: u64) -> (u64, u64) {

let src = edge >> k;
let dst = edge & ((1 << k) - 1);
(src, dst)

}

Figure 2.2: On the left, an example of the encoding. On the right its implementation in Rust.

2.2.2 Elias-Fano scheme

Once all the edges listed in the adjacency matrix have been converted to a sorted list
of integers as defined in subsection 2.2.1), Ensmallen uses the Elias-Fano scheme [38,
125] to represent the edges in memory. This not only allows minimizing the memory
costs for storing the graph, but also allows implementing fast loading and processing
operations.

In the following, we aid comprehension of Elias-Fano schema by supporting the de-
scription with a graphical example, depicted in figure 2.3. The figure shows how the
monotone list of integers [5, 8, 8, 15, 32] may be represented in memory by using
Elias-Fano [38] quasi-succint representation.
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More precisely, the binary representation of the i-th value of the list, bi, i = 1, . . . , n,
is initially split into two parts:

• a low-bits part, li (light blue in figure 2.3), containing the lower ⌊log2 u
n
⌋ bits,

• an high-bits part, hi (purple in figure 2.3), containing the remaining bits (referred
to as high-bits).

The low-bit-parts and and high-bit-parts are then used to compose,

• a low-bits array (light-blue and referred to as L in figure 2.3): it is formed by
sequentially concatenating the explicit copies of the low-bits parts.

• an high-bits array (red, and named H in figure 2.3): it is composed by sequen-
tially concatenating the unary representation of the differences (gaps) between
consecutive high-bits parts (where the preceding value of the first element is as-
sumed to be equal to zero). It is important to note that each gap, is represented
in memory by using the inverted unary representation, that is by encoding an
integer value equal to k by using k zeros followed by a one (for example, 0 in
inverted unary representation is 1, 3 is 0001).

Instead of computing the gaps, Pibiri et al. [97] propose a faster method to build the
high-bits array H, which obtains the same encoding as Elias-Fano’s. Pibiri’s et al.
show that H can be created as a bit-vector with all zeros, except for the elements at
indexes hi + i ( i = 1, . . . , n, where i indexes the high-bits parts, hi) that are set to
1. This method is faster because the encoding and decoding of each value no longer
depend on the previous values (as gaps would) so that the representation may be built
in parallel to further speed up the graph representation. Moreover, once the index of
each value is known, exploiting atomic integers we can build Elias-Fano fully in
parallel 1 without any lock. An example of this method is in figure 2.4, where the
high-bits index is no longer computed using the gaps.

Elias-Fano representation allows storing n non-negative integers, sorted in increasing
orders and bounded by u, with at most EF(n, u) = 2n+n

⌈
log2

u
n

⌉
bits, and a memory

usage that is less than half a bit away [39, 38, 40] from the succinct bound that is
Z+o(Z), where Z is the theoretical minimum number of bits needed to store the data:
Z =

⌈
log2

(
u
n

)⌉
= n log2

u
n
+O(n) [98].

1full implementation at https://github.com/zommiommy/elias_fano_rust/blob/develop/
src/concurrent_builder.rs
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Figure 2.3: Example of Elias-Fano. Elias-Fano splits the sorted values into high and low bits;
the low-bits parts are then consecutively copied in the low-bits array, L (on the right, blue color), while
the high-bits parts are coded into an high-bits array H (on the left, red color) by consecutively storing
the gaps between consecutive high-bits parts, encoded by using the inverted unary representation.

Figure 2.4: Algorithm for Elias-Fano encoding presented in [97]. While the low-bits array
(on the right, blue color) is simply composed by sequentially concatenating the lis for each i = 1, . . . , n,
the high-bits array is composed by setting the bit at index hi + i to 1.

2.2.3 Operations on Elias-Fano.

When paired with Elias-Fano representation, the aforementioned encoding allows effi-
cient computation of random-walk samples.

Indeed, Elias-Fano representation allows performing rank and select operations by
requiring on average constant time. These two operations were initially introduced by
Jacobson to simulate operations on general trees, and were subsequently proven fun-
damental to support operations on data structures encoded through efficient schemes.

In particular, given a set of integers S, Jacobson defined the rank and select operations
as follows [85, 98]:

rank(S,m) returns the number of elements in S less or equal than m

select(S, i) returns the i-th smallest value in S
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As explained below, to speed up computation, we deviate from this definition by defin-
ing the rank operation as the number of elements strictly lower than m.

To compute the neighbours of a node using the rank and select operations, we observe
that, for every pair of nodes α, β with numerical ids a, b respectively, for a, b < 2k

where k is generally 32, it holds that:

a 2k ≤ a 2k + b < (a+ 1) 2k ⇒ ϕk(a, 0) ≤ ϕk(a, b) < ϕk(a+ 1, 0)

Thus, the encoding of all the edges with source α will fall in the discrete range[
ϕk(a, 0), ϕk(a+ 1, 0)

)
=

[
a 2k, (a+ 1) 2k

)
Thanks to our definition of the rank operation and the aforementioned property of the
encoding, we can easily derive the computation of the degree d(a) of any node v with
numerical id a for the set of encoded edges Γ of a given graph, which is equivalent to
the number of outgoing edges from that node:

d(a) = rank(Γ, ϕk(a+ 1, 0))− rank(Γ, ϕk(a, 0))

Moreover, we can retrieve the encoding of all the edges Γa starting from v encoded as
a, by selecting every index value i falling in in the range [ϕk(a, 0), ϕk(a+ 1, 0):

Γa =
{
select(Γ, i) | rank(Γ, ϕk(a, 0)) ≤ i < rank(Γ, ϕk(a+ 1, 0))

}
We can then decode the numerical id of the destination nodes from Γa, thus finally
obtaining the set of numerical ids of the neighbours nodes N(a):

N(a) =
{
select(Γ, i) &(2k − 1) | rank(Γ, ϕk(a, 0)) ≤ i < rank(Γ, ϕk(a+ 1, 0))

}
In this way, by exploiting the above integer encoding of the graph and the Elias-Fano
data scheme, we can efficiently compute the degree and neighbours of a node using
rank and select operations.
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/// Return number of elements smaller than value
fn rank(&self, value: u64) -> u64 {

// split the value into
// its higher and lower bits
let high = value >> self.low_bits_size;
let low = value & self.low_bits_mask;
// find the index of the
// high-th zero in the bit-vector
let mut index = self.high_bits.find_zero_of_index(

high
);
// start scanning the lower
// bits to find the first element
// bigger or equal than value
while (

self.high_bits[index] == 1 &&
self.read_lowbits(index - high) < low

){
index += 1;

}
// the number of elements is equivalent
// to the index of the value
// in the high-bits
// minus the higher bits because
// the count is the number
// of ones before index and
// high is the number of zeros before index.
index - high

}

Figure 2.5: Rust implementation of a simplified rank operation: in this implementation
we omitted the logic needed to handle all the corner-cases. The full implementation can be found at
https://github.com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs
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/// Find index-th smallest value
fn select(&self, index: u64) -> u64 {

// find the index of the high-th
// one in the bit-vector
// and subtract the index
// to obtain the number of
// zeros before the index-th one.
let high = self.high_bits.find_one_of_index(

index
) - index;
// get the lower bits of the value
let low = self.read_lowbits(index);
// merge the high and low bits
(high << self.low_bits_size) | low

}

Figure 2.6: Rust implementation of a simplified select operation: in this implementation
we omitted the logic needed to handle all the corner-cases. The full implementation can be found at
https://github.com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs

The Rust implementations of rank and select operations on our Elias-Fano representa-
tion are sketched in Figures 2.5 and 2.6.

This implementation may be further optimized by considering that The complexity of
the rank (select) operation mainly depends on the implementation of the find_zero_of_index
(find_one_of_index ) function since all the other operations take constant time.

Therefore, to have rank and select in constant time we need to obtain a constant
computational time for those functions.

Both functions need to find the i-th one/zero in a bit-array. Therefore, the naive way
to solve the problem would be to scan the array from the start and, at each step,
count how many values v ∈ {0, 1} have been encountered so far. This algorithm scales
linearly with the length of the bit-vector and thus is not practical for large arrays. A
simple solution to improve the linear scan is to get a starting point that is closer to
the result.

In the following paragraphs, we will adopt the term "quantum" from [125] to describe
an integer value q, most commonly equal to a power of two for hardware efficiency
reasons, as logical operations are significantly faster.

To do so, given a bit-array to scan, we choose a quantum q and store the position of
every q-th value v ∈ {0, 1} into an auxiliary array O = [o0, o1, . . .]. To find the i-th
value v in Elias-Fano’s high-bits array, the linear scan will start from position ok, where
k = ⌊i/q⌋, and it will have to scan at most until the next position ok+1.

Considering that Elias-Fano’s high-bits array contains approximately half uniformly
distributed ones and half uniformly distributed zeros, the average distance between
two consecutive values v ∈ {0, 1} is equal to 2 bits, which implies that the average
distance between two consecutive positions ok and ok+1, that is the expected maximum
number of bits to scan for searching a the i-th value v, is E[ok+1 − ok] = 2q.

Therefore, if the high-bits array has n bits, by using the auxiliary vector O, the average
time complexity in the worst case is reduced from O(n) to E[ok+1−ok] = O(q) = O(1).
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In computer science and computer engineering, an assembler is a low-level programming
language that is used to write programs that can be executed directly by a computer’s
central processing unit (CPU). Assembler instructions are specific to a particular type
of CPU and are used to perform basic operations such as moving data, performing
arithmetic calculations, and controlling the flow of a program.

The popcnt instruction is a specific type of assembler instruction that is used to
compute the number of "1" bits (also known as "set bits") in a given word of memory.
This instruction can be useful for various purposes, such as for counting the number
of occurrences of a particular value within a data structure.

The BMI2 instruction set is a collection of assembler instructions that are supported
by certain types of CPUs. These instructions provide various useful operations for
working with bit strings, such as the ability to extract or insert individual bits from a
word of memory, or to find the position of the first set bit in a word.

The instructions pdep and tzcnt are part of the BMI2 instruction set and are used to
find the wanted value v in a word of memory in constant time. The pdep instruction is
used to extract the bits of a word that correspond to the wanted value, while the tzcnt
instruction is used to find the position of the first set bit in the resulting bit string. By
combining these instructions with other operations, it is possible to find the wanted
value v in constant time, providing a significant speed-up over more general-purpose
algorithms.

For exhaustiveness, a simplified version of the optimized Rust implementation of GRAPE se-
lect operation is reported in Figures 2.7 and 2.8.

For what regards the memory complexity of the proposed index, we need on average
O
(

n
2q

)
integers for storing the positions of the ones (or of the zeros), and each integer

position needs at most ⌈log2 n⌉ bits to be stored. Therefore, each of the two indexes
(one index for the ones to speed the select, and one index for the zeros to speed the rank)
cause a memory occupation, in the worst case, of O

(
n
2q
log2 n

)
bits, which resolves to

a total worst-case memory occupation of O
(

n
q
log2 n

)
bits.

Note that while indices with memory complexity of o(n) exist, a careful implementation
allows the use of a relatively high value for q, which practically results in low overhead,
while having the advantage of lowering the computational costs.

In the following examples, we will use the mebibytes (MiBs) instead of megabytes
(MB). A mebibyte is a unit of measurement for digital information. It is commonly
used to measure the amount of data stored on computer hard drives or the amount
of data transferred over a network. A mebibyte is equal to 1,048,576 bytes, which is
slightly larger than a megabyte, which is equal to 1,000,000 bytes. In other words,
one mebibyte is equal to approximately 1.049 megabytes. The prefix "mebi" comes
from the binary system of measurement, where "bi" stands for "binary digit," and the
prefix "mega" comes from the decimal system of measurement, where "mega" stands
for "million." Mebibytes are used instead of megabytes because they are more precise
and accurate when used in the context of digital information. In the binary system
of measurement, which is commonly used in computing, 1,048,576 is the closest whole
number approximation of 1,000,000. This is why 1 mebibyte is slightly larger than 1
megabyte. Because mebibytes are based on the binary system of measurement, they
are more precise and more commonly used in computing contexts, whereas megabytes
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are based on the decimal system of measurement and are more commonly used in
everyday contexts.

Indeed, our tests on a knowledge graph (KG-COVID [101], section 3) with around
450’000 nodes and 32’000’000 edges, showed that Elias-Fano uses 56Mib to store the
adjacency matrix, of which 0.6 Mib are for the 1s and 0s indices (see table 2.1. There-
fore, the overhead ratio of the indices is 1.07% when compared to the size of the whole
structure.

Moreover, rank and select operations on KG-COVID require in average in 50ns and
118 ns when executed on a Ryzen 9 3900x.
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/// Returns position of `index`-th bit set to one.
pub fn select1(&self, index: u64) -> u64 {

// use the index to find
// in which block the value is
let mut reminder_to_scan = index & INDEX_MASK;
let idx = (index >> INDEX_SHIFT) as usize;
// the bit position of the biggest
// multiple of INDEX_SIZE which is
// smaller than the choosen index,
// this is were we will start our search
let pos = self.high_bits_index_ones[idx];
// find in which word the start value is
let mut block_id = (pos >> WORD_SHIFT) as usize;
let in_word_reminder = pos & WORD_MASK;
// build the standard word to start scanning
let mut code = self.high_bits[block_id];
// clean the "already parsed lower bits"
code &= u64::MAX << in_word_reminder;
// use popcnt to find the right word
loop {

let popcnt = code.count_ones() as u64;
if popcnt > reminder_to_scan {

break
}
block_id += 1;
reminder_to_scan -= popcnt;
code = self.high_bits[block_id];

}
// Find index of `reminder_to_scan`-th
// one in `code`
let in_word_index = select1_in_word(

code,
reminder_to_scan

);

(block_id * WORD_SIZE) + in_word_index
}

Figure 2.7: Select implementation with Rust in this implementation we omitted the logic
needed to handle all the corner-cases. The full implementation can be found at https://github.
com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs

32

https://github.com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs
https://github.com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs


/// Find index of `index`-th one in word
pub fn select1_in_word(

word: u64,
index: u64

) {
// If the cpu supports
// the BMI2 instruction set
// use the optimized version
// that exploits PDEP
#[cfg(target_feature= "bmi2")]
unsafe {

return core::arch::x86_64::_pdep_u64(
1_u64 << n, x

).trailing_zeros() as u64;
}
// otherwise fall down
// to the generic version
#[cfg(not(target_feature= "bmi2"))]
{

for _ in 0..reminder_to_scan {
// reset the lowest set bits
// if the cpu supports BMI1
// this is transalted to
// a `BLSR` instruction
code &= code - 1;

}
return code.trailing_zeros() as u64;

}
}

Figure 2.8: Select implementation with Rust in this implementation we omitted the logic
needed to handle all the corner-cases. The full implementation can be found at https://github.
com/zommiommy/elias_fano_rust/blob/master/src/elias_fano.rs
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DataStructure Select Time (ns)
Vec 17
EliasFano 120
Indexed BitVec 906
Rank9 2362
Jacobson 3266
Fid 8722
RsDict 12021

DataStructure Rank Time (ns)
Rank9 9
Jacobson 19
EliasFano 50
Indexed BitVec 51
Vec 72
Fid 96
RsDict 113

DataStructure Memory (Mib)
EliasFano 56
Vec 256
RsDict 13’344

Table 2.1: Time (top tables) and memory (bottom table) complexities required by our implemen-
tation of Elias-Fano and by other well-known data-structures. Time and memory costs were computed
by using the KgCovid graph [101]. Elias-Fano offers good performances in both time (top tables) and
memory (bottom table). On note, methods, such as RsDict, that are characterized to obtain good
compression for sparse bit-vectors, fail on a graph as sparse as KgCovid, whose adjacency matrix has
only the 0.015% of 1s.

2.2.4 Memory Complexity

Elias-Fano is a quasi-succinct data representation scheme, which provides a memory
efficient storage of a monotone list of n sorted integers, bounded by u, by using at most
EF(n, u) = 2n+n

⌈
log2

u
n

⌉
bits, which was proven to be less than half a bit per element

away from optimality [38] and assures random access to data in average constant-time.
Thus, when Elias-Fano is paired with the previously presented encoding, the final
memory complexity to represent a graph G(V,E) is EFϕ(|V |, |E|) = O

(
|E| log |V |2

|E|

)
;

this is asymptotically better than the O (|E| log |V |2) complexity of the CSR scheme.

2.2.5 Optional memory-time trade-offs

Even if the Elias-Fano quasi-succinct data structure enables efficient operations on
graphs, Ensmallen provides the following three options that may be set to further speed-
up the computation at the expense of a more expensive usage of the main memory.

Explicit destinations vector The first and most important option is to explicitly
create the vector of the destination nodes, avoiding to execute a select from the Elias-
Fano data structure each time a given destination node must be chosen. This allows
achieving a speedup during the random walks (on average an x3-4 speedup) while
spending twice as much memory.

Explicit out-bound degrees vector The second most important option is to create
the vector of the out-bound node degree, which avoids extracting the degree of a source
node from the Elias-Fano data structure. While spending a relatively limited amount of
RAM, this grants on average an additional 10% speedup in the computation of random
walks. When combined with the explicit destinations vector, it can achieve a combined
speedup of up to x5-6 of random walks’ computation. We suggest enabling this option
when computing a random walk-based model, such as CBOW or SkipGram.
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Explicit sources vector In the context of the generation of edge-prediction batches,
the explicitly creation of both the vector of sources and the vector of destinations
avoids accessing the Elias-Fano data-structure at all. In this way we spend around
three times more memory, but we can achieve between three to four times speedup for
the generation of edge-prediction batches.

2.3 Embedding Methods available from GRAPE

In this section we sketch the embedding methods made available through GRAPE.

More precisely, we summarize embedding methods based on Spectral or matrix de-
compositions (subsection 2.3.1), random-walk based embedding techniques (subsection
2.3.2)

In many of the graph representation learning models we describe in the following sec-
tion, we are faced with a variety of different methods and models that can be used to
solve a particular prediction problem. These methods often involve making arbitrary
choices about the metrics and parameters that are used to evaluate their performance.
This can make it difficult to compare and evaluate the different approaches in a fair
and unbiased manner.

To address this issue, it is important to develop a simple and standardized pipeline
for comparing and evaluating different methods. This pipeline should be designed to
clearly evaluate the influence of arbitrary choices and eliminate biases, and to provide
a fair and objective assessment of the performance of different approaches. By doing
so, we can more accurately compare and evaluate the various methods and models
that are available, and select the ones that are most likely to be effective for a given
task. We will further discuss the evaluation pipelines available in the GRAPE library
in section 2.7.

2.3.1 Spectral and matrix factorization node embedding meth-
ods

Spectral and matrix factorization methods start by computing weighted adjacency ma-
trices, and may include one or more factorization steps. Secondly, given a target em-
bedding dimensionality k, these models generally use as embeddings the k eigenvectors
or singular vectors corresponding to spectral or singular values of interest.

GRAPE provides all of the spectral and matrix factorization methods detailed in the
state of the art section of this thesis.

GRAPE provides efficient parallel methods to compute the initial weighted adjacency
matrix of the various implemented methods, which are computed either as dense or
sparse matrices depending on how many non-zero values the metrics are expected
to generate. The computation of the singular vectors and eigenvectors are currently
computed using the state-of-the-art LAPACK library [5].

LAPACK is a software library for numerical linear algebra. It provides routines for
solving systems of linear equations, least-squares solutions of linear systems, eigenvalue
problems, and singular value decomposition. LAPACK is written in Fortran and is
designed to be efficient on a wide variety of computer architectures. It is commonly

35



used in scientific and engineering computing, as well as in other fields that require
high-performance numerical computing.

2.3.2 First and second-order random walk methods.

First- and second-order random-walk embedding models are shallow neural networks
generally composed by two layers and trained on batches of random-walk samples.
Given a window size, these models learn some properties of the sliding windows on
the random walks, such as the co-occurrence of two nodes in each window, the window
central node given the other nodes in the window, or vice-versa the nodes in the window
from the window central node. The optimal window size value may vary considerably
depending on the graph diameter and overall topology. Once the shallow model has
been optimized, the weights in either the first or the second layer can be used as node
embeddings.

DeepWalk and its Walklets [96] extension to a multiscale random-walk representation
(detailed below) are first-order random-walk sampling methods.

Node2Vec [52], is a second-order random walk method that uses weights to bias the walk
towards breadth-first search or depth-first search (section 2.3.2). Node2Vec random
walks are more computationally expensive than first-order random walks (see figure
4.1 c and e), since they require to tune two parameters, and our experimental results
showed that models trained on Node2Vec walks do not necessarily outperform models
trained on first-order walks, when a sufficient amount of training samples is made
available (see figure 4.3). This of course depends also on the characteristics of the graph,
since it is well-known that by tuning the return and in-out parameters of Node2vec we
can capture different topological and structural features of the underlying graph [52].

GloVe [92] trains a two-layer neural network to predict the logarithm of the co-occurrence
frequency of two nodes within the contextual window of size w in random walks.
CBOW [80] also trains a two-layer neural network to predict the central node of a
random walk sequence given the other contextual nodes. SkipGram [80] resembles a
transposed version of CBOW: it predicts the contextual nodes of a sequence given
its central node. SkipGram has a computational complexity w times higher than
CBOW, as it executes w times more weights updates for each training sample. As a
result, SkipGram models often achieve better performance than CBOW models. Glove,
CBOW and SkipGram may be trained with sequences sampled using either DeepWalk
or Node2Vec.

Walklets-based SkipGram (or CBOW) computes w times a DeepWalk-based SkipGram
(or CBOW) embedding with window size 1. For each 0 . . . i . . . w embedding, Walklets
filters the random-walks by keeping only nodes whose position within the random walk
belongs to the congruence class in module i [96]. This is done to obtain node embedding
that learn multi-scale random walk representations.

Role2Vec with Weisfeiler-Lehman Hashing [2, 111, 106] uses first-order random walks
to approximate the point-wise mutual information matrix obtained by multiplying the
pooled adjacency power matrix with a structural feature matrix (in this case, Weisfeiler-
Lehman features) to obtain a structural node embedding.

SkipGram and CBOW models are trained using degree-based negative sampling, which
is efficiently implemented using the Elias-Fano data structure rank method.

To obtain reliable embeddings, the training phase of the shallow model would need an
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exhaustive set of random-walk samples to be provided for each source node, so as to
fully represent the source-node context. When dealing with big graphs, the computa-
tion of a proper amount of random-walk samples needs efficient routines to represent
the graph into memory, retrieve and access the neighbors of each node, randomly sam-
ple an integer, and, in case of (Node2Vec) second-order random walks [52], compute
the transition probabilities, which must be recomputed at each step of the walk.

The approximated random walk is implemented using an optimized algorithm for sam-
pling k unique sorted integers among n integers according to an approximate uniform
distribution. The algorithm, called SUSS - 2.3.2-1 exploit a SIMD routine (B). When
the graph is weighted, another SIMD routine is used to compute the cumulative sum
of the unnormalized probability distribution (subsection A).

The implementation of the second-order random walk requires more sophisticated rou-
tines described in sections , and 2.3.2-2 and 2.3.2-3. Moreover, in section 2.3.2-4 we
present an approximated weighted and second-order random walk that allows to deal
with high-degree nodes.

SUSS: Sorted Unique Sub-Sampling

Within the approximated random walks, at each step, it is necessary to sample k
destination nodes of the current node. The ids associated to these nodes need to
be sorted in ascending order, as the procedures for efficient sampling of second-order
random walks described in section 2.3.2 have this requirement. It is conceivable to
straightforwardly sample uniformly k nodes, and then sort the obtained vector, which
would produce the desired output. To avoid having to sort the nodes vector, we propose
a procedure to sample the nodes semi-uniformly and sorted by design, and therefore
avoid altogether the need for the sorting step. We call this procedure Sorted Unique
Sub-Sampling algorithm, or SUSS.

SUSS is not necessarily better than more general random integer procedures, as they
serve different purposes. SUSS is a procedure designed to efficiently sample semi-
uniformly distributed and sorted integers, while general random integer procedures are
functions that returns random integers from a given range. In the context of approx-
imated random walks, where it is necessary to sample destination nodes of a given
node and sort them in ascending order, SUSS may be more efficient and reliable than
simply using random integer procedures and sorting the resulting vector of integers.
However, in other contexts where the requirements are different, random integer pro-
cedures may be more suitable. Additionally, the performance of SUSS and random
integer procedures may vary depending on the specific implementation and parameters
used.

SUSS has been designed in Ensmallen to allow sub-sampling k unique sorted integers
among n integers, by following an approximate uniform distribution. After splitting the
range [0, . . . , n−1] into k equal segments (buckets) with length ⌊delta/k⌋, SUSS samples
an integer from each bucket by using Xorshift random number generator (appendix B).
The implementation of the algorithm is reported in Algorithm 1. To establish whether
the distribution of the integers sampled with SUSS is truly approximating a uniform
distribution, we sampled n = 10.000.000 integers over [0, . . . , 10.000], by using both
SUSS and by drawing from a uniform distribution in [0, . . . , 10.000]. We then used
the Wilcoxon signed-rank test to compare the frequencies of the obtained indices and
we obtained a p-value of 0.9428, meaning that there is not a statistically significant
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difference between the two distributions. Therefore, by using a time complexity Θ(k)
and a spatial complexity Θ(k) SUSS produces reliable approximations of a uniform
distribution.

Algorithm 1 Sorted Unique Sub-Sampling (SUSS)
Require: Minimum value of range min_val
Require: Maximum value of range max_val
Require: Quantity of values to sample k
Require: Seed to reproduce the sampling s

extracted ← []
delta ← max_val−min_val
step ← ⌊delta/k⌋
for i← 0; i < k − 1; i← i+ 1 do

extracted.push(min_val + step ∗ i+ s% step)
s ← xorshift(s)

extracted.push(max_value− s%(delta− step ∗ (k − 1))− 1)
return extracted

Efficient sampling for Node2Vec random walks

Sampling from a discrete probability distribution is a fundamental step for computing
a random walk and can be a significant bottleneck. Many graph libraries implementing
the Node2Vec algorithm speed up sampling by using the Alias method (see Appendix
C ), which allows sampling in constant time from a discrete probability distribution
with support of cardinality n, with a pre-processing phase that scales linearly with n.

The use of the Alias Method for Node2Vec incurs the “memory explosion problem” since
the preprocessing phase for a second-order random walk on a graph with |E| edges has
a support whose cardinality is O

(∑
eij∈E deg (j)

)
, where deg(j) is the degree of the

destination node of the edge eij ∈ E.

Therefore, the time and memory complexities needed for preprocessing make the Alias
method impractical even on relatively small graphs. For instance, on the unfiltered
Human STRING PPI graph (19.354 nodes and 5.879.727 edges) it would require 777
GB of RAM.

To avoid this problem, we compute the distributions on the fly. For a given source
node v, our sampling algorithm applies the following steps:

1. computation of the un-normalized transition probabilities to each neighbour of v
according to the provided in-out and return biases;

2. computation of the un-normalized cumulative distribution, which is equivalent
to a cumulative sum;

3. uniform sampling of a random value between 0 and the maximum value in the
un-normalized cumulative distribution;

4. identification of the corresponding index through either a linear scan or a binary
search, according to the degree of the node v.

In step 2 the cumulative sum is computed by a SIMD routine that processes at once
in CPU batches of 24 values (see Appendix A for more details). Moreover, when the
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length of the vector is smaller than 128, we apply a linear scan instead of a binary
search because it is faster thanks to lower branching and better cache locality.

Specialized Random-Walks

Node2Vec is a second-order random-walk sampling method [52], whose peculiarity relies
in the fact that the probability of stepping from one node v to its neighbours considers
the preceding step of the walk More precisely, Node2Vec defines the un-normalized
transition probability πvx of moving from v to any direct neighbor x, starting at a
previous step from node t, as a function of the weight wvx on the edge connecting v
and x (v, x), and a search bias αpq(t, x):

πvx = αpq (t, x) wvx

The search bias αpq(t, x) is defined as a function of the distance d(t, x) between t and
x, and two parameters p and q, called, respectively, the return and in-out parameters:

αpq(t, x) =


1
p

if d(t, x) = 0

1 if d(t, x) = 1
1
q

if d(t, x) = 2
(2.1)

In figure 2.9 the node2vec schema for defining the search bias is schematized.

Figure 2.9: Illustration of the random walk procedure in node2vec. The walk just
transitioned from t to v and is now evaluating on which node to step next. Edge labels indicate search
biases α. The nodes in blue are at distance 2 from t, so that the edge connecting them to v has α
equal to the explore (in-out) bias; blue nodes, at distance 1 from t, are connected to v by and edge
with α equal to the return bias.

If the return parameter p is small, the walk will be enforced to return to the preceding
node; if p is large, the walk will otherwise be encouraged to visit new nodes. The in-out
parameter q allows to vary smoothly between Breadth First Search (BFS) and Depth
First Search (DFS) behaviour. Indeed, when q is small the walk will prefer outward
nodes, thus mimicking DFS; it will otherwise prefer inward nodes emulating in this case
BFS. Since α must be recomputed at each step of the walk, the algorithm to compute
it must be carefully designed to guarantee scalability.

The in-out bias can be re-formulated to allow an efficient implementation: starting
from an edge (t, v) we need to compute βq(t, x) for each x ∈ N(v), where N(v) is the
set of nodes adjacent to v including node v itself.

βq(t, x) =

{
1 if d(t, x) ≤ 1
1
q

otherwise
⇒ βq(t, x) =

{
1 if x ∈ N(t)
1
q

otherwise
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This formulation (figure 2.10c) allows us to compute in batch the set of nodes Xβ

affected by the in-out parameter q:

Xβ =

{
x | βq(t, x) =

1

q
, q ̸= 1

}
= N(v) \N(t)

where N(v) are the direct neighbors of node v. In this way, the selection of the nodes
Xβ affected by βq simply requires computing the difference of the two sets N(v)\N(t).

Xβ is efficiently computed by using a SIMD algorithm implemented in assembly, lever-
aging AVX2 instructions that work on node-set representations as sorted vectors of
the indices of the nodes (see appendix B and figures B.3 and B.4). The algorithm is
adapted from Lemire’s et al. [68] SIMD algorithm for set intersection, which similarly
works on sets represented as sorted arrays.

The return bias γp can be simplified as:

γp(t, x) =

{
1
p

if d(t, x) = 0

1 otherwise
⇒ γp(t, x) =

{
1
p

if t = x

1 otherwise

It can be efficiently computed using a binary search for the node t in the sorted vector of
neighbours. Summarizing, we re-formulated the transition probability πvx of a second-
order random walk in the following way:

πvx = βq(t, x)γp(t, v, x)wvx βq(t, x) =

{
1 if x ∈ N(t)
1
q

otherwise
γp(t, v, x) =

{
1
p

if t = x

1 otherwise

If p, q are equal to one, the biases can be simplified, so that we can avoid computing
them.

In practice, depending on the values of p, q and on the type of the graph (weighted
or unweighted), Ensmallen provides eight different specialized implementation of the
Node2Vec algorithm, detailed in table 2.2. This trick allows to significantly speed-up
the computation, as showed by the empirical computational times reported in table
2.3, which were obtained by each of the specialized algorithms when computing 1000
random walks of length 100 on the KGCovid19 Graph, using an AMD Ryzen 9 3900x
processor. For instance, in the base case (p = q = 1 and an unweighted graph) the
specialized algorithm runs more than 100 times faster than the most complex one
(p ̸= 1, q ̸= 1, weighted graph). Moreover, as expected, we observe that the major
bottleneck is the computation of the in-out bias (see table 2.3).
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(a) Neighbours of v (b) Neighbours of t (c) The left difference of
Neighbours

Figure 2.10: Illustration of the equivalence with Leskovec formulation. The walk just
transitioned from t to v and is now evaluating its next step out of node v. The green nodes are the
neighbours of v, the yellow nodes are the neighbours of t, already computed in the previous step of
the walk. The blue nodes are those effected by the in-out bias (also in figure 2.9), which may be
computed as the difference of N(v) and N(t).

Table 2.2: Specialized first and second-order random walks algorithms: the 8 different
algorithms, dynamically dispatched by the library according to the use case.

q = 1 q ̸= 1
p = 1 p ̸= 1 p = 1 p ̸= 1

Unweighted
Graph

Unweighted first-
order random
walk

Unweighted
second-order
return-weight-
only random walk

Unweighted
second-order
explore-weight-
only random walk

Unweighted
second-order ran-
dom walk

Weighted
Graph

Weighted first-
order random
walk

Weighted second-
order return-
weight-only
random walk

Weighted second-
order explore-
weight-only
random walk

Weighted second-
order random
walk

Table 2.3: Empirical Computational time required by the different optimized implementations for
computing the transition probability πvx listed in table 2.2. The computational time was measured
when computing 1000 random walks of length 100 on the KGCovid19 Graph, using an AMD Ryzen
9 3900x processor.

q p Graph πvx Time (ms)

q = 1 p = 1 Unweighted 1 0.46 (±0.01)
q = 1 p = 1 Weighted wvx 0.50 (±0.01)
q = 1 p ̸= 1 Unweighted γp(t, x) 13.8 (±0.08)
q = 1 p ̸= 1 Weighted γp(t, x)wvx 14.2 (±0.07)
q ̸= 1 p = 1 Unweighted βq(t, x) 45.8 (±0.5)
q ̸= 1 p = 1 Weighted βq(t, x)wvx 47.3 (±1)
q ̸= 1 p ̸= 1 Unweighted βq(t, x)γp(t, x) 47.7 (±0.2)
q ̸= 1 p ̸= 1 Weighted βq(t, x)γp(t, x)wvx 49.0 (±0.3)

Approximated random walks

Since the computational time complexity of the sampling algorithm for either weighted
or second-order random walks scales linearly with the degree of the considered source
node, computing an exact random walk on graphs with high degree nodes (where "high"
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refers to nodes having an outbound degree larger than 10000) would be impractical,
also considering that such nodes have a higher probability to be visited.

To cope with this problem, we designed an approximated random walk algorithm,
where each step of the walk considers only a sub-sampled set of k neighbors, where the
the degree threshold parameter k is set to a value significantly lower than the maximum
node degree.

Figure 2.11 sketches the approximated random walk algorithm. a The random walk
starts at a node, src, whose degree is 15 (the 15 neighbours of src are highlighted
in cyan). b. If the degree threshold parameter is set to k = 5, the approximated
random walk exploits the Sorted Unique Sub-Sampling algorithm (SUSS, described in
section 2.3.2) to uniformly sample 5 distinct nodes in the neighborhood of src. The
sub-sampled neighborhood is then used to randomly select the successor node where
the random walk steps (edge highlighted with an arrow). c. The successor node
becomes the novel source node, src, and the points a and b are repeated to choose a
new successor. The process is iterated until the end of the walk.

Figure 2.11: Approximated random walk sketch.

2.4 Edge-sampling and corrupted triple sampling meth-
ods.

GRAPE includes efficient Rust implementations of edge sampling methods such as
LINE and TransE.

Moreover, a large set of corrupted-triple sampling models is integrated from the PyKeen
library. The PyKeen library models are implemented in Pytorch and are generally
implemented as approximations, with a loss of the form (note the addition of ℓ′ and
the lack of ReLU ):

LPyKeen =
∑
(v,ℓ,s)

(v + ℓ− s)2 −
∑

(v′,ℓ′,s′)

(v′ + ℓ′ − s′)2

The integrated models include TransH, DistMult, HolE, AutoSF, TransF, TorusE,
DistMA, ProjE, ConvE, CP, RESCAL, QuatE, TransD, ERMLP, CrossE, TuckER,
TransR, PairRE, RotatE, ComplEx, and BoxE [3]. Since the variations between these
models and their performance are often minimal and mostly relative to the choice of
their hyper-parameters [62], it is particularly hard to clearly summarize their effec-
tive differences. Therefore, we refer to each of the original papers for the extensive
explanation. The parameters used for the evaluation of node embedding models in
GRAPE pipelines are available in the Supplementary Information S4.1.
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2.5 Edge embedding methods

The GRAPE library offers a variety of methods for computing edge embeddings from
node embeddings. Edge embeddings are vector representations of edges that combine
the embeddings of the source and destination nodes. These embeddings can then be
fed into a machine learning model for tasks such as edge prediction and edge or node
classification.

In the previous sections, we have illustrated the many methods available in the GRAPE li-
brary to compute node embeddings, which we recall are low-dimensional vector rep-
resentations of nodes in a graph and can capture the structure and properties of the
graph. Edge embeddings are similar, but they represent the relationships between
nodes, rather than the nodes themselves.

The available edge embeddings include concatenation, average, cosine distance, L1, L2,
and Hadamard operators. The specific method used can be chosen by the user, who can
set it through a parameter. We stress that different node embedding methods, tasks and
classifier models may benefit for distinct edge embedding methods, and the selection
of the optimal approach should be explored through adequate hyper-parameter section
techniques for discrete options, such as Parzen Trees [12]

Concatenation is a method for combining the source and destination node embeddings
into a single vector by concatenating their values. For example, if the source node
embedding is [1, 2, 3] and the destination node embedding is [4, 5, 6], the concatenated
edge embedding would be [1, 2, 3, 4, 5, 6].

Average is a method for computing the edge embedding by taking the average of the
source and destination node embeddings. For example, if the source node embedding
is [1, 2, 3] and the destination node embedding is [4, 5, 6], the average edge embedding
would be [2.5, 3.5, 4.5].

Cosine distance is a method for computing the similarity between two vectors using
the cosine of the angle between them. It is commonly used as a measure of similarity
between node embeddings. This particular edge embedding method produces a scalar
value representing the similarity between the two vectors.

L1 and L2 are methods for computing the distance between two vectors. The L1
distance, also known as the Manhattan distance, is the sum of the absolute differences
between the elements of the two vectors. The L2 distance, also known as the Euclidean
distance, is the square root of the sum of the squares of the differences between the
elements of the two vectors. For example, if the source node embedding is [1, 2, 3]
and the destination node embedding is [4, 5, 6], the L1 distance between them would
be the sum of the absolute differences between the elements, which would be 9. The
L2 distance between them would be the square root of the sum of the squares of the
differences, which would be ≈ 3.6.

Hadamard is a method for computing the element-wise product of two vectors. For
example, if the source node embedding is [1, 2, 3] and the destination node embedding
is [4, 5, 6], the Hadamard product of the two vectors would be [4, 10, 18].

GRAPE provides three different implementations of the edge embedding procedure.
The first implementation uses Keras and TensorFlow, and can be used in any Keras
model. The second implementation uses NumPy, and the third implementation uses
Rust. Rust is a programming language that is designed for performance and safety, and

43



is often used for systems programming. It can be more efficient than other languages,
such as a NumPy-based Python implementation, for certain operations.

In order to avoid running out of memory, the computation of edge embeddings is exe-
cuted lazily for a subset of the edges at a time. This means that the edge embeddings
are generated on the fly, rather than being stored in memory all at once. Lazy gen-
eration of edge embeddings is supported during training for some, but not all, of the
supported edge and edge-label prediction models. It is supported for all models during
inference.

Overall, GRAPE comes with a rich set of tools for computing edge embeddings from
node embeddings. It offers a range of methods for computing edge embeddings, and
provides efficient implementations using Keras, NumPy, and Rust, so to cover a wide
variety of use cases. It also supports lazy generation of edge embeddings, which can
help avoid running out of memory. This can be particularly useful for large graphs,
where storing all of the edge embeddings in memory at once might not be feasible.
By generating the edge embeddings on the fly, GRAPE allows for more efficient and
scalable computation of edge embeddings.

2.6 Node-label, edge-label, and edge prediction mod-
els

GRAPE provides implementations to perform node-label prediction, edge-label predic-
tion and edge prediction tasks.

All the models devoted to any of the three prediction tasks share the following imple-
mentation similarities. Firstly, they all implement the abstract classifier interface and
therefore provide straightforward methods for training (fit) and inference (predict and
predict_proba).

Secondly, all models are multi-modal, that is, they not only can receive the (user-
defined) node/edge embedded representation, but also other embeddings computed in
multiple ways and therefore carrying different semantics (e.g., topological node/edge
embeddings or BERT embeddings). For edge prediction and edge-label prediction
models, this also generalizes to multiple node-type features, which, if available, are
concatenated to the considered node features, and to the possibility of computing
traditional edge metrics (e.g. Jaccard, Adamic-Adar, and so on).

For each task, we make available at least eight models from the literature, adapted to
the considered task: 5 are Scikit-learn-based models, namely Random Forest, Extra
Trees, Decision Tree, Multi-Layer Perceptron (MLP), and Gradient Boosting. The
remaining 3 are TensorFlow-based models, namely GraphSAGE [57], Kipf GCN [129]
and a baseline GNN.

As per the node embedding models, custom and third party models can be integrated
through task-specific Python abstract classes (Section 2.7).

Scikit-learn-based models make available all the parameters that are available in the
Scikit version. TensorFlow-based models make available parameters to set the number
of layers in each provided feature’s sub-module and head module.

Visualizations of the Kipf GCN model for node-label, edge-label and edge prediction
tasks are also available (see Appendix D).
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All edge prediction models can be trained by sampling the graph negative edges by ei-
ther following a uniform or a degree distribution; by default we set a degree distribution
because it generally produces more informative negative-training sets, characterized by
a smaller covariate-shift with respect to the positive-set. This approach still guaran-
tees a negligible number of false negatives edges. The unbalance between positive and
negative edges is also a free parameter which may be arbitrarily set: by default the
models are trained using a balanced approach, that is we sample a number of negative
edges equal to the number of positive edges.

In addition to the eight models presented in section 2.6, we also make available a
multi-modal perceptron model implemented in Rust. This model, analogously to all
other models, supports lazy computation of edge embedding and edge features, but
does this in an extensively parallel manner with no additional memory requirement
over the model weights. The model optimizer is Nadam. The Perceptron is a great
baseline for comparison, given its rapid convergence, minimal hardware requirements
(no GPUs nor significant RAM requirement), and competitive performance in many
considered tasks. Such a model is essential to put into perspective the improvements
achieved by more complex and often significantly more expensive models.

Parameters used for the evaluation of edge prediction models in GRAPE pipelines are
available in the Supplementary Information S4.2.

All of the provided edge-label prediction models support binary and multi-class clas-
sification tasks. We currently lack support for multi-label classification tasks, which is
being addressed.

All of the provided node-label prediction models support binary, multi-class and multi-
label classification tasks. Parameters used for the evaluation of node-label prediction
models in GRAPE pipelines are available in the Supplementary Information S4.3.

2.7 Pipelines for the comparative evaluation of differ-
ent models across graph-prediction tasks

To provide actionable and reliable results, the fair and objective comparative evaluation
of datasets, graph embedding, and prediction models is crucial and not only requires
specifically designed and real-world benchmark datasets [58], but also pipelines that
could allow non-expert users to easily test and compare graphs and inference algorithms
on the desired graphs.

GRAPE provides pipelines for evaluating node-label, edge-label and edge prediction
experiments trained on user-defined embedding features and by using task-specific eval-
uation schemas (Section 4.2.2).

All the implemented pipelines have integrated support for differential caching, storing
the results of every step of the specific experiment, and for “smoke tests”, i.e. for
running a lightweight version of the experimental setup with minimal requirements to
ensure execution until completion before running the full experiment.

The pipelines can use any model implementing a standard interface we developed. The
interface requires the model to implement methods for training (fit or fit_transform),
inference (predict and predict_proba) plus additional metadata methods (e.g., whether
to use node types, edge types, and others) which are used to identify experimental flaws
and biases. As an example, in an edge-label prediction task using node embeddings,
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GRAPE will use the provided metadata to check whether the selected node embedding
method also uses edge labels. If so, the node embedding will be recomputed during each
holdout. Conversely, if the edge labels are not used in the node embedding method, it
may be computed only once. The choice to recompute the node embedding for each
holdout, which may be helpful to gauge how much different random seeds change the
performance, is left to the user in this latter case.

To configure one of the comparative pipelines, users have to import the desired pipeline
from the GRAPE library and specify the following modular elements:

Graphs The graphs to evaluate, which can be either graph objects or strings matching
the names from graphs retrieval.

Graph normalization callback For some graphs it is necessary to execute normal-
ization steps and filtering, such as the STRING weighted protein-protein inter-
action graphs which can e.g. to be filtered at 700 minimum edge weight, which
is the threshold suggested by its authors. For this reason, users can provide this
optional normalization callback.

Classifier models The classifier models to evaluate, which can either be a model
implemented in GRAPE or custom models implementing the proper interface.

Node, node type, and edge features The features to be used to train the pro-
vided classifier models. These features can be node embedding models, either
implemented in GRAPE or custom embedding models implementing the node
embedding interface.

Evaluation schema The evaluation schema to follow for the evaluation. It can be,
e.g., a Monte Carlo connected holdout, or a K-fold cross validation.

Given any input graph, each pipeline starts by retrieving it (if the name of the graph was
provided) and validating the provided features (checking for NaNs, constant columns,
compatibility with the provided graphs); next, and if requested by the user, it computes
all the node-embeddings to be used as additional features for the prediction task. Once
this preliminary phase is completed, the pipeline starts to iterate and generate holdouts
following the provided evaluation schema.

For each holdout, GRAPE then computes the node embeddings required to perform
the prediction task (such as topological node embeddings for a node-label prediction
task, or topological node embeddings followed by their combination through a user-
defined edge embedding operator - see Section 2.5 - to obtain the edge embedding in an
edge-prediction task), so that a new instance of the provided classifier models can be
fitted and evaluated (by using both the required embedding and, eventually, the addi-
tional, label-independent, features computed in the preliminary phase). The classifier
evaluation is finally performed by computing an exhaustive set of metrics including
AUROC, AUPRC, Balanced Accuracy, Miss-rate, Diagnostic odds ratio, Markedness,
Matthews correlation coefficient and many others.

More details and ecamples about the usage of the evaluation pipelines are reported in
chapter 4, section 4.2.2.
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Chapter 3

Open graph processing libraries and
datasets used in the experiments

The node embedding problem has been approached multiple times in the literature,
and several packages and datasets are available to support a fair comparison between
different methods.

This chapter provides a schematized picture of the available resources, focusing on
those we used as benchmarks for comparison with GRAPE.

In section 3.1, we sketch the renowned packages mostly related to GRAPE. Next, we
summarize all the datasets available through the GRAPE resource (section 3.2 and
section 3.3), and we particularly focus on three real-world datasets used to (section
3.4) assess the edge and node-label prediction experiments of models implemented in
GRAPE.

3.1 Related graph processing libraries

None of the libraries identified in the literature provide an implementation of either a
Graph-based CBOW or SkipGram but relies on Gensim [102] CBOW and SkipGram
Word2Vec model for the embedding procedure. The most performing libraries consid-
ered use Numba [66] just-in-time compilation to achieve better run-time executions.
However, such a dependency and related ecosystem (e.g. llvmlite) can be very com-
plex to properly install e prone to significant breaking changes between versions (e.g.
between versions ‘0.4‘ and ‘0.5‘).

3.1.1 NetworkX

NetworkX [56] is a highly renowned Python language package for the exploration and
analysis of networks. Even though this library does not provide fast first/second-order
random walks, we include it in our comparisons since it is used to handle the graph
structure in the GraphEmbedding and Node2Vec packages mentioned below.

3.1.2 GraphEmbedding

GraphEmbedding [25] is a Python package for embedding networks via random-walk-
based methods such as Node2Vec. The graph is loaded using NetworkX. Within this
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package, the random walks are executed using the alias method [65] (see section C.1),
whose complexity during the preprocessing phase hampers the computation of random
walks to large graphs. To our knowledge, GraphEmbedding handles only undirected
homogeneous graphs. The library relies on Gensim [102] for the embedding procedure.

3.1.3 Node2Vec

Node2Vec is a Python language package for embedding networks via random-walk-
based methods such as Node2Vec [79]. The graph is loaded using NetworkX. As men-
tioned for GraphEmbedding, also Node2Vec makes is limited by the usage of the alias
method to execute the random walks. To our knowledge, Node2Vec handles only undi-
rected homogeneous graphs. The library relies on Gensim [102] for the embedding
procedure.

3.1.4 iGraph

iGraph [32] is a library collection for creating and manipulating graphs and analyzing
networks. While it was originally written in C, some implementations are presently
available as Python and R packages. We did not use this library in our comparisons
because it does not currently implement fast parallel first or second-order random walks,
nor does it support their easy implementation. The iGraph library is not equipped with
node embedding methods except for two baseline spectral Laplacian methods.

3.1.5 CSRGraph

CSRGraph[100] is a library to execute fast first and second-order random walks us-
ing Numba [66]. Unlike the previously mentioned libraries (e.g., GraphEmbedding or
Node2Vec), CSRGraph does not store the graph into a NetworkX object but exploits a
compressed sparse row (CSR) matrix, which significantly reduces the memory require-
ments with respect to methods exploiting NetworkX objects. Additionally, instead of
using the alias method, it computes the node probabilities and samples them lazily, as
required. To our knowledge, this library only handles undirected homogeneous graphs.
The library relies on Gensim [102] for the embedding procedure.

3.1.6 PecanPy

PecanPy [72] is a library to execute fast first and second-order random walks based
on a set of different solutions depending on the graph densities and node number. For
graphs with less than 10000 nodes, PecanPy uses the alias method, while for larger
graphs, it uses a strategy similar to the CSR library, where node probabilities and
sampling are lazily computed, and the CSR data structure is used to store the edges.
Finally, it switches the graph data structure to a dense adjacency matrix for graphs
with edge densities larger than 10%. Analogously to CSRGraph, also PecanPy makes
extensive use of Numba [66]. The library relies on Gensim [102] for the embedding
procedure.

3.1.7 FastNode2Vec

FastNode2Vec [1] is a library to lazily execute fast first and second-order random
walks. Analogously to CSRGraph and PecanPy, also FastNode2CVec makes extensive
use of Numba [66] and relies on Gensim [102] for the embedding procedure. The
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significant difference between FastNode2Vec and the previously mentioned libraries,
namely PecanPy and CSRGraph, is that the random walks are computed lazily and
directly fed into the Gensim model with a small amount of overhead. Therefore it avoids
the memory peak related to the rasterization of the random walks. This solution is very
much analogous to what is done in GraPE, where the random walks are also computed
lazily and fed into either the SkipGram or CBOW Rust models.

3.2 Datasets/Graphs directly accessible from GRAPE
Other than simply loading an arbitrary graph from tabular documents with the node
and edge lists, GRAPE allows the retrieval of all the graphs included into the STRING
repository [117] (56691 graphs), KGHub and KGOBO [101], Monarch Initiative [83],
Linqs [48], PheKnowLator [22], and over 1000 graphs from Network Repository [105].
Once a graph is loaded, the library can compute an extensive HTML human readable
report simply by displaying the object, which results in a well-formatted report within
the context of a Jupyter Notebook. Additional tooling is made available to convert
the report in LATEX. The automatically generated reports include general statistics
about the graph and data about singletons, node tuples, possible topological oddities,
isomorphic node groups, trees, dendritic trees, stars and dendritic stars and tendrils
eventually present in the graph.
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3.3 Graphs used for Ensmallen assessment
This section presents the main features of the graphs used in previous publications to
test Ensmallen vs state-of-the-art graph libraries. 44 graphs from Network Repository
[105], having a considerably different number of nodes and edges have been collected
as a benchmark for comparison; the other graphs are GiantTN provided by Zenodo,
Homo sapiens being provided by STRING and KGCOVID19 provided by KGHub.
Their main features are summarized in Table 3.1.
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Table 3.1: Main features of the graphs considered as benchmark for comparison with
Ensmallen.

Name Nodes Edges Min
degree

Max
degree Weights

HomoSapiens [117] 19566 11938498 0 7507 true
SocFlickr [105, 82] 513969 6380904 1 4369 false
SocFriendster [105] 65608366 3612134270 1 5214 false
SocBlogcatalog [105] 88784 4186390 1 9444 false
KGCOVID19 [101] 574215 36500884 0 122238 false
IMDB [105, 34] 896305 7564901 1 1590 false
BNHumanJung [105, 4] 975930 292218600 1 8009 false
BNFlyDrosophilaMedulla [105, 4] 1781 17927 1 927 false
BNMouseRetina [105, 4] 1076 181622 1 744 false
BNMacaqueRhesusBrain [105, 4] 242 6108 1 111 false
BioCeCx [105, 26] 15229 491904 1 375 true
BioCeGn [105, 26] 2220 107366 1 242 true
BioCeGt [105, 26] 924 6478 1 151 true
BioCeHt [105, 26] 2617 5970 1 44 true
BioCeLc [105, 26] 1387 3296 1 131 true
BioCePg [105, 26] 1871 95508 1 913 true
BioDmCx [105, 26] 4040 153434 1 362 true
BioDmHt [105, 26] 2989 9320 1 37 true
BioDmLc [105, 26] 658 2258 1 50 true
BioDmela [105, 26] 7393 51138 1 190 false
BioDrCx [105, 26] 3289 169880 1 497 true
BioHsCx [105, 26] 4413 217636 1 473 true
BioHsHt [105, 26] 2570 27382 1 149 true
BioHsLc [105, 26] 4227 78968 1 397 true
BioScCc [105, 26] 2223 69758 1 571 true
BioScGt [105, 26] 1716 67974 1 549 true
BioScHt [105, 26] 2084 126054 1 472 true
BioScLc [105, 26] 2004 40904 1 167 true
BioScTs [105, 26] 636 7918 1 66 true
BioCelegansDir [105, 37] 453 4065 1 238 false
BioCelegans [105, 37] 453 4050 1 237 false
BioDiseasome [105, 49] 516 2376 1 50 false
BioDmela [105, 112] 7393 51138 1 190 false
BioGridFissionYeast [105, 115] 2026 25274 1 439 false
BioGridFruitfly [105, 115] 7274 49788 1 176 false
BioGridHuman [105, 115] 9436 62364 1 308 false
BioGridMouse [105, 115] 1450 3272 1 111 false
BioGridPlant [105, 115] 1717 6196 1 71 false
BioGridWorm [105, 115] 3507 13062 1 523 false
BioGridYeast [105, 115] 6008 313890 1 2557 false
BioHumanGene1 [105, 10] 22283 24669643 1 7939 true
BioHumanGene2 [105, 10] 14340 18068388 1 7229 true
BioMouseGene [105, 10] 45101 28967291 1 8032 true
BioYeastProteinInter [105, 61] 1870 4480 1 56 false
BioYeast [105, 61] 1458 3896 1 56 false
GiantTN [72, 73] 25689 77809858 1 12384 true
WebWikipedia2009 [105] 1864433 9014630 1 2624 false
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3.4 Graphs used for edge & node-label prediction ex-
periments

In this section, we summarize the graphs/datasets used to assess the performance of
the edge-prediction models (subsection 3.4.1, and appendix C.1) and the node-label
prediction models (subsection 3.4.2, and appendix C.2). The results obtained by our
comparative evaluation are reported in chapter 4.

3.4.1 Graphs used for the edge-prediction experiments

For the edge prediction experiments, the STRING’s Homo sapiens and Mus muscu-
lus [118], and Human Phenotype Ontology (HPO) [64] graphs have been used. To
describe them in Appendix C.1, we copied the graph reports computed by Ensmallen.

Homo sapiens and Mus musculus are two protein-protein interaction graphs represent-
ing the protein interactions within the two species. These interactions include direct
(physical) and indirect (functional) associations; they stem from computational pre-
diction, knowledge transfer between organisms, and interactions aggregated from other
(primary) databases. Human Phenotype Ontology (HPO) [64] provides a standardized
vocabulary of phenotypic abnormalities encountered in human disease. We note that
the topology of interaction graphs, such as STRING graphs and curated ontologies,
are vastly different.

3.4.2 Graphs used for node-label prediction experiments

For the node-label prediction experiments CiteSeer [48, 110], Cora [48, 110], and
Pubmed [84] graphs have been used. To describe them in Appendix C.2 the following,
we copied the graph reports automatically computed by Ensmallen.

In citation graphs such as these, the nodes represent papers while the edges represent
citations between the various publications. The papers are labelled according to their
category.

Note that while additional node features exist relative to the three graphs, these have
been omitted as we have focused strictly on node embedding involving the graph topol-
ogy.

Cora [110] consists of 2708 scientific publications classified into one of seven classes.
The citation network consists of 5429 edges. CiteSeer [104] consists of 3312 scientific
publications classified into one of six classes. The citation network consists of 4732
edges. Pubmed Diabetes [84] consists of 19717 scientific publications from the PubMed
database about diabetes classified into one of three classes. The citation network
consists of 44338 edges.

3.5 Large Graphs used for assessing GRAPE against
complex, real-world problems

To empirically show that GRAPE allows obtaining translational results in different
fields, we built three large graphs using one dataset used in the context of, e.g., social-
network analysis (English Wikipedia graph), one biological dataset used in the context
of, e.g., drug repurposing (CTD dataset), and the PheKnowLator software resource,
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which has been developed to semi-automatically build knowledge graphs in the context
of, e.g., disease predictions. In the following, we report a more detailed description of
the three resources.

English Wikipedia. Wikipedia graphs are web graphs with nodes representing ei-
ther Wiki sites pages or related websites; edges represent the links between the pages.
In the experiments, we used the English Wikipedia graph having 17 million nodes
and 130 million (undirected) edges (2021-11-01 version). The task for the English
Wikipedia graph is a whole-graph edge prediction, that is, predicting whether an edge
connects two given nodes in the entire graph. The set of positive edges is defined as the
undirected edges present in the entire graph (about 130 million). The set of negative
edges is instead defined as the edges that are not present in the graph, around 150
trillion undirected edges.

Comparative Toxicogenomic Database (CTD). CTD is a publicly available
database that aims to advance understanding of how environmental exposures affect
human health. It provides manually curated information about chemical–gene/protein
interactions, chemical–disease, and gene-disease relationships. Also, it includes infor-
mation about phenotypes, pathways, ontologies, and their relations with genes, chem-
icals, and diseases, including about 45 million edges and more than 100K nodes. The
CTD edge-prediction task consists in predicting gene-disease associations. The set of
positive edges is defined as the set of all the existing (undirected) relationships (edges)
between gene and disease nodes, which amounts to about 29 million. Negative edges
were defined by pairs of gene-disease being unrelated in the CTD dataset (about 362
million “negative” edges).

PheKnowLator biomedical data. PheKnowLator is a software resource designed
to construct large-scale biomedical knowledge graphs using several knowledge mod-
els (instance-based and subclass-based). PheKnowLator currently integrates 12 Open
Biomedical Ontologies and 31 linked open-data sources. In our experiments, we used
a 2022-04-11 build including about 7 millions of (undirected) edges and about 800K
nodes. The PheKnowLator task consists in the prediction of genetic variant-disease
associations, using 44K known “positive” associations and a set of “negative” edges,
including about 3 billions of variant-disease pairs having no known associations. De-
tailed information about the source data and scripts used to generate the above three
big real-world graphs are available in Supplementary Section ✓S6.
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Chapter 4

Results

Designed to leverage succinct data structures [38] (chapter 2), GRAPE loads real-world
graphs composed of millions of nodes and billions of edges by requiring only a frac-
tion of the memory required by other libraries (section 4.1), and guarantees average
constant-time rank and select operations (sections 2.2.3, 2.2.5 and table 2.1). This
makes it possible to execute many graph processing tasks, e.g. accessing node neigh-
bours and running first- and second-order random walks, with memory usage close to
the theoretical minimum. Among the many high-performance algorithms it provides,
the library implements efficient approximated weighted DeepWalk & Node2Vec embed-
ding models (sections 2.3.2). They can process graphs containing high-degree nodes
(degree > 106), an otherwise unmanageable task when using the analogous exact al-
gorithms, and allow one to obtain edge-prediction performance comparable to those
achieved by using the exact version (Section 4.1.1).

In this section we report the results obtained by the experiments we run to assess
the efficiency and effectiveness of GRAPE and to compare it with state of the art
libraries. In more detail, we used the evaluation pipelines (Section 2.7) to compare the
edge prediction and node-label prediction performance of 16 node embedding models,
12 reimplemented in GRAPE and 4 integrated from the KarateClub library [106].
Moreover, we compared GRAPE with state-of-the-art graph-processing libraries across
several types of graphs having different size and characteristics, including big real-world
graphs such as Wikipedia, the CTD, Comparative Toxicogenomic Database [33] and
biomedical Knowledge Graphs generated through PheKnowLator [23], showing that
GRAPE achieves state-of-the-art results in processing big real-world graphs both in
terms of empirical time and space complexity and prediction performance.

4.1 Fast error-resilient graph loading

The challenge addressed in this section is the efficient loading of large graphs while
simultaneously checking for common format errors. Previous state-of-the-art graph
processing libraries have struggled with this task, often requiring large amounts of
memory and time to load graphs.

GRAPE can process many graph formats and simultaneously check for common format
errors. Fig. 4.1 shows the empirical space (a) and time complexity (b) required by
GRAPE and by state-of-the-art graph processing libraries, including NetworkX [56],
iGraph [32], CSRGraph, PecanPy [72], when loading 44 real-world graphs.
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Results show that GRAPE is faster and requires less memory as compared to state-of-
the-art libraries. For instance, GRAPE loads the ClueWeb09 graph (1.7B nodes and
8B undirected edges) in less than 10 minutes and requires about 60GB of memory,
whereas the other libraries were not able to load this graph. All graphs and libraries
used in these experiments are directly available from GRAPE’s and are detailed in
chapter 3, sections 3.1 and 3.3.

4.1.1 GRAPE outperforms state-of-the-art libraries on random
walk generation

This section addresses the issue of efficiently computing random walks in large graphs.
Previous state-of-the-art libraries have struggled to compute random walks in a timely
and space-efficient manner, often requiring significant computational resources and
time.

Through extensive use of thread and SIMD parallelism and specialized quasi-succinct
data structures, GRAPE outperforms state-of-the-art libraries by one to four orders of
magnitude in the computation of random walks, both in terms of empirical computa-
tional time and space requirements (Figure 4.1-c, d, e, f and Section 4.2).

Further speed-up of second-order random walk computation is obtained by dispatching
one of the 8 optimized implementations of Node2Vec sampling [52] (Section 2.3.2). The
dispatching is based on the values of the return and in-out parameters and on the type
of the graph (weighted or unweighted). GRAPE automatically provides the version
best suited to the requested task, with minimal code redundancy (Section 2.3.2). The
time performance difference between the least and the most computationally expensive
implementations is around two orders of magnitude (tables 2.2 and 2.3).

4.2 Experimental comparison of graph processing li-
braries.

The challenge addressed in this section is to evaluate the efficiency and effectiveness of
GRAPE and compare it with state-of-the-art libraries on a variety of tasks. Previous
state-of-the-art libraries often struggle to perform graph processing and node embed-
ding on large graphs due to the high time and space complexity of these algorithms.
GRAPE introduces a novel approach to approximated random walks, which allows it to
achieve significantly faster performance on large graphs while maintaining comparable
accuracy to the exact methods.

The major improvement of GRAPE is its ability to efficiently compute random walks
on large graphs that would be infeasible to compute using previous state-of-the-art
libraries. This is achieved through the use of specialized quasi-succinct data structures
and approximated random walk methods. The results of our experiments show that
GRAPE outperforms state-of-the-art libraries by one to four orders of magnitude in
terms of both time and space complexity.

We compared GRAPE with a set of state-of-the-art libraries including GraphEmbed-
ding, Node2Vec, CSRGraph and PecanPy [72], on a large set of first and second-
order random walk tasks. The random walk procedures in the GraphEmbedding and
Node2Vec libraries use the alias method (Appendix C). The PecanPy library also em-
ploys the alias method for small graphs use-cases (less than 10, 000 nodes). CSRGraph,
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on the other hand, computes the random walks lazily using Numba [66]. Similarly,
PecanPy leverages Numba lazy generation for graphs having more than 10, 000 nodes.
All libraries are further detailed in chapter 3, section 3.1.

Figure 4.1 shows the experimental results of a complete iteration of one-hundred step
random walks on all the nodes across 44 graphs having a number of edges ranging from
some thousands to several billions (Section 4.1).

For properly measuring the peak memory usage and the time requirements of both
Ensmallen and the other state-of-the-art libraries used as benchmark for comparison,
we created an additional thread for logging purposes. We have measured the used
memory by reading /proc/meminfo, which makes five different metrics available:

MemTotal RAM installed on the system

MemFree RAM not used

Buffers RAM used for I/O buffers

Cached RAM used for dirty pages and ramdisks

Slab RAM used by the kernel

We define the memory in use as: MemInUse = MemTotal − MemFree − Buffers −
Cached− Slab.

We executed Ensmallen and all the benchmarks on a dedicated server with no sig-
nificant running process, except the sshd service we use to connect to it. To obtain
a truthful evaluation of the memory usage required to execute a specific task, we
have logged the average memory usage before the task starts, and we have subtracted
such value from the memory usage we measure during the task execution. Though
more accurate methods exist, e.g. jemalloc [42], Valgrind [86], hooking malloc us-
ing __malloc_hook or using LD_PRELOAD to hook the malloc function, the method we
implemented is precise enough to detect significant differences.

We designed the tracker to have a linearly increasing delay between measurements
because we have to measure tasks that might take from few microseconds to hours:
long-running tasks would otherwise log too much data and start using Gigabytes of
RAM. To further reduce this problem, we log the values in a constant size buffer; when
the task finishes or the delay between two consecutive measurements is significantly
longer than the time necessary to write the log to disk, we dump the log to a file.

The results of our experimental analysis showed that GRAPE greatly outperforms all
the compared graph libraries on both first and second-order random walks in terms of
both space and time complexity. Note that GRAPE scales well with the biggest graphs
considered in the experiments, while the other libraries either crash when exceeding
200GB of memory, or take more than 4 hours to execute the task (Figure 4.1 c, d, e,
f).

Approximated random walks to process graphs with high-degree nodes

The challenge addressed in this section is the computation of weighted and/or second-
order random walks on graphs containing high-degree nodes, which can be computa-
tionally intensive. Previous state-of-the-art methods, which have primarily relied on
the alias method to sample node neighbors, do not scale well to graphs with nodes with
high-degree. GRAPE introduces an approximated implementation of weighted and/or
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second-order random walks that undersamples the node neighbors to allow for the effi-
cient computation of random walks on graphs with high-degree nodes. This approach
has been shown to be both efficient and effective, as demonstrated by experimental
results on real-world graphs.

Random walks on graphs containing high-degree nodes is challenging, since multiple
paths from the same node need to be processed. To overcome this computational
burden, GRAPE provides an approximated implementation of weighted random walks
that undersamples the neighbors to scale with graphs containing nodes with high-
degree, e.g. with millions of neighbors (Figure 2.11 a, b, c, Section 2.3.2).

Since neighborhood undersampling may decrease the informativeness of the obtained
embeddings, therefore having a negative impact on the following graph-predictions
tasks, we firstly assessed the robustness of the proposed approximation by the (un-
filtered) H. sapiens STRING PPI network [117] graph to compute Node2Vec and
SkipGram-based embeddings that exploited both exact and approximated random walk
samples, where the maximum degree threshold for the approximated random walks was
set to a deliberately low threshold (10). The computed (approximated and exact) em-
bedded samples where then used to train an MLPclassifier for an edge prediction task.

The edge prediction performance on the train and test sets were evaluated by computing
the average and standard deviations of the accuracy, AUPRC, F1, and AUROC scores
over 30 holdouts. Figure 4.2-a shows the obtained results, which were comparable, as
per the Wilcoxon rank-sum test (p-value > 0.2).

Note that the maximum node-degree in the training set ranged between 3325 and
4184 across the holdouts, which is more than 300 − 400 times higher than the degree
threshold (10)) set for the approximated random walks.

For testing the efficiency of the approximated random walks, we used the sk-2005 [15]
graph and we computed random walks with 100 hops from 100 randomly chosen nodes.
This procedure was repeated 10 times; figure 4.2-b shows the mean and the standard
deviation of the elapsed time.

Figure 4.2: Approximated random walk. a. Edge prediction performance com-
parison using random walk samples obtained with exact and approximated methods.
The mean and standard deviations of the achieved performance across the 30 holdouts
are shown both for the training and the test set. Bar plots are zoomed-in at 0.9 to 1.0.
b. Empirical time comparison (in msec) of the approximated and exact second-order
random walk algorithm on the sk-2005 [15] graph: Time is on a logarithmic scale.
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4.2.1 Node and edge embedding models

GRAPE provides GRL methods (sections 2.3.1, 2.3.2, and 2.4) and prediction models
(section 2.6) with high-performance implementations for kernel preprocessing as well
as generation of random-walk and triple mini-batches.

GRAPE provides both its own implementations and Keras-based implementations for
all shallow neural network models (e.g. CBOW, SkipGram, TransE). Nevertheless,
since shallow models allow for particularly efficient data-race aware and synchronization-
free implementations [132], the “by-scratch” GRAPE implementations significantly
outperform the Keras-based ones, as TensorFlow APIs are too coarse and high-level
for such fine-grained optimizations. While GPU training is available for the TensorFlow
models, their overhead with shallow models tends to be so relevant that “by-scratch”
CPU implementations outperform those based on GPU. Moreover, the embedding of
large graphs (such as Wikipedia) do not fit in most GPU hardware memory. Still,
Keras-based models allow users to experiment with the open-software available in the
literature for Keras, including, e.g., advanced optimizer and learning rate scheduling
methods.

The provided spectral and matrix-factorization-based models, including HOPE [90],
NetMF [99] and their variations (GLEE [122], SocioDim [120]), compute the (generally
sparse) weighted adjacency matrix in parallel and then rely on LAPACK [5] routines for
the singular values decomposition and eigenvectors computations. Lastly, GRAPE also
provide Keras/TensorFlow-based first-order and second-order LINE models, as they
generally suffer from noisy gradients and therefore require higher-order optimisers such
as Adam. Notable third parties libraries integrated are Sciki-Learn [91], PyKeen [3]
and KarateClub [106].

Furthermore, GRAPE provides many methods to compute edge embeddings given some
computed node embedding, ranging from concatenation, Hadamard (element-wise mul-
tiplication), the element-wise difference in L1 or L2 norm, and element-wise mean, sub-
traction or sum between the node embedding vectors. The library also comes equipped
with tools to visualize the computed node and edge embedding and their properties,
including edge weights, node degrees, connected components, node types and edge
types. For example, in figure 2.1 c we display the node (left) and edge types (center)
of the KG-COVID19 graph and whether sampled edges exist (right) by using the first
two components of the t-SNE decomposition of the node/edge embeddings [124].

4.2.2 GRAPE enables a fair and reproducible comparison of
graph embedding and graph-based prediction methods

GRAPE provides both a large set of ready-to-use graphs that can be used to run
comparative evaluation experiments, and standardized pipelines (section 2.7) to fairly
compare different models and graph libraries ensuring reproducibility of the results
(Fig. 2.1 b). Graph embedding are efficiently implemented in Rust by scratch (with a
Python interface) or are integrated from other libraries by implementing the interface
methods of an abstract GRAPE class (section 2.7). GRAPE users can compare different
embedding methods and prediction models and can also add their own methods to the
standardized pipelines. Our experiments show how to use the standardized pipelines
to fairly compare a large set of methods and different implementations by using only
a few lines of Python code.
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FAIR graph retrieval

GRAPE facilitates FAIR access to an extensive set of graphs and related datasets, in-
cluding both commonly used benchmark datasets and graphs actively used in biomed-
ical research. Any of the available graphs can be retrieved and loaded with a single
line of Python code (Fig. 2.1 b.), and their list is constantly expanding, thanks to the
generous contributions of GRAPE users. The list of resources currently supported can
be found at Supplementary Information S3.1.

Findability and Accessibility. Datasets may change locations, versions may ap-
pear in more than one location, and file formats may change. Using an ensemble of
custom web scrapers, we collect, curate and normalize the most up-to-date datasets
from an extensive resources list (currently over 80, 000 graphs). The collected meta-
data is shipped with each GRAPE release, ensuring end-users can always find and
immediately access any available versions of the provided datasets.

Interoperability. The graph retrieval phase contains steps that robustly convert
data from (even malformed) datasets into general-use TSV documents that, while
primarily used as graph data, can be used for any desired application case.

Reusability. Once loaded, the graphs can be arbitrarily processed and combined,
used with any of the many embedding and classifier models from either the GRAPE li-
brary or any third-party model integrated in GRAPE by implementing the interface
described in section 4.2.2.

FAIR evaluation pipelines

The fair and objective comparative evaluation of datasets, graph embedding and pre-
diction models is fundamental for scientific research. To provide actionable results, this
comparison requires specifically designed and real-world benchmark datasets [58], as
well as pipelines that could allow non-expert users to easily test and compare graphs
and inference algorithms on the desired graphs.

Beside FAIR graphs, GRAPE allows even users with minimal Python language ex-
perience to implement experimental designs through pipelines for running node-label,
edge-label and edge prediction experiments with task-specific evaluation schemas.

More precisely, each pipeline allows users to tailor the experiment by choosing: (a) the
set of graphs to be used in the experiments, (b) the functions to be called for graph
filtering (if needed), (c) the set of (embedding and prediction) algorithms to be applied,
and (d) the evaluation schema (Section 2.7).

In particular, the evaluation schema for edge prediction models are K-fold cross-
validations, Monte Carlo, and Connected Monte Carlo (Monte Carlo designed to avoid
the introduction of new connected components in the training graph) holdouts. All of
the edge prediction evaluation schemas may sample the edges in a uniform or stratified
way, with respect to a provided list of edge-types. Sampling of negative (non-existing)
edges may be executed by either following a uniform or a scale-free distribution. Fur-
thermore, the edge-prediction evaluation may be performed by using varying unbalance
ratios (between existent and non-existent edges) to better gauge the true-negative rate
(specificity) and false-positive rate (fall-out). Stratified Kfold and stratified Monte
Carlo holdouts are also provided for node and edge-label prediction models.
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For all tasks, an exhaustive set of evaluation metrics are computed, including AUROC,
AUPRC, Balanced Accuracy, Miss-rate, Diagnostic odds ratio, Markedness, Matthews
correlation coefficient and many others.

Each pipeline can receive as input any model that implements the specific task’s inter-
face (a Python abstract class). All interfaces follow the familiar scikit-learn style, with
embedding models required to implement the fit_transform method, and prediction
models required to implement the fit, predict, predict_proba methods, plus some addi-
tional metadata necessary to check for biases in the considered task. Interfaces are made
available for embedding models, node-label prediction, edge-label prediction, and edge
prediction. All models available in GRAPE implement these interfaces, and they can be
used as starting points for custom integrations. Many usage examples are available in
the library tutorials: https://github.com/AnacletoLAB/grape/tree/main/tutorials.

60

https://github.com/monarch-initiative/embiggen/blob/develop/embiggen/utils/abstract_models/abstract_embedding_model.py
https://github.com/monarch-initiative/embiggen/blob/develop/embiggen/node_label_prediction/node_label_prediction_model.py
https://github.com/monarch-initiative/embiggen/blob/develop/embiggen/edge_label_prediction/edge_label_prediction_model.py
https://github.com/monarch-initiative/embiggen/blob/develop/embiggen/edge_prediction/edge_prediction_model.py
https://github.com/monarch-initiative/embiggen/blob/develop/embiggen/edge_prediction/edge_prediction_model.py
https://github.com/AnacletoLAB/grape/tree/main/tutorials


Figure 4.1: Experimental comparison of GRAPE with state-of-the-art graph pro-
cessing libraries across 44 graphs. Top row - graph loading: a. Empirical execution
time. b. Peak memory usage. The horizontal axis shows the number of edges, vertical axis
peak memory usage. Middle row - first-order random walk: c. Empirical execution
time. d. Peak memory usage. Bottom row - second order random walk: e. Empirical
execution time. f. Peak memory usage. The horizontal axis shows the number of nodes,
and the vertical axis respectively execution time (c,e) and memory usage (d,f). All axes
are in logarithmic scale. The × represent when either a library crashes, exceeds 200GB of
memory or takes more than 4 hours to execute the task. Each line corresponds to a graph
resource/library, and points on the lines refer to the 44 graphs used in the experimental com-
parison. Note that the blue line representing GRAPE is always below all the other lines.
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Experimental comparison of node embedding methods

We selected 16 among the 61 node embedding methods available in GRAPE, and we
used the edge prediction and node-label standardized prediction pipelines to compare
the prediction results obtained by Perceptrons, Decision Trees, and Random Forests
classifiers (Fig. 4.3). For the edge prediction tasks we used the Hadamard product to
construct edge embeddings from node embeddings. We applied a “connected Monte
Carlo” evaluation schema for edge prediction and a stratified Monte Carlo evaluation
schema for node-label prediction (Appendix H.2).

The models have been tested on 3 graphs for edge prediction (Fig. 4.3-a,b) and 3 graphs
for node-label prediction (Fig. 4.3-c,d). The graph reports, describing the character-
istics of the analyzed graphs, automatically generated with GRAPE, are available in
Appendix C.1 and C.2. Since they are homogeneous graphs1 we considered only homo-
geneous node embedding methods. Moreover, we discarded non-scalable models, e.g.
models based on the factorization of dense adjacency matrices.

Among the 16 methods, 12 are implemented in GRAPE (purple in Fig. 4.3) and 4 have
been integrated from the Karate Club library [106] (cyan in Fig. 4.3). They can be
grouped into four broad classes:

a. Spectral and matrix factorization methods: Geometric Laplacian Eigenmap
Embedding (GLEE) [122], Alternating Direction Method of Multipliers for Non-
Negative Matrix Factorization (NMFADMM) [116], High-Order Proximity pre-
served Embedding (HOPE) [90], Iterative Random Projection Network Embed-
ding (RandNE) [133], Network Matrix Factorization (NetMF) [99], and Graph
Representations (GraRep) [24].

b. First-order random-walk methods: DeepWalk-based GloVe, CBOW, and Skip-
Gram, Walklets SkipGram [96, 92, 80], and Role2Vec with Weisfeiler-Lehman
Hashing [2, 111, 106].

c. Second-order random-walk methods: Node2Vec-based GloVe, CBOW, and Skip-
Gram [92, 80, 52].

d. Triple-sampling methods: first and second order LINE [119].

All the embedding methods and classifiers are described in more detail in sections 2.3.1,
2.3.2, 2.4, and 2.6.

Results show that no model is consistently better with respect to the others across the
types of task and the data sets used in the experiments (Figure 4.3). These results
are analogous to those obtained by Kadlec et al. [62] for TransE model family, and
those obtained by Errica et al [41] for GNN models, highlighting the need for objective
pipelines to systematically compare a wide array of possible methods for a desired
task. The standardized pipelines implementing the experiments are available from the
online GRAPE tutorials and allow the full reproducibility of the results summarized
in Fig. 4.3. Full results relative to other evaluation metrics are available in Appendix
F.

1Hereafter, graph homogeneity/heterogeneity refers to the homogeneity/heterogeneity of node and
edge types.
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Figure 4.3: Comparison of embedding methods through the GRAPE pipelines:
edge and node label prediction results. Results represent the balanced accuracy av-
eraged across ten holdouts (results relative to other evaluation metrics are available in the
Supplementary Information S5.). We sorted the embedding models by performance for each
task; methods directly implemented in GRAPE are in purple, while integrated methods are
in cyan. (a, b): Edge prediction results obtained through a Perceptron (a) and a Decision
tree (b). Barplots from left to right, show the balanced accuracy results obtained with the
Human Phenotype Ontology (left), STRING Homo sapiens (center) and STRING Mus mus-
culus (right). (c, d): Node-label prediction results obtained through a Random Forest (c)
and a Decision Tree (d). Barplots from left to right show the balanced accuracy respectively
achieved with CiteSeer (left), Cora (center) and PubMed Diabetes (right) datasets.
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4.2.3 Scaling with big real-world graphs

To show that GRAPE can scale and boost edge prediction in big real-world graphs,
we compared its Node2Vec-based models with state-of-the-art implementations on
three big graphs: 1) English Wikipedia; 2) Comparative Toxicogenomic Database
(CTD [33]); 3) A biomedical graph generated through PheKnowLator [23]. Details
about the three graphs are reported in chapter 3, section 3.5 and in Appendix G.

Experimental setup

Graph libraries compared in the experiments. In the experiments we used
two GRAPE implementations of embedding algorithms: CBOW and SkipGram. We
compared them with the following state-of-the-art embedding libraries, widely used by
the scientific community:

• PecanPy [72] is a Python library implementing a Numba-based version of node2vec,
leveraging Numba’s just-in-time Python compilation [66] to generate the random
walks on the input graph, and forwarding them to an embedding model provided
by Gensim natural language processing library [102].

• NodeVectors2 is a Python package that enables fast and scalable node embedding
algorithms. It leverages CSR matrix storage for graphs, but it also support
NetworkX [56] graph loading. Besides node2vec, the library also implements
several kinds of first and second-order random walks.

• SNAP [70], Stanford Network Analysis Platform, is a general-purpose system for
the manipulation and analysis of large networks, written in C++. Once compiled,
it becomes an executable to analyze and compute different statistics about the
graphs; it also implements different kinds of graph-processing algorithms and
allows computing node embeddings, by using a pre-processing phase for pre-
computation of transition probabilities through the Alias method [65].

• Node2Vec3 is a Python package for embedding networks through random walk-
based algorithms like node2vec. Similar to SNAP, it employs the Alias method [65]
to pre-compute transition probabilities. It also handles the graph loading through
the NetworkX library [56].

• GraphEmbedding4 is a Python package that handles network embeddings with
random walk-based methods. Again, the transition probability is pre-computed
via the Alias method and employs NetworkX library to handle the loading of a
graph.

• FastNode2Vec5 implements the node2vec algorithm, leveraging both Numba and
Gensim. This implementation scales linearly, in time and memory, with respect
to the dimension of the input graph.

Evaluation of the results For all of the considered tasks, we firstly computed the
embedded graphs using graph libraries and then the resulting embeddings have been
used to train machine learning methods for an edge prediction problem. To evaluate the
ML models we adopted a connected Monte Carlo (Appendix H) repeated ten times,

2https://github.com/VHRanger/nodevectors
3https://github.com/eliorc/node2vec
4https://github.com/shenweichen/GraphEmbedding
5https://github.com/louisabraham/fastnode2vec
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with a train:test ratio equal to 80% : 20% of the data. As evaluation metrics we
applied precision, recall, accuracy, balanced accuracy, F1, AUROC, and AUPRC. In
the experimental set-up we imposed the following memory and time constraints, using
a Google Cloud VM with 64 cores6:

• A maximum time of 48 hours for each holdout to produce the embedding;

• The maximum memory usage allowed during the embedding phase is 64GB.

• The maximum memory usage allowed during the prediction phase is 256GB.

To keep track of memory and time requirements and of possible stops for excep-
tions and system-related errors (out of memory, core dumps), the Python library
memory_time_tracker was used7.

6N1 Cpus with Intel Haswell micro-architecture
7https://github.com/LucaCappelletti94/memory_time_tracker
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Results

Figure 4.4: Performance comparison between GRAPE and state-of-the-art implemen-
tations of Node2Vec on real-world big graphs. GRAPE implementations achieve significantly
better empirical time complexity: (a.), (b.) and (c.) show the worst performance (maximum time
and memory, denoised using a Savitzky–Golay filter) over 10 holdouts on CTD, PheKnowLator and
Wikipedia, respectively. In textbfa. and textbfb. the rectangles in the left figure are magnified in
the right figure to highlight GRAPE performances. In the Wikipedia plot (c.) only GRAPE re-
sults are available as the others either go out-of-time or out-of-memory. (d.) Average memory and
computational time across the holdouts; error bars represent standard deviation. (e.) AUPRC and
(f.) AUROC results of Decision Trees trained with different graph embedding libraries: GRAPE em-
bedding achieve better edge prediction performance than those obtained by the other libraries. (g.)
Wilcoxon signed-rank tests results (p-values) between GRAPE and the other state-of-the-art libraries,
where the win of a row against a columns is in green, the tie in yellow, and the loss in red). Top:
AUROC, bottom: AUPRC.

GRAPE is able to scale with big graphs when the other competing libraries
fail. Most of the competing libraries were not able to complete the embedding and
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prediction tasks on big real-world graphs. Indeed NodeVectors exceeded the time com-
putation limit, while SNAP, Node2Vec, and GraphEmbedding went out of memory
in the embedding phase due to the high memory complexity required by the Alias
method they use for pre-computing the transition probabilities (Appendix C)8. FastN-
ode2Vec and PecanPy went out of time (more than 48h of computation) on the biggest
Wikipedia graph. In practice only GRAPE was able to successfully terminate the
embedding and prediction tasks with all the three big real-world graphs considered
here.

GRAPE improves the empirical time complexity of state-of-the-art libraries.
Fig. 4.4 a, b and c show the memory and time requirements of GRAPE, FastNode2Vec
and PecanPy (note that the other state-of-the-art libraries ran out of time or memory
on these real-world graph prediction tasks. With CTD and PheKnowLator biomedical
graphs we can observe a speed-up of about one order of magnitude (Fig. 4.4 a, b) of
GRAPE with respect to both FastNode2Vec and PecanPy with also a significant gain
in memory usage with respect to PecanPy and a comparable memory footprint with
FastNode2Vec. These results are confirmed by the average memory and time require-
ments across ten holdouts (Fig. 4.4 d). Note that both FastNode2Vec and PecanPy
fail with the Wikipedia task, while GRAPE was able to terminate the computation in
a few hours using a reasonable amount of memory (Fig. 4.4 c and d).

GRAPE boosts edge prediction performance. GRAPE not only enables big
graph embedding and speed-up computation, but can boost prediction performance on
big real world graphs. Fig. 4.4-e and f show that GRAPE achieves better results on edge
prediction tasks with both CTD and PheKnowLator biomedical graphs. GRAPE out-
performs the other competing libraries at 0.001 significance level, according to the
Wilcoxon rank sum test (Fig. 4.4 g). The edge embeddings have been used to train a
decision tree to allow a safe comparison between the embedding libraries.

Appendix G reports AUROC, accuracy, and F1-score performances and other more
detailed results about the experimental comparison of GRAPE with state of the art
libraries.

8the Alias method has quadratic complexity with respect to the number of nodes in the graph,
therefore becoming quickly too expensive on big graphs.
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Chapter 5

ALPINE

In the previous chapters of this thesis, we introduced several methods for graph repre-
sentation learning and explained how the GRAPE library implements these methods
in a highly efficient and scalable manner. We compared GRAPE with other state-of-
the-art libraries and showed that it greatly improves over their performance. However,
these methods still face many challenges that hinder their scalability to real-world
graphs, such as the internet, especially when using limited hardware.

In this chapter, we introduce the ALPINE framework, which allows for the execution
of node embedding tasks on graphs with billions of nodes on commodity hardware in
a rather limited amount of time.

5.1 Scalability limitations of SOTA methods
One common approach in the context of GRL is to train shallow graph neural networks
(GNN) to predict the desired property given a set of nodes [57]. Notable examples of
shallow GNNs include CBOW, SkipGram, GloVe [92] trained on either DeepWalk [94],
Node2Vec [52] or Walklets [95] samples: these are models that learn whether nodes oc-
cur together within random walks. Other NN-based models are first, and second-order
LINE [119], or TransE-like models [16], which learn whether two nodes are connected
(LINE) or whether an edge connects two nodes with a given label (TransE).

A different approach embeds the graph elements using matrix factorization (MF) based
techniques, including spectral and singular value decomposition methods. Notable
examples include HOPE [89], which uses properties such as the cardinality of two
nodes’ neighbourhood overlap, or MatMF [99], which uses the node log-normalized
co-occurrence of two nodes within a given window size.

In the last decade, literature has reported several examples of applications where em-
bedding algorithms have shown promise in several fields. However, most of the embed-
ding techniques presented so far suffer from the following limitations, which hamper
their applicability to real-world (knowledge) graphs characterized by many nodes and
edges.

First, Gradient descent-based models (e.g., GNN) are often trained on mini-batches
of the property of interest, which are "lazily" computed to avoid intractable memory
requirements.

The "lazy" evaluation (as opposed to "eager") computes on-demand the properties
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requested for each training batch, achieving memory requirements that generally scale
linearly with the size of the training batch. The drawback of lazy computation is the
need to recompute the property of interest multiple times during each training epoch.

Second, all the models mentioned above compute the embedding values of a specific
node based on all other nodes and features. The computational dependency makes it
hard to distribute the algorithms on High-Performance Computing (HPC) resources.
It generally involves iterative graph partitioning and synchronization steps to merge
the computed weights through the network.

Analogous considerations also apply for distributing the computation across GPUs.
Indeed, most methods require random access to the node embedding values; however,
the memory hierarchy of modern CPUs is optimal for local and sequential accesses,
while random accesses, especially when the matrix is MMAPed from disk, are orders
of magnitude slower. Therefore, random access to the nodes while computing the
embeddings makes it unfeasible to distribute the memory requirements between the
main memory and disk through Memory Mapping (MMAP) [71].

Third, often these methods employ real-valued data types, which are generally repre-
sented as either 32-bits (full precision) or 16-bits (half-precision) floating point values.
Unfortunately, all commercially available CPUs support half-precision only through
emulation. On the other hand, GPUs widely support half-precision operations [75],
but their dedicated memory (VRAM) is generally significantly smaller than the stan-
dard RAM, which constrains the size of the feasible tasks. Mini floats (i.e. 8 bits
floating point values) are gaining interest in literature [128]. Until recently, Mini floats
were supported only by application-specific integrated circuits [45], and, since October
of 2022, Nvidia has introduced support for two types of Mini floats in the new "Ada
Lovelace" architecture [88].

Fourth, embedding methods often start from random values and maintain significant
noise from initialization, even at convergence. The noise considerably limits the com-
pression ratio of libraries such as gzip [46], thus, making it impractical to share the
embeddings of large graphs over the internet, constraining the FAIRness of these re-
sults.

Fifth, the properties used to compute the embeddings often implicitly depend on the
node degrees. In particular, high-degree nodes often have a disproportionate impact
on the embeddings compared to low-degree nodes. In particular, high-degree nodes
are contextual to more nodes, are the endpoints in more edges, and often have shared
neighbours with any sampled vertex. Topological sampling methods extract high-
degree nodes more often, leading to embeddings biased towards this type of node. The
design of node embedding algorithms should consider this essential property of the
obtained embedding.

Lastly, the embedding methods presented so far lack interpretability and explainability
of the computed embeddings. Indeed, while it is generally true that a correlation
exists between distances defined between the computed embeddings, the stand-alone
meaning of any given element of the embedded vector is usually unknown, resulting in
a significant lack of interpretability.

Interpretability and explainability are issues of particular importance that should be
addressed to allow computing human-understandable embeddings. This would produce
more informative GRL results, particularly appealing in medical and clinical informat-
ics contexts.
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Finally, as witnessed by the increasing usage of the currently ever-mentioned "human-
in-the-loop" term, it is crucial to develop applications where human knowledge can
be easily integrated. For most embedding algorithms presented so far, straightforward
knowledge integration is complex.

5.2 Overcoming the limitations with ALPINE

In this thesis, we present Abstract Landmark Properties-Inferred Node Embedding,
henceforth ALPINE, an algorithmic framework for interpretable node embedding
based on computationally independent integer properties (Sections 5.4 and 5.5) defined
on abstract landmarks, i.e. sets of nodes sharing a common task-specific characteristic
(Section 5.6). ALPINE-based algorithms scale on graphs with billions of nodes and
edges on commodity hardware and HPC.

After detailing the notation used in the remaining part of this chapter, in section 5.4,
we describe the impact of computational dependency and why computational indepen-
dence is fundamental when scalability is of paramount importance. Then, we discuss
the limited support for operations on small floating point values in commercially avail-
able hardware and arguments for preferring small integer values (Section 5.5).

Next, we introduce the novel concept of abstract landmarks, which are groups of
nodes in a graph that share a distinctive characteristic. These groups of nodes can
be thought of as a single, abstract node that represents one of the graph’s key ideas
or themes. We use this concept to ensure feature interpretability by design in our
ALPINE algorithm. The specific landmarks used in the algorithm can be chosen based
on the characteristics of the graph, or they can be designed for a specific task by an
expert. The landmarks do not have to be a partition of the graph, and a single node
can be included in multiple landmarks. In addition to defining the landmarks, we
also introduce the concept of landmark-based properties, which are functions that can
be used to compute feature columns of a node embedding independently from other
feature columns. These properties can be based on existing graph properties or they
can be original and specific to the task and graph at hand (Section 5.6). Landmarks
function as a tool to allow feature engineering and the integration of experts’ knowledge
into embedding algorithms.

Next, we describe two possible landmark computation schema and their potential ap-
plications (Sections 5.7.2 and 5.7.2). In section 5.7, we define the elements compos-
ing the ALPINE algorithmic framework, alongside considerations on the scalability of
distributed systems. Finally, we describe two concrete ALPINE algorithms: SPINE
(shortest paths inferred node embedding) and WINE (windows inferred node embed-
ding). SPINE and WINE implementations are part of the GRAPE library, presented
in chapter 2. We will use undirected WikiData (1.2G nodes and 12.4G edges) as a
real-world example driving the need for scalable algorithms. Alongside each algorithm,
we provide the theorems detailing their time and memory complexities.

5.3 Notation

A graph G = (V,E) is composed of a set of nodes V and edges E ⊆ V ×V , respectively
representing entities and relationships.We denote the neighbours of a given node vi as
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N (vi) = {vj | (vi, vj) ∈ E, vi, vj ∈ V }. The outbound degree of a node d(v) is the
cardinality of the set of neighbours d(v) = |N (v)|.

For a given graph, node embedding methods compute an embedding matrix Φ with
shape (|V |, f), which contains an f -dimensional vector representation for each node
v ∈ V . We will denote Φv as the f -dimensional node embedding vector associated with
the node v. Moreover, we denote φi as the i-th column of the matrix Φ, which is the
|V |-dimensional feature vector in the embedding space.

In the remaining part of this work, we adopt the mathematical notation of Cormen et
al. [31]. All algorithms involve parallel computation. Therefore, their formal computa-
tional and space complexity analysis assume a theoretical concurrent-read concurrent-
write shared memory parallel random access machine (CRCW-PRAM) [44] with t
threads and word sizes ≥ ⌈log2|E|⌉ bits. We use mV ≥ ⌈log2|V |⌉ bits as the mem-
ory needed to store a single node index, usually 32-bits for graphs with less than
|V | < 232 ≈ 4.3G nodes. The dimension of the embedding space (i.e. the number of
elements/features of the embedding vectors) will be denoted as f , while mf will refer
to the number of bits needed to store one feature value.

5.4 Computational independence

The computational dependency between features obliges most of the state-of-the em-
beddings methods to either load the entire embedding matrix into memory or distribute
its memory requirements between main memory and disk, which leads to intractable
memory or time requirements when processing large graphs. This problem mainly af-
fects the scalability of many SOTA methods involving distances (MSE) or similarities
(dot product) between node embeddings. For instance, WikiData’s node embedding
would require 1.2 · f · 4GB using a single precision float (4 bytes), which, for a number
of features such as f = 100, tallies to ≈ 480GB.

Hence, the computational independence of embedding features is a fundamental re-
quirement for designing efficient and scalable GRL algorithms. If individual embedding
features were computed independently of each other, the memory requirements could
be reduced by a factor of f , which translates to a 100-fold improvement in WikiData’s
example, hence reaching a computational memory requirement of ≈ 4.8GB. Compu-
tational independence makes it trivial to distribute the computation across machines,
allowing perfect horizontal scalability on HPCs.

5.5 Representing features with small integers

While literature often employs iterative optimization strategies on float values, inte-
ger values have better hardware support, especially for single or double bytes values.
All CPUs natively implement integer operations. In contrast, half-precision floating
point operations require emulation with multiple integer operations leading to lower
performance. Therefore, small-integer valued features are preferable. For instance,
using single-byte features reduces the memory requirements by 4. In many real-world
graphs, the small world hypothesis holds true [7], so that shortest-path distances may
be expressed via small integers that follow a scale-free distribution. In WikiData, the
longest of the shortest paths, i.e. the diameter, is only 7. By choosing small integer
features over floats, we enjoy a small memory footprint, hardware acceleration, and
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often a good compression ratio because of their scale-free distribution. Achieving a
small compressed file size is fundamental for the FAIRness of the resulting embedding.

5.6 Interpretable abstract landmarks properties

In this section, we introduce the novel concept of abstract landmarks and their prop-
erties, and how we use this concept to ensure feature interpretability by design in
ALPINE. A landmark is a group of nodes in a graph that share a distinctive trait or
characteristic, such as similar node degree or common labels. This group of nodes can
be thought of as a single, abstract node that represents one of the graph’s key ideas or
central themes.

We stress that the interpretability present in ALPINE embedding is not inherent in
ALPINE by itself nor an emergent property, but derives from the selection of mean-
ingful landmarks and features with a clear interpretable meaning, i.e. to ensure an
interpretable ALPINE embedding there must be maintained a clear and unbroken in-
terpretability chain. This section will focus on the description of the landmarks, and
we will describe interpretable features defined upon landmarks in sections 5.7.3 and
5.7.4.

The ALPINE algorithm uses a set of landmarks to compute node embeddings. The
specific landmarks used by the algorithm can be chosen based on the characteristics
of the graph, or designed for a specific task by an expert. For instance, a landmark
might be defined based on node degrees or labels. It is important to note that the set
of landmarks does not have to be a partition of the graph, and a single node can be
included in multiple landmarks.

In addition to defining the landmarks themselves, we also introduce the concept of
landmark-based properties. These are functions that, given a landmark, can compute
a feature column of a node embedding independently from all other feature columns.
These functions can be based on existing graph properties, or they can be original and
specific to the considered task and graph. In the following sections, we provide concrete
examples of how abstract landmarks and their properties can be defined and used in
practice.

5.6.1 Abstract landmarks

A landmark L ∈ P(V ), where P(V ) is the power-set of the nodes, is a set of nodes
characterized by some shared distinctive trait, such as similar node degree or common
labels. Conceptually, a landmark is an abstract source node equivalent to merging all
the constituent nodes into a single one. It represents the graph’s semantical origin or
zenith of a designated notion. We define the outbound neighbours of a landmark L as
N (L) =

⋃
s∈LN (s). A landmark does not have inbound edges. Most commonly, the

cardinality of a landmark is |L| ≪ |V |.

An ALPINE algorithm relies on a set of landmarks L ⊂ P(V ) to compute a node
embedding with f = |L| features. The set of landmarks L is not necessarily a graph
partition, i.e. V ⊇

⋃
L∈L L, nor its constituent sets have to be disjointed, i.e. a

node v ∈ V may appear in multiple landmarks. A feature engineering schema is
employed to compute the set of landmarks L and can be defined based on the graph’s
geometric characteristics or task-specific and designed by a field expert. We provide
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two concrete examples of such schema, based on node degrees (section 5.7.2) and node
labels (section 5.7.2).

5.6.2 Abstract landmark properties

A key component of an ALPINE algorithm is the associated landmark-based property
λ (L) : L → N|V |, i.e. a function that, given a landmark L ∈ L, computes the associated
feature column φL ∈ N|V | of a node embedding Φ ∈ N|V |×|L|, independently from all
other feature columns. Note that λ is defined on a specific graph G = (V,E) and on a
specific landmark set L.

While the definition of λ (L) may also be completely original and specific for the
considered task and graph, a straightforward approach to obtain a landmark-based
property λ (L) : L → N|V | is to generalize one of the many graph properties ρ(s) : V →
N|V | available in the literature, defined between a source node s ∈ V and all nodes V
in the graph. Many approaches are possible, including direct generalization such as
the minimum (φL(v) = eT

v λ (L) = mins∈L e
T
v ρ(s)), maximum (φL(v) = eT

v λ (L) =
maxs∈L e

T
v ρ(s)), sum (φL(v) = eT

v λ (L) =
∑

s∈L e
T
v ρ(s)) or mean (φL(v) = eT

v λ (L) =⌈
1/|L|

∑
s∈L e

T
v ρ(s)

⌉
) of the node-based property. Any statistic of ρ(s) may be employed,

given an efficient method to directly compute it.

We list the following desirable soft requirements to guide the selection of a scalable
landmark-based property λ (L):

1. For a property λ (L) to be considered for the ALPINE framework, its asymptotic
worst-case time Tλ and space Sλ complexities should be at most linear with
regards to the number of nodes and edges, i.e. Tλ, Sλ ∈ O(|V |+ |E|).

2. On non-pathological cases, the time complexity of λ (L) should be inversely pro-
portional to the number of available threads t, i.e. Tλ ∈ Θ(1/t), and its space
complexity should be sublinear w.r.t t, i.e. Sλ ∈ o(t). In short, the computa-
tion of λ (L) should employ all available cores, and its associated data structures
should not be replicated for all cores.

3. Finally, the asymptotic worst-case time Tλ and space Sλ complexities should
have sublinear scaling on the landmarks’ cardinality |L|, i.e. the the property
computation should, ideally, not rely on computing a node-based property for all
the nodes s ∈ L:

Tλ ∈ o (|L|) Sλ ∈ o (|L|)

We present two algorithms to compute properties λ fulfilling these requirements, namely
SPINE (section 5.7.3) and WINE (section 5.7.4).

5.7 The ALPINE algorithmic framework

Given a graph G = (V,E), a concrete ALPINE implementation requires the definition
of two procedures:

1. Firstly, a schema ℓG, defined for the provided graph G, to create a set of land-
marks L ⊂ P (V ). A schema ℓG can be specific for the considered task and graph
G, but generic approaches are also possible. The cardinality of L determines the
dimensionality of the embedding Φ, i.e. f = |L|.
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2. Secondly, a property λ (L) : L → N|V | which, given a landmark L ∈ L and a graph
G, computes the associated feature column φL ∈ N|V |. The property λ must be
defined for the provided graph G and the set of landmarks L obtained using ℓG.
Most commonly, the property λ represents either some notion of similarity or
distance between each node v ∈ V and the provided landmark L ∈ L.

Most of the interpretability of ALPINE relies on the selected landmark generation
schema ℓG. Indeed, the embedded features are constructed on the basis of a specific
concept/landmark L ∈ L that expresses either a well-defined topological or seman-
tic property of the graph. This, in turn, allows us to embed apriori knowledge on
the algorithmic framework, using, e.g. set of landmarks L belonging to the apriori
known category: for instance, if nodes represent genes, we can construct landmarks
by grouping genes/nodes associated with a given disease, or with a specific biological
function.

We employ the computational independence of λ to compute independently the feature
columns λ (L) = φL ∀L ∈ L of the node embedding Φ ∈ N|V |×|L|.

Depending on the dimension of the graph G and on the available computational re-
sources, the embedded features φL can be computed sequentially (e.g. on a desktop
or laptop computer) or in parallel using both multi-core architectures or a distributed
or an HPC environment (Algorithm 2). In the first line of algorithm 2, we iterate over
the landmarks L ∈ L. Given the complete independence of the feature computation,
we can distribute each iteration both horizontally, using upwards to c ≤ f comput-
ing nodes, and, when f > c, such as on a single desktop c = 1, we can distribute
the computation of the features temporally, i.e. we compute the features sequentially.
While computing multiple features f ′ ≤ f concurrently on the same node is possible,
the memory requirements would increase by f ′ times, making this often unfeasible.
However, the design of algorithms computing λ (L) should heavily exploit parallelism.
Hence the computation of a single feature should use all available cores. For instance,
the algorithms we present to compute λ (L) can employ all available cores except on
pathological graphs such as chains. The number of computing nodes c available in
modern HPC is often in the thousands. Generally, c ≫ f , for instance, the Fugaku
system has c ≈ 159k compute nodes [36]. These vast computational resources may
be employed to explore multiple landmark generation schemas simultaneously. While
we executed all the experiments reported on a commodity desktop computer, where
embedding WikiData requires about one hour, our implementation supports SLURM-
based distribution [130] to scale on significantly larger graphs.

In the second line algorithm 2, given the assigned landmark L, each computing node
executes the provided function λ (L) to compute the relative feature φL, ideally em-
ploying all available cores.

In the third line, we explicit the non-trivial practical step σ (φL) of storing the obtained
feature φL, primarily dependent on the available hardware. Writing to permanent
storage is an IO task, and the design of σ should consider the available hardware
to achieve good performance. Lacklustre implementations of σ might cause the time
required to store the feature to overtake the time necessary to compute it, making
the task IO-bound. Network disks, commonly used in HPCs, may be particularly
detrimental to performance when multiple nodes try to write to the same file. In such
cases, each feature should be written on a different file and later merged if needed.
When the overhead of working on a single file is negligible, such as when c = 1, σ
should store the feature in Fortran order, i.e. column-wise, which guarantees the best
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cache-locality and operations such as left dot products. Procedures such as right-dot
products require the transposition of the embedding to be in C order, i.e. row-wise.
In the implementation, we provide routines to transpose the embedding on disk, with
constant RAM requirement.

Algorithm 2 ALPINE Framework
Input the graph G = (V,E), a set of landmarks L ⊂ P(V ) and two functions:

λ (L) : L → N|V | to compute a single computationally independent feature φL ∈ N|V |

from a landmark L ∈ L, i.e. an embedding column with |V | elements, from landmarks,
and σ (φL) to store the embedding column φL.

1: for L ∈ L distributedly do
2: φL ← λ (L)
3: σ (φL)

The proofs relative to the theorems regarding the complexities of the proposed algo-
rithms are provided in section 5.9.

5.7.1 Graph data structure

For our time complexity analysis we assume the graph data structure to be a compressed-
sparse row (CSR) matrix [19], which is composed of the cumulative outbound node
degree vector C ∈ N|V | and the destination nodes vector D ∈ N|E|. WikiData re-
quires 4B integers for each destination node and 8B integers for each element of the
comulative outbound degree vector, for a total of 12.4G · 4B + 1.2G · 8B = 59.2GB.
In a CSR setting, computing the outbound node degree d(v) and iterating a node’s
destinations N (v) require constant and d(v) time, respectively. Both operations have
constant memory.

5.7.2 Computing abstract landmarks

In this section, we present schemas for the computation of a set of landmarks L based
on node degrees and node labels, detailed in sections 5.7.2 and 5.7.2, respectively. We
define Tsort(k), Ssort(k) as the time and memory worst-case to sort a vector of length k
using t threads. For the sorting operations we use Rust Rayon [21] Parallel Quick-sort
which ensures Tsort(k) = O(k log2 k) and Ssort(k) = O(t).

Degree-based landmarks

This section describes a schema for calculating landmarks based on outbound node
degrees. High-degree nodes represent in many networks the most important elements.
They represent the graph centers, while low-degree nodes represent the periphery. Of-
ten, nodes with a similar degree share a similar immediate topological structure. Thus
landmarks built on nodes with similar node degrees represent a specific topological
structure across the graph (even across otherwise disconnected components). In real-
world graphs, low-degree nodes are more common than high-degree ones, and node
degrees often follow a scale-free distribution. This phenomenon implies that the higher
the node degree is, the rarer nodes with a similar degree will be, and vice-versa for low-
degree nodes. Using this insight to balance the cardinality of the different landmarks,
we will compute them to assign roughly the same number of edges to all landmarks,
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i.e. the sum of the degree of the nodes s ∈ L should be roughly the equal across all
landmarks |E|/f ≈

∑
s∈L d(s) ∀L ∈ L, where d(v) is the degree of a given node v ∈ V .

In algorithm 3 we start by creating a vector with the graph nodes. We sort the nodes
by decreasing node degree (line 2). Subsequently, we iterate on the sorted nodes and
populate the current landmark L. Each time we add a node to L, we increase the
number of edges contained therein. Every time the number of edges exceeds |E|/f edges,
we push a new landmark L to L and reset both L and the number of edges (lines 6-12).
In practice, we implement row 8 through lazy generators (e.g. the Python-like yield
operator [108]) to avoid unnecessary memory allocation. Note that we will analyze the
lazy and more efficient version in all the theorems.

We observe that it is possible to use outbound node degrees, inbound node degrees or
a combination of the two in the context of directed graphs. While node degrees are an
efficient and interpretable metric, this landmark computation schema works with any
scoring mechanism.

A possible application of this landmark selection schema could be the prediction of real-
estate value using a graph with nodes representing buildings and edges representing
roads. By using algorithm 3, we obtain landmarks sorted from less central nodes,
which are the ones closer to the periphery, to very central nodes, which are closer to
city centers. Real-estates closer to the city centers and, therefore, having access to
more services may obtain a higher valuation than those in the periphery.

Theorem 5.7.1. The worst-case time and memory upper bounds for algorithm 3 are
Θ(|V |)+Tsort(|V |)+O (t) and 2mV · |V |+Ssort(|V |)+O (t) bits = Θ(|V | log|V |)+O(t),
respectively.

Algorithm 3 Degree-based Landmarks
Input the number of features f ∈ N, a graph G = (V,E), a routine degree_sort

to sort in-place nodes by decreasing degrees
Output a landmark set L = {L1, L2, . . . Lf}

1: nodes ← V ▷ Θ(|V |)
2: degree_sort(nodes) ▷ Tsort(|V |)
3: edges_count ← 0
4: L← empty vector
5: L ← ∅
6: for v ∈ nodes do ▷ Θ(|V |)
7: if edges_count > |E|/f then
8: L.push(L)
9: edges_count ← 0

10: L← empty vector
11: L.push(V ) ▷ Θ(1)
12: edges_count+= d(v) ▷ Θ(1)

13: return L

Categorical landmarks

In algorithm 4 we associate to each landmark all the nodes belonging to a given category
(nodes may belong to multiple categories).

Suppose the categories are whether a given building are hospitals, houses, schools,
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railway stations, or incinerators. Proximities (or distances) to the landmarks associated
with the services may be valuable in evaluating real estate.

It is possible to combine the categorical landmarks with the node degree landmarks to
obtain potentially more expressive features.

Theorem 5.7.2. The worst-case time and memory upper bounds of algorithm 4 are
Θ(|C| · |V |/t) and mV ·maxk∈C |{v | c(v) = k}|bits = Θ(|V | log|V |), respectively.

Algorithm 4 Categorical landmarks
Input set of labels C, a graph G = (V,E), a function c(v) to get the category of

a node V
Output a landmark set L = {L1, L2, . . . L|C|}

1: L ← ∅
2: for k ∈ C do ▷ Θ(|C||V |/t)
3: L← empty vector
4: for v ∈ V do in parallel ▷ Θ(|V |/t)
5: if c(v) = k then
6: L.push(V ) ▷ Θ(1)

7: L.push(L)
8: return L

5.7.3 SPINE

In this section, we present SPINE, a parallel algorithm λ (L) : L → N|V | to compute
an embedding column φL based on shortest path distances from a landmark L ∈ L.
Starting from the definition of the shortest path distances ρ(s) from a source node
s ∈ V to all the V nodes in the graph, we generalize ρ(s) to λ (L) as the minimum
shortest path distances between any node in the landmark L and all the V nodes in
the graph: φL = eT

v λ (L) = mins∈L e
T
v ρ(s).

Providing the distance from the closest s ∈ L makes intuitive sense: consider an appli-
cation case where L represents hospitals, and the other nodes represent rock climbing
sites. When determining the latters’ insurance risk, the distance from the closest hos-
pital to each rock climbing is more relevant than knowing, for instance, the average
distance to all hospitals in a country.

The property λ (L) respects the requirement of being a small integer value, as in many
real-world graphs, the longest shortest path in a graph, the diameter, is indeed a tiny
integer value [7].

Since we intend to compute the shortest path distance from any s ∈ L to all nodes
V , without being interested in which node is the source of the shortest path, in the
algorithm 5 we use an approach analogous to a parallel breadth-first search [18].

Algorithm 5 uses parallel frontiers within the context of an iterative graph exploration
to store the nodes to visit at the next step. A parallel frontier ξ is an unsorted vector
supporting concurrent iteration and wait-free constant-time push. Given t threads, our
concrete implementation of the frontier contains t pointers to node vectors. Each i-th
thread owns the respective vector ξi and can push nodes to ξi without synchronization
steps. We will represent this as ξ.push(V ) with an abuse of notation. While duplicated
values are allowed in a frontier, our algorithms guarantee the absence of duplicates
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through atomic operations [109]. Thus, we can define the set of nodes in a frontier ξ as
the union of the nodes contained in its constituent vectors, i.e. ξ =

⋃
i∈[0,t) ξi. It follows

that the frontier cardinality as |ξ| =
∑

i∈[0,t)|ξi|. A frontier is empty when |ξ| = 0. ξ is
an immutable object during the iteration procedure.

We initialize all values of the distance vector φL of length |V | with the maximum feature
value MAX, which is 256 for an unsigned single-byte integer (line 1). We proceed to
set the distances from L of all s ∈ L to zero, marking them as visited (lines 2 and 3).
We initialize the depth d = 1(line 4) and assign the landmark L to the nodes frontier
ξ = {v | eT

v λ (L) = d−1 v ∈ V }. We iterate until we do not encounter any new node,
i.e. ξ is empty (line 6), or the maximum depth MAX is reached (line 7). In the latter
case, the computed distances φL (line 8) are ready and can be returned. In line 9 we
create the temporary node frontier ξTMP = {v | eT

v λ (L) = d v ∈ V }. We start the
internal for loop (lines 10-14) by iterating over the v ∈ ξ nodes and their neighbours
w ∈ N (v) (lines 10 and 11). We check whether each neighbour w has a distance equal
to MAX and if so, we set its distance to d and add it to the temporary frontier ξTMP.
Concretely, to avoid pushing multiple times w to ξTMP, both the if-condition and the
distance assignment are implemented by using a single-word compare-and-swap (CAS)
instruction [109]. CAS is a standard CPU instruction to transactionally exchange the
value of a register and a word of memory if, and only if, the word of memory is equal
to an expected value. CAS allows efficient, sequentially consistent read-modify-write
operations without expensive synchronization mechanisms like locks and semaphores.
Once the loop is complete, we proceed to increase the current depth d (line 15) and
to reassign the temporary frontier ξTMP to ξ (line 16). We observe that the number of
nodes in either frontier is always |ξ|+ |ξTMP| ≤ |V |.

Once the while-loop completes, we clip all distances that have not yet been visited to
d to avoid characterizing unreachable nodes such as nodes in distinct components with
respect to all s ∈ L or singletons with a potentially excessively high value (lines 17, 18
and 19). The algorithm concludes by returning the computed distances φL (line 20).

We observe that SPINE may be generalized to graphs characterized by small non-
negative integer edge weights [78].

A first approximation stems from observing that average distances are much less than
the maximum depth, the diameter d. For instance, in the Facebook relationships graph,
the average distance is approximately four, while the diameter of the largest component
is d = 41 [7]. An approximation is to cap the maximum depth to some δ < d to get the
correct distance for most nodes and a clipped value for the pathological cases. This
leads both to smaller time and memory requirements, as it requires less iterations of the
main loop and the features can be stored in ⌈log2 δ⌉ bits instead of mf = ⌈log2 d⌉ bits.
A second approximation adopts the approximated random-walk approach described
in (section 2.3.2), by employing the Sorted Unique Sub-Sampling (SUSS) algorithm
sub-sample the node neighbours of very high-degree nodes. This approximation can
be interpreted as regularization and may reduce the topology overfitting. Neither of
these approximations was necessary to embed WikiData on a desktop computer. Still,
they may find application in tasks relative to larger graphs.

Theorem 5.7.3. The worst-case time and memory upper bounds of algorithm 5 are
Tλ = O(|V |+ |E|) and Sλ = (mV +mf )|V | bits, respectively.

Note that, in practice |ξ|+ |ξTMP| ≪ |V |. |ξ|+ |ξTMP| ≈ |V | exclusively in degenerate
topologies such as stars.
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Algorithm 5 SPINE
Input landmark L, MAX feature value, method to iterate neighbours N (v)
Output shortest path distance vector φL from L

1: φL ← vector filled with |V | MAX values ▷ Θ(|V |)
2: for s ∈ L do in parallel ▷ Θ(|L|/t)
3: φL[s]← 0
4: d← 1
5: ξ ← L
6: while |ξ| > 0 do ▷ O(|V |+ |E|)
7: if d = MAX then
8: return φL

9: ξTMP ← empty frontier
10: for v ∈ ξ do in parallel
11: for w ∈ N (v) do
12: if φL[w] = MAX then
13: φL[w]← d
14: ξTMP.push(w)
15: d += 1
16: ξ ← ξTMP

17: for v ∈ V do in parallel ▷ Θ(|V |/t)
18: if φL[v] = MAX then
19: φL[v]← d

20: return φL

5.7.4 WINE

In this section, we present WINE, a parallel algorithm λ (L) : L → N|V | to compute the
co-occurrence count vector φL ∈ N|V | between each node v ∈ V and a given landmark
L ∈ L within a window of size ω, i.e. an embedding column with |V | elements. More
precisely, we define the co-occurrence count ρω(s) between a source node s and all the
nodes V within a window size ω as the number of paths of length ≤ ω from the source
node s to each node v ∈ V . We then generalize ρω to λω(L) as the sum of the number
of paths of length ≤ ω from each source node s ∈ L and each node V in the graph
destination: λω(L) =

∑
s∈L ρω(s).

When ω = 2, as in two-hops WINE (Section 5.7.4), each value is equal to a non-
normalized Jaccard index [60], i.e. φL(v) = eT

v ρ2(s) = |N (v) ∩ N (s)|, where ev is a
vector of length |V | with a one in the position corresponding to the node v and zeros
otherwise.

The same consideration applies also to landmarks generalization, where: φL(v) =
eT
v λ2(L) = |N (L) ∩N (v)|, with N (L) =

⋃
s∈LN (s).

Analogies exist between WINE and power method-based centralities such as person-
alized PageRank [9]. To make these analogies plain, we redefine ρω(s) = eT

s (
∑ω

i A
i),

where A is the adjacency matrix of the graph.

By using the definition, it follows that λω(L) =
(∑

s∈L e
T
s

)
(
∑ω

i A
i). In recommender

systems, the elements of interest for a given user are represented as a binary vector
u[69], for our purposes u ∈ {0, 1}|V |. In the context of WINE, the field expert is
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the user selecting the elements of interest, i.e. the nodes composing the landmark. It
follows that uL =

∑
s∈L es and therefore we can express this as λω(L) = uL

∑ω
i=0A

i.

Providing the co-occurrence count between a node and a landmark makes intuitive
sense: consider, for instance, an application case of a graph whose nodes are ecosys-
tems, and the edges represent routes that species may use to move between different
ecosystems. Using the categorical landmarks schema (section 5.7.2), we can design
landmarks containing ecosystems where an invasive species, e.g. different mosquito
species, has taken root. WINE features may be employed to predict the risk of range
shifting [121], i.e. the probability of a deleterious invasive species spreading across
ecosystems [14], and inform mitigation measures.

The two-hops algorithm 7 differs significantly from the general WINE algorithm 6 as
ω = 2 has many exploitable implications. We will describe the two-hops algorithm in
section 5.7.4.

ω-Hops WINE

We now proceed to describe Algorithm 6. We initialize the co-occurence counts vector
φL and the co-occurrences variations vector δ with the sum of the standard basis
vectors uL representing the landmark L, i.e. uL =

∑
s∈L es (line 1). Note that at any

given iteration γ ∈ [0, ω) it holds that φL = uL

∑γ
i=0 A

i and δ = uLA
γ. We assign

the landmark L to the nodes frontier ξ = {v | δ[v] > 0 v ∈ V }, i.e. the destinations
of all the paths starting from s ∈ L of length γ at each iteration γ (line 2). In line 3
we iterate up to ω where we initialize the temporary co-occurrences variation vector
δTMP, which will contains the occurrences from this iteration, with |V | zeros and create
a new empty frontier ξTMP. In the two inner loops we iterate on the nodes v ∈ ξ and
their neighbours w ∈ N (v). If the procedure has not yet visited w during the γ-th
iteration, we push it to the new frontier ξTMP, thus assuring that ξTMP collects only
newly visited nodes. Since we use mf bits to represent an unsigned integer feature
value, the maximum representable value is the finite number 2mf − 1. The δTMP and
φL additions (lines 10 and 11) may cause numerical overflow when using the wrapping
addition from modular arithmetic a+W b = (a+ b) mod 2mf , i.e. (2mf − 1)+W 1 = 0,
which is the default addition on all CPUs. Therefore, we use saturating additions
a+S b = min{a+ b, 2mf − 1}, i.e. (2mf − 1)+S 1 = 2mf − 1 [30]. Saturating arithmetic
is slower than modular arithmetic, but its behaviour in numeric overflow is preferable
as it approximates better the exact features of the embedding. Analogously to SPINE,
the if-condition, and the δTMP and φL saturating additions are implemented by using
two single-word compare-and-swap (CAS) (lines 6 through 11). Once the two inner
loops are completed, we proceed to reassign the temporary frontier ξTMP to ξ and the
iteration count difference δTMP to δ (lines 12 and 13). The algorithm concludes by
returning the computed co-occurrence counts φL.

Theorem 5.7.4. The worst-case time and memory upper bounds of algorithm 6 are
Tλ = O(ω(|V |+ |E|)) and Sλ = (2 ·mV + 3 ·mf )|V | = Θ(|V | log|V |) bits, respectively,
if mf = O(mV )

We observe that the values of the features increase exponentially w.r.t ω, quickly max-
ing out the features of nodes reachable starting from the nodes s ∈ L. As such, practical
values of ω are very low ω ≤ 5 and therefore the asymptotic worst case time complexity
Tλ is closer to Tλ = O(|V |+ |E|).
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Algorithm 6 ω-Hops WINE
Input landmark L, window size ω, method to iterate neighbours N (v)
Output co-occurrence counts vector φL from L

1: φL ← δ ← uL ▷ Θ(|V |+ |L|/t)
2: ξ ← L
3: for ω times do ▷ O(ω(|V |+ |E|)
4: δTMP ← vector filled with |V | zeros ▷ Θ(|V |)
5: ξTMP ← empty frontier
6: for v ∈ ξ do in parallel ▷ O(|V |+ |E|)
7: for w ∈ N (v) do
8: if δTMP[w] = 0 then
9: ξTMP.push(w)

10: δTMP[w] +=S δ[v]
11: φL[w] +=S δ[v]

12: δ ← δTMP

13: ξ ← ξTMP

14: return φL

Two-Hops WINE

We observe that when the first round of co-occurrence counts completes from L, the
vector φL contains, for each node, the number of predecessors that are in L, i.e. φL =
uLA. Therefore, when ω = 2, it holds that φL is always equal to the co-occurrences
variation vector δ, and so we can reduce the memory requirements by avoiding it
altogether. We will use instead a frontier δTMP containing the temporary co-occurrence
variations, which we populate with the counts of nodes v ∈ ξ.

We define the zip(ξ1, ξ2) operation as the set of tuples of values of ξ1 and ξ2, frontiers
that by construction share the same index set I: zip(ξ1, ξ2) = {(ai, bi) | ai ∈ ξ1, bi ∈
ξ2 ∀i ∈ I}. We iterate on the zipped frontiers (v, c) ∈ zip(ξ, δTMP), and directly
increase the counts of the neighbours N (v) by c (lines 12 through 14). We terminate
by returning the computed co-occurrence counts φL. We observe that unreached nodes
and, more specifically, nodes in distinct connected components for the nodes in L
and singletons will have co-occurrence counts equal to zero. As per algorithm 5.7.4,
all additions are saturating atomic additions to avoid numeric overflows, and CAS is
employed to emulate these operations.

The SUSS-based approximation described for SPINE (section 5.7.3) also applies to
Two-hops WINE.

Theorem 5.7.5. The worst-case time and memory upper bounds of algorithm 7 are
O(|V |+ |E|) and (mV + 2 ·mf )|V | bits, respectively.

Analogously to SPINE, in practice |ξ| = |δTMP| ≪ |V |. |ξ| = |δTMP| ≈ |V | exclusively
in degenerate topologies such as stars. Since the two-hops WINE has lower complexities
than WINE, the complexity constraints are respected.
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Algorithm 7 Two-Hops WINE
Input landmark L, method to iterate neighbours N (v)
Output co-occurrence counts vector φL from L

1: φL ← vector filled with |V | zeros ▷ Θ(|V |)
2: ξ ← empty frontier
3: for s ∈ L do in parallel ▷ O(|L|+ |E|)
4: for w ∈ N (s) do
5: if φL[w] = 0 then
6: ξ.push(w)
7: φL[w] +=S 1

8: φL[s] +=S 1

9: δTMP ← empty frontier
10: for v ∈ ξ do in parallel ▷ O(|V |/t)
11: δTMP.push(φL[v])
12: for (v, c) ∈ zip(ξ, δTMP) do in parallel ▷ O(|V |+ |E|)
13: for w ∈ N (v) do
14: φL[w] +=S c

15: return φL

5.8 Experiments

To show the scalability properties of ALPINE, we run the SPINE and WINE algorithms
on the Wikipedia graph having about 1.2G nodes and 12.4G edges, using a commodity
desktop computer. Then we show that ALPINE algorithms can significantly speed
up the empirical time computation with respect to state-of-the-art embedding algo-
rithms without losing too much in prediction performance and sometimes also being
competitive with significantly more complex embedding algorithms.

We experimentally evaluated four concrete ALPINE-based algorithms on two tasks:
node-label prediction (section 5.8.3), i.e. predicting the category of a given node, and
edge prediction (section 5.8.4), i.e. predicting whether an edge exists between two
given nodes.

The considered ALPINE-based algorithms are 2-Hops WINE and SPINE, with abstract
landmarks obtained through either the node degrees or, when available, node categories
schemas. We stress that these landmark schemas are most likely not optimal for the
considered task, and the relative performance only constitutes a baseline.

We compare the computational time requirements and quality of the embedding ob-
tained with the ALPINE-based methods and a wide variety of methods from the litera-
ture. The primary goal is to illustrate the significant computational time and memory
gains obtained with ALPINE methods maintaining nevertheless reasonably competitive
performance.

We include first and second-order LINE [119], DeepWalk [94] and WalkLets [95]-based
GloVe [92], CBOW, and SkipGram [81], and two matrix factorization methods, namely
HOPE [89] and NetMF [99].

We note that the considered methods from the literature fall prey to many of the scal-
ability issues discussed within the introduction and addressed in detail in the presenta-

82



tion of the ALPINE framework (section 5.7). Thus, to provide a complete comparison
within a reasonable amount of memory and time, we considered graphs commonly
used in the literature with a relatively small size in the experiments. Nevertheless,
we provide TSNE bi-disimensional dimensionality reduction of 100-dimensional node
embedding of the Wikidata graph, obtained using Degree-based SPINE and WINE.

We have executed 10 holdouts for all tasks and graphs, considering multiple training
and test splits to evaluate the performance variation relative to the number of known
samples. While within this section, we report only bar plots with the F1 score over the
test set, we provide tables with multiple other performance metrics such as balanced
accuracy and AUROC in the appendix I.

For all of these methods, we employ our heavily optimized Rust implementations with
Python bindings available from the GRAPE library described in chapter 2. All experi-
ments were run on a machine with 12 cores (24 threads) with CPU AMD Ryzen 3900x
@ 4.0 GHz and 128 GB of RAM on Linux with kernel version 5.15.25-1.

5.8.1 ALPINE embeds big graphs on commodity desktops

Embedding large graphs such as Wikidata, which we recall has 1.2G nodes and 12.4G
edges, using any of the considered models from the literature, has memory require-
ments that surpass the capabilities of most available hardware. More specifically, to
obtain a 100-dimensional node embedding using 4B floats, even when using optimiza-
tion strategies that do not require the allocation of additional data structures, e.g.
using SGD instead of Adam, it would require 100 · four · 1.2 = 480GB in first-order
models such as first-order LINE and 960GB in second-order models such as CBOW,
SkipGram or GloVe. Conversely, the memory requirements in methods such as SPINE
are just 4.8GB+1.2GB = 6GB. High-end devices with at least 960GB are uncommon
and come with a premium cost when rented on services such as Google Cloud. Fur-
thermore, in most HPCs, while the total system RAM may be considerable, the RAM
available in each computing node is often rather limited: in the Fukagu, for instance,
it is 32GB, while in CINECA’s Marconi100, it is 256GB.

While state-of-the-art embedding methods are unable to process the Wikidata graph
also on well-equipped desktops, degree-based SPINE and WINE can compute a 100-
dimensional node embedding of Wikidata in respectively 42 minutes and 12 minutes
on a commodity desktop. Embeddings with a higher number of features are possible.
For instance, a 1000-dimensional SPINE node embedding took ≈ 7 hours on the same
desktop, showing strictly linear scaling with the increased number of features. Eval-
uating the obtained embedding on such a large graph is a non-trivial endeavour, as
training simple models such as a Perceptron would still require significant computa-
tional time. Therefore, to provide proof of the quality of the node embedding obtained
with SPINE and WINE, in this section, we present the TSNE decompositions of the
Degree-based SPINE, and WINE node embedding of 40K edges uniformly sampled
from the Wikidata graph, illustrating the edge labels and the clusters that can be
identified (figures 5.1 and 5.2). The edge labels were never provided during training,
as exclusively the graph topology was employed.

Wikidata is a scale-free graph, and we observe that topological properties such as
shortest-path distance and unnormalized Jaccard Index also follow a scale-free distri-
bution. Such a phenomenon leads to repeated feature patterns, which are optimal for
compression algorithms such as gzip. We can employ gzip to compress the complete 1.2·
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Figure 5.1: Edge embedding of Wikidata using Degree SPINE TSNE de-
compositions of 100 dimensional node embedding. Edge embeddings are obtained by
concatenating the corresponding pairs of node embeddings.

100 = 120GB embedding obtained with SPINE and WINE down to 4.4GB and 4.9GB,
respectively. Such a small file size allows us to share on Zenodo the two node embed-
ding, which may be downloaded from https://doi.org/10.5281/zenodo.7117686.

5.8.2 ALPINE boosts empirical time complexity

In figure 5.3, we display the computation time necessary to compute the node embed-
dings on different graphs on a logarithmic scale.

Having premised that the implementations of the SOTA methods used are generally
at least an order of magnitude faster than any other we could benchmark, we observe
that the Walklets-based models, CBOW, SkipGram (SG) and GloVe, are the slowest in
all graphs, followed by their analogous trained on DeepWalk (DW) samples. Next, we
find that the methods based on matrix factorization NetMF are generally an order of
magnitude lower than HOPE, based on shared neighbours counts. The fastest methods
are those based on the ALPINE framework, and only LINE achieves a comparable time
speed-up (Figure 5.3).

While the node-label-based ALPINE models appear to be the fastest, we must stress
that they computed a much smaller embedding with cardinality equal to the number
of labels in the respective graph, while all other methods produced a 100-dimensional
node embedding.
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Figure 5.2: Edge embedding of Wikidata using Degree WINE TSNE de-
compositions of 100 dimensional node embedding. Edge embeddings are obtained by
concatenating the corresponding pairs of node embeddings.
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Figure 5.3: Computation time required by embedding: bar plot representing
in logarithmic scale the seconds necessary to run a node embedding on different graphs
and methods. A gap in the plot separates the bar plots relative to different graphs. Note
that not all node embedding methods are present for all graphs. Except for the Node-
label SPINE and WINE, all node embeddings are 100 dimensional. Considering the
relatively high number of evaluated methods throughout the bar plots visualisations,
we employ different patterns to help distinguish the ALPINE-based methods. More
specifically, we will use dots for performance relative to SPINE and parallel inclined
parallel lines for WINE. We denote that the time requirements of first and second-
order LINE are generally comparable with the time requirements of ALPINE methods.
Nevertheless, the former methods are neural networks and, as such, fall prey to many
of the scalability limitations detailed in the introduction, such as the computational
dependency of features. Conversely, 2-hops WINE and SPINE are extremely scalable
and can complete a 100 dimensional node embedding of Wikidata in 12 minutes and
42 minutes.

The first and second-order LINE methods achieve computation times comparable with
the ALPINE-based methods. However, they are neural networks and, as such, fall
prey to many of the scalability limitations detailed in the introduction, such as the
computational dependency of features. More specifically, ALPINE-based methods such
as Degree SPINE require f and 2f less memory than first and second-order LINE,
respectively.

On average, Degree-based SPINE and WINE are 152 times and 485 times faster than
our optimized version of DeepWalk SkipGram, while requiring ≈ 800 times less mem-
ory.

5.8.3 Node-label prediction experiments

For the node-label prediction task, we have considered three citation graphs commonly
used in the literature: Cora, CiteSeer and Pubmed Diabetes.

In citation graphs such as these, the nodes represent papers while the edges represent
citations between the various publications. The papers are labelled according to their
category.

Note that while additional node features exist relative to the three graphs, these have
been omitted as we have focused strictly on node embedding involving the graph topol-
ogy.

Cora [110] consists of 2708 scientific publications classified into one of seven classes.
The citation network consists of 5429 edges. CiteSeer [104] consists of 3312 scientific
publications classified into one of six classes. The citation network consists of 4732
edges. Pubmed Diabetes [84] consists of 19717 scientific publications from the PubMed
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database about diabetes classified into one of three classes. The citation network
consists of 44338 edges.

The node embedding models from the literature we consider for this comparison are
first and second-order LINE, DeepWalk (DW) GloVe, SkipGram (SG) and CBOW,
Walklets GloVe, SG and CBOW, NetMF and HOPE. The ALPINE-based models we
considered are Two-hops WINE and SPINE with landmarks based on degree and node
labels. Since this is a node-label classification task, using the training labels may lead to
some overfitting. Nevertheless, we employ categorical landmarks to provide a baseline.

All methods will compute 100-dimensional node embedding, except for WINE and
SPINE, using categorical landmarks which will compute node embedding with a num-
ber of features f equal to the number of classes in the given graph, therefore f ≪ 100.

We trained a Random Forest classifier model on the node embedding obtained by the
abovementioned methods, characterized by 1000 estimator trees and a maximum depth
of 10. All the models’ parameters are reported in the appendix sections I.1 and I.2.1.

We considered a 40/60 and 80/20 split of the training and test set to evaluate the
change, if any, in the performance with different percentages of available samples. We
have executed 10 stratified Monte Carlo holdouts, i.e. the proportions of node labels
are maintained between training and test set to avoid biases. As may be expected,
the performance generally improves with a larger percentage of training, except for
the ALPINE models with categorical landmarks, i.e. Label WINE and SPINE, which
experience overfitting. Label SPINE suffers more strongly from overfitting as by using
the training labels as landmark categories, the node embedding has a value of zero
when the node is of a given category, making this a forced application.

The two worst-performing models are SPINE using categorical landmarks, which overfit
for the reasons mentioned above, and second-order LINE. The performance of Degree-
based SPINE generally falls in between the considered SOTA models. Even though
the degree-based landmarks are a generic approach that is not mainly related to the
considered task, it provides a highly scalable baseline with consistently decent perfor-
mance.

5.8.4 Edge prediction

For the edge prediction task, we have considered three protein-protein interactions
graphs from the STRING dataset [118], namely Mus musculus, Homo sapiens and
Saccharomyces cerevisiae.

In protein-protein interaction graphs, the nodes represent proteins, while the edges
represent interactions between the various proteins. In STRING graphs, the edges are
weighted, representing a score between 100 and 1000, representing the confidence that
the edge exists. The authors of the STRING dataset suggest considering the edges
with a score of 700 or more.

The Mus musculus graph has 16633 nodes and 467530 edges, the Homo sapiens graph
has 16814 nodes and 505968 edges, and finally, the smaller Saccharomyces cerevisiae
graph, with 5966 nodes and 240772 edges.

Since the topology of the graphs changes in each holdout, it is necessary to recompute
the node embeddings for each different holdout. Thus, edge prediction tasks are much
more computationally intensive to evaluate, so we have restricted the node embed-
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Figure 5.4: Node label prediction: bar plots showing the average F1 score across 10
stratified holdouts, performance on the test set. The error bars represent the standard
deviation. The bars on the left are relative to a training-test split of 40/60, while 80/20
for those on the right. (a.) Average F1 scores relative to CiteSeer, (b.) Average F1
scores relative to Cora, (c.) Average F1 scores relative to Pubmed Diabetes.
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ding models considered in this task compared to those employed within the node-label
prediction task. Namely, we have dropped the models based on Walklets and ma-
trix factorization, HOPE and NetMF. All methods computed 100-dimensional node
embedding.

To represent a given edge, the relative node embedding have to be converted into a
vector representing the edge. Many possible methods exist to convert node embedding
into edge embedding, such as element-wise Hadamard product, average or euclidean
distance, and it is often unclear which one may be better, especially when applying
them to new node embedding algorithms. For this reason, we experimentally evaluate
a wide array of edge embedding methods.

More specifically, we evaluated both method producing a scalar value, i.e. cosine sim-
ilarity and euclidean distance, and the method producing an edge embedding vector,
i.e. node embedding concatenation (creating a 2f -dimensional edge embedding) and
element-wise Hadamard product, L1, L2, addition, subtraction, maximum and mini-
mum (creating f -dimensional edge embedding.)

While in the bar plot in figure 5.5, we only display for each node embedding method
and training percentage the best performing edge embedding method, we report all of
the performance obtained in the appendix I.3. The Hadamard product is employed
when no edge embedding method is specified in the legend.

We have employed a Perceptron with Sigmoid activation as an edge prediction model.
All the models’ parameters are reported in the appendix.

We considered a 25/75, 50/50 and 75/25 split of the training and test set edges to
evaluate the change, if any, in the performance with different percentages of available
samples. We have executed 10 connected Monte Carlo holdouts, i.e. the training
graph will always maintain the same connected components of the original graph to
avoid biases. Moreover, the negative edges for the evaluation have been sampled fol-
lowing a scale-free distribution to avoid biases related to the degrees. They must be
within the same connected component, as edges between two different connected com-
ponents result in trivial predictions using node embedding methods. The number of
non-existing edges, i.e. the negative class, sampled for the evaluation procedure has
the same cardinality as the existing edges, i.e. the positive class, in the test partition.

The performance of the ALPINE node embedding models using the degree-based land-
marks does not generally outperform the best state-of-the-art models in any of the
considered edge prediction tasks but falls in the middle ground across all tasks and
training percentages. The best performing ALPINE model appears to be the 2-hops
WINE model, with cosine similarity-based edge embedding. While landmark schemas
should be task-specific and not generic such as the one considered in this context,
the achieved performance and especially the minimum time and memory requirements
suggest it could be used as a baseline to evaluate newly proposed embedding methods.

We note that across all training splits and graphs, there appears to exist variation
in the optimal edge embedding methods identified with all non-ALPINE methods.
We identify as optimal edge embedding method for node embedding computed using
SPINE, which we recall computes shortest path distances, the element-wise L2 distance,
while for node embedding computed using 2-hops WINE, which we recall computes
unnormalized Jaccard indices, the cosine similarity. In both features, the optimal edge
embedding fits with the intuitive meaning of the feature.
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Figure 5.5: Edge prediction: bar plots showing the average F1 score across 10
connected holdouts, performance on the test set. The error bars represent the standard
deviation. In all plots, the bars on the left are relative to a training-test split of 25/75,
in the center 50/50 and those on the right 75/25. We report the average F1 scores
obtained with the best-performing edge embedding method for each node embedding
method and training percentage. Where no method is explicitly specified, Hadamard is
employed. (a.) Average F1 scores relative to the Homo sapiens graph, (b.) Average F1
scores relative to Mus musculus, and (c.) Average F1 scores relative to Saccharomyces
cerevisiae.
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The current implementation of ALPINE and its components do show clear computa-
tional advantages over existing methods, but it does not show a clear improvement in
task-related performance. This is because the landmark schemas used in the current
implementation of ALPINE are not optimal for the tasks being considered, and only
serve as a baseline for comparison.

To improve the task-related performance of ALPINE, the notion of landmarks can
be defined in a number of ways. One approach would be to use automated learning
algorithms to automatically identify the most appropriate node properties to use as
landmarks. This could involve using techniques such as reinforcement learning or
evolutionary algorithms to search for the optimal set of landmarks for a given task.

This could provide more information to the embedding algorithm and potentially im-
prove classifiers performance on tasks such as node-label prediction and edge prediction.

Overall, there are many ways in which landmarks may be created to improve the
task-related performance of ALPINE, and further research is needed to explore these
possibilities.

5.9 Theorems’ proofs

5.9.1 Constant amortized time push of a vector

Lemma 5.9.1. Pushing an element ε onto a vector a takes amortized constant time.

a.push(ε) ∈ Θ(1)

Proof. If the vector a is not full, appending a value takes constant time, otherwise,
it has linear worst-case complexity Θ(|a|) w.r.t. the size of the vector |a| due to the
need for reallocation, but this happens only once every |a| appends. Therefore, the
amortized time complexity is 1/Θ(|a|)(Θ(|a|)− 1)Θ(1) + Θ(|a|) = Θ(1).

Lemma 5.9.2. Pushing an element ε onto a vector a takes approximately constant
time on modern memory allocators.

a.push(ε) ∈ Θ(1)

Proof. While the initial allocation of a vector a takes Θ(|A|), the allocation for new
vectors can and often do reuse the allocations of previously freed vectors making re-
allocations events less frequent as the computation proceeds. Thus, in practice, we can
approximate its worst-case complexity as constant time.

Lemma 5.9.3. Pushing an element ε onto a parallel frontier ξ takes approximately
constant time on modern memory allocators.

ξ.push(ε) ∈ Θ(1)

Proof. The frontier is composed of t vectors, one for each thread, and as such, there is
no synchronization overhead, and the lemma 5.9.2 directly applies.

Lemma 5.9.4.
nn

en−1
≤ n! ≤ nn+1

en−1
∀n ∈ N
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Proof. Upperbound: Let’s first state this simple fact that holds for all k ≥ 0:

1 + k ≤ ek =⇒ k

k + 1
≤ e−

1
k+1

Since both 1+ k is non decreasing, we can construct two products that will eventually
yield our result:

n−1∏
k=1

k

(k + 1)
≤

n−1∏
k=1

e−
1

k+1

Thanks to the distributive property of multiplication, we can elevate to k+1 products
and thus the internal factors:

n−1∏
k=1

(
k

(k + 1)

)k+1

≤
n−1∏
k=1

(
e−

1
k+1

)k+1

The right-hand side can be trivially simplified:

n−1∏
k=1

(
k

(k + 1)

)k+1

≤
n−1∏
k=1

1

e
=

1

en−1

Let’s simplify the left-hand side. We can define:

ak =

(
k

(k + 1)

)k+1

= k
kk

(k + 1)k+1

So we can expand the product as:

akak+1 =

(
k

kk

������
(k + 1)k+1

)(
(k + 1)�

�����
(k + 1)k+1

(k + 2)k+2

)
= k(k + 1)

kk

(k + 2)k+2

So by induction:
γ∏

i=k

ai =
γ!

(k − 1)!

kk

(k + γ + 1)k+γ+1

Which when evalued with k = 0 and γ = n− 1 yields:

n−1∏
k=1

(
k

(k + 1)

)k+1

=
(n− 1)!

nn
=

n!

nn+1

Back to the disequation:

n!

nn+1
≤ 1

en−1
=⇒ n! ≤ nn+1

en−1

Lowerbound: Let’s first state this simple fact that holds for all k ≥ 0:

1 + k ≤ ek =⇒ k + 1

k
≤ e

1
k
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Since both 1+ k is non decreasing, we can construct two products that will eventually
yield our result:

n−1∏
k=1

k + 1

k
≤

n−1∏
k=1

e
1
k

Thanks to the distributive property of multiplication, we can elevate to k both internal
factors:

n−1∏
k=1

(
k + 1

k

)k

≤
n−1∏
k=1

(
e

1
k

)k

The right-hand side can be trivially simplified:

n−1∏
k=1

(
k + 1

k

)k

≤
n−1∏
k=1

e = en−1

Let’s simplify the left-hand side. We can define:

ak =

(
k + 1

k

)k

=
1

k

(k + 1)k

kk

So we can expand the product as:

akak+1 =

(
1

k
�����(k + 1)k

kk

)(
1

k + 1

(k + 2)k+1

������
(k + 1)k+1

)
=

1

k(k + 1)

(k + 2)k+1

kk

So by induction:
γ∏

i=k

ai =
(k − 1)!

γ!

(k + γ + 1)k+γ

kk

Which when evalued with k = 0 and γ = n− 1 yields:

n−1∏
k=1

(
k

(k + 1)

)k+1

=
nn−1

(n− 1)!
=

n

n

nn−1

(n− 1)!
=

nn

n!

Back to the inequality:
nn

n!
≤ en−1 =⇒ n! ≥ nn

en−1

Lemma 5.9.5. For any pair of integer n, k ∈ N such that n ≥ k it holds that:

n−k n!

(n− k)!
=

n!

(n− k)!nk
≤ ne−k
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Proof. we apply upper-bound from lemma 5.9.4 to the numerator factorial and the
lower-bound from lemma 5.9.4 to the factorial in the denominator to obtain an upper-
bound of

(
n
k

)
:

n!

(n− k)!nk
≤ n−k

nn+1

en−1

(n−k)n−k

en−k−1

= n−kn
n+1

en−1

en−k−1

(n− k)n−k

= n−k e
n−k−1

en−1

nn+1

(n− k)n−k

= n−k 1

ek
nn+1

(n− k)n−k

≤ n−k 1

ek
nn+1

nn−k

= n−kn
k+1

ek

= ne−k

Therefore:
n!

(n− k)!nk
≤ ne−k

Lemma 5.9.6. The probability p that t threads have c collision writing to uniformly
sampled elements from a vector of size |V |, where each values uses mV bits is:

p =
l!

(l − t+ c)!lt−c
≤ Lec−t

where l = |V |/⌈64bytes/mV bits⌉ is the number of cache-lines needed to to store contiguosly
the |V | values on x86_64 CPUS. This theorem holds if, and only if, the number of
cache-lines L is bigger than the number of threads, i.e. ⌈|V |/k⌉ ≥ t− c, otherwise P = 1
due to the pigeon-hole principle.

Proof. An atomic operation might fail if, and only if, two or more threads write to the
same cache-line, which on x86_64 is 64 bytes. Thus on the same cache-line we will
have the bits of k = ⌈64bytes/mV bits⌉ different features. Therefore we can simplify the
problem to the probability that each thread chooses a different cache-line, and the |V |
features will be stored contiguously using |V |/k cache-lines.

p =
l!

(l − t+ c)!lt−c

e.g. the server used for all the experiment has t = 24 threads, WikiData has 1.2G
nodes, therefore mV = ⌈log2(1.2G)⌉ = 31bits. So on a cache-line there are bits of
k = ⌈64bytes/31bits⌉ = 3 features.

94



P =

(1.2G/3)!
(1.2G/3−24)!

(1.2G/3)24
≈ 4.537× 10182

2.815× 10206
≈ 1.611× 10−24

Therefore, using lemma 5.9.5 we obtain:

Lemma 5.9.7. The expected number of iterations k a thread will have to execute the
CAS operation to win a tie is:

p(k, t) ≥
(
1− 1

l

)k

Proof. The CAS operation is the instruction LOCK CMPXCHG on x86_64 CPUs.

The hardware usually does not provide any mechanism to avoid lock-starvation 1,
Therefore, if two or more threads try to execute a CAS on the same memory cell, only
one will succeed, and all the others will have to try again. Thus, a thread will retry to
execute CAS until it succeeds. Once a competitor thread wins the tie, it will have to
"sample" a new cache line to write to, so it might or might not be the same. Therefore
the probability of winning in the beginning is:

p(0, t) =
l!

(l − t)!lt
p(k, 1) = 1

Each time we fail, the probability follows this recurrence relation:

p(k, t) =
1

l
p(k − 1, t) +

l − 1

l
p(k − 1, t− 1)

Therefore asymptotically, we know that:

p(k, t) ≥ l − 1

l
p(k − 1, t− 1) =

(
l − 1

l

)k

=

(
1− 1

l

)k

5.9.2 Degree landmarks complexities proof

Theorem 5.9.8. 6.1 The worst-case time and memory upper bounds for algorithm 3
are Θ(|V |)+Tsort(|V |)+O (t) and 2mV ·|V |+Ssort(|V |)+O (t) bits = Θ(|V | log|V |)+O(t),
respectively, if mf = O(mV ).

Proof. Algorithm 3 begins with the allocation of the nodes vector, which takes Θ(|V |)
time and mV |V | + O(1) (line 1). Then we sort it in-place, which by definition (sec-
tion 5.7.2) takes Tsort(|V |) time and Ssort(|V |) bits (line 2). The main loop takes Θ(|V |)
time as all its constituent operations take constant time (line 6). More specifically,
the computation of the degree is guaranteed to be constant-time thanks to the CSR
assumption, and the push on the vector L takes amortized constant time (lemma 5.9.2).

1Intel Manual 3A Section 8.1 LOCKED ATOMIC OPERATIONS
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The landmark L is a subset of nodes L ⊆ V =⇒ |L| ≤ |V | and thus its memory
requirements are mV |L| ≤ mV |V |.

All other lines take constant time and memory due to the PRAM assumption.

Therefore the total time complexity is:

Θ(|V |)︸ ︷︷ ︸
nodes allocation

+Tsort(|V |)︸ ︷︷ ︸
sort

+Θ(|V |)︸ ︷︷ ︸
loop

+O (t) = O(|V | log|V |) +O(t)

The total memory complexity is:

mV |V |︸ ︷︷ ︸
nodes

+mV |V |︸ ︷︷ ︸
landmark

+Ssort(|V |)︸ ︷︷ ︸
sort

+O (t) = Θ(|V | log|V |) +O(t)

The O(t) terms cover the cost of time to communicate the processors and the stack
and ancillary data structures needed for each processor.

5.9.3 Categorical landmarks complexities proof

Theorem 5.9.9. 6.2 The worst-case time and memory upper bounds of algorithm 4
are Θ(|C| · |V |/t) and mV · maxk∈C |{v | c(v) = k}|bits = Θ(|V | log|V |), respectively, if
mf = O(mV ).

Proof. The push operation in the core of the inner loop of Algorithm 4 is executed in
amortized constant time. The inner loop is executed |V | times. We assume that the
lookup of the class of each node takes constant time and that the vector L is practically
implemented as a parallel frontier which has a constant-time push (lemma 5.9.3). Since
each iteration of the inner loop is independent of one another, it can be parallelized
across all t threads. Therefore, the time complexity of the inner loop is Θ(|V |/t).

The outer loop is executed |C| times, and, since in the inner loop each iteration is
independent, the total time complexity is:

1

t
· |C|︸︷︷︸

outer

· |V |︸︷︷︸
inner

·Θ(1) +O(t) = Θ(|C||V |/t)

We can reuse the same frontier for all the |C| landmarks, therefore its maximum size
is maxk∈C{v : c(v) = k} ≤ |V |. Therefore, its memory requirement in bits is:

mV max
k∈C
{v : c(v) = k} ≤ mV |V | = Θ(|V | log|V |)

5.9.4 SPINE complexities proof

Theorem 5.9.10. 6.3 The worst-case time and memory upper bounds of algorithm 5
are Tλ = O(|V |+ |E|) and Sλ = (mV +mf )|V | bits, respectively.
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Proof. The algorithm 5 starts with the allocation of the distances vector D initialized
with MAX = 2mf − 1, which requires Θ(|V |) time and mf |V | bits (line 1).

Then we initialize the distances of the nodes v included in the landmark L, which can
be concurrently executed by upwards to t ≤ |L| threads, which requires Θ(|L|/t) time
(lines 2 and 3).

Pushing an element onto the frontier ξTMP requires constant time (lemma 5.9.3), and
the atomic saturating additions have amortized constant time (lemma 5.9.7).

The worst-case time complexity of the core loop (lines 6 to 16) is O(|V | + |E|) as at
most we can iterating across all |V | nodes and their |E| edges once.

In the worst case, the union of the two frontiers ξ and ξTMP will collect all nodes in
the graph, hence |ξ| + |ξTMP| ≤ |V |, and the relative memory requirements will be
O(mV |V |).

All other operations take constant time and memory due to the PRAM assumption.

Therefore, the synthetic worst-case time complexity is:

Θ(|V |+ |L|/t)︸ ︷︷ ︸
φL init

+O(|V |+ |E|)︸ ︷︷ ︸
main loop

= O(|V |+ |E|)

Furthermore, the worst-case space requirements are:

mf · |V |︸ ︷︷ ︸
φL

+ mV · |V |︸ ︷︷ ︸
Frontiers ξ + ξTMP

= (mf +mV ) |V |

5.9.5 WINE complexities proof

ω-Hops WINE complexities proof

Theorem 5.9.11. 6.4 The worst-case time and memory upper bounds of algorithm 6
are Tλ = O(ω(|V |+|E|)) and Sλ = (2·mV +3·mf )|V | = Θ(|V | log|V |) bits, respectively,
if mf = O(mV ).

Proof. The algorithm starts with the allocation of the co-occurrence counts vectors
φL and δ, both with size |φL| = |δ| = |V |, which are both initialized with the user-
preference vector uL associated to the landmark L. The allocation requires Θ(|V |)
time, while the initialization to uL requires Θ(|L|/t), which tallies to Θ(|V |+ |L|/t) time.
Moreover, the allocation of the two vectors requires 2 ·mf |V | bits (line 1).

In the main loop (lines 3 to 13) starts with the initialization of the variations vector δ,
which requires Θ(|V |) time and mV · |V | bits.

In the worst case, the frontier ξTMP will collect all nodes in the graph, hence |ξ| ≤ |V |,
and the relative memory requirements will be O(mV |V |).

In the core loop (lines 3 to 11), pushing an element onto the frontier ξTMP is in constant
time (lemma 5.9.3), and the atomic saturating additions have amortized constant time
(lemma 5.9.7). Therefore, the worst-case time complexity of the core loop is O(|L|+|E|)
as by iterating across all elements in the frontier ξ in the worst case, we may iterate
across all the graph edges sequentially, such as in a star graph where the landmark
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contains only the center of the star. When |ξ| = 1 there is no concurrent execution,
and while the exploration of the neighbours N (v) of nodes v ∈ ξ may be possible in
parallel, it introduces a considerable implementation complexity.

The core loop is repeated ω times, hence the main loop has worst case complexity
O(ω(|V |+ |E|).

All other operations take constant time and memory due to the PRAM assumption.

Therefore, the synthetic worst-case time complexity is:

Θ(|V |+ |L|/t)︸ ︷︷ ︸
φL and δ init

+O(ω(|V |+ |E|))︸ ︷︷ ︸
main loop

= O(ω(|V |+ |E|))

Furthermore, the worst-case space requirements are:

mf · |V |︸ ︷︷ ︸
φL

+mf · |V |︸ ︷︷ ︸
Counts δ

+ mf · |V |︸ ︷︷ ︸
Variations δTMP

+mV · |V |︸ ︷︷ ︸
Frontier ξ

=

= (3mf +mV ) |V | = Θ(|V |(log|V |+mf )

2-Hops WINE complexities proof

Theorem 5.9.12. 6.5 The worst-case time and memory upper bounds of algorithm 7
are O(|V |+ |E|) and (mV + 2 ·mf )|V | bits, respectively.

Proof. The algorithm starts with the allocation of the co-occurrence counts vector φL,
with size |φL| = |V |, and therefore requires Θ(|V |) time and mf |V | bits (line 1).

In the first loop (lines 3 to 8), pushing an element onto the frontier ξ is in constant
time (lemma 5.9.3), and the atomic saturating additions have amortized constant time
(lemma 5.9.7). Therefore, the worst-case time complexity of the first loop is O(|L|+|E|)
as by iterating across all landmarks in the worst case, we may iterate across all the
graph edges sequentially, such as in a star graph where the landmark contains only
the center of the star. When |L| = 1 there is no concurrent execution, and while
the exploration of the neighbours N (v) of nodes v ∈ ξ may be possible in parallel, it
introduces a considerable implementation complexity.

In the worst case, the frontier ξ will collect all nodes in the graph, hence |ξ| ≤ |V |, and
the relative memory requirements will be O(mV |V |).

In the subsequent loop, we populate in parallel the frontier δTMP, where the concurrent
push has constant time complexity (lemma 5.9.3). Thus, as |ξ| ≤ |V |, its worst case
time and memory complexities are O(V/t) and mf |V | bits, respectively.

In the second loop, we iterate in parallel across the two frontiers ξ and δ, which have at
most length |V |. As per the first loop, the saturating atomic additions have amortized
constant time (lemma 5.9.7). Therefore, the worst-case time complexity of the second
loop is O(|V |+ |E|).

All other operations take constant time and memory due to the PRAM assumption.
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Therefore, the synthetic worst-case time complexity is:

O(|L|+ |E|)︸ ︷︷ ︸
first loop

+O(|V |+ |E|)︸ ︷︷ ︸
second loop

+Θ(|V |)︸ ︷︷ ︸
φL

+ O(|V |/t)︸ ︷︷ ︸
populate δTMP

=

= O(|V |+ |E|)

Moreover, the worst-case space requirements are:

mf · |V |︸ ︷︷ ︸
φL

+ mf · |V |︸ ︷︷ ︸
Variations δTMP

+mV · |V |︸ ︷︷ ︸
Frontier ξ

=

= (2mf +mV ) |V | = Θ(|V |(log|V |+mf )
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Conclusions and future work

The first contribution of this thesis is the development of GRAPE, a software library
designed to efficiently execute graph representation learning tasks, such as node em-
bedding, edge prediction, and node-label prediction, on large graphs. GRAPE has been
implemented in Rust with Python bindings to enhance user accessibility, and it focuses
on scalability, enabling the execution of graph representation learning tasks on large
graphs even on commodity hardware. This is achieved through holistic attention to
synchronization-free parallelism, instruction-level parallelism based on SSE and AVX,
efficient data structures, numerical stability, and mixed precision and MMAP where
necessary. Among the many high-performance algorithms provided by GRAPE, the li-
brary includes approximated weighted DeepWalk, Walklets, and Node2Vec embedding
models, which are capable of processing graphs containing high-degree nodes (degree
> 106), an otherwise infeasible task using the corresponding exact algorithms, while
still achieving edge prediction performance comparable to the exact versions. In addi-
tion, GRAPE can optionally use succinct data structures based on Elias-Fano to load
graphs that would not otherwise fit in main memory, with memory usage close to the
theoretical minimum.

The scalability improvements offered by GRAPE are particularly important for an-
alyzing real-world biomedical knowledge graphs, which represent a central machine
learning and computational biology challenge and often contain millions of nodes and
edges that are beyond the capabilities of previous methods and software implementa-
tions. Compared to state-of-the-art algorithmic and software resources, GRAPE shows
orders of magnitude improvements in empirical space and time complexity, as well as
a statistically significant improvement in edge prediction and node label prediction
performance.

GRAPE provides over 80,000 graphs from the literature and other sources, standardized
interfaces for integrating third-party libraries, 61 node embedding methods, 25 infer-
ence models, and 3 modular pipelines to enable a FAIR and reproducible comparison of
methods and libraries for graph processing and embedding. The scaling properties of
GRAPE in relation to state-of-the-art resources have been evaluated through extensive
experiments with real-world large graphs, including Wikipedia, the Comparative Tox-
icogenomic Database (CTD), and a large biomedical Knowledge Graph generated by
PheKnowLator. GRAPE significantly outperforms state-of-the-art libraries in terms of
empirical time and space complexity and edge prediction performance, and it is able
to process large graphs even when other competing state-of-the-art resources fail.

As a second contribution for efficiently processing and analyzing big graphs, this the-
sis proposes a novel algorithmic framework, efficiently implemented in GRAPE, that
we named ALPINE: Abstract Landmark Properties-Inferred Node Embedding. The
breakthrough characteristics of this algorithmic framework allow us to deal with several
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issues affecting SOTA GRL methods:

1. The embedding features are independently computed, each from the others, thus
overcoming the space and time complexity limitations due to their dependent
computation.

2. Feature computation is based on "landmarks", i.e. sets of nodes representing
meaningful concepts about the structure or the semantics of the underlying graph,
thus assuring the explainability of the embeddings.

3. Small integers are used for embedded feature values: this assures a small mem-
ory footprint, hardware acceleration, and a good compression ratio because of
the scale-free distribution of node degrees that often characterize biomedical net-
works.

4. ALPINE provides a "democratic" feature representation, thus avoiding the bias
towards high degree nodes characteristic of embedding methods based on topo-
logical sampling.

Besides the algorithmic framework, we also provide two concrete ALPINE implemen-
tations, namely SPINE (Shortest Paths Inferred Node Embedding), based on the ef-
ficient computation of the shortest path distance from each node of the graph to the
landmarks, and WINE (Windows Inferred Node Embedding), based on the efficient
computation of the co-occurrences of each node and the landmarks in a breadth-first
search within windows of a given size.

The presented ALPINE-based algorithms show outstanding scalability, allowing for
unprecedented scale even on commodity desktop computers. The presented examples
of landmark generation schemas achieve competitive performance with other state-of-
the-art methods.

Nevertheless both GRAPE and ALPINE present drawbacks and limitations that we
plan to consider in ongoing and future research work:

• GRAPE does not support dynamic graphs, i.e. efficient in-place addition and
removal of nodes and edges without allocating a new graph. Generally, dynamic
graph data structures have significantly higher memory requirements than static
data structures and are outside the scope of this library. Hornet [20] is a notable
graph library supporting efficient dynamic graphs.

• While the pipelines for easily designing and executing reproducible node-label,
edge-label and edge prediction experiments can be readily executed in parallel
across SLURM clusters and some of the supported node embedding models can
be readily distributed across SLURM clusters, the library does not support any
model designed for distributed computing systems such as Apache SPARK [114],
Map-Reduce [35] or HADOOP [17]. Most commonly, distribution across com-
puting clusters of node embedding models is difficult, requires random access to
all values in the embedding, and is generally obtained through node partitioning
and weight synchronization routines.

• GRAPE supports weighted heterogeneous multigraphs with multi-labelled nodes,
i.e. there can be multiple edges between any two given nodes, the edges can
be labelled and weighted, and the nodes can belong to multiple classes. Both
the edges and nodes may have unknown classes. The generic data structures
adopted for these metadata cover many use cases but are not optimized for specific
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applications and can be significantly improved. Furthermore, use cases such as
multiple weights, unknown weights, or multiple labels per single edge are not yet
supported. We will expand the support for these features and, more generally,
for more efficient data structures in future work.

• Some knowledge graphs provided variable metadata for nodes, edges, and in some
instances, even for node and edge labels. Such highly variable metadata, which
often contains many unknown (missing) values, require either generic inefficient
data structures or efficient ad-hoc ones, which are highly dependent on the use
case. Either use cases are currently outside the scope of GRAPE.

• The library comes equipped with node embedding, node-label, edge-label and
edge prediction but does not currently include models for edge-weight prediction.

• Currently, GRAPE does not come equipped with models able to handle dis-
tributed gradient computation, which is commonly employed for anonymization
systems.

• While the ALPINE algorithmic framework has been designed to allow straight-
forward feature engineering by selecting task-specific landmarks, this feature has
not yet been explored concretely. In future work, we plan to collaborate with
field experts to design ad-hoc landmark schemas for network medicine tasks on
large graphs.

• ALPINE-based methods can compute node embedding for graphs with billions
of nodes on commodity desktops, but currently, there are no classifier models for
node-label or edge prediction able to scale on such large graphs. Future work will
include models able to execute on such large instances.

• The orders of magnitude efficiency improvements realized by GRAPE opens the
possibility for deploying real-time node embedding and classifiers to support the
development of large biomedical ontologies. Moreover, it allows large-scale hyper-
parameters search for high-performance node embedding model selection.

• The ALPINE-based methods and, more generally, the GRAPE library are ei-
ther actively used or planned to be used in several network medicine projects.
More specifically, GRAPE is being used to research and measure biases present
in synthetic lethality networks to predict synthetic lethality interactions for can-
cer therapy 2. Moreover the methods proposed in this thesis can be used to
significantly increase the size of the graphs employed to compute the Jaccard
and Resnik scores composing the PhenoDigm scores [113] and GRAPE will be
applied to drug target and drug repurposing tasks within the "National Center
for Gene Therapy and Drugs based on RNA Technology" project funded by the
NextGeneratioEU programme.

In conclusion both GRAPE and ALPINE represent a significant contribute to the
design and implementation of scalable algorithms and software resources for graph
processing and embedding, and we plan to further develop this research line to overcome
the drawbacks and limitations previously discussed and to apply GRAPE and ALPINE
to relevant bio-medical problems in the context of Network Medicine.

2In collaboration with Jackson Lab, USA

102



Appendix A

Efficient cumulative sum computation

The cumulative sum, also called prefix sum, is one of the most known examples in the
field of parallel computing; in Ensmallen it is fundamental during the computation of
random walks, to compute the un-normalized cumulative sum of the un-normalized
transition probabilities to each node.

To obtain efficient computations, Ensmallen’s implementation exploits the Streaming
SIMD Extensions (SSE 128-bit) instruction set, which is an extension of the SIMD
instruction set for the x86_64 architecture. CPUs with SSE support have a special
set of 8 128-bits registers, on which vector operations may be executed, that operate
in parallel on 4 floats, therefore increasing the throughput by 4 times. The algorithm
is based on two SSE instructions: vaddps (Fig. A.1a), which provides element-wise
sum of two registers, each containing 4 32-bits floats, and vpalignr (Fig. A.1b), which
concatenate two registers into a temporary register, shifts the result by a chosen number
of bytes and then returns the lower 128-bits. The generalization of the algorithm for
wider instruction sets such as AVX2 (256-bit) or AVX512 (512-bit) is limited by the
lack of multi-lane logical shifts (the vpalignr instruction) which can be avoided by using
opportunely shuffle and permutation instructions which introduces additional latency
so the throughput don’t scales linearly. While this does not improve the complexity
of the algorithm it is almost ten times faster than the naive implementation and five
time faster than the unrolled version. Loop unrolling [59] is an optimization technique
for tight loops which increase the number of steps executed for each cycle, this reduces
the overhead for the loop, allows to better exploit the CPU super-scalarity and reduces
the number of branches. This technique increase the size of the function and thus if
abused might degrade performances due to cache missing.
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(a) vaddps xmm0, xmm1, xmm2 (b) vpalignr xmm0, xmm1, xmm2, 2

Figure A.1: The two fundamental SIMD instructions for the prefix sum. Left: vaddps
computes the elementwise sum of two registers, each containing 4 floats represented by 32 bits. Right:
vpalignr concatenates two registers, shifts the result by a number of bytes provided as input and
returns the lower 128-bits.

Figure A.2: SIMD prefix sum algorithm. To compute the prefix-sum of 24 float values, the
prefix-sum we implemented uses mainly the vaddps and the vpalignr instructions. Note that, in the
diagram the vpalignr instruction is represented in a compact way.
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; first stage
vaddps xmm1, xmm0, xmm1
vaddps xmm2, xmm2, xmm3
vaddps xmm5, xmm4, xmm5
; second stage
vaddps xmm5, xmm3, xmm5
vaddps xmm4, xmm3, xmm4
vaddps xmm3, xmm1, xmm3
vaddps xmm2, xmm1, xmm2
; third stage
vaddps xmm5, xmm1, xmm5
vaddps xmm4, xmm1, xmm4
; fourth stage
vpalignr xmm7, xmm0, xmm6, 12
vpalignr xmm8, xmm1, xmm0, 12
vpalignr xmm9, xmm2, xmm1, 12
vpalignr xmm10, xmm3, xmm2, 12
vpalignr xmm11, xmm4, xmm3, 12
vpalignr xmm12, xmm5, xmm4, 12
vaddps xmm0, xmm0, xmm7
vaddps xmm1, xmm1, xmm8
vaddps xmm2, xmm2, xmm9
vaddps xmm3, xmm3, xmm10
vaddps xmm4, xmm4, xmm11
vaddps xmm5, xmm5, xmm12
; fifth stage
vpalignr xmm7, xmm0, xmm6, 8
vpalignr xmm8, xmm1, xmm0, 8
vpalignr xmm9, xmm2, xmm1, 8
vpalignr xmm10, xmm3, xmm2, 8
vpalignr xmm11, xmm4, xmm3, 8
vpalignr xmm12, xmm5, xmm4, 8
vaddps xmm0, xmm0, xmm7
vaddps xmm1, xmm1, xmm8
vaddps xmm2, xmm2, xmm9
vaddps xmm3, xmm3, xmm10
vaddps xmm4, xmm4, xmm11
vaddps xmm5, xmm5, xmm12

Figure A.3: Inner core of the SIMD prefix sum algorithm This code assumes that in the
registers from xmm0 to xmm5 are loaded with the data and that xmm6 is zero filled. At the end of the
computation, the result will also be in the registers from xmm0 to xmm5. We need 13 xmm registers
but the SSE standard only provide 8 of them, luckily the AVX expansion increase this number to 16,
thus making this algorithm possible.

105



Appendix B

Faster Pseudo-Random Numbers
Generators (Vectorized xorshift)

Many of the algorithms inside of Ensmallen, e.g. the sampling of destination nodes
during the random walk, or the generation of random negative edges for Skipgram [79]
model, rely on the generation of random numbers.

Therefore, a random number generator algorithm could be a bottleneck if not effi-
ciently implemented. To guarantee efficiency, in Ensmallen we use the two following
fast pseudo-random number generators, Vigna’s Xoshiro256+ [13] and the Marsaglia’s
Xorshift [76]. Xoshiro256+ has a shallower dependencies chain than Xorshift, which
results in lower latency, while Xorshift has fewer instruction than Xoshiro256+, so that
it can be implemented to achieve higher throughput. Therefore, Xoshiro256+ is faster
in the generation of a single random value, e.g. during the sampling of the destina-
tion node in a step of the random walk. On the other side, Xorshift is faster in the
generation of multiple random numbers, e.g. when generating the random negative
edges for Skipgram. Modern CPUs allow to execute up to 4 different independent in-
structions in the same cycle and can have eight or more memory requests running at a
time, so a common way to exploit the super-scalarity of modern CPUs and out-of-order
execution is to interleave different instances of the same algorithm. This reduces the
importance of the depth of dependency chain of an algorithm and favors the number of
instructions. For these reasons, we interleave eight different instances of Xorshift and,
to further improve its throughput, we implemented a vectorized version which exploits
Intel’s AVX2 instruction sets to execute 4 instances in parallel. An non-interleaved
example of the vectorized Xorshift is illustrated in Fig. B.1. With the aforementioned
implementation, we achieve a throughput of 256 random bytes (32 64-bits integers) at
the cost of 4 concurrent cache misses (which are adjacent so the values should already
be in the L1 cache). The complete implementation is available in figures B.3 and fig-
ures B.4; it achieves a throughput of more than 20 times higher than standard methods
as shown in table B.1.
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pub fn xorshift(mut seed: u64) -> u64 {
seed ^= seed << 13;
seed ^= seed >> 7;
seed ^= seed << 17;
seed

}

Figure B.1: The classic xorshift algorithm.

vmovdqu ymm0, ymmword ptr [rsi]
vpsllq ymm1, ymm0, 13
vpxor ymm0, ymm0, ymm1
vpsrlq ymm1, ymm0, 7
vpxor ymm0, ymm0, ymm1
vpsllq ymm1, ymm0, 17
vpxor ymm0, ymm0, ymm1
vmovdqu ymmword ptr [rsi], ymm0

Figure B.2: The vectorized xorshift which uses AVX2 to execute, through data parallellism, 4
64bits xorshifts.

Table B.1: The time taken by each method to generate a batch 32000 random 64-bits integers.
This benchmark was executed on a single thread using Rust’s default benchmark library which collects
at least 50 samples. The performance difference, between the two considered CPUs, might be due to
the fact that the AVX2 logical shifts instructions (vpsllq and vpsrlq) on Coffe Lake have twice the
throughput when compared to Zen2.

I7-8750H 4.1Ghz Ryzen 3900x 4.0Ghz
Method Total Time (µs) Throughput

(
GB
s

)
Total Time (µs) Throughput

(
GB
s

)
thread rng 367.3 (±20.8) 0.7 349.3 (±20.66) 0.73
xorshift 48.1 (±7.89) 5.3 48.0 (±0.067) 5.3
xorshift avx2 36.9 (±1.88) 6.9 48.0 (±0.043) 5.3
xorshift avx2 4 interleaved 9.6 (±0.76) 26.7 14.5 (±0.014) 17.6
xorshift avx2 8 interleaved 10.0 (±1.07) 25.6 14.0 (±0.353) 18.3
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; Load the data
vmovdqu ymm0, ymmword ptr [rsi]
vmovdqu ymm2, ymmword ptr [rsi + 32]
vmovdqu ymm4, ymmword ptr [rsi + 64]
vmovdqu ymm6, ymmword ptr [rsi + 96]
vmovdqu ymm8, ymmword ptr [rsi + 128]
vmovdqu ymm10, ymmword ptr [rsi + 160]
vmovdqu ymm12, ymmword ptr [rsi + 192]
vmovdqu ymm14, ymmword ptr [rsi + 224]
; << 13
vpsllq ymm1, ymm0, 13
vpsllq ymm3, ymm2, 13
vpsllq ymm5, ymm4, 13
vpsllq ymm7, ymm6, 13
vpsllq ymm9, ymm8, 13
vpsllq ymm11, ymm10, 13
vpsllq ymm13, ymm12, 13
vpsllq ymm15, ymm14, 13
; ^
vpxor ymm0, ymm0, ymm1
vpxor ymm2, ymm2, ymm3
vpxor ymm4, ymm4, ymm5
vpxor ymm6, ymm6, ymm7
vpxor ymm8, ymm9, ymm1
vpxor ymm10, ymm11, ymm3
vpxor ymm12, ymm13, ymm5
vpxor ymm14, ymm15, ymm7
; >> 7
vpsrlq ymm1, ymm0, 7
vpsrlq ymm3, ymm2, 7
vpsrlq ymm5, ymm4, 7
vpsrlq ymm7, ymm6, 7
vpsrlq ymm9, ymm8, 7
vpsrlq ymm11, ymm10, 7
vpsrlq ymm13, ymm12, 7
vpsrlq ymm15, ymm14, 7

Figure B.3: First part of the implementation of the 8 way interleaved AVX2 xorshift. It uses the
vectorized xorshift.
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; ^
vpxor ymm0, ymm0, ymm1
vpxor ymm2, ymm2, ymm3
vpxor ymm4, ymm4, ymm5
vpxor ymm6, ymm6, ymm7
vpxor ymm8, ymm9, ymm1
vpxor ymm10, ymm11, ymm3
vpxor ymm12, ymm13, ymm5
vpxor ymm14, ymm15, ymm7
; << 17
vpsllq ymm1, ymm0, 17
vpsllq ymm3, ymm2, 17
vpsllq ymm5, ymm4, 17
vpsllq ymm7, ymm6, 17
vpsllq ymm9, ymm8, 17
vpsllq ymm11, ymm10, 17
vpsllq ymm13, ymm12, 17
vpsllq ymm15, ymm14, 17
; ^
vpxor ymm0, ymm0, ymm1
vpxor ymm2, ymm2, ymm3
vpxor ymm4, ymm4, ymm5
vpxor ymm6, ymm6, ymm7
vpxor ymm8, ymm9, ymm1
vpxor ymm10, ymm11, ymm3
vpxor ymm12, ymm13, ymm5
vpxor ymm14, ymm15, ymm7
; Store the data
vmovdqu ymmword ptr [rdi], ymm0
vmovdqu ymmword ptr [rdi + 32], ymm2
vmovdqu ymmword ptr [rdi + 64], ymm4
vmovdqu ymmword ptr [rdi + 96], ymm6
vmovdqu ymmword ptr [rdi + 128], ymm8
vmovdqu ymmword ptr [rdi + 160], ymm10
vmovdqu ymmword ptr [rdi + 192], ymm12
vmovdqu ymmword ptr [rdi + 224], ymm14

Figure B.4: Second part of the implementation of the 8 way interleaved AVX2 xorshift. It uses
the vectorized xorshift.
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Appendix C

Alias method

The alias method [65] efficiently samples k integers from a discrete probability distri-
bution. The algorithm is used since it requires O(n) steps in the pre-processing phase
(when Vose’s algorithm is used [126]) and O(1) steps for each point sampling. The al-
gorithm is sketched in figure C.1, using a discrete probability distribution [p0, . . . , pn−1]
where each pi is the probability of sampling an integer i ∈ [0, . . . , n−1] (n = 4 in figure
C.1). The heights of the bars correspond to [p0, . . . , pn−1] and their width is one, so
that the histogram area is 1. Point sampling from the depicted distribution requires
to draw a random value 0 ≤ u ≤ 1 and find the segment (from p0 to p1, from p1 to p2,
and so on) where u falls. This check could be performed by the following comparisons:
if u < p0 then pick 0; otherwise, if p0 ≤ u < p0 + p1 then sample 1; otherwise, if
p0 + p1 ≤ u < p0 + p1 + p2 then sample 2; otherwise if u ≥ p0 + p1 + p2 then sample
3. This would be computationally expensive since each sampling would require, in the
worst case, n−1 comparisons. To reduce the computational complexity, a more efficient
algorithm could be designed that draws 2D points falling in the gray rectangle shown in
figure C.1-b, where each bar represent the probability of sampling of one integer value
according to the discrete probability distribution, or, in other words, each bar repre-
sents a sampling event. The algorithm needs only to check whether the drawn point
falls in any of the bars. To this aim, an iterative process could be used that exploits
only an indexed array with the discrete probabilities Pvec = [p0, . . . , pn−1] of each inte-
ger. Each iteration should draw two values: an index 0 ≤ s ≤ n, that selects one of the
elements of the array Pvec, and a random value 0 ≤ u ≤ 1. The drawing continues until
the drawn s and u are such that u ≤ Pvec[s], which leads to sampling s. In figure C.1-b
the index s = 1 and the value (corresponding to the gray dot) u ≥ Pvec[1] correspond
to a miss (the gray dot) that does not allow selecting 1 as the drawn value; conversely,
the green dot corresponds to a drawn index s = 3 and a drawn u ≤ Pvec[3], which
allows selecting the value 3 as the sampled value. However, as shown in figure C.1-b,
usage the aforementioned method has the disadvantage of having an "empty space"
that would cause repeated iterations, therefore increasing the computational time. To
guarantee success at each draws, in [65] authors propose composing a rectangle where
the probabilities ("rectangles" in the figure) are rearranged by splitting them, so as
no empty spaces are left and each column contains at (figure C.1-c). In this way, if
each draw of a 2D point would always fall into a decision region, therefore bringing
to a decision. To this aim, the alias method applies a pre-processing phase, generally
performed through Vose’s algorithm [126] that, given the range [0−max] among which
to sample, and the number n of integers to sample, computes two indexed vectors:
the separating probability vector Psep = [psep0 , . . . , psepn−1] , and the "other class" (also
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Figure C.1: The Alias method. Left: a discrete probability distribution. Center: a quasi-
efficient sampling method containing empty spaces. Right: the alias method.

called alias) vector OC = [oc0, . . . , ocn−1]. The algorithm then draws a unique point
0 ≤ x ≤ 1, from which it then computes an integer s =

⌊
nx

⌋
, uniformly distributed in

0, 2, . . . , n− 1, and a value u = nx+1−s uniformly distributed on [0, 1). If u ≤ Psep[s]
the alias method samples s, otherwise it samples OC[s]. Though efficient in the sam-
pling process, when the range from which to sample becomes high, the pre-processing
phase for computing the separating probabilities and the alias vector is impractical.
Therefore, in Ensmallen we have implemented the SUSS algorithm, described in 2.3.2.

C.1 STRING and HPO datasets used for the edge-
prediction experiments

HomoSapiens

The undirected graph HomoSapiens has 19.57K nodes and 252.98K edges. The graph
contains 2.85K connected components (of which 2.75K are disconnected nodes), with
the largest one containing 16.58K nodes and the smallest one containing a single
node. The RAM requirements for the nodes and edges data structures are 2.67MB
and 782.89KB respectively.

Degree centrality The minimum node degree is 0, the maximum node degree is
747, the mode degree is 0, the mean degree is 25.86 and the node degree median is
9. The nodes with the highest degree centrality are ENSP00000272317 (degree 747),
ENSP00000269305 (degree 723), ENSP00000388107 (degree 669), ENSP00000441543
(degree 620) and ENSP00000362680 (degree 572).

Weights The minimum edge weight is 700, the maximum edge weight is 999 and
the total edge weight is 437919420. The RAM requirement for the edge weights data
structure is 2.02MB.

Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.
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Singleton nodes A singleton node is a node disconnected from all other nodes. We
have detected 2.75K singleton nodes in the graph, involving a total of 2.75K nodes
(14.07%). The detected singleton nodes are:

• ENSP00000005995

• ENSP00000006526

• ENSP00000006724

• ENSP00000007735

• ENSP00000010299

• ENSP00000039989

• ENSP00000064571

• ENSP00000084798

• ENSP00000086933

• ENSP00000158009

• ENSP00000159087

• ENSP00000161006

• ENSP00000162391

• ENSP00000164640

• ENSP00000190165

And other 2.74K singleton nodes.

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 77 node tuples in the graph, involving a total of 154 nodes (0.79%) and
77 edges (0.02%). The detected node tuples are:

• Node tuple containing the nodes ENSP00000484403 and ENSP00000484443.

• Node tuple containing the nodes ENSP00000480336 and ENSP00000485424.

• Node tuple containing the nodes ENSP00000454340 and ENSP00000485142.

• Node tuple containing the nodes ENSP00000448841 and ENSP00000481258.

• Node tuple containing the nodes ENSP00000436580 and ENSP00000436891.

• Node tuple containing the nodes ENSP00000436042 and ENSP00000436426.

• Node tuple containing the nodes ENSP00000435550 and ENSP00000441497.

• Node tuple containing the nodes ENSP00000430100 and ENSP00000454770.

• Node tuple containing the nodes ENSP00000429808 and ENSP00000433378.

• Node tuple containing the nodes ENSP00000419502 and ENSP00000483005.

• Node tuple containing the nodes ENSP00000406723 and ENSP00000480524.

• Node tuple containing the nodes ENSP00000399664 and ENSP00000472698.

• Node tuple containing the nodes ENSP00000391594 and ENSP00000460602.

• Node tuple containing the nodes ENSP00000388864 and ENSP00000396732.

• Node tuple containing the nodes ENSP00000384214 and ENSP00000397103.

And other 62 node tuples.

Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 21 isomorphic node groups in the graph, involving a total of 46 nodes
(0.24%) and 558 edges (0.11%), with the largest one involving 5 nodes and 95 edges.
The detected isomorphic node groups, sorted by decreasing size, are:
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• Group with 5 nodes (degree 19): ENSP00000380488, ENSP00000423313, ENSP00000227756,
ENSP00000344260 and ENSP00000297107.

• Group with 2 nodes (degree 29): ENSP00000391692 and ENSP00000391869.

• Group with 2 nodes (degree 21): ENSP00000436604 and ENSP00000444171.

• Group with 2 nodes (degree 18): ENSP00000384876 and ENSP00000373278.

• Group with 2 nodes (degree 18): ENSP00000347119 and ENSP00000354723.

• Group with 3 nodes (degree 11): ENSP00000369564, ENSP00000369566 and
ENSP00000239347.

• Group with 2 nodes (degree 15): ENSP00000416741 and ENSP00000264363.

• Group with 2 nodes (degree 15): ENSP00000400157 and ENSP00000312700.

• Group with 2 nodes (degree 15): ENSP00000261196 and ENSP00000441269.

• Group with 2 nodes (degree 12): ENSP00000334681 and ENSP00000347810.

• Group with 2 nodes (degree 10): ENSP00000335281 and ENSP00000334330.

• Group with 2 nodes (degree 10): ENSP00000335307 and ENSP00000334364.

• Group with 2 nodes (degree 9): ENSP00000449334 and ENSP00000449223.

• Group with 2 nodes (degree 7): ENSP00000259205 and ENSP00000259211.

• Group with 2 nodes (degree 6): ENSP00000376955 and ENSP00000275884.

And other 6 isomorphic node groups.

Trees A tree is a connected component with n nodes and n-1 edges. We have detected
2 trees in the graph, involving a total of 14 nodes (0.07%) and 12 edges, with the largest
one involving 9 nodes and 8 edges. The detected trees, sorted by decreasing size, are:

• Tree starting from the root node ENSP00000303028 (degree 2), and contain-
ing 9 nodes, with a maximal depth of 4, which are ENSP00000362386 (degree 3),
ENSP00000385592, ENSP00000272438, ENSP00000364643 and ENSP00000384887
(degree 3).

• Tree starting from the root node ENSP00000355045 (degree 2), and containing 5
nodes, with a maximal depth of 2, which are ENSP00000379434, ENSP00000381857,
ENSP00000352314 and ENSP00000473941.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 14 dendritic
trees in the graph, involving a total of 61 nodes (0.31%) and 61 edges (0.01%), with
the largest one involving 6 nodes and 6 edges. The detected dendritic trees, sorted by
decreasing size, are:

• Dendritic tree starting from the root node ENSP00000254627 (degree 5), and con-
taining 6 nodes, with a maximal depth of 3, which are ENSP00000407107 (degree
5), ENSP00000266022, ENSP00000299308, ENSP00000336693 and ENSP00000391404.

113



• Dendritic tree starting from the root node ENSP00000366542 (degree 5), and con-
taining 6 nodes, with a maximal depth of 3, which are ENSP00000276127 (degree
3), ENSP00000281722, ENSP00000357889, ENSP00000362206 and ENSP00000306776.

• Dendritic tree starting from the root node ENSP00000310686 (degree 14), and
containing 5 nodes, with a maximal depth of 3, which are ENSP00000482345,
ENSP00000300896 (degree 4), ENSP00000478426, ENSP00000478683 and ENSP00000483965.

• Dendritic tree starting from the root node ENSP00000311336 (degree 5), and con-
taining 5 nodes, with a maximal depth of 3, which are ENSP00000232892 (degree
3), ENSP00000353557, ENSP00000355156, ENSP00000362814 and ENSP00000348911.

• Dendritic tree starting from the root node ENSP00000446916 (degree 4), and con-
taining 5 nodes, with a maximal depth of 2, which are ENSP00000373583 (degree
5), ENSP00000352299, ENSP00000357811, ENSP00000386118 and ENSP00000387298.

• Dendritic tree starting from the root node ENSP00000265322 (degree 43), and
containing 4 nodes, with a maximal depth of 3, which are ENSP00000333183,
ENSP00000467301 (degree 3), ENSP00000331435 and ENSP00000370801.

And other 8 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
11 stars in the graph, involving a total of 35 nodes (0.18%) and 24 edges, with the
largest one involving 4 nodes and 3 edges. The detected stars, sorted by decreasing
size, are:

• Star starting from the root node ENSP00000334289 (degree 3), and containing 4
nodes, with a maximal depth of 1, which are ENSP00000324672, ENSP00000366223
and ENSP00000485629.

• Star starting from the root node ENSP00000345333 (degree 3), and containing 4
nodes, with a maximal depth of 1, which are ENSP00000328245, ENSP00000339314
and ENSP00000483077.

• Star starting from the root node ENSP00000281523 (degree 2), and contain-
ing 3 nodes, with a maximal depth of 1, which are ENSP00000297063 and
ENSP00000418575.

• Star starting from the root node ENSP00000295012 (degree 2), and contain-
ing 3 nodes, with a maximal depth of 1, which are ENSP00000469705 and
ENSP00000484537.

• Star starting from the root node ENSP00000319590 (degree 2), and contain-
ing 3 nodes, with a maximal depth of 1, which are ENSP00000230301 and
ENSP00000354590.

• Star starting from the root node ENSP00000344129 (degree 2), and contain-
ing 3 nodes, with a maximal depth of 1, which are ENSP00000380071 and
ENSP00000469417.

And other 5 stars.

Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node with
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high degree and inside a strongly connected component. We have detected 90 dendritic
stars in the graph, involving a total of 220 nodes (1.12%) and 220 edges (0.04%), with
the largest one involving 19 nodes and 19 edges. The detected dendritic stars, sorted
by decreasing size, are:

• Dendritic star starting from the root node ENSP00000334051 (degree 82), and
containing 19 nodes, with a maximal depth of 1, which are ENSP00000284287,
ENSP00000307726, ENSP00000311605, ENSP00000318997 and ENSP00000319071.

• Dendritic star starting from the root node ENSP00000432561 (degree 14), and
containing 7 nodes, with a maximal depth of 1, which are ENSP00000254166,
ENSP00000303533, ENSP00000344162, ENSP00000379464 and ENSP00000385163.

• Dendritic star starting from the root node ENSP00000319673 (degree 16), and
containing 6 nodes, with a maximal depth of 1, which are ENSP00000360360,
ENSP00000392283, ENSP00000393315, ENSP00000399711 and ENSP00000410400.

• Dendritic star starting from the root node ENSP00000376345 (degree 380), and
containing 4 nodes, with a maximal depth of 1, which are ENSP00000320038,
ENSP00000356093, ENSP00000384593 and ENSP00000470441.

• Dendritic star starting from the root node ENSP00000267017 (degree 20), and
containing 4 nodes, with a maximal depth of 1, which are ENSP00000309782,
ENSP00000314042, ENSP00000330612 and ENSP00000366331.

• Dendritic star starting from the root node ENSP00000246801 (degree 7), and
containing 3 nodes, with a maximal depth of 1, which are ENSP00000362634,
ENSP00000375081 and ENSP00000382544.

And other 84 dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 13 dendritic
tendril stars in the graph, involving a total of 48 nodes (0.25%) and 48 edges, with the
largest one involving 9 nodes and 9 edges. The detected dendritic tendril stars, sorted
by decreasing size, are:

• Dendritic tendril star starting from the root node ENSP00000371594 (degree 68),
and containing 9 nodes, with a maximal depth of 2, which are ENSP00000302199,
ENSP00000312403, ENSP00000323853, ENSP00000329982 and ENSP00000330904.

• Dendritic tendril star starting from the root node ENSP00000310275 (degree 58),
and containing 5 nodes, with a maximal depth of 4, which are ENSP00000356121,
ENSP00000360320, ENSP00000351727, ENSP00000355840 and ENSP00000340887.

• Dendritic tendril star starting from the root node ENSP00000363382 (degree 4),
and containing 4 nodes, with a maximal depth of 3, which are ENSP00000332663,
ENSP00000363894, ENSP00000448580 and ENSP00000363899.

• Dendritic tendril star starting from the root node ENSP00000216862 (degree 24),
and containing 3 nodes, with a maximal depth of 2, which are ENSP00000309649,
ENSP00000318912 and ENSP00000242315.

• Dendritic tendril star starting from the root node ENSP00000276590 (degree 10),
and containing 3 nodes, with a maximal depth of 2, which are ENSP00000262288,
ENSP00000271375 and ENSP00000348033.
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• Dendritic tendril star starting from the root node ENSP00000283946 (degree 10),
and containing 3 nodes, with a maximal depth of 2, which are ENSP00000359819,
ENSP00000377577 and ENSP00000229002.

And other 7 dendritic tendril stars.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 995 tendrils in the graph, involving
a total of 1.08K nodes (5.52%) and 1.08K edges (0.21%), with the largest one involving
4 nodes and 4 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node ENSP00000374014 (degree 7), and containing
4 nodes, with a maximal depth of 4, which are ENSP00000291481, ENSP00000317000,
ENSP00000394178 and ENSP00000296862.

• Tendril starting from the root node ENSP00000371512 (degree 13), and contain-
ing 3 nodes, with a maximal depth of 3, which are ENSP00000310182, ENSP00000344331
and ENSP00000386389.

• Tendril starting from the root node ENSP00000264554 (degree 44), and contain-
ing 3 nodes, with a maximal depth of 3, which are ENSP00000344465, ENSP00000336661
and ENSP00000430271.

• Tendril starting from the root node ENSP00000302578 (degree 4), and containing
3 nodes, with a maximal depth of 3, which are ENSP00000264735, ENSP00000295092
and ENSP00000370724.

• Tendril starting from the root node ENSP00000302843 (degree 6), and containing
3 nodes, with a maximal depth of 3, which are ENSP00000414920, ENSP00000206020
and ENSP00000317289.

• Tendril starting from the root node ENSP00000307636 (degree 6), and containing
3 nodes, with a maximal depth of 3, which are ENSP00000386563, ENSP00000367792
and ENSP00000411253.

And other 989 tendrils.

MusMusculus

The undirected graph MusMusculus has 22.05K nodes and 233.76K edges. The graph
contains 5.57K connected components (of which 5.42K are disconnected nodes), with
the largest one containing 16.18K nodes and the smallest one containing a single
node. The RAM requirements for the nodes and edges data structures are 3.28MB
and 739.96KB respectively.

Degree centrality The minimum node degree is 0, the maximum node degree is
684, the mode degree is 0, the mean degree is 21.21 and the node degree median is
6. The nodes with the highest degree centrality are ENSMUSP00000099909 (degree
684), ENSMUSP00000104298 (degree 649), ENSMUSP00000007130 (degree 585), EN-
SMUSP00000029175 (degree 538) and ENSMUSP00000001780 (degree 517).

Weights The minimum edge weight is 700, the maximum edge weight is 999 and
the total edge weight is 394822140. The RAM requirement for the edge weights data
structure is 1.87MB.
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Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.

Singleton nodes A singleton node is a node disconnected from all other nodes. We
have detected 5.42K singleton nodes in the graph, involving a total of 5.42K nodes
(24.56%). The detected singleton nodes are:

• ENSMUSP00000000208

• ENSMUSP00000000266

• ENSMUSP00000000327

• ENSMUSP00000000449

• ENSMUSP00000000619

• ENSMUSP00000000717

• ENSMUSP00000000755

• ENSMUSP00000001009

• ENSMUSP00000001122

• ENSMUSP00000001172

• ENSMUSP00000001185

• ENSMUSP00000001242

• ENSMUSP00000001456

• ENSMUSP00000001544

• ENSMUSP00000001626

And other 5.40K singleton nodes.

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 98 node tuples in the graph, involving a total of 196 nodes (0.89%) and
98 edges (0.02%). The detected node tuples are:

• Node tuple containing the nodes ENSMUSP00000139506 and ENSMUSP00000140944.

• Node tuple containing the nodes ENSMUSP00000139148 and ENSMUSP00000140416.

• Node tuple containing the nodes ENSMUSP00000137187 and ENSMUSP00000137299.

• Node tuple containing the nodes ENSMUSP00000135899 and ENSMUSP00000136712.

• Node tuple containing the nodes ENSMUSP00000126635 and ENSMUSP00000132971.

• Node tuple containing the nodes ENSMUSP00000125936 and ENSMUSP00000136153.

• Node tuple containing the nodes ENSMUSP00000121288 and ENSMUSP00000129762.

• Node tuple containing the nodes ENSMUSP00000113317 and ENSMUSP00000128826.

• Node tuple containing the nodes ENSMUSP00000109660 and ENSMUSP00000111141.

• Node tuple containing the nodes ENSMUSP00000102037 and ENSMUSP00000133699.

• Node tuple containing the nodes ENSMUSP00000101431 and ENSMUSP00000111088.

• Node tuple containing the nodes ENSMUSP00000100068 and ENSMUSP00000107129.

• Node tuple containing the nodes ENSMUSP00000097268 and ENSMUSP00000100772.

• Node tuple containing the nodes ENSMUSP00000097041 and ENSMUSP00000112932.

• Node tuple containing the nodes ENSMUSP00000096773 and ENSMUSP00000114092.

And other 83 node tuples.
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Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 66 isomorphic node groups in the graph, involving a total of 179 nodes
(0.81%) and 6.42K edges (1.37%), with the largest one involving 11 nodes and 590
edges. The detected isomorphic node groups, sorted by decreasing size, are:

• Group with 5 nodes (degree 118): ENSMUSP00000132343, ENSMUSP00000096592,
ENSMUSP00000128232, ENSMUSP00000100655 and ENSMUSP00000129788.

• Group with 5 nodes (degree 103): ENSMUSP00000100589, ENSMUSP00000071496,
ENSMUSP00000138961, ENSMUSP00000087632 and ENSMUSP00000092345.

• Group with 2 nodes (degree 219): ENSMUSP00000126892 and ENSMUSP00000128443.

• Group with 2 nodes (degree 207): ENSMUSP00000138342 and ENSMUSP00000127859.

• Group with 3 nodes (degree 137): ENSMUSP00000126334, ENSMUSP00000110610
and ENSMUSP00000132241.

• Group with 2 nodes (degree 191): ENSMUSP00000128489 and ENSMUSP00000131471.

• Group with 2 nodes (degree 186): ENSMUSP00000137545 and ENSMUSP00000100516.

• Group with 2 nodes (degree 172): ENSMUSP00000100805 and ENSMUSP00000100528.

• Group with 2 nodes (degree 160): ENSMUSP00000129583 and ENSMUSP00000129695.

• Group with 2 nodes (degree 147): ENSMUSP00000136791 and ENSMUSP00000080543.

• Group with 2 nodes (degree 138): ENSMUSP00000093124 and ENSMUSP00000136275.

• Group with 2 nodes (degree 137): ENSMUSP00000082867 and ENSMUSP00000078747.

• Group with 11 nodes (degree 22): ENSMUSP00000025322, ENSMUSP00000109371,
ENSMUSP00000040435, ENSMUSP00000058686, ENSMUSP00000084411 and
other 6.

• Group with 5 nodes (degree 40): ENSMUSP00000100769, ENSMUSP00000136763,
ENSMUSP00000088719, ENSMUSP00000137043 and ENSMUSP00000126567.

• Group with 2 nodes (degree 82): ENSMUSP00000138211 and ENSMUSP00000138181.

And other 51 isomorphic node groups.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 19 dendritic
trees in the graph, involving a total of 81 nodes (0.37%) and 81 edges (0.02%), with
the largest one involving 9 nodes and 9 edges. The detected dendritic trees, sorted by
decreasing size, are:

• Dendritic tree starting from the root node ENSMUSP00000132092 (degree 4), and
containing 9 nodes, with a maximal depth of 7, which are ENSMUSP00000092725,
ENSMUSP00000094845, ENSMUSP00000049864 (degree 3), ENSMUSP00000037596
and ENSMUSP00000054292.

• Dendritic tree starting from the root node ENSMUSP00000038744 (degree 202),
and containing 6 nodes, with a maximal depth of 2, which are ENSMUSP00000038638,
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ENSMUSP00000055692, ENSMUSP00000064785, ENSMUSP00000106128 and
ENSMUSP00000063248.

• Dendritic tree starting from the root node ENSMUSP00000044998 (degree 10),
and containing 6 nodes, with a maximal depth of 5, which are ENSMUSP00000053849,
ENSMUSP00000039821 (degree 3), ENSMUSP00000036503, ENSMUSP00000050902
and ENSMUSP00000043513.

• Dendritic tree starting from the root node ENSMUSP00000086311 (degree 3), and
containing 6 nodes, with a maximal depth of 4, which are ENSMUSP00000085528,
ENSMUSP00000088822 (degree 3), ENSMUSP00000028283, ENSMUSP00000085531
and ENSMUSP00000109664.

• Dendritic tree starting from the root node ENSMUSP00000014830 (degree 11),
and containing 5 nodes, with a maximal depth of 2, which are ENSMUSP00000057433
(degree 5), ENSMUSP00000032520, ENSMUSP00000032663, ENSMUSP00000047914
and ENSMUSP00000092344.

• Dendritic tree starting from the root node ENSMUSP00000063839 (degree 62),
and containing 5 nodes, with a maximal depth of 3, which are ENSMUSP00000029800
(degree 3), ENSMUSP00000035263, ENSMUSP00000062837, ENSMUSP00000096097
and ENSMUSP00000096443.

And other 13 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
26 stars in the graph, involving a total of 82 nodes (0.37%) and 56 edges (0.01%), with
the largest one involving 5 nodes and 4 edges. The detected stars, sorted by decreasing
size, are:

• Star starting from the root node ENSMUSP00000062719 (degree 4), and con-
taining 5 nodes, with a maximal depth of 1, which are ENSMUSP00000076107,
ENSMUSP00000078756, ENSMUSP00000079039 and ENSMUSP00000095815.

• Star starting from the root node ENSMUSP00000110147 (degree 3), and con-
taining 4 nodes, with a maximal depth of 1, which are ENSMUSP00000063474,
ENSMUSP00000070718 and ENSMUSP00000132644.

• Star starting from the root node ENSMUSP00000076458 (degree 3), and con-
taining 4 nodes, with a maximal depth of 1, which are ENSMUSP00000033575,
ENSMUSP00000076472 and ENSMUSP00000083892.

• Star starting from the root node ENSMUSP00000038678 (degree 2), and con-
taining 3 nodes, with a maximal depth of 1, which are ENSMUSP00000077650
and ENSMUSP00000110164.

• Star starting from the root node ENSMUSP00000113392 (degree 2), and con-
taining 3 nodes, with a maximal depth of 1, which are ENSMUSP00000097485
and ENSMUSP00000107204.

• Star starting from the root node ENSMUSP00000096752 (degree 2), and con-
taining 3 nodes, with a maximal depth of 1, which are ENSMUSP00000135685
and ENSMUSP00000137012.

And other 20 stars.
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Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node
with high degree and inside a strongly connected component. We have detected 106
dendritic stars in the graph, involving a total of 352 nodes (1.60%) and 352 edges
(0.08%), with the largest one involving 95 nodes and 95 edges. The detected dendritic
stars, sorted by decreasing size, are:

• Dendritic star starting from the root node ENSMUSP00000025402 (degree 190),
and containing 95 nodes, with a maximal depth of 1, which are ENSMUSP00000038992,
ENSMUSP00000041524, ENSMUSP00000050544, ENSMUSP00000050833 and
ENSMUSP00000051280.

• Dendritic star starting from the root node ENSMUSP00000033300 (degree 20),
and containing 16 nodes, with a maximal depth of 1, which are ENSMUSP00000071783,
ENSMUSP00000074745, ENSMUSP00000076041, ENSMUSP00000076665 and
ENSMUSP00000079376.

• Dendritic star starting from the root node ENSMUSP00000041483 (degree 43),
and containing 6 nodes, with a maximal depth of 1, which are ENSMUSP00000015585,
ENSMUSP00000015587, ENSMUSP00000015594, ENSMUSP00000022757 and
ENSMUSP00000080742.

• Dendritic star starting from the root node ENSMUSP00000131269 (degree 167),
and containing 6 nodes, with a maximal depth of 1, which are ENSMUSP00000052312,
ENSMUSP00000071824, ENSMUSP00000077990, ENSMUSP00000079893 and
ENSMUSP00000087276.

• Dendritic star starting from the root node ENSMUSP00000006235 (degree 37),
and containing 5 nodes, with a maximal depth of 1, which are ENSMUSP00000023619,
ENSMUSP00000078181, ENSMUSP00000087054, ENSMUSP00000093794 and
ENSMUSP00000093795.

• Dendritic star starting from the root node ENSMUSP00000074436 (degree 33),
and containing 4 nodes, with a maximal depth of 1, which are ENSMUSP00000082127,
ENSMUSP00000105584, ENSMUSP00000113945 and ENSMUSP00000140024.

And other 100 dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 24 dendritic
tendril stars in the graph, involving a total of 93 nodes (0.42%) and 93 edges (0.02%),
with the largest one involving 15 nodes and 15 edges. The detected dendritic tendril
stars, sorted by decreasing size, are:

• Dendritic tendril star starting from the root node ENSMUSP00000122219 (de-
gree 36), and containing 15 nodes, with a maximal depth of 2, which are ENS-
MUSP00000021776, ENSMUSP00000021778, ENSMUSP00000021779, ENSMUSP00000023602
and ENSMUSP00000046522.

• Dendritic tendril star starting from the root node ENSMUSP00000031011 (de-
gree 134), and containing 7 nodes, with a maximal depth of 2, which are ENS-
MUSP00000032185, ENSMUSP00000040429, ENSMUSP00000059419, ENSMUSP00000094334
and ENSMUSP00000130758.
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• Dendritic tendril star starting from the root node ENSMUSP00000130738 (de-
gree 144), and containing 5 nodes, with a maximal depth of 2, which are ENS-
MUSP00000002880, ENSMUSP00000086835, ENSMUSP00000094097, ENSMUSP00000114489
and ENSMUSP00000033210.

• Dendritic tendril star starting from the root node ENSMUSP00000049228 (de-
gree 128), and containing 4 nodes, with a maximal depth of 2, which are ENS-
MUSP00000030878, ENSMUSP00000036916, ENSMUSP00000076935 and ENS-
MUSP00000033414.

• Dendritic tendril star starting from the root node ENSMUSP00000104298 (de-
gree 649), and containing 4 nodes, with a maximal depth of 2, which are ENS-
MUSP00000031434, ENSMUSP00000118809, ENSMUSP00000130176 and ENS-
MUSP00000071896.

• Dendritic tendril star starting from the root node ENSMUSP00000051068 (de-
gree 22), and containing 4 nodes, with a maximal depth of 3, which are ENS-
MUSP00000044228, ENSMUSP00000110316, ENSMUSP00000034413 and ENS-
MUSP00000136717.

And other 18 dendritic tendril stars.

Free-floating chains A free-floating chain is a tree with maximal degree two. We
have detected 2 free-floating chains in the graph, involving a total of 9 nodes (0.04%)
and 7 edges, with the largest one involving 5 nodes and 4 edges. The detected free-
floating chains, sorted by decreasing size, are:

• Free-floating chain starting from the root node ENSMUSP00000069019 (degree
3), and containing 5 nodes, with a maximal depth of 2, which are ENSMUSP00000090857,
ENSMUSP00000101667, ENSMUSP00000117294 and ENSMUSP00000033804.

• Free-floating chain starting from the root node ENSMUSP00000104573 (degree
2), and containing 4 nodes, with a maximal depth of 2, which are ENSMUSP00000136794,
ENSMUSP00000137575 and ENSMUSP00000104609.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 1.05K tendrils in the graph, involving
a total of 1.16K nodes (5.27%) and 1.16K edges (0.25%), with the largest one involving
4 nodes and 4 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node ENSMUSP00000030446 (degree 14), and con-
taining 4 nodes, with a maximal depth of 4, which are ENSMUSP00000098200,
ENSMUSP00000087257, ENSMUSP00000020926 and ENSMUSP00000065613.

• Tendril starting from the root node ENSMUSP00000061753 (degree 4), and con-
taining 3 nodes, with a maximal depth of 3, which are ENSMUSP00000101679,
ENSMUSP00000120070 and ENSMUSP00000086041.

• Tendril starting from the root node ENSMUSP00000023673 (degree 70), and con-
taining 3 nodes, with a maximal depth of 3, which are ENSMUSP00000088678,
ENSMUSP00000078374 and ENSMUSP00000068904.

• Tendril starting from the root node ENSMUSP00000026986 (degree 4), and con-
taining 3 nodes, with a maximal depth of 3, which are ENSMUSP00000001080,
ENSMUSP00000058119 and ENSMUSP00000104752.
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• Tendril starting from the root node ENSMUSP00000131648 (degree 102), and
containing 3 nodes, with a maximal depth of 3, which are ENSMUSP00000058810,
ENSMUSP00000090326 and ENSMUSP00000067699.

• Tendril starting from the root node ENSMUSP00000011526 (degree 8), and con-
taining 3 nodes, with a maximal depth of 3, which are ENSMUSP00000029325,
ENSMUSP00000029326 and ENSMUSP00000129444.

And other 1.04K tendrils.

Homo Phenotype Ontology

The undirected multigraph HP has 43.47K homogeneous nodes and 88.96K heteroge-
neous edges. The graph contains 551 connected components (of which 543 are dis-
connected nodes), with the largest one containing 42.83K nodes and the smallest one
containing a single node. The RAM requirements for the nodes and edges data struc-
tures are 5.45MB and 359.04KB respectively.

Degree centrality The minimum node degree is 0, the maximum node degree
is 1.96K, the mode degree is 1, the mean degree is 4.09 and the node degree me-
dian is 2. The nodes with the highest degree centrality are GO:0065007 (degree
1.96K and node type biolink:NamedThing), UBERON_CORE:pheno_slim (degree
1.72K and node type biolink:NamedThing), OBO:chebi#3_STAR (degree 1.52K and
node type biolink:NamedThing), UBERON_CORE:uberon_slim (degree 900 and node
type biolink:NamedThing) and OBO:hp#hposlim_core (degree 840 and node type bi-
olink:NamedThing).

Node types The graph has a single node type, which is biolink:NamedThing. The
RAM requirement for the node types data structure is 2.26MB.

Homogeneous node types Homogeneous node types are node types that are as-
signed to all the nodes in the graph, making the node type relatively meaningless, as
it adds no more information than the fact that the node is in the graph. The graph
contains a homogeneous node type, which is biolink:NamedThing.

Edge types The graph has 46 edge types, of which the 10 most common are bi-
olink:subclass_of (95.86K edges, 53.90%), biolink:related_to (24.77K edges, 13.93%),
biolink:has_part (14.28K edges, 8.03%), biolink:part_of (13.77K edges, 7.74%), bi-
olink:close_match (11.76K edges, 6.61%), biolink:develops_from (2.59K edges, 1.46%),
biolink:has_attribute (1.60K edges, 0.90%), biolink:regulates (1.48K edges, 0.83%), bi-
olink:positively_regulates (1.25K edges, 0.71%) and biolink:negatively_regulates (1.25K
edges, 0.70%). The RAM requirement for the edge types data structure is 1.43MB.

Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.

Singleton nodes A singleton node is a node disconnected from all other nodes. We
have detected 539 singleton nodes in the graph, involving a total of 539 nodes (1.24%).
The detected singleton nodes are:
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• is_substituent_group_from (node
type biolink:NamedThing)

• BFO:0000056 (node type bi-
olink:NamedThing)

• OBO:cl#lacks_part (node type bi-
olink:NamedThing)

• OBO:pr#has_gene_template (node
type biolink:NamedThing)

• GOREL:0002003 (node type bi-
olink:NamedThing)

• RO:0015011 (node type bi-
olink:NamedThing)

• UBERON_CORE:channels_from
(node type biolink:NamedThing)

• UBERON_CORE:synapsed_by

(node type biolink:NamedThing)

• OBO:nbo#has_participant (node
type biolink:NamedThing)

• UBERON_CORE:filtered_through
(node type biolink:NamedThing)

• UBERON_CORE:site_of (node
type biolink:NamedThing)

• OBO:chebi#is_tautomer_of (node
type biolink:NamedThing)

• RO:0015012 (node type bi-
olink:NamedThing)

• UBERON_CORE:indirectly_supplies
(node type biolink:NamedThing)

• OBO:nbo#has-input (node type bi-
olink:NamedThing)

And other 524 singleton nodes.

Singleton nodes with self-loops A singleton node with self-loops is a node dis-
connected from all other nodes except itself. We have detected 4 singleton nodes with
self-loops in the graph, involving a total of 4 nodes and 4 edges. The detected singleton
nodes with self-loops are:

• dc:description (node type bi-
olink:NamedThing)

• dcterms-license (node type bi-
olink:NamedThing)

• dc:title (node type biolink:NamedThing)

• dc:contributor (node type bi-
olink:NamedThing)

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 2 node tuples in the graph, involving a total of 4 nodes and 2 edges. The
detected node tuples are:

• Node tuple containing the nodes BSPO:0000098 (node type biolink:NamedThing)
and ventral_to (node type biolink:NamedThing).

• Node tuple containing the nodes OBO:chebi#is_conjugate_acid_of (node type
biolink:NamedThing) and OBO:chebi#is_conjugate_base_of (node type biolink:NamedThing).

Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 4 isomorphic node groups in the graph, involving a total of 9 nodes
(0.02%) and 50 edges (0.03%), with the largest one involving 3 nodes and 18 edges.
The detected isomorphic node groups, sorted by decreasing size, are:

• Group with 3 nodes (degree 6 and node type biolink:NamedThing): RO:0002296,
RO:0002298 and RO:0002299.
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• Group with 2 nodes (degree 6 and node type biolink:NamedThing): UBERON:0013773
and UBERON:0013772.

• Group with 2 nodes (degree 5 and node type biolink:NamedThing): RO:0002232
and RO:0002231.

• Group with 2 nodes (degree 5 and node type biolink:NamedThing): NCBITaxon:3176
and NCBITaxon:3378.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 721 dendritic
trees in the graph, involving a total of 9.92K nodes (22.81%) and 9.92K edges (5.58%),
with the largest one involving 249 nodes and 249 edges. The detected dendritic trees,
sorted by decreasing size, are:

• Dendritic tree starting from the root node HP:0002960 (degree 9), and contain-
ing 249 nodes, with a maximal depth of 5, which are HP:0030057 (degree 164),
HP:0002725, Nbf08f17380a543868ede822e13da03e7, HP:0032265 and HP:5000021
(degree 3). Its nodes have a single node type, which is biolink:NamedThing. Its
edges have 2 edge types, which are biolink:subclass_of (493 edges, 99.80%) and
biolink:has_part.

• Dendritic tree starting from the root node HP:0033354 (degree 45), and contain-
ing 140 nodes, with a maximal depth of 4, which are HP:0011279 (degree 4),
HP:0033187, HP:0012404 (degree 4), HP:0003541 (degree 3) and HP:0011814.
Its nodes have a single node type, which is biolink:NamedThing. Its edges
have 2 edge types, which are biolink:subclass_of (157 edges, 64.08%) and bi-
olink:has_part (88 edges, 35.92%).

• Dendritic tree starting from the root node HP:0010876 (degree 55), and contain-
ing 111 nodes, with a maximal depth of 5, which are HP:0031222, HP:0032463,
HP:0012509, HP:0002152 and HP:0025201 (degree 3). Its nodes have a single
node type, which is biolink:NamedThing. Its edges have 2 edge types, which are
biolink:subclass_of (149 edges, 84.66%) and biolink:has_part (27 edges, 15.34%).

• Dendritic tree starting from the root node HP:0004303 (degree 28), and contain-
ing 103 nodes, with a maximal depth of 3, which are HP:0030089 (degree 19),
HP:0012269 (degree 4), HP:0003791, HP:0030230 and HP:0100298. Its nodes
have a single node type, which is biolink:NamedThing. Its edges have 2 edge
types, which are biolink:subclass_of (157 edges, 87.22%) and biolink:has_part
(23 edges, 12.78%).

• Dendritic tree starting from the root node HP:0000708 (degree 46), and contain-
ing 98 nodes, with a maximal depth of 4, which are HP:4000009, HP:0033051
(degree 6), HP:0033676 (degree 3), HP:0030858 (degree 3) and HP:0000711 (de-
gree 3). Its nodes have a single node type, which is biolink:NamedThing. Its
edges have 2 edge types, which are biolink:subclass_of (142 edges, 85.03%) and
biolink:has_part (25 edges, 14.97%).

• Dendritic tree starting from the root node HP:0012379 (degree 52), and con-
taining 96 nodes, with a maximal depth of 4, which are HP:0000816 (degree
5), HP:0033168, HP:0032459 (degree 3), HP:0031821 (degree 3) and HP:0034202
(degree 3). Its nodes have a single node type, which is biolink:NamedThing. Its
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edges have 2 edge types, which are biolink:subclass_of (92 edges, 62.16%) and
biolink:has_part (56 edges, 37.84%).

And other 715 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
2 stars in the graph, involving a total of 9 nodes (0.02%) and 7 edges, with the largest
one involving 6 nodes and 5 edges. The detected stars, sorted by decreasing size, are:

• Star starting from the root node OIO:SynonymTypeProperty (degree 5), and
containing 6 nodes, with a maximal depth of 1, which are OBO:hp#layperson,
OBO:hp#uk_spelling, OBO:hp#obsolete_synonym, OBO:hp#abbreviation and
OBO:hp#plural_form. Its nodes have a single node type, which is biolink:NamedThing.
Its edges have a single edge type, which is biolink:subclass_of.

• Star starting from the root node CHEBI:21241 (degree 2), and containing 3 nodes,
with a maximal depth of 1, which are IAO:0000227 and CHEBI:176783. Its nodes
have a single node type, which is biolink:NamedThing. Its edges have a single
edge type, which is biolink:related_to.

Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node
with high degree and inside a strongly connected component. We have detected 2.47K
dendritic stars in the graph, involving a total of 6.87K nodes (15.81%) and 6.87K edges
(3.86%), with the largest one involving 16 nodes and 16 edges. The detected dendritic
stars, sorted by decreasing size, are:

• Dendritic star starting from the root node MAXO:0000072 (degree 28), and
containing 16 nodes, with a maximal depth of 1, which are MAXO:0010202,
MAXO:0010211, MAXO:0010222, MAXO:0010218 and MAXO:0010219. Its nodes
have a single node type, which is biolink:NamedThing. Its edges have a single
edge type, which is biolink:subclass_of.

• Dendritic star starting from the root node BFO:0000050 (degree 40), and contain-
ing 13 nodes, with a maximal depth of 1, which are BSPO:0015102, BSPO:0001115,
BSPO:0005001, BSPO:0000122 and BSPO:0015101. Its nodes have a single node
type, which is biolink:NamedThing. Its edges have 3 edge types, which are
biolink:subclass_of (10 edges, 76.92%), rdfs:seeAlso (2 edges, 15.38%) and bi-
olink:related_to.

• Dendritic star starting from the root node UBERON:0002149 (degree 24), and
containing 12 nodes, with a maximal depth of 1, which are http:&#x2f;&#x2f;braininfo.rprc.washington.edu&#x2f;centraldirectory.aspx?ID=590,
http:&#x2f;&#x2f;www.snomedbrowser.com&#x2f;Codes&#x2f;Details&#x2f;369028007,
UBERON:0003011, UBERON:0002143 and UBERON:0002963. Its nodes have
a single node type, which is biolink:NamedThing. Its edges have 2 edge types,
which are biolink:related_to (8 edges, 66.67%) and biolink:close_match (4 edges,
33.33%).

• Dendritic star starting from the root node HP:0003540 (degree 13), and contain-
ing 11 nodes, with a maximal depth of 1, which are HP:0031128, HP:0011894,
N709ece82e4b04f06a9daa5b99744af65, HP:0008320 and HP:0031129. Its nodes
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have a single node type, which is biolink:NamedThing. Its edges have 2 edge
types, which are biolink:subclass_of (10 edges, 90.91%) and biolink:has_part.

• Dendritic star starting from the root node HP:0000972 (degree 14), and contain-
ing 11 nodes, with a maximal depth of 1, which are HP:0007548, HP:0007497,
HP:0000982, HP:0007553 and HP:0007613. Its nodes have a single node type,
which is biolink:NamedThing. Its edges have a single edge type, which is bi-
olink:subclass_of.

• Dendritic star starting from the root node UBERON:0002871 (degree 21), and
containing 11 nodes, with a maximal depth of 1, which are UBERON:0002155,
UBERON:0002559, UBERON:0002127, http:&#x2f;&#x2f;www.snomedbrowser.com&#x2f;Codes&#x2f;Details&#x2f;47361005
and UBERON:0002154. Its nodes have a single node type, which is biolink:NamedThing.
Its edges have 2 edge types, which are biolink:related_to (8 edges, 72.73%) and
biolink:close_match (3 edges, 27.27%).

And other 2.47K dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 391
dendritic tendril stars in the graph, involving a total of 1.60K nodes (3.69%) and
1.60K edges (0.90%), with the largest one involving 17 nodes and 17 edges. The
detected dendritic tendril stars, sorted by decreasing size, are:

• Dendritic tendril star starting from the root node HP:0001878 (degree 18), and
containing 17 nodes, with a maximal depth of 2, which are HP:0004863, HP:0005511,
HP:0004802, HP:0001930 and HP:0005524. Its nodes have a single node type,
which is biolink:NamedThing. Its edges have 2 edge types, which are biolink:subclass_of
(15 edges, 83.33%) and biolink:has_part (3 edges, 16.67%).

• Dendritic tendril star starting from the root node MAXO:0010365 (degree 14),
and containing 13 nodes, with a maximal depth of 2, which are MAXO:0010359,
MAXO:0010361, MAXO:0010351, MAXO:0010355 and MAXO:0010357. Its nodes
have a single node type, which is biolink:NamedThing. Its edges have a single
edge type, which is biolink:subclass_of.

• Dendritic tendril star starting from the root node HP:0031331 (degree 12), and
containing 11 nodes, with a maximal depth of 2, which are HP:0033997, HP:0031319,
HP:0031332, HP:0031333 and HP:0031339. Its nodes have a single node type,
which is biolink:NamedThing. Its edges have a single edge type, which is bi-
olink:subclass_of.

• Dendritic tendril star starting from the root node HP:0000962 (degree 23), and
containing 11 nodes, with a maximal depth of 2, which are HP:0005595, HP:0007501,
HP:0025080, HP:0007490 and HP:0031288. Its nodes have a single node type,
which is biolink:NamedThing. Its edges have 2 edge types, which are biolink:subclass_of
(9 edges, 75.00%) and biolink:has_part (3 edges, 25.00%).

• Dendritic tendril star starting from the root node HP:0001832 (degree 27), and
containing 10 nodes, with a maximal depth of 2, which are HP:0005194, HP:0008125,
HP:0008078, HP:0004699 and HP:0010508. Its nodes have a single node type,
which is biolink:NamedThing. Its edges have 2 edge types, which are biolink:subclass_of
(8 edges, 72.73%) and biolink:has_part (3 edges, 27.27%).
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• Dendritic tendril star starting from the root node HP:0001369 (degree 12), and
containing 9 nodes, with a maximal depth of 2, which are HP:0040310, HP:0001370,
N49475b12e70c4737aa3ca006af35921e, HP:0040311 and HP:0033037. Its nodes
have a single node type, which is biolink:NamedThing. Its edges have 2 edge
types, which are biolink:subclass_of (9 edges) and biolink:has_part.

And other 385 dendritic tendril stars.

Free-floating chains A free-floating chain is a tree with maximal degree two. We
have detected a single free-floating chain in the graph, involving a total of 5 nodes
(0.01%) and 4 edges.

• Free-floating chain starting from the root node RO:0002563 (degree 3), and con-
taining 5 nodes, with a maximal depth of 2, which are RO:0002564, RO:0002464,
http:&#x2f;&#x2f;ontologydesignpatterns.org&#x2f;wiki&#x2f;Submissions:N-
Ary_Relation_Pattern_%28OWL_2%29 and RO:0002481. Its nodes have a sin-
gle node type, which is biolink:NamedThing. Its edges have 2 edge types, which
are biolink:subclass_of (4 edges) and rdfs:seeAlso.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 4.32K tendrils in the graph, involving
a total of 4.35K nodes (10.00%) and 4.35K edges (2.44%), with the largest one involving
3 nodes and 3 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node NBO:0000607 (degree 3), and containing 3
nodes, with a maximal depth of 3, which are NBO:0000006, NBO:0000170 and
NBO:0000304. Its nodes have a single node type, which is biolink:NamedThing.
Its edges have a single edge type, which is biolink:subclass_of.

• Tendril starting from the root node NBO:0000389 (degree 3), and containing 3
nodes, with a maximal depth of 3, which are NBO:0000411, NBO:0000416 and
NBO:0000417. Its nodes have a single node type, which is biolink:NamedThing.
Its edges have a single edge type, which is biolink:subclass_of.

• Tendril starting from the root node HP:0100836 (degree 6), and containing 3
nodes, with a maximal depth of 3, which are HP:0002885, HP:0007129 and
N520ca489d82d46018dce6dd76acb53a4. Its nodes have a single node type, which
is biolink:NamedThing. Its edges have 2 edge types, which are biolink:subclass_of
(3 edges) and biolink:has_part (2 edges).

• Tendril starting from the root node HP:0010786 (degree 5), and containing 3
nodes, with a maximal depth of 3, which are HP:0009725, HP:0002862 and
HP:0006740. Its nodes have a single node type, which is biolink:NamedThing.
Its edges have a single edge type, which is biolink:subclass_of.

• Tendril starting from the root node HP:0006304 (degree 3), and containing 2
nodes, with a maximal depth of 2, which are HP:0001566 and N11df713e04764d4ba280ea7097fd2c5e.
Its nodes have a single node type, which is biolink:NamedThing. Its edges have
2 edge types, which are biolink:has_part (2 edges) and biolink:subclass_of.

• Tendril starting from the root node HP:0500148 (degree 5), and containing 2
nodes, with a maximal depth of 2, which are HP:0410068 and Na4825961d95b44a9ae1d3cf34e55f4c7.
Its nodes have a single node type, which is biolink:NamedThing. Its edges have
2 edge types, which are biolink:has_part (2 edges) and biolink:subclass_of.
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And other 4.31K tendrils.

C.2 Cora, CiteSeer, and PubMed datasets used for
node-label prediction experiments

Cora

The undirected graph Cora has 2.71K heterogeneous nodes and 5.28K edges. The
graph contains 78 connected components, with the largest one containing 2.48K nodes
and the smallest one containing 2 nodes. The RAM requirements for the nodes and
edges data structures are 207.68KB and 16.34KB respectively.

Degree centrality The minimum node degree is 1, the maximum node degree is
168, the mode degree is 2, the mean degree is 3.90 and the node degree median is
3. The nodes with the highest degree centrality are 35 (degree 168 and node type
Genetic_Algorithms), 6213 (degree 78 and node type Reinforcement_Learning), 1365
(degree 74 and node type Neural_Networks), 3229 (degree 65 and node type Neu-
ral_Networks) and 910 (degree 44 and node type Neural_Networks).

Node types The graph has 7 node types, which are Neural_Networks (818 nodes,
30.21%), Probabilistic_Methods (426 nodes, 15.73%), Genetic_Algorithms (418 nodes,
15.44%), Theory (351 nodes, 12.96%), Case_Based (298 nodes, 11.00%), Reinforce-
ment_Learning (217 nodes, 8.01%) and Rule_Learning (180 nodes, 6.65%). The RAM
requirement for the node types data structure is 141.72KB.

Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 57 node tuples in the graph, involving a total of 114 nodes (4.21%) and
57 edges (0.54%). The detected node tuples are:

• Node tuple containing the nodes 1105622 (node type Neural_Networks) and
430574 (node type Neural_Networks).

• Node tuple containing the nodes 116512 (node type Neural_Networks) and 1107808
(node type Neural_Networks).

• Node tuple containing the nodes 1107728 (node type Neural_Networks) and
115188 (node type Neural_Networks).

• Node tuple containing the nodes 1136040 (node type Neural_Networks) and
754594 (node type Neural_Networks).

• Node tuple containing the nodes 73972 (node type Case_Based) and 50980 (node
type Case_Based).

• Node tuple containing the nodes 628458 (node type Neural_Networks) and 628459
(node type Neural_Networks).
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• Node tuple containing the nodes 180301 (node type Probabilistic_Methods) and
1110628 (node type Probabilistic_Methods).

• Node tuple containing the nodes 1133008 (node type Neural_Networks) and
688824 (node type Neural_Networks).

• Node tuple containing the nodes 654519 (node type Genetic_Algorithms) and
1131754 (node type Genetic_Algorithms).

• Node tuple containing the nodes 49720 (node type Probabilistic_Methods) and
49753 (node type Probabilistic_Methods).

• Node tuple containing the nodes 133628 (node type Theory) and 1108570 (node
type Theory).

• Node tuple containing the nodes 617378 (node type Neural_Networks) and 1130069
(node type Neural_Networks).

• Node tuple containing the nodes 529165 (node type Neural_Networks) and 1126315
(node type Neural_Networks).

• Node tuple containing the nodes 824245 (node type Neural_Networks) and 1139009
(node type Neural_Networks).

• Node tuple containing the nodes 820661 (node type Neural_Networks) and 817774
(node type Neural_Networks).

And other 42 node tuples.

Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 3 isomorphic node groups in the graph, involving a total of 6 nodes
(0.22%) and 30 edges (0.28%). The detected isomorphic node groups, sorted by de-
creasing size, are:

• Group with 2 nodes (degree 5 and node type Genetic_Algorithms): 1104999 and
63832.

• Group with 2 nodes (degree 5 and node type Neural_Networks): 43698 and
31336.

• Group with 2 nodes (degree 5 and node type Neural_Networks): 1154123 and
1154124.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 13 dendritic
trees in the graph, involving a total of 64 nodes (2.36%) and 64 edges (0.61%), with
the largest one involving 9 nodes and 9 edges. The detected dendritic trees, sorted by
decreasing size, are:

• Dendritic tree starting from the root node 16819 (degree 14), and containing 9
nodes, with a maximal depth of 4, which are 1131274, 643003, 644843, 1131189
and 645016 (degree 5). Its nodes have a single node type, which is Probabilis-
tic_Methods.
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• Dendritic tree starting from the root node 35 (degree 168), and containing 7
nodes, with a maximal depth of 2, which are 1152508, 1137466, 1128945, 1119505
and 15670. Its nodes have a single node type, which is Genetic_Algorithms.

• Dendritic tree starting from the root node 16437 (degree 6), and containing 6
nodes, with a maximal depth of 3, which are 51831, 430329, 127940 (degree
4), 416964 and 1114364. Its nodes have a single node type, which is Neu-
ral_Networks.

• Dendritic tree starting from the root node 424540 (degree 3), and containing 5
nodes, with a maximal depth of 3, which are 18536 (degree 3), 1106854, 86923
(degree 3), 18532 and 1114184. Its nodes have a single node type, which is
Neural_Networks.

• Dendritic tree starting from the root node 910 (degree 44 and node type Neu-
ral_Networks), and containing 5 nodes, with a maximal depth of 2, which are
94953 (node type Neural_Networks), 1122460 (node type Neural_Networks),
1114118 (node type Neural_Networks), 245288 (node type Reinforcement_Learning)
and 119712 (node type Genetic_Algorithms). Its nodes have 3 node types,
which are Neural_Networks (3 nodes, 0.11%), Reinforcement_Learning and Ge-
netic_Algorithms.

• Dendritic tree starting from the root node 13885 (degree 7 and node type Neu-
ral_Networks), and containing 5 nodes, with a maximal depth of 3, which are
84459 (node type Theory), 6238 (degree 4 and node type Theory), 1123991 (node
type Probabilistic_Methods), 10793 (node type Theory) and 1130356 (node type
Theory). Its nodes have 2 node types, which are Theory (4 nodes, 0.15%) and
Probabilistic_Methods.

And other 7 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
3 stars in the graph, involving a total of 9 nodes (0.33%) and 6 edges (0.06%). The
detected stars are:

• Star starting from the root node 1112071 (degree 2), and containing 3 nodes,
with a maximal depth of 1, which are 212107 and 212097. Its nodes have a single
node type, which is Probabilistic_Methods.

• Star starting from the root node 1123215 (degree 2), and containing 3 nodes,
with a maximal depth of 1, which are 288107 and 149139. Its nodes have a single
node type, which is Theory.

• Star starting from the root node 9559 (degree 2), and containing 3 nodes, with a
maximal depth of 1, which are 1102794 and 252725. Its nodes have a single node
type, which is Rule_Learning.

Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node with
high degree and inside a strongly connected component. We have detected 29 dendritic
stars in the graph, involving a total of 84 nodes (3.10%) and 84 edges (0.80%), with
the largest one involving 12 nodes and 12 edges. The detected dendritic stars, sorted
by decreasing size, are:
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• Dendritic star starting from the root node 1365 (degree 74 and node type Neu-
ral_Networks), and containing 12 nodes, with a maximal depth of 1, which are
1105062 (node type Reinforcement_Learning), 853150 (node type Neural_Networks),
949318 (node type Neural_Networks), 1136442 (node type Neural_Networks)
and 1132922 (node type Neural_Networks). Its nodes have 2 node types, which
are Neural_Networks (11 nodes, 0.41%) and Reinforcement_Learning.

• Dendritic star starting from the root node 20193 (degree 23), and containing 11
nodes, with a maximal depth of 1, which are 1153877, 1153879, 1153889, 1130653
and 1130657. Its nodes have a single node type, which is Case_Based.

• Dendritic star starting from the root node 6913 (degree 12), and containing 4
nodes, with a maximal depth of 1, which are 1105011, 1131230, 703953 and
646289. Its nodes have a single node type, which is Probabilistic_Methods.

• Dendritic star starting from the root node 205196 (degree 9), and containing
4 nodes, with a maximal depth of 1, which are 628766, 1130568, 1130586 and
815073. Its nodes have a single node type, which is Neural_Networks.

• Dendritic star starting from the root node 89547 (degree 13 and node type The-
ory), and containing 3 nodes, with a maximal depth of 1, which are 1152379
(node type Theory), 1116328 (node type Neural_Networks) and 237376 (node
type Theory). Its nodes have 2 node types, which are Theory (2 nodes, 0.07%)
and Neural_Networks.

• Dendritic star starting from the root node 31353 (degree 19), and containing 3
nodes, with a maximal depth of 1, which are 286562, 1063773 and 686559. Its
nodes have a single node type, which is Neural_Networks.

And other 23 dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 7 dendritic
tendril stars in the graph, involving a total of 28 nodes (1.03%) and 28 edges (0.27%),
with the largest one involving 6 nodes and 6 edges. The detected dendritic tendril
stars, sorted by decreasing size, are:

• Dendritic tendril star starting from the root node 3229 (degree 65 and node type
Neural_Networks), and containing 6 nodes, with a maximal depth of 3, which are
919885 (node type Neural_Networks), 1125082 (node type Genetic_Algorithms),
7022 (node type Neural_Networks), 1112767 (node type Neural_Networks) and
226698 (node type Neural_Networks). Its nodes have 2 node types, which are
Neural_Networks (5 nodes, 0.18%) and Genetic_Algorithms.

• Dendritic tendril star starting from the root node 643069 (degree 4 and node
type Probabilistic_Methods), and containing 6 nodes, with a maximal depth
of 5, which are 14090 (node type Probabilistic_Methods), 1131192 (node type
Probabilistic_Methods), 1103016 (node type Neural_Networks), 14083 (node
type Neural_Networks) and 62676 (node type Neural_Networks). Its nodes
have 2 node types, which are Neural_Networks (4 nodes, 0.15%) and Probabilis-
tic_Methods (2 nodes, 0.07%).

• Dendritic tendril star starting from the root node 3243 (degree 12 and node
type Theory), and containing 4 nodes, with a maximal depth of 3, which are
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1103610 (node type Theory), 854434 (node type Neural_Networks), 8961 (node
type Reinforcement_Learning) and 1133390 (node type Theory). Its nodes have
3 node types, which are Theory (2 nodes, 0.07%), Neural_Networks and Rein-
forcement_Learning.

• Dendritic tendril star starting from the root node 5086 (degree 12), and containing
3 nodes, with a maximal depth of 2, which are 354004, 1105698 and 1118546. Its
nodes have a single node type, which is Probabilistic_Methods.

• Dendritic tendril star starting from the root node 35863 (degree 5 and node
type Reinforcement_Learning), and containing 3 nodes, with a maximal depth
of 2, which are 28359 (node type Reinforcement_Learning), 134060 (node type
Theory) and 481073 (node type Reinforcement_Learning). Its nodes have 2 node
types, which are Reinforcement_Learning (2 nodes, 0.07%) and Theory.

• Dendritic tendril star starting from the root node 162080 (degree 5), and contain-
ing 3 nodes, with a maximal depth of 2, which are 738941, 1135345 and 1135455.
Its nodes have a single node type, which is Neural_Networks.

And another dendritic tendril star.

Free-floating chains A free-floating chain is a tree with maximal degree two. We
have detected 2 free-floating chains in the graph, involving a total of 8 nodes (0.30%)
and 6 edges (0.06%). The detected free-floating chains are:

• Free-floating chain starting from the root node 375825 (degree 2), and containing
4 nodes, with a maximal depth of 2, which are 1119623, 421481 and 111770. Its
nodes have a single node type, which is Probabilistic_Methods.

• Free-floating chain starting from the root node 430711 (degree 2), and containing
4 nodes, with a maximal depth of 2, which are 671052, 1132416 and 1132406. Its
nodes have a single node type, which is Neural_Networks.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 224 tendrils in the graph, involving
a total of 265 nodes (9.79%) and 265 edges (2.51%), with the largest one involving 4
nodes and 4 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node 83847 (degree 4), and containing 4 nodes,
with a maximal depth of 4, which are 1130678, 630890, 233106 and 12275. Its
nodes have a single node type, which is Neural_Networks.

• Tendril starting from the root node 1140543 (degree 5), and containing 3 nodes,
with a maximal depth of 3, which are 120817, 1109873 and 163235. Its nodes
have a single node type, which is Neural_Networks.

• Tendril starting from the root node 683404 (degree 4), and containing 3 nodes,
with a maximal depth of 3, which are 683360, 522338 and 1132864. Its nodes
have a single node type, which is Probabilistic_Methods.

• Tendril starting from the root node 20534 (degree 10 and node type Reinforce-
ment_Learning), and containing 3 nodes, with a maximal depth of 3, which
are 13972 (node type Reinforcement_Learning), 1126050 (node type Reinforce-
ment_Learning) and 93318 (node type Neural_Networks). Its nodes have 2 node
types, which are Reinforcement_Learning (2 nodes, 0.07%) and Neural_Networks.
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• Tendril starting from the root node 66751 (degree 5), and containing 3 nodes,
with a maximal depth of 3, which are 1138043, 77108 and 77112. Its nodes have
a single node type, which is Theory.

• Tendril starting from the root node 3231 (degree 36 and node type Theory), and
containing 2 nodes, with a maximal depth of 2, which are 1113926 (node type
Neural_Networks) and 250566 (node type Case_Based). Its nodes have 2 node
types, which are Neural_Networks and Case_Based.

And other 218 tendrils.

CiteSeer

The undirected graph CiteSeer has 3.31K heterogeneous nodes and 4.66K edges. The
graph contains 438 connected components (of which 48 are disconnected nodes), with
the largest one containing 2.11K nodes and the smallest one containing a single node.
The RAM requirements for the nodes and edges data structures are 335.92KB and
14.76KB respectively.

Degree centrality The minimum node degree is 1, the maximum node degree is
99, the mode degree is 1, the mean degree is 2.78 and the node degree median is
2. The nodes with the highest degree centrality are brin98anatomy (degree 99 and
node type IR), rao95bdi (degree 51 and node type Agents), chakrabarti98automatic
(degree 35 and node type IR), bharat98improved (degree 34 and node type IR) and
lawrence98searching (degree 30 and node type IR).

Node types The graph has 6 node types, which are DB (701 nodes, 21.17%), IR
(668 nodes, 20.17%), Agents (596 nodes, 18.00%), ML (590 nodes, 17.81%), HCI (508
nodes, 15.34%) and AI (249 nodes, 7.52%). The RAM requirement for the node types
data structure is 172.75KB.

Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.

Singleton nodes with self-loops A singleton node with self-loops is a node dis-
connected from all other nodes except itself. We have detected 48 singleton nodes with
self-loops in the graph, involving a total of 48 nodes (1.45%) and 48 edges (0.52%).
The detected singleton nodes with self-loops are:

• 408356 (node type DB)

• eiter98firstorder (node type AI)

• 156949 (node type DB)

• bruno01stholes (node type DB)

• kumar01behaviorbased (node type
ML)

• lin01efficiently (node type DB)

• park01segmentbased (node type
DB)

• tabuada01feasible (node type
Agents)

• 146066 (node type DB)

• 190915 (node type DB)

• 202521 (node type DB)
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• 274436 (node type HCI)

• 346149 (node type ML)

• 423028 (node type HCI)

• 43511 (node type DB)

And other 33 singleton nodes with self-loops.

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 252 node tuples in the graph, involving a total of 504 nodes (15.22%)
and 252 edges (2.74%). The detected node tuples are:

• Node tuple containing the nodes zhang99situated (node type ML) and zhang99towards
(node type IR).

• Node tuple containing the nodes zhang01evolutionary (node type DB) and zhang99evolving
(node type ML).

• Node tuple containing the nodes wolski00design (node type DB) and wolski98fuzzy
(node type ML).

• Node tuple containing the nodes wills00open (node type ML) and wills01open
(node type ML).

• Node tuple containing the nodes vilalta00quantification (node type ML) and
vilalta01rule (node type ML).

• Node tuple containing the nodes vazov01system (node type IR) and wonsever01contextual
(node type IR).

• Node tuple containing the nodes vasconcelos00bayesian (node type ML) and vas-
concelos99probabilistic (node type ML).

• Node tuple containing the nodes valencia98algebraic (node type AI) and valen-
cia98hitch (node type AI).

• Node tuple containing the nodes tzouramanis99overlapping (node type DB) and
tzouramanis99processing (node type DB).

• Node tuple containing the nodes tourapis01advanced (node type ML) and tourapis01temporal
(node type ML).

• Node tuple containing the nodes sterritt00exploring (node type AI) and ster-
ritt01soft (degree 2 and node type ML).

• Node tuple containing the nodes rosenthal00view (node type DB) and rosen-
thal01administering (node type DB).

• Node tuple containing the nodes paulson00inductive (node type ML) and steel02finding
(node type ML).

• Node tuple containing the nodes oria99defining (node type DB) and oria99visualmoql
(node type DB).

• Node tuple containing the nodes oard01clef (node type HCI) and oard01evaluating
(node type HCI).

And other 237 node tuples.
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Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 11 isomorphic node groups in the graph, involving a total of 23 nodes
(0.69%) and 152 edges (1.65%), with the largest one involving 3 nodes and 24 edges.
The detected isomorphic node groups, sorted by decreasing size, are:

• Group with 2 nodes (degree 12 and node type IR): 65816 and baker98distributional.

• Group with 3 nodes (degree 6 and node type IR): 540380, 532128 and 536016.

• Group with 2 nodes (degree 8 and node type HCI): 150449 and billinghurst98wearable.

• Group with 2 nodes (degree 7 and node type DB): 254693 and 352789.

• Group with 2 nodes (degree 6 and node type IR): 323867 and lawrence99searching.

• Group with 2 nodes (degree 6 and node type IR): 509763 and nguyen00active.

• Group with 2 nodes (degree 6 and node type Agents): 295535 and kumar00adaptive.

• Group with 2 nodes (degree 6 and node type DB): artale01reasoning and 454077.

• Group with 2 nodes (degree 6 and node type DB): jagadish99querying and
106339.

• Group with 2 nodes (degree 5 and node type DB): 486074 and 506324.

• Group with 2 nodes (degree 5 and node type AI): 28223 and 40513.

Trees A tree is a connected component with n nodes and n-1 edges. We have detected
7 trees in the graph, involving a total of 46 nodes (1.39%) and 39 edges (0.42%), with
the largest one involving 9 nodes and 8 edges. The detected trees, sorted by decreasing
size, are:

• Tree starting from the root node edmond98achieving (degree 2 and node type
DB), and containing 9 nodes, with a maximal depth of 3, which are barros97towards
(node type HCI), manolescu01microworkflow (node type IR), barros96business
(degree 4 and node type HCI), muth99integrating (node type DB) and 70863
(node type HCI). Its nodes have 3 node types, which are HCI (5 nodes, 0.15%),
DB (2 nodes, 0.06%) and IR.

• Tree starting from the root node bonnet99query (degree 3 and node type DB),
and containing 8 nodes, with a maximal depth of 2, which are 272797 (node type
DB), bonnet00query (node type DB), heidemann01building (degree 3 and node
type IR), chen00algebraic (node type DB) and dekhtyar99probabilistic (node type
DB). Its nodes have 3 node types, which are DB (4 nodes, 0.12%), IR (2 nodes,
0.06%) and Agents.

• Tree starting from the root node kim01secret (degree 2), and containing 7 nodes,
with a maximal depth of 3, which are 467998, vagina03cryptographic (degree
4), 482071, 496883 and tan01trust. Its nodes have a single node type, which is
Agents.

• Tree starting from the root node cadoli98survey (degree 2 and node type AI),
and containing 6 nodes, with a maximal depth of 2, which are 83444 (degree 4
and node type AI), prendinger00hyper (node type DB), 210930 (node type AI),
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bellardo00implementing (node type AI) and eiter00difference (node type DB).
Its nodes have 2 node types, which are AI (3 nodes, 0.09%) and DB (2 nodes,
0.06%).

• Tree starting from the root node das98rule (degree 2 and node type ML), and
containing 6 nodes, with a maximal depth of 2, which are 169000 (degree 4 and
node type DB), 74893 (node type AI), 469106 (node type DB), 534720 (node
type DB) and rodriguez00learning (node type DB). Its nodes have 2 node types,
which are DB (4 nodes, 0.12%) and AI.

• Tree starting from the root node sampaio98deductive (degree 2), and containing
5 nodes, with a maximal depth of 2, which are murray98kaleidoquery (degree
3), sampaio00design, 116696 and fegaras99voodoo. Its nodes have a single node
type, which is DB.

And another tree.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 44 dendritic
trees in the graph, involving a total of 291 nodes (8.79%) and 291 edges (3.16%), with
the largest one involving 26 nodes and 26 edges. The detected dendritic trees, sorted
by decreasing size, are:

• Dendritic tree starting from the root node rao95bdi (degree 51 and node type
Agents), and containing 26 nodes, with a maximal depth of 4, which are 243827
(node type Agents), 257383 (node type Agents), 270678 (node type Agents),
318212 (node type Agents) and 445758 (node type Agents). Its nodes have 3
node types, which are Agents (23 nodes, 0.69%), AI (2 nodes, 0.06%) and IR.

• Dendritic tree starting from the root node brin98anatomy (degree 99 and node
type IR), and containing 21 nodes, with a maximal depth of 5, which are 128239
(node type IR), 165504 (node type IR), 500641 (node type IR), 520488 (node
type IR) and 528932 (degree 3 and node type IR). Its nodes have 4 node types,
which are IR (14 nodes, 0.42%), ML (5 nodes, 0.15%), DB and HCI.

• Dendritic tree starting from the root node essa99computer (degree 3 and node
type HCI), and containing 14 nodes, with a maximal depth of 4, which are 24549
(degree 9 and node type DB), 28031 (node type ML), baker00hallucinating (node
type ML), martinez00recognition (node type ML) and moghaddam98beyond (de-
gree 4 and node type DB). Its nodes have 3 node types, which are ML (10 nodes,
0.30%), DB (3 nodes, 0.09%) and HCI.

• Dendritic tree starting from the root node howe97savvysearch (degree 21 and
node type IR), and containing 12 nodes, with a maximal depth of 7, which are
scime01websifter (node type IR), tzitzikas01democratic (node type IR), 496354
(node type DB), 537920 (node type IR) and mcilraith01semantic (degree 3 and
node type IR). Its nodes have 5 node types, which are IR (5 nodes, 0.15%), DB
(4 nodes, 0.12%), Agents, ML and HCI.

• Dendritic tree starting from the root node 90507 (degree 10 and node type
IR), and containing 12 nodes, with a maximal depth of 2, which are cunning-
ham01developing (degree 4 and node type IR), he00comparative (node type IR),
itskevitch01automatic (degree 7 and node type IR), cunningham99experience
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(node type IR) and gaizauskas98information (node type IR). Its nodes have 2
node types, which are IR (10 nodes, 0.30%) and DB (2 nodes, 0.06%).

• Dendritic tree starting from the root node bergamaschi99semantic (degree 11 and
node type DB), and containing 12 nodes, with a maximal depth of 5, which are
254597 (degree 5 and node type IR), 311175 (node type DB), 471747 (node type
IR), 496736 (node type IR) and feng01towards (degree 4 and node type IR). Its
nodes have 2 node types, which are IR (8 nodes, 0.24%) and DB (4 nodes, 0.12%).

And other 38 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
65 stars in the graph, involving a total of 207 nodes (6.25%) and 142 edges (1.54%),
with the largest one involving 5 nodes and 4 edges. The detected stars, sorted by
decreasing size, are:

• Star starting from the root node white98towards (degree 4), and containing 5
nodes, with a maximal depth of 1, which are 205160, 409610, ferguson95role and
wittner00network. Its nodes have a single node type, which is Agents.

• Star starting from the root node 196348 (degree 3), and containing 4 nodes, with
a maximal depth of 1, which are 263968, 63224 and sengupta99constructing. Its
nodes have a single node type, which is DB.

• Star starting from the root node degaris99building (degree 3), and containing 4
nodes, with a maximal depth of 1, which are 261630, degaris00simulating and
degaris99evolving. Its nodes have a single node type, which is ML.

• Star starting from the root node markatos99caching (degree 3 and node type DB),
and containing 4 nodes, with a maximal depth of 1, which are glance00community
(node type HCI), markatos98effective (node type IR) and xie02locality (node type
IR). Its nodes have 2 node types, which are IR (2 nodes, 0.06%) and HCI.

• Star starting from the root node takahashi00location (degree 3 and node type
IR), and containing 4 nodes, with a maximal depth of 1, which are 539969 (node
type IR), ishida99digital (node type Agents) and takahashi98mobile (node type
IR). Its nodes have 2 node types, which are IR (2 nodes, 0.06%) and Agents.

• Star starting from the root node timm01synthesis (degree 3 and node type Agents),
and containing 4 nodes, with a maximal depth of 1, which are timm00multiagent
(node type IR), timm01enterprise (node type Agents) and toenshoff01flexible
(node type Agents). Its nodes have 2 node types, which are Agents (2 nodes,
0.06%) and IR.

And other 59 stars.

Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node with
high degree and inside a strongly connected component. We have detected 61 dendritic
stars in the graph, involving a total of 137 nodes (4.14%) and 137 edges (1.49%), with
the largest one involving 5 nodes and 5 edges. The detected dendritic stars, sorted by
decreasing size, are:
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• Dendritic star starting from the root node liu98relationlog (degree 11), and con-
taining 5 nodes, with a maximal depth of 1, which are 82903, fraternali98proceedings,
liu01rulebased, liu98logical and liu99partial. Its nodes have a single node type,
which is DB.

• Dendritic star starting from the root node decker95environment (degree 17 and
node type Agents), and containing 5 nodes, with a maximal depth of 1, which are
bilgic97risk (node type Agents), bilgic97system (node type Agents), decker98coordinating
(node type Agents), obrst97constraints (node type Agents) and prasad96offline
(node type ML). Its nodes have 2 node types, which are Agents (4 nodes, 0.12%)
and ML.

• Dendritic star starting from the root node 78547 (degree 10 and node type IR),
and containing 4 nodes, with a maximal depth of 1, which are 194227 (node type
IR), ahanger99technique (node type IR), jaimes00integrating (node type ML)
and slaughter00open (node type IR). Its nodes have 2 node types, which are IR
(3 nodes, 0.09%) and ML.

• Dendritic star starting from the root node schattenberg00planning (degree 6 and
node type Agents), and containing 3 nodes, with a maximal depth of 1, which
are kitano99robocup (node type HCI), logan00distributed (node type Agents)
and rintanen98planning (node type AI). Its nodes have 3 node types, which are
HCI, Agents and AI.

• Dendritic star starting from the root node khaled98gado (degree 7), and con-
taining 3 nodes, with a maximal depth of 1, which are bourdeau99three, davi-
son98applying and rasheed98adaptive. Its nodes have a single node type, which
is ML.

• Dendritic star starting from the root node godfrey98integrity (degree 5 and node
type DB), and containing 3 nodes, with a maximal depth of 1, which are 71092
(node type DB), chan99possible (node type DB) and godfrey97minimization
(node type IR). Its nodes have 2 node types, which are DB (2 nodes, 0.06%)
and IR.

And other 55 dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 23 dendritic
tendril stars in the graph, involving a total of 93 nodes (2.81%) and 93 edges (1.01%),
with the largest one involving 7 nodes and 7 edges. The detected dendritic tendril
stars, sorted by decreasing size, are:

• Dendritic tendril star starting from the root node aha91casebased (degree 21),
and containing 7 nodes, with a maximal depth of 2, which are 5234, 75123,
77029, mair99investigation and petrak95objectoriented. Its nodes have a single
node type, which is ML.

• Dendritic tendril star starting from the root node holtman98automatic (degree 6),
and containing 6 nodes, with a maximal depth of 3, which are 300668, 340027,
schaller99objectivitydb, stockinger01design and 35804. Its nodes have a single
node type, which is DB.

• Dendritic tendril star starting from the root node papadopoulos00models (de-
gree 7 and node type HCI), and containing 5 nodes, with a maximal depth of
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3, which are 532291 (node type Agents), chen99dynamic (node type Agents),
skarmeas99component (node type Agents), bardram97plans (node type HCI) and
reddy01coordinating (node type HCI). Its nodes have 2 node types, which are
Agents (3 nodes, 0.09%) and HCI (2 nodes, 0.06%).

• Dendritic tendril star starting from the root node beigi97metaseek (degree 10
and node type IR), and containing 5 nodes, with a maximal depth of 2, which
are 291240 (node type HCI), 305534 (node type ML), 420817 (node type HCI),
laaksonen99picsom (node type IR) and koskela00picsom (node type HCI). Its
nodes have 3 node types, which are HCI (3 nodes, 0.09%), ML and IR.

• Dendritic tendril star starting from the root node langley95applications (degree
6 and node type ML), and containing 5 nodes, with a maximal depth of 3, which
are 162298 (node type ML), giraud-carrier98beyond (node type AI), lau00version
(node type ML), 415731 (node type IR) and lau99programming (node type ML).
Its nodes have 3 node types, which are ML (3 nodes, 0.09%), AI and IR.

• Dendritic tendril star starting from the root node thomas98wearable (degree 6),
and containing 4 nodes, with a maximal depth of 3, which are 503243, 534400,
ockerman98preliminary and pentland99digital. Its nodes have a single node type,
which is HCI.

And other 17 dendritic tendril stars.

Free-floating chains A free-floating chain is a tree with maximal degree two. We
have detected 15 free-floating chains in the graph, involving a total of 65 nodes (1.96%)
and 50 edges (0.54%), with the largest one involving 7 nodes and 6 edges. The detected
free-floating chains, sorted by decreasing size, are:

• Free-floating chain starting from the root node mcroy95repair (degree 5 and node
type Agents), and containing 7 nodes, with a maximal depth of 2, which are
3489 (node type AI), ardissono00plan (node type Agents), ardissono96uso (node
type Agents), mcroy98achieving (node type AI) and traum99speech (node type
Agents). Its nodes have 2 node types, which are Agents (4 nodes, 0.12%) and AI
(2 nodes, 0.06%).

• Free-floating chain starting from the root node liu00extended (degree 3 and node
type ML), and containing 5 nodes, with a maximal depth of 2, which are 521000
(node type ML), frank98generating (node type ML), hekanaho98dogma (node
type AI) and fertig99fuzzy (node type ML). Its nodes have 2 node types, which
are ML (3 nodes, 0.09%) and AI.

• Free-floating chain starting from the root node hatzilygeroudis00neurules (degree
4), and containing 5 nodes, with a maximal depth of 2, which are hatzilyger-
oudis02multiinference, prentzas01webbased, prentzas02webbased and hatzilyger-
oudis01hymes. Its nodes have a single node type, which is AI.

• Free-floating chain starting from the root node chen98learningbased (degree 2),
and containing 4 nodes, with a maximal depth of 2, which are sreerupa98dynamic,
weng98visionguided and 208646. Its nodes have a single node type, which is ML.

• Free-floating chain starting from the root node 288424 (degree 2), and containing
4 nodes, with a maximal depth of 2, which are granlund01patternsupported,
vanwelie00patterns and borchers00pattern. Its nodes have a single node type,
which is HCI.
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• Free-floating chain starting from the root node 461740 (degree 2 and node type
ML), and containing 4 nodes, with a maximal depth of 2, which are 149759 (node
type AI), nguyen98strict (node type AI) and 496719 (node type ML). Its nodes
have 2 node types, which are AI (2 nodes, 0.06%) and ML.

And other 9 free-floating chains.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 240 tendrils in the graph, involving
a total of 321 nodes (9.69%) and 321 edges (3.49%), with the largest one involving 3
nodes and 3 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node bharat99comparison (degree 5), and contain-
ing 3 nodes, with a maximal depth of 3, which are 502499, almeida01analyzing
and heinonen96www. Its nodes have a single node type, which is IR.

• Tendril starting from the root node kubiatowicz00oceanstore (degree 4 and node
type HCI), and containing 3 nodes, with a maximal depth of 3, which are 525023
(node type HCI), grimm01systems (node type Agents) and jennings01aspects
(node type HCI). Its nodes have 2 node types, which are HCI (2 nodes, 0.06%)
and Agents.

• Tendril starting from the root node stolzenburg01from (degree 3 and node type
Agents), and containing 3 nodes, with a maximal depth of 3, which are 335912
(node type ML), boutilier01partialorder (node type Agents) and brafman98knowledge
(node type AI). Its nodes have 3 node types, which are ML, Agents and AI.

• Tendril starting from the root node 35592 (degree 5), and containing 3 nodes,
with a maximal depth of 3, which are 69807, onoda98asymptotic and 12247. Its
nodes have a single node type, which is ML.

• Tendril starting from the root node 242172 (degree 10), and containing 3 nodes,
with a maximal depth of 3, which are rao96agentspeakl, hindriks00architecture
and 491166. Its nodes have a single node type, which is Agents.

• Tendril starting from the root node oviatt99ten (degree 4), and containing 3
nodes, with a maximal depth of 3, which are 443913, conati00toward and 452812.
Its nodes have a single node type, which is HCI.

And other 234 tendrils.

Cora

The undirected graph Cora has 2.71K heterogeneous nodes and 5.28K edges. The
graph contains 78 connected components, with the largest one containing 2.48K nodes
and the smallest one containing 2 nodes. The RAM requirements for the nodes and
edges data structures are 207.68KB and 16.34KB respectively.

Degree centrality The minimum node degree is 1, the maximum node degree is
168, the mode degree is 2, the mean degree is 3.90 and the node degree median is
3. The nodes with the highest degree centrality are 35 (degree 168 and node type
Genetic_Algorithms), 6213 (degree 78 and node type Reinforcement_Learning), 1365
(degree 74 and node type Neural_Networks), 3229 (degree 65 and node type Neu-
ral_Networks) and 910 (degree 44 and node type Neural_Networks).
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Node types The graph has 7 node types, which are Neural_Networks (818 nodes,
30.21%), Probabilistic_Methods (426 nodes, 15.73%), Genetic_Algorithms (418 nodes,
15.44%), Theory (351 nodes, 12.96%), Case_Based (298 nodes, 11.00%), Reinforce-
ment_Learning (217 nodes, 8.01%) and Rule_Learning (180 nodes, 6.65%). The RAM
requirement for the node types data structure is 141.72KB.

Topological Oddities A topological oddity is a set of nodes in the graph that may be
derived by an error during the generation of the edge list of the graph and, depending on
the task, could bias the results of topology-based models. In the following paragraph,
we will describe the detected topological oddities.

Node tuples A node tuple is a connected component composed of two nodes. We
have detected 57 node tuples in the graph, involving a total of 114 nodes (4.21%) and
57 edges (0.54%). The detected node tuples are:

• Node tuple containing the nodes 1105622 (node type Neural_Networks) and
430574 (node type Neural_Networks).

• Node tuple containing the nodes 116512 (node type Neural_Networks) and 1107808
(node type Neural_Networks).

• Node tuple containing the nodes 1107728 (node type Neural_Networks) and
115188 (node type Neural_Networks).

• Node tuple containing the nodes 1136040 (node type Neural_Networks) and
754594 (node type Neural_Networks).

• Node tuple containing the nodes 73972 (node type Case_Based) and 50980 (node
type Case_Based).

• Node tuple containing the nodes 628458 (node type Neural_Networks) and 628459
(node type Neural_Networks).

• Node tuple containing the nodes 180301 (node type Probabilistic_Methods) and
1110628 (node type Probabilistic_Methods).

• Node tuple containing the nodes 1133008 (node type Neural_Networks) and
688824 (node type Neural_Networks).

• Node tuple containing the nodes 654519 (node type Genetic_Algorithms) and
1131754 (node type Genetic_Algorithms).

• Node tuple containing the nodes 49720 (node type Probabilistic_Methods) and
49753 (node type Probabilistic_Methods).

• Node tuple containing the nodes 133628 (node type Theory) and 1108570 (node
type Theory).

• Node tuple containing the nodes 617378 (node type Neural_Networks) and 1130069
(node type Neural_Networks).

• Node tuple containing the nodes 529165 (node type Neural_Networks) and 1126315
(node type Neural_Networks).

• Node tuple containing the nodes 824245 (node type Neural_Networks) and 1139009
(node type Neural_Networks).
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• Node tuple containing the nodes 820661 (node type Neural_Networks) and 817774
(node type Neural_Networks).

And other 42 node tuples.

Isomorphic node groups Isomorphic groups are nodes with exactly the same neigh-
bours and node types (if present in the graph). Nodes in such groups are topologically
indistinguishable, that is swapping their ID would not change the graph topology. We
have detected 3 isomorphic node groups in the graph, involving a total of 6 nodes
(0.22%) and 30 edges (0.28%). The detected isomorphic node groups, sorted by de-
creasing size, are:

• Group with 2 nodes (degree 5 and node type Genetic_Algorithms): 1104999 and
63832.

• Group with 2 nodes (degree 5 and node type Neural_Networks): 43698 and
31336.

• Group with 2 nodes (degree 5 and node type Neural_Networks): 1154123 and
1154124.

Dendritic trees A dendritic tree is a tree-like structure starting from a root node
that is part of another strongly connected component. We have detected 13 dendritic
trees in the graph, involving a total of 64 nodes (2.36%) and 64 edges (0.61%), with
the largest one involving 9 nodes and 9 edges. The detected dendritic trees, sorted by
decreasing size, are:

• Dendritic tree starting from the root node 16819 (degree 14), and containing 9
nodes, with a maximal depth of 4, which are 1131274, 643003, 644843, 1131189
and 645016 (degree 5). Its nodes have a single node type, which is Probabilis-
tic_Methods.

• Dendritic tree starting from the root node 35 (degree 168), and containing 7
nodes, with a maximal depth of 2, which are 1152508, 1137466, 1128945, 1119505
and 15670. Its nodes have a single node type, which is Genetic_Algorithms.

• Dendritic tree starting from the root node 16437 (degree 6), and containing 6
nodes, with a maximal depth of 3, which are 51831, 430329, 127940 (degree
4), 416964 and 1114364. Its nodes have a single node type, which is Neu-
ral_Networks.

• Dendritic tree starting from the root node 424540 (degree 3), and containing 5
nodes, with a maximal depth of 3, which are 18536 (degree 3), 1106854, 86923
(degree 3), 18532 and 1114184. Its nodes have a single node type, which is
Neural_Networks.

• Dendritic tree starting from the root node 910 (degree 44 and node type Neu-
ral_Networks), and containing 5 nodes, with a maximal depth of 2, which are
94953 (node type Neural_Networks), 1122460 (node type Neural_Networks),
1114118 (node type Neural_Networks), 245288 (node type Reinforcement_Learning)
and 119712 (node type Genetic_Algorithms). Its nodes have 3 node types,
which are Neural_Networks (3 nodes, 0.11%), Reinforcement_Learning and Ge-
netic_Algorithms.
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• Dendritic tree starting from the root node 13885 (degree 7 and node type Neu-
ral_Networks), and containing 5 nodes, with a maximal depth of 3, which are
84459 (node type Theory), 6238 (degree 4 and node type Theory), 1123991 (node
type Probabilistic_Methods), 10793 (node type Theory) and 1130356 (node type
Theory). Its nodes have 2 node types, which are Theory (4 nodes, 0.15%) and
Probabilistic_Methods.

And other 7 dendritic trees.

Stars A star is a tree with a maximal depth of one, where nodes with maximal unique
degree one are connected to a central root node with a high degree. We have detected
3 stars in the graph, involving a total of 9 nodes (0.33%) and 6 edges (0.06%). The
detected stars are:

• Star starting from the root node 1112071 (degree 2), and containing 3 nodes,
with a maximal depth of 1, which are 212107 and 212097. Its nodes have a single
node type, which is Probabilistic_Methods.

• Star starting from the root node 1123215 (degree 2), and containing 3 nodes,
with a maximal depth of 1, which are 288107 and 149139. Its nodes have a single
node type, which is Theory.

• Star starting from the root node 9559 (degree 2), and containing 3 nodes, with a
maximal depth of 1, which are 1102794 and 252725. Its nodes have a single node
type, which is Rule_Learning.

Dendritic stars A dendritic star is a dendritic tree with a maximal depth of one,
where nodes with maximal unique degree one are connected to a central root node with
high degree and inside a strongly connected component. We have detected 29 dendritic
stars in the graph, involving a total of 84 nodes (3.10%) and 84 edges (0.80%), with
the largest one involving 12 nodes and 12 edges. The detected dendritic stars, sorted
by decreasing size, are:

• Dendritic star starting from the root node 1365 (degree 74 and node type Neu-
ral_Networks), and containing 12 nodes, with a maximal depth of 1, which are
1105062 (node type Reinforcement_Learning), 853150 (node type Neural_Networks),
949318 (node type Neural_Networks), 1136442 (node type Neural_Networks)
and 1132922 (node type Neural_Networks). Its nodes have 2 node types, which
are Neural_Networks (11 nodes, 0.41%) and Reinforcement_Learning.

• Dendritic star starting from the root node 20193 (degree 23), and containing 11
nodes, with a maximal depth of 1, which are 1153877, 1153879, 1153889, 1130653
and 1130657. Its nodes have a single node type, which is Case_Based.

• Dendritic star starting from the root node 6913 (degree 12), and containing 4
nodes, with a maximal depth of 1, which are 1105011, 1131230, 703953 and
646289. Its nodes have a single node type, which is Probabilistic_Methods.

• Dendritic star starting from the root node 205196 (degree 9), and containing
4 nodes, with a maximal depth of 1, which are 628766, 1130568, 1130586 and
815073. Its nodes have a single node type, which is Neural_Networks.

• Dendritic star starting from the root node 89547 (degree 13 and node type The-
ory), and containing 3 nodes, with a maximal depth of 1, which are 1152379
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(node type Theory), 1116328 (node type Neural_Networks) and 237376 (node
type Theory). Its nodes have 2 node types, which are Theory (2 nodes, 0.07%)
and Neural_Networks.

• Dendritic star starting from the root node 31353 (degree 19), and containing 3
nodes, with a maximal depth of 1, which are 286562, 1063773 and 686559. Its
nodes have a single node type, which is Neural_Networks.

And other 23 dendritic stars.

Dendritic tendril stars A dendritic tendril star is a dendritic tree with a depth
greater than one, where the arms of the star are tendrils. We have detected 7 dendritic
tendril stars in the graph, involving a total of 28 nodes (1.03%) and 28 edges (0.27%),
with the largest one involving 6 nodes and 6 edges. The detected dendritic tendril
stars, sorted by decreasing size, are:

• Dendritic tendril star starting from the root node 3229 (degree 65 and node type
Neural_Networks), and containing 6 nodes, with a maximal depth of 3, which are
919885 (node type Neural_Networks), 1125082 (node type Genetic_Algorithms),
7022 (node type Neural_Networks), 1112767 (node type Neural_Networks) and
226698 (node type Neural_Networks). Its nodes have 2 node types, which are
Neural_Networks (5 nodes, 0.18%) and Genetic_Algorithms.

• Dendritic tendril star starting from the root node 643069 (degree 4 and node
type Probabilistic_Methods), and containing 6 nodes, with a maximal depth
of 5, which are 14090 (node type Probabilistic_Methods), 1131192 (node type
Probabilistic_Methods), 1103016 (node type Neural_Networks), 14083 (node
type Neural_Networks) and 62676 (node type Neural_Networks). Its nodes
have 2 node types, which are Neural_Networks (4 nodes, 0.15%) and Probabilis-
tic_Methods (2 nodes, 0.07%).

• Dendritic tendril star starting from the root node 3243 (degree 12 and node
type Theory), and containing 4 nodes, with a maximal depth of 3, which are
1103610 (node type Theory), 854434 (node type Neural_Networks), 8961 (node
type Reinforcement_Learning) and 1133390 (node type Theory). Its nodes have
3 node types, which are Theory (2 nodes, 0.07%), Neural_Networks and Rein-
forcement_Learning.

• Dendritic tendril star starting from the root node 5086 (degree 12), and containing
3 nodes, with a maximal depth of 2, which are 354004, 1105698 and 1118546. Its
nodes have a single node type, which is Probabilistic_Methods.

• Dendritic tendril star starting from the root node 35863 (degree 5 and node
type Reinforcement_Learning), and containing 3 nodes, with a maximal depth
of 2, which are 28359 (node type Reinforcement_Learning), 134060 (node type
Theory) and 481073 (node type Reinforcement_Learning). Its nodes have 2 node
types, which are Reinforcement_Learning (2 nodes, 0.07%) and Theory.

• Dendritic tendril star starting from the root node 162080 (degree 5), and contain-
ing 3 nodes, with a maximal depth of 2, which are 738941, 1135345 and 1135455.
Its nodes have a single node type, which is Neural_Networks.

And another dendritic tendril star.
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Free-floating chains A free-floating chain is a tree with maximal degree two. We
have detected 2 free-floating chains in the graph, involving a total of 8 nodes (0.30%)
and 6 edges (0.06%). The detected free-floating chains are:

• Free-floating chain starting from the root node 375825 (degree 2), and containing
4 nodes, with a maximal depth of 2, which are 1119623, 421481 and 111770. Its
nodes have a single node type, which is Probabilistic_Methods.

• Free-floating chain starting from the root node 430711 (degree 2), and containing
4 nodes, with a maximal depth of 2, which are 671052, 1132416 and 1132406. Its
nodes have a single node type, which is Neural_Networks.

Tendrils A tendril is a path starting from a node of degree one, connected to a
strongly connected component. We have detected 224 tendrils in the graph, involving
a total of 265 nodes (9.79%) and 265 edges (2.51%), with the largest one involving 4
nodes and 4 edges. The detected tendrils, sorted by decreasing size, are:

• Tendril starting from the root node 83847 (degree 4), and containing 4 nodes,
with a maximal depth of 4, which are 1130678, 630890, 233106 and 12275. Its
nodes have a single node type, which is Neural_Networks.

• Tendril starting from the root node 1140543 (degree 5), and containing 3 nodes,
with a maximal depth of 3, which are 120817, 1109873 and 163235. Its nodes
have a single node type, which is Neural_Networks.

• Tendril starting from the root node 683404 (degree 4), and containing 3 nodes,
with a maximal depth of 3, which are 683360, 522338 and 1132864. Its nodes
have a single node type, which is Probabilistic_Methods.

• Tendril starting from the root node 20534 (degree 10 and node type Reinforce-
ment_Learning), and containing 3 nodes, with a maximal depth of 3, which
are 13972 (node type Reinforcement_Learning), 1126050 (node type Reinforce-
ment_Learning) and 93318 (node type Neural_Networks). Its nodes have 2 node
types, which are Reinforcement_Learning (2 nodes, 0.07%) and Neural_Networks.

• Tendril starting from the root node 66751 (degree 5), and containing 3 nodes,
with a maximal depth of 3, which are 1138043, 77108 and 77112. Its nodes have
a single node type, which is Theory.

• Tendril starting from the root node 3231 (degree 36 and node type Theory), and
containing 2 nodes, with a maximal depth of 2, which are 1113926 (node type
Neural_Networks) and 250566 (node type Case_Based). Its nodes have 2 node
types, which are Neural_Networks and Case_Based.

And other 218 tendrils.
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Appendix D

Visualization of Kipf GCN Models

In the current section, we show visualization based on Keras dot model visualizations
of Kipf GCN models for node-label, edge-label and edge prediction. Analogous visu-
alizations are available for all other support TensorFlow/Keras models.
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Figure D.1: Default Kipf GCN model for multiclass edge-label prediction, using
also the edge metrics (Jaccard Coefficient, Adamic-Adar, Preferential Attachment, and
Resource Allocation Index).
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Figure D.2: Default Kipf GCN model for multi-modal edge prediction, using also
the edge metrics (Jaccard Coefficient, Adamic-Adar, Preferential Attachment, and Re-
source Allocation Index).

Figure D.3: Default Kipf GCN model for multi-modal node-label prediction.
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Appendix E

Models and Parameters used for the
experimental assessment of GRAPE

In this Appendix we report the details of the machine learning models we used to
evaliuate the performance of GRAPE in the node embedding task (subsection E.1), the
edge-prediction task (subsection E.2), and the node-label prediction task (subsection
E.3).

E.1 Evaluated node embedding models
In the following section we report the node embedding model parameters used within
the context of the GRAPE pipelines for the evaluation of models on node-label and
edge prediction tasks.

Node2Vec CBOW

The parameters used for the node embedding model Node2Vec CBOW in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.1.

Table E.1: Node2Vec CBOW model parameters.

Parameter name Value

Embedding size 100
Epochs 10
Number of negative samples 10
Walk length 128
Iterations 10
Window size 10
Return weight 0.25
Explore weight 4
Max neighbours 100
Learning rate 0.01
Learning rate decay 0.9

Node2Vec GloVe

The parameters used for the node embedding model Node2Vec GloVe in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table
E.2.
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Table E.2: Node2Vec GloVe model parameters.

Parameter name Value

Embedding size 100
Alpha 0.75
Walk length 128
Iterations 10
Window size 10
Return weight 0.25
Explore weight 4
Max neighbours 100
Epochs 500
Learning rate 0.01
Learning rate decay 0.9

Node2Vec SkipGram

The parameters used for the node embedding model Node2Vec SkipGram in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.3.

Table E.3: Node2Vec SkipGram model parameters.

Parameter name Value

Embedding size 100
Epochs 10
Number of negative samples 10
Walk length 128
Iterations 10
Window size 10
Return weight 0.25
Explore weight 4
Max neighbours 100
Learning rate 0.01
Learning rate decay 0.9

DeepWalk CBOW

The parameters used for the node embedding model DeepWalk CBOW in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.4.

Table E.4: DeepWalk CBOW model parameters.

Parameter name Value

Embedding size 100
Epochs 10
Number of negative samples 10
Walk length 128
Iterations 10
Window size 10
Max neighbours 100
Learning rate 0.01
Learning rate decay 0.9
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DeepWalk GloVe

The parameters used for the node embedding model DeepWalk GloVe in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table
E.5.

Table E.5: DeepWalk GloVe model parameters.

Parameter name Value

Embedding size 100
Alpha 0.75
Walk length 128
Iterations 10
Window size 10
Max neighbours 100
Epochs 500
Learning rate 0.01
Learning rate decay 0.9

DeepWalk SkipGram

The parameters used for the node embedding model DeepWalk SkipGram in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.6.

Table E.6: DeepWalk SkipGram model parameters.

Parameter name Value

Embedding size 100
Epochs 10
Number of negative samples 10
Walk length 128
Iterations 10
Window size 10
Max neighbours 100
Learning rate 0.01
Learning rate decay 0.9

First Order LINE

The parameters used for the node embedding model First Order LINE in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.7.

Table E.7: First Order LINE model parameters.

Parameter name Value

Embedding size 100
Epochs 500
Batch size 1024
Optimizer nadam
Early stopping min delta 0.001
Early stopping patience 10
Learning rate plateau min delta 0.001
Learning rate plateau patience 5
Negative samples rate 0.5
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Second Order LINE

The parameters used for the node embedding model Second Order LINE in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.8.

Table E.8: Second Order LINE model parameters.

Parameter name Value

Embedding size 100
Epochs 500
Batch size 1024
Optimizer nadam
Early stopping min delta 0.001
Early stopping patience 10
Learning rate plateau min delta 0.001
Learning rate plateau patience 5
Negative samples rate 0.5

NMFADMM

The parameters used for the node embedding model NMFADMM in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.9.

Table E.9: NMFADMM model parameters.

Parameter name Value

Embedding size 128
Iterations 100
Rho 1

RandNE

The parameters used for the node embedding model RandNE in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.10.

Table E.10: RandNE model parameters.

Parameter name Value

Embedding size 100
Alphas (0.5, 0.5)
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GraRep

The parameters used for the node embedding model GraRep in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.11.

Table E.11: GraRep model parameters.

Parameter name Value

Embedding size 128
Iteration 10
Order 5

DeepWalk Walklets SkipGram

The parameters used for the node embedding model Walklets SkipGram in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.12.

Table E.12: DeepWalk Walklets SkipGram model parameters.

Parameter name Value

Embedding size 100
Epochs 10
Number of negative samples 10
Walk length 128
Iterations 10
Window size 10
Max neighbours 100
Learning rate 0.01
Learning rate decay 0.9

NetMF

The parameters used for the node embedding model NetMF in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.13.

Table E.13: NetMF model parameters.

Parameter name Value

Embedding size 100
Walk length 128
Iterations 10
Window size 10
Max neighbours 100

GLEE

The parameters used for the node embedding model GLEE in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.14.

Table E.14: GLEE model parameters.

Parameter name Value

Embedding size 100
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HOPE

The parameters used for the node embedding model HOPE in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.15.

Table E.15: HOPE model parameters.

Parameter name Value

Embedding size 100
Metric Neighbours Intersection size
Root node name None

Role2Vec

The parameters used for the node embedding model Role2Vec in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.16.

Table E.16: Role2Vec model parameters.

Parameter name Value

Embedding size 100
Walk number 10
Walk length 80
Window size 5
Epochs 10
Learning rate 0.05
Min count 1
Down sampling 0.0001
Weisfeiler lehman hashing iterations 2
Erase base features False

E.2 Evaluated edge prediction models
Decision Tree Classifier

The parameters used for the edge prediction model Decision Tree Classifier in GRAPE eval-
uation pipelines for the node-label and edge prediction tasks are reported in table E.17.

Table E.17: Parameters of Decision Tree Classifier model for edge prediction.

Parameter name Value

Edge embedding method Hadamard
Training unbalance rate 1
Criterion gini
Splitter best
Max depth 10
Min samples split 2
Min samples leaf 1
Min weight fraction leaf 0
Max features None
Max leaf nodes None
Min impurity decrease 0
CCP alpha 0
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Perceptron

The parameters used for the edge prediction model Perceptron in GRAPE evaluation
pipelines for the node-label and edge prediction tasks are reported in table E.18.

Table E.18: Parameters of Perceptron model for edge prediction.

Parameter name Value

Edge embeddings Hadamard
Cooccurrence iterations 100
Cooccurrence window size 10
Number of epochs 100
Number of edges per mini batch 256
Learning rate 0.001
First order decay factor 0.9
Second order decay factor 0.999

E.3 Evaluated node-label prediction models
Decision Tree Classifier

The parameters used for the node label prediction model Decision Tree Classifier in
GRAPE evaluation pipelines for the node-label and edge prediction tasks are reported
in table E.19.

Table E.19: Parameters of Decision Tree Classifier model for node-label prediction.

Parameter name Value

Criterion gini
Splitter best
Max depth 10
Min samples split 2
Min samples leaf 1
Min weight fraction leaf 0
Max features None
Max leaf nodes None
Min impurity decrease 0
Class weight balanced
CCP alpha 0
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Random Forest Classifier

The parameters used for the node label prediction model Random Forest Classifier in
GRAPE evaluation pipelines for the node-label and edge prediction tasks are reported
in table E.20.

Table E.20: Parameters of Random Forest Classifier model for node-label prediction.

Parameter name Value

N estimators 1000
Criterion gini
Max depth 10
Min samples split 2
Min samples leaf 1
Min weight fraction leaf 0
Max features sqrt
Max leaf nodes None
Min impurity decrease 0
Bootstrap True
Oob score False
Warm start False
Class weight balanced
CCP alpha 0
Max samples None
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Appendix F

Edge and node label prediction
performance

In this section, we report the full performance results, estimated with different metrics,
using the GRAPE pipelines for the evaluation of edge and node-label prediction tasks.

F.1 Edge prediction performance

Figure F.1: Average f1 score of edge prediction models trained on embedding methods.
Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.
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Figure F.2: Average balanced accuracy of edge prediction models trained on embed-
ding methods. Results are averaged across ten holdouts. Embedding models are sorted for each task;
methods implemented in GRAPE are in purple, while methods integrated through the GRAPE in-
terface are in cyan. We show perceptron and decision tree in row a and b, respectively. From left to
right, Human Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.

Figure F.3: Average accuracy of edge prediction models trained on embedding meth-
ods. Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.
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Figure F.4: Average precision of edge prediction models trained on embedding meth-
ods. Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.

Figure F.5: Average recall of edge prediction models trained on embedding methods.
Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.
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Figure F.6: Average auroc of edge prediction models trained on embedding methods.
Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.

Figure F.7: Average auprc of edge prediction models trained on embedding methods.
Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are in
cyan. We show perceptron and decision tree in row a and b, respectively. From left to right, Human
Phenotype Ontology, STRING Homo sapiens and STRING Mus musculus.

160



Table F.1: Decision Tree edge prediction performance in test evaluation on Human Pheno-
type Ontology. The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

NMFADMM .52± .006 .46± .013 .52± .005 .52± .006 .41± .016 .57± .004 .52± .007
RandNE .57± .003 .44± .005 .62± .004 .57± .003 .34± .005 .73± .004 .63± .006
Node2Vec CBOW .58± .003 .53± .003 .55± .004 .58± .003 .48± .003 .62± .004 .60± .004
DeepWalk CBOW .59± .004 .54± .006 .56± .002 .59± .004 .49± .008 .63± .003 .61± .004
Second-order LINE .62± .019 .60± .018 .59± .017 .62± .019 .58± .015 .64± .022 .63± .023
First-order LINE .64± .031 .54± .041 .70± .039 .64± .031 .42± .035 .81± .035 .75± .051
GLEE .68± .01 .59± .022 .66± .015 .68± .01 .45± .026 .66± .018 .84± .009
Walklets .69± .004 .62± .005 .71± .006 .69± .004 .51± .005 .82± .006 .79± .007
Role2Vec .69± .004 .62± .006 .74± .004 .69± .004 .49± .008 .85± .003 .82± .004
HOPE .73± .004 .67± .005 .67± .023 .73± .004 .54± .005 .64± .015 .88± .004
GraRep .73± .01 .67± .016 .77± .01 .73± .01 .56± .02 .87± .004 .85± .006
DeepWalk SkipGram .74± .004 .68± .006 .77± .004 .74± .004 .57± .007 .87± .003 .86± .004
Node2Vec SkipGram .76± .005 .72± .006 .78± .007 .76± .005 .61± .006 .88± .005 .87± .006
DeepWalk GloVe .77± .002 .75± .003 .75± .002 .77± .002 .68± .004 .83± .002 .84± .002
Node2Vec GloVe .78± .002 .76± .003 .75± .002 .78± .002 .70± .005 .83± .002 .84± .002
NetMF .79± .003 .76± .004 .80± .005 .79± .003 .67± .006 .88± .004 .89± .004

Table F.2: Perceptron edge prediction performance in test evaluation on Human Phenotype
Ontology. The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

GLEE .46± .007 .62± .007 .60± .017 .46± .007 .89± .014 .50± .019 .48± .004
NMFADMM .50± .0002 .01± .0004 .50± .004 .50± .0002 .00± .0002 .50± .004 .46± .03
Node2Vec CBOW .53± .014 .37± .157 .58± .077 .53± .014 .34± .292 .57± .077 .58± .041
HOPE .56± .006 .24± .018 .81± .004 .56± .006 .13± .012 .77± .007 .94± .003
DeepWalk CBOW .57± .018 .47± .147 .66± .069 .57± .018 .45± .298 .66± .059 .64± .064
RandNE .60± .017 .40± .043 .70± .018 .60± .017 .27± .035 .69± .012 .79± .019
GraRep .63± .08 .62± .165 .81± .137 .63± .08 .68± .307 .85± .103 .66± .103
Node2Vec SkipGram .73± .07 .74± .089 .76± .08 .73± .07 .79± .136 .78± .094 .70± .058
DeepWalk SkipGram .73± .025 .76± .021 .78± .025 .73± .025 .85± .054 .81± .029 .69± .03
First-order LINE .74± .035 .66± .066 .89± .009 .74± .035 .51± .083 .86± .015 .95± .017
Second-order LINE .76± .022 .77± .011 .84± .013 .76± .022 .80± .027 .84± .012 .75± .041
Walklets .79± .007 .74± .012 .94± .002 .79± .007 .60± .016 .93± .002 .96± .002
NetMF .79± .006 .75± .01 .89± .005 .79± .006 .63± .014 .85± .008 .94± .002
Role2Vec .81± .006 .79± .008 .91± .005 .81± .006 .70± .013 .91± .006 .90± .005
Node2Vec GloVe .82± .003 .83± .004 .87± .005 .82± .003 .85± .007 .89± .003 .80± .002
DeepWalk GloVe .82± .003 .83± .003 .87± .006 .82± .003 .85± .006 .90± .003 .81± .003
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Table F.3: Decision Tree edge prediction performance in test evaluation on Mus Musculus.
The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

GLEE .50± . .00± .0001 1.00± . .50± . .00± . 1.00± . 1.00± .
Node2Vec GloVe .56± .002 .56± .002 .54± .002 .56± .002 .55± .002 .56± .002 .56± .002
DeepWalk GloVe .58± .002 .58± .001 .56± .001 .58± .002 .57± .002 .59± .002 .59± .002
DeepWalk CBOW .61± .001 .60± .001 .57± .001 .61± .001 .59± .002 .60± .002 .61± .002
NMFADMM .61± .003 .60± .004 .58± .002 .61± .003 .60± .004 .61± .003 .61± .003
Node2Vec CBOW .62± .002 .62± .002 .58± .001 .62± .002 .60± .002 .62± .002 .63± .002
Node2Vec SkipGram .77± .004 .77± .004 .73± .004 .77± .004 .75± .005 .78± .004 .78± .004
DeepWalk SkipGram .78± .004 .77± .004 .73± .005 .78± .004 .76± .005 .78± .004 .79± .004
Role2Vec .78± .003 .77± .003 .73± .003 .78± .003 .73± .004 .80± .003 .81± .003
Walklets .79± .003 .78± .003 .74± .003 .79± .003 .76± .003 .80± .003 .81± .003
GraRep .79± .002 .79± .002 .75± .004 .79± .002 .77± .003 .80± .003 .81± .002
RandNE .80± .003 .79± .003 .75± .003 .80± .003 .79± .003 .80± .003 .80± .003
Second-order LINE .81± .003 .81± .003 .76± .004 .81± .003 .79± .003 .82± .003 .83± .003
NetMF .84± .001 .84± .001 .80± .003 .84± .001 .81± .001 .85± .002 .86± .002
First-order LINE .84± .002 .84± .002 .80± .002 .84± .002 .80± .003 .86± .001 .87± .001
HOPE .85± .002 .85± .002 .81± .001 .85± .002 .82± .002 .86± .001 .87± .002

Table F.4: Perceptron edge prediction performance in test evaluation on Mus Musculus.
The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

GLEE .50± . .67± . 1.00± . .50± . 1.00± . 1.00± .0001 .50± .
Node2Vec GloVe .59± .002 .60± .002 .63± .002 .59± .002 .62± .004 .63± .003 .59± .002
NMFADMM .62± .006 .61± .008 .65± .008 .62± .006 .61± .012 .66± .006 .62± .005
DeepWalk GloVe .62± .003 .63± .003 .67± .002 .62± .003 .64± .004 .67± .003 .62± .003
DeepWalk SkipGram .63± .03 .61± .059 .64± .036 .63± .03 .61± .132 .67± .029 .64± .039
Node2Vec SkipGram .63± .027 .66± .062 .63± .024 .63± .027 .72± .139 .67± .03 .62± .028
HOPE .70± .059 .76± .028 .92± .059 .70± .059 .94± .041 .92± .054 .64± .055
NetMF .71± .092 .77± .05 .92± .077 .71± .092 .94± .061 .93± .063 .67± .112
Node2Vec CBOW .74± .002 .72± .003 .82± .002 .74± .002 .66± .007 .79± .002 .78± .003
DeepWalk CBOW .74± .002 .73± .002 .82± .002 .74± .002 .69± .005 .80± .002 .77± .003
GraRep .77± .065 .74± .121 .87± .036 .77± .065 .72± .232 .90± .027 .83± .09
Role2Vec .86± .003 .85± .004 .94± .002 .86± .003 .79± .006 .94± .002 .91± .002
RandNE .87± .003 .86± .004 .95± .002 .87± .003 .82± .006 .94± .002 .92± .002
Second-order LINE .91± .002 .91± .002 .97± .002 .91± .002 .89± .003 .96± .002 .93± .002
Walklets .91± .002 .91± .002 .97± .001 .91± .002 .90± .004 .97± .001 .93± .002
First-order LINE .92± .001 .92± .001 .98± .0005 .92± .001 .88± .002 .97± .0006 .96± .002
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Table F.5: Decision Tree edge prediction performance in test evaluation on Homo Sapiens.
The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

GLEE .51± .0006 .02± .003 .99± .001 .51± .0006 .01± .001 1.00± .0006 .93± .011
Node2Vec GloVe .54± .001 .53± .001 .52± .001 .54± .001 .53± .002 .54± .002 .54± .001
DeepWalk GloVe .55± .001 .55± .002 .54± .001 .55± .001 .54± .002 .55± .001 .55± .001
NMFADMM .59± .002 .58± .002 .56± .002 .59± .002 .58± .002 .59± .003 .59± .003
DeepWalk CBOW .61± .002 .60± .002 .57± .002 .61± .002 .58± .003 .61± .002 .61± .002
Node2Vec CBOW .62± .002 .61± .002 .58± .002 .62± .002 .60± .002 .62± .002 .63± .002
Node2Vec SkipGram .74± .003 .73± .003 .69± .003 .74± .003 .72± .003 .74± .003 .75± .004
DeepWalk SkipGram .75± .004 .74± .004 .70± .004 .75± .004 .73± .004 .75± .004 .76± .004
Role2Vec .76± .003 .75± .003 .71± .004 .76± .003 .71± .003 .78± .004 .79± .004
GraRep .77± .002 .77± .002 .73± .003 .77± .002 .75± .002 .77± .002 .78± .002
RandNE .77± .002 .77± .002 .73± .002 .77± .002 .77± .002 .78± .002 .78± .002
Walklets .78± .002 .77± .003 .73± .003 .78± .002 .74± .003 .79± .002 .80± .003
Second-order LINE .78± .004 .78± .004 .74± .005 .78± .004 .75± .005 .79± .004 .80± .004
NetMF .82± .001 .81± .001 .77± .002 .82± .001 .79± .002 .82± .002 .83± .002
First-order LINE .82± .003 .81± .003 .77± .002 .82± .003 .77± .004 .83± .002 .85± .002
HOPE .82± .002 .82± .002 .78± .002 .82± .002 .80± .002 .83± .002 .84± .002

Table F.6: Perceptron edge prediction performance in test evaluation on Homo Sapiens.
The rows are sorted by balanced accuracy.

Balanced
Accuracy F1 Score AUPRC Accuracy Recall AUROC Precision

GLEE .50± . .67± . .99± .011 .50± . 1.00± . .99± .011 .50± .
Node2Vec GloVe .57± .002 .56± .003 .60± .002 .57± .002 .55± .004 .60± .002 .57± .002
DeepWalk GloVe .59± .002 .58± .002 .63± .003 .59± .002 .57± .003 .63± .003 .59± .002
NMFADMM .62± .003 .61± .004 .64± .004 .62± .003 .60± .005 .65± .003 .62± .003
DeepWalk SkipGram .63± .027 .63± .06 .64± .032 .63± .027 .64± .128 .67± .031 .63± .031
Node2Vec SkipGram .64± .027 .65± .058 .65± .033 .64± .027 .70± .134 .68± .031 .63± .034
HOPE .71± .069 .76± .035 .92± .05 .71± .069 .94± .036 .92± .048 .65± .06
Node2Vec CBOW .74± .002 .72± .002 .82± .002 .74± .002 .66± .005 .79± .001 .79± .004
DeepWalk CBOW .74± .002 .73± .003 .82± .002 .74± .002 .68± .006 .79± .002 .78± .004
GraRep .77± .026 .75± .051 .86± .034 .77± .026 .73± .17 .89± .019 .83± .098
NetMF .78± .052 .79± .025 .83± .085 .78± .052 .81± .119 .88± .054 .79± .107
Role2Vec .85± .003 .83± .004 .93± .003 .85± .003 .77± .005 .93± .003 .92± .002
RandNE .85± .002 .84± .003 .94± .001 .85± .002 .79± .005 .92± .002 .91± .001
Second-order LINE .90± .002 .89± .002 .96± .001 .90± .002 .87± .003 .95± .002 .92± .002
Walklets .90± .001 .90± .001 .96± .0009 .90± .001 .88± .002 .96± .001 .91± .002
First-order LINE .91± .0007 .90± .0008 .97± .0004 .91± .0007 .85± .002 .97± .0005 .96± .002
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F.2 Node-label prediction performance

Figure F.8: Average auroc of node label prediction models trained on embedding meth-
ods. Results are averaged across ten holdouts. Embedding models are sorted for each task; methods
implemented in GRAPE are in purple, while methods integrated through the GRAPE interface are
in cyan. We show random forest and decision tree in row a and b, respectively. From left to right,
CiteSeer, Cora and PubMed Diabetes datasets..

Figure F.9: Average balanced accuracy of node label prediction models trained on
embedding methods. Results are averaged across ten holdouts. Embedding models are sorted for
each task; methods implemented in GRAPE are in purple, while methods integrated through the
GRAPE interface are in cyan. We show random forest and decision tree in row a and b, respectively.
From left to right, CiteSeer, Cora and PubMed Diabetes datasets..
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Figure F.10: Average f1 score of node label prediction models trained on embedding
methods. Results are averaged across ten holdouts. Embedding models are sorted for each task;
methods implemented in GRAPE are in purple, while methods integrated through the GRAPE inter-
face are in cyan. We show random forest and decision tree in row a and b, respectively. From left to
right, CiteSeer, Cora and PubMed Diabetes datasets..

Figure F.11: Average precision of node label prediction models trained on embedding
methods. Results are averaged across ten holdouts. Embedding models are sorted for each task;
methods implemented in GRAPE are in purple, while methods integrated through the GRAPE inter-
face are in cyan. We show random forest and decision tree in row a and b, respectively. From left to
right, CiteSeer, Cora and PubMed Diabetes datasets..
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Figure F.12: Average recall of node label prediction models trained on embedding
methods. Results are averaged across ten holdouts. Embedding models are sorted for each task;
methods implemented in GRAPE are in purple, while methods integrated through the GRAPE inter-
face are in cyan. We show random forest and decision tree in row a and b, respectively. From left to
right, CiteSeer, Cora and PubMed Diabetes datasets..

Table F.7: Random Forest node-label prediction performance in test evaluation on Cora.
The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .76± .015 .08± .009 .15± .004 .15± .004 .36± .165 .31± .005
Node2Vec CBOW .85± .018 .25± .014 .25± .01 .25± .01 .70± .13 .40± .009
DeepWalk CBOW .89± .013 .33± .016 .32± .013 .32± .013 .70± .102 .48± .013
RandNE .94± .008 .47± .027 .42± .025 .42± .025 .88± .016 .54± .026
Second-order LINE .94± .006 .55± .04 .49± .034 .49± .034 .87± .019 .59± .026
Node2Vec GloVe .94± .007 .58± .016 .56± .016 .56± .016 .79± .048 .68± .014
GLEE .92± .008 .64± .023 .58± .022 .58± .022 .81± .02 .68± .013
First-order LINE .96± .005 .69± .023 .62± .023 .62± .023 .88± .012 .70± .017
DeepWalk GloVe .95± .003 .68± .019 .65± .017 .65± .017 .81± .015 .73± .009
HOPE .95± .008 .74± .021 .72± .022 .72± .022 .79± .02 .77± .019
Role2Vec .96± .006 .78± .021 .75± .022 .75± .022 .85± .017 .79± .015
GraRep .96± .006 .77± .025 .75± .026 .75± .026 .80± .024 .78± .023
Walklets .97± .004 .80± .021 .76± .025 .76± .025 .86± .015 .81± .017
NetMF .97± .003 .81± .014 .79± .017 .79± .017 .84± .013 .82± .014
DeepWalk SkipGram .97± .003 .83± .012 .80± .015 .80± .015 .85± .01 .83± .01
Node2Vec SkipGram .97± .004 .84± .016 .82± .019 .82± .019 .87± .013 .84± .017
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Table F.8: Decision Tree node-label prediction performance in test evaluation on Cora.
The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .53± .013 .19± .023 .19± .023 .19± .023 .19± .023 .23± .022
Node2Vec CBOW .56± .012 .25± .02 .25± .02 .25± .02 .25± .02 .28± .026
DeepWalk CBOW .57± .007 .27± .011 .27± .012 .27± .012 .27± .011 .31± .014
Second-order LINE .62± .015 .34± .025 .34± .026 .34± .026 .34± .026 .38± .021
RandNE .62± .011 .36± .022 .35± .021 .35± .021 .36± .025 .39± .015
First-order LINE .65± .011 .40± .019 .41± .02 .41± .02 .40± .019 .43± .017
Node2Vec GloVe .67± .015 .43± .025 .43± .025 .43± .025 .43± .026 .48± .029
DeepWalk GloVe .69± .01 .46± .016 .47± .017 .47± .017 .47± .017 .52± .016
GLEE .72± .014 .51± .023 .51± .02 .51± .02 .52± .027 .55± .023
Role2Vec .72± .014 .51± .023 .51± .024 .51± .024 .51± .022 .54± .022
Walklets .72± .008 .51± .015 .51± .013 .51± .013 .52± .018 .55± .02
HOPE .81± .012 .65± .022 .64± .021 .64± .021 .66± .026 .67± .022
DeepWalk SkipGram .79± .011 .64± .02 .64± .019 .64± .019 .65± .022 .67± .019
Node2Vec SkipGram .81± .013 .67± .02 .67± .023 .67± .023 .68± .019 .70± .018
GraRep .82± .005 .68± .01 .68± .01 .68± .01 .69± .011 .70± .008
NetMF .85± .011 .73± .017 .74± .02 .74± .02 .74± .015 .75± .016

Table F.9: Random Forest node-label prediction performance in test evaluation on CiteSeer.
The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .70± .017 .26± .019 .29± .014 .29± .014 .40± .027 .35± .016
Node2Vec CBOW .74± .018 .35± .013 .37± .012 .37± .012 .45± .02 .43± .014
Second-order LINE .79± .009 .37± .016 .39± .015 .39± .015 .59± .075 .46± .016
DeepWalk CBOW .78± .013 .41± .021 .43± .021 .43± .021 .49± .056 .49± .023
GLEE .81± .01 .47± .014 .47± .012 .47± .012 .58± .042 .54± .012
HOPE .83± .012 .50± .024 .49± .02 .49± .02 .61± .046 .56± .02
GraRep .85± .008 .52± .017 .52± .015 .52± .015 .60± .027 .58± .014
DeepWalk GloVe .86± .01 .52± .015 .53± .016 .53± .016 .55± .049 .60± .017
Node2Vec GloVe .86± .009 .53± .011 .54± .011 .54± .011 .56± .052 .61± .011
RandNE .84± .01 .54± .024 .54± .022 .54± .022 .63± .033 .60± .022
NetMF .87± .009 .55± .012 .54± .012 .54± .012 .65± .025 .60± .016
Role2Vec .87± .006 .56± .012 .56± .012 .56± .012 .65± .043 .63± .013
First-order LINE .88± .01 .60± .021 .61± .021 .61± .021 .75± .029 .68± .022
DeepWalk SkipGram .90± .009 .61± .016 .61± .015 .61± .015 .68± .015 .68± .015
Node2Vec SkipGram .90± .008 .62± .021 .62± .016 .62± .016 .68± .031 .68± .013
Walklets .91± .006 .67± .02 .67± .016 .67± .016 .70± .023 .72± .012
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Table F.10: Decision Tree node-label prediction performance in test evaluation on CiteSeer.
The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .53± .011 .22± .019 .22± .019 .22± .019 .23± .02 .24± .019
Second-order LINE .54± .014 .23± .023 .23± .023 .23± .023 .23± .023 .25± .024
Node2Vec CBOW .56± .008 .26± .013 .26± .013 .26± .013 .26± .014 .27± .016
DeepWalk CBOW .56± .007 .27± .012 .27± .012 .27± .012 .27± .013 .29± .013
First-order LINE .60± .013 .34± .021 .34± .022 .34± .022 .34± .021 .36± .023
RandNE .61± .014 .35± .024 .35± .024 .35± .024 .35± .024 .37± .021
DeepWalk GloVe .63± .008 .38± .014 .38± .014 .38± .014 .39± .014 .41± .015
Node2Vec GloVe .64± .008 .39± .013 .39± .013 .39± .013 .39± .014 .42± .017
Role2Vec .65± .011 .41± .019 .41± .019 .41± .019 .42± .019 .44± .019
GLEE .72± .012 .44± .019 .43± .017 .43± .017 .49± .024 .48± .017
HOPE .74± .016 .46± .021 .45± .018 .45± .018 .54± .025 .50± .019
Walklets .69± .016 .48± .026 .48± .026 .48± .026 .49± .025 .51± .026
DeepWalk SkipGram .70± .011 .50± .018 .50± .018 .50± .018 .50± .019 .52± .018
GraRep .76± .008 .51± .014 .50± .013 .50± .013 .55± .017 .54± .012
Node2Vec SkipGram .71± .01 .51± .017 .51± .016 .51± .016 .51± .016 .53± .019
NetMF .78± .017 .56± .025 .55± .025 .55± .025 .58± .025 .59± .026

Table F.11: Random Forest node-label prediction performance in test evaluation on Pub-
MedDiabetes. The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .55± .006 .31± .006 .36± .006 .36± .006 .29± .005 .43± .007
RandNE .73± .008 .40± .005 .45± .006 .45± .006 .53± .157 .54± .007
Node2Vec CBOW .80± .006 .46± .007 .52± .008 .52± .008 .75± .006 .62± .009
DeepWalk CBOW .83± .007 .48± .005 .53± .005 .53± .005 .74± .018 .63± .005
First-order LINE .88± .004 .53± .009 .57± .006 .57± .006 .75± .008 .66± .006
Second-order LINE .90± .004 .54± .006 .59± .004 .59± .004 .75± .011 .68± .004
Node2Vec GloVe .89± .005 .73± .007 .72± .007 .72± .007 .76± .006 .76± .006
DeepWalk GloVe .90± .004 .75± .007 .74± .006 .74± .006 .77± .007 .77± .006
Role2Vec .92± .003 .76± .007 .75± .007 .75± .007 .79± .006 .79± .006
Walklets .93± .004 .77± .005 .76± .005 .76± .005 .81± .005 .80± .005
GLEE .92± .003 .78± .007 .77± .007 .77± .007 .79± .007 .80± .006
HOPE .92± .003 .78± .005 .78± .005 .78± .005 .79± .006 .80± .005
GraRep .93± .003 .79± .003 .79± .003 .79± .003 .80± .004 .81± .003
NetMF .93± .002 .80± .004 .79± .005 .79± .005 .80± .004 .81± .004
Node2Vec SkipGram .93± .002 .81± .005 .81± .005 .81± .005 .82± .006 .82± .005
DeepWalk SkipGram .93± .003 .81± .006 .81± .006 .81± .006 .82± .006 .82± .005
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Table F.12: Decision Tree node-label prediction performance in test evaluation on Pub-
MedDiabetes. The rows are sorted by balanced accuracy.

AUROC F1 Score Balanced
Accuracy Recall Precision Accuracy

NMFADMM .50± .006 .34± .008 .34± .008 .34± .008 .34± .008 .36± .009
RandNE .54± .006 .39± .008 .39± .008 .39± .008 .39± .008 .41± .009
First-order LINE .60± .007 .46± .008 .46± .008 .46± .008 .46± .008 .48± .008
Second-order LINE .60± .008 .47± .011 .47± .011 .47± .011 .47± .011 .49± .012
Node2Vec CBOW .61± .005 .48± .007 .48± .007 .48± .007 .48± .007 .50± .008
DeepWalk CBOW .61± .004 .48± .005 .48± .005 .48± .005 .48± .005 .50± .005
Node2Vec GloVe .70± .006 .59± .008 .59± .008 .59± .008 .60± .008 .62± .008
Role2Vec .70± .008 .60± .01 .60± .01 .60± .01 .60± .009 .62± .01
Walklets .70± .008 .60± .011 .60± .011 .60± .011 .60± .01 .62± .009
DeepWalk GloVe .71± .005 .61± .007 .61± .007 .61± .007 .61± .007 .63± .008
DeepWalk SkipGram .77± .005 .70± .006 .70± .006 .70± .006 .70± .005 .71± .006
Node2Vec SkipGram .78± .003 .71± .005 .71± .005 .71± .005 .71± .005 .72± .005
GraRep .79± .004 .72± .005 .72± .006 .72± .006 .72± .004 .73± .005
GLEE .81± .006 .72± .006 .73± .006 .73± .006 .72± .006 .73± .006
NetMF .83± .007 .74± .008 .74± .008 .74± .008 .74± .008 .75± .006
HOPE .83± .005 .74± .006 .74± .006 .74± .006 .74± .006 .75± .006
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Appendix G

Experiments on large real-world
graphs: results and information

This section includes detailed information about the data and the software we used to
build up the three real world big graphs used in the experiments. In particular Ta-
ble G.1 reports the pre-processed data we used to construct the graphs. Table G.2 and
G.3 show data and scripts used to build up respectively the PheKnowLator Knowledge
Graph and the CTD and Wikipedia graphs.

Figures and Tables in this section show the comparison of the experimental results
on the above big real-world graphs estimated using different metrics obtained by the
Decision Trees trained on Node2vec embeddings generated by GRAPE and the other
state-of-the-art graph embedding libraries.

Resource Link
Prebuilt CTD https://archive.org/download/ctd_20220404/CTD.tar
Prebuilt PheKnowLator https://archive.org/download/pheknowlator_20220411/PheKnowLator.

tar
Prebuilt English
Wikipedia

https://archive.org/download/wikipedia_edge_list.npy/wikipedia_
edge_list.npy.gz

Table G.1: Preprocessed datasets used to build-up the experiments for CTD, the PheKnowLator
biomedical KG and Wikipedia.
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Resource Link
PheKnowLator
build datasets

https://github.com/callahantiff/PheKnowLator/wiki/v2-Data-Sources

PheKnowLator
used in experi-
ments

https://storage.googleapis.com/pheknowlator/archived_builds/release_
v3.0.2/build_18OCT2021/data/original_data/downloaded_build_metadata.
txt

Preprocessed
PheKnowLator
data

https://storage.googleapis.com/pheknowlator/archived_builds/release_
v3.0.2/build_18OCT2021/data/processed_data/preprocessed_build_
metadata.txt

PheKnowLator
build scripts

https://github.com/callahantiff/PheKnowLator/tree/master/builds

PheKnowLator
build logs

https://storage.googleapis.com/pheknowlator/archived_builds/release_
v3.0.2/build_18OCT2021/knowledge_graphs/subclass_builds/inverse_
relations/owlnets/pkt_build_log.log

Table G.2: Ontologies, open link data sources and scripts used for the generation of the Phe-
KnowLator Knowledge Graph.

Resource Link
Complete CTD
dataset

http://ctdbase.org/reports/

Dumps of Wikipedia https://dumps.wikimedia.org/backup-index.html
English Wikipedia
script

https://github.com/AnacletoLAB/ensmallen/blob/develop/bindings/
python/ensmallen/datasets/wikipedia_automatic_graph_retrieval.py

Table G.3: Data and script used to construct the CTD and English Wikipedia graphs.

Figure G.1: Average auroc of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.
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Figure G.2: Average auprc of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.

Figure G.3: Average accuracy of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.

Figure G.4: Average balanced accuracy of Decision Tree trained. Results are averaged
across ten holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is
relative to the PheKnowLator graph. The number on the horizontal axis represents different unbalance
rates of existing and non-existing edges considered during the evaluation: 1 means a balanced rate
of existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.

172



Figure G.5: Average f1 score of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.

Figure G.6: Average precision of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.

Figure G.7: Average recall of Decision Tree trained. Results are averaged across ten
holdouts. The bar plot on the left is relative to the CTD graph, while the one on the right is relative
to the PheKnowLator graph. The number on the horizontal axis represents different unbalance rates
of existing and non-existing edges considered during the evaluation: 1 means a balanced rate of
existing and non-existing edges, 2 means 1 : 2 and 3 means 1 : 3. All embedding methods achieve
worse performance with the increasing unbalance rates, but GRAPE implementations consistently
outperform the other GenSim-based libraries.
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Table G.4: Decision Tree edge prediction performance in train evaluation on CTD with unbalance
rate 1

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.91± .0027 .88± .0036 .92± .0025 .93± .0042 .91± .0027 .95± .0036 .96± .002

GRAPE CBOW .95± .0003 .94± .0011 .95± .0003 .99± .0002 .95± .0003 .97± .0011 .99± .0001
GRAPE SG .95± .0003 .93± .0011 .95± .0003 .99± .0001 .95± .0003 .96± .001 .99± .0001
PecanPy SG .91± .0031 .89± .0054 .92± .0028 .94± .0047 .91± .0031 .95± .0031 .96± .0027

Table G.5: Decision Tree edge prediction performance in train evaluation on CTD with unbalance
rate 2

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.90± .003 .79± .0058 .86± .0037 .87± .0075 .91± .0027 .95± .0036 .96± .002

GRAPE CBOW .94± .0006 .88± .0019 .92± .0007 .98± .0003 .95± .0003 .97± .0011 .99± .0001
GRAPE SG .94± .0006 .87± .0019 .92± .0007 .97± .0001 .95± .0003 .96± .001 .99± .0001
PecanPy SG .90± .0041 .80± .0087 .87± .0049 .89± .0084 .91± .0031 .95± .0031 .96± .0027

Table G.6: Decision Tree edge prediction performance in train evaluation on CTD with unbalance
rate 3

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.89± .0033 .72± .0072 .82± .0048 .82± .0102 .91± .0027 .95± .0036 .96± .002

GRAPE CBOW .94± .0007 .83± .0026 .89± .0012 .97± .0004 .95± .0003 .97± .0011 .99± .0001
GRAPE SG .94± .0007 .82± .0025 .89± .0011 .96± .0002 .95± .0003 .96± .001 .99± .0001
PecanPy SG .90± .0047 .73± .0109 .82± .0067 .84± .0114 .91± .0031 .95± .0031 .96± .0027

Table G.7: Decision Tree edge prediction performance in test evaluation on CTD with unbalance
rate 1

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.91± .0026 .88± .0036 .91± .0024 .93± .0043 .91± .0026 .95± .0035 .96± .002

GRAPE CBOW .95± .0004 .93± .0011 .95± .0003 .99± .0002 .95± .0004 .97± .0011 .99± .0001
GRAPE SG .95± .0003 .93± .0011 .95± .0003 .99± .0001 .95± .0003 .96± .001 .99± .0001
PecanPy SG .91± .0031 .89± .0054 .92± .0028 .94± .0047 .91± .0031 .95± .003 .96± .0026
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Table G.8: Decision Tree edge prediction performance in test evaluation on CTD with unbalance
rate 2

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.90± .003 .79± .0058 .86± .0037 .87± .0076 .91± .0026 .95± .0035 .96± .002

GRAPE CBOW .94± .0006 .88± .002 .92± .0007 .98± .0003 .95± .0004 .97± .0011 .99± .0001
GRAPE SG .94± .0006 .87± .0019 .92± .0007 .97± .0001 .95± .0003 .96± .001 .99± .
PecanPy SG .90± .0041 .80± .0089 .87± .005 .89± .0085 .91± .0031 .95± .003 .96± .0027

Table G.9: Decision Tree edge prediction performance in test evaluation on CTD with unbalance
rate 3

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.89± .0033 .72± .0072 .82± .0047 .82± .0102 .91± .0026 .95± .0035 .96± .002

GRAPE CBOW .94± .0007 .83± .0025 .89± .0011 .96± .0004 .95± .0003 .97± .0011 .99± .0001
GRAPE SG .94± .0007 .82± .0025 .89± .0011 .96± .0002 .95± .0003 .96± .001 .99± .0001
PecanPy SG .90± .0047 .73± .0109 .82± .0067 .84± .0115 .91± .0031 .95± .003 .96± .0026

Table G.10: Decision Tree edge prediction performance in train evaluation on PheKnowLator
with unbalance rate 1

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.97± .0029 .97± .0036 .97± .0027 .98± .0043 .97± .0029 .97± .0037 .98± .003

GRAPE CBOW .98± .0013 .98± .0009 .98± .0012 .99± .0008 .98± .0012 .98± .002 .99± .0009
GRAPE SG .98± .0012 .98± .0014 .98± .0011 10± .0005 .98± .0012 .99± .0015 10± .0005
PecanPy SG .96± .0035 .96± .0038 .97± .0033 .98± .004 .96± .0034 .97± .0057 .98± .0025

Table G.11: Decision Tree edge prediction performance in train evaluation on PheKnowLator
with unbalance rate 2

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.96± .0033 .91± .0065 .94± .0043 .93± .0116 .96± .0032 .97± .0037 .98± .0037

GRAPE CBOW .97± .0012 .93± .0016 .95± .0016 .96± .0033 .97± .0013 .98± .002 .99± .0008
GRAPE SG .97± .0014 .94± .0032 .96± .0019 .97± .0036 .97± .0013 .99± .0015 .99± .0012
PecanPy SG .95± .0038 .91± .0078 .94± .0049 .93± .0085 .96± .0037 .97± .0057 .98± .0028
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Table G.12: Decision Tree edge prediction performance in train evaluation on PheKnowLator
with unbalance rate 3

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.96± .0035 .88± .009 .92± .0057 .90± .0159 .96± .0032 .97± .0037 .98± .0036

GRAPE CBOW .96± .001 .90± .002 .94± .0018 .94± .0045 .97± .0013 .98± .002 .99± .0008
GRAPE SG .97± .0016 .91± .0048 .95± .0027 .95± .0051 .97± .0014 .99± .0015 .99± .0012
PecanPy SG .95± .004 .86± .0104 .91± .0064 .90± .0118 .96± .0037 .97± .0057 .98± .0029

Table G.13: Decision Tree edge prediction performance in test evaluation on PheKnowLator with
unbalance rate 1

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.90± .0062 .89± .0101 .85± .0105 .84± .0167 .88± .0082 .82± .0152 .91± .0112

GRAPE CBOW .96± .0024 .92± .0037 .94± .0036 .96± .0053 .96± .003 .96± .0053 .98± .0017
GRAPE SG .96± .0018 .92± .0047 .95± .0026 .96± .0032 .96± .0017 .97± .0027 .99± .0011
PecanPy SG .90± .0042 .87± .0104 .85± .0063 .85± .0105 .88± .0046 .82± .0086 .91± .0065

Table G.14: Decision Tree edge prediction performance in test evaluation on PheKnowLator with
unbalance rate 2

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.92± .0046 .80± .0134 .81± .0117 .76± .0215 .88± .0081 .82± .0152 .91± .0108

GRAPE CBOW .96± .0011 .85± .004 .90± .0026 .92± .0072 .96± .0024 .96± .0053 .98± .0016
GRAPE SG .96± .0015 .86± .0066 .91± .0033 .93± .0063 .96± .0012 .97± .0027 .99± .0012
PecanPy SG .92± .0048 .78± .0161 .80± .0101 .76± .0201 .88± .0053 .82± .0086 .91± .0073

Table G.15: Decision Tree edge prediction performance in test evaluation on PheKnowLator with
unbalance rate 3

Accuracy Precision F1 Score AUPRC Balanced
Accuracy Recall AUROC

library & model

FastNode2Vec
SG

.93± .004 .72± .0169 .77± .0121 .70± .0218 .88± .0076 .82± .0152 .91± .0102

GRAPE CBOW .96± .001 .79± .0042 .86± .0029 .90± .0085 .96± .0025 .96± .0053 .98± .0017
GRAPE SG .96± .0017 .81± .0088 .88± .0046 .90± .0092 .96± .001 .97± .0027 .99± .0013
PecanPy SG .93± .0044 .70± .0184 .76± .0113 .70± .0225 .88± .0047 .82± .0086 .92± .0069
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Appendix H

Other GRAPE utilities.

H.1 Graph analysis and graph reporting

GRAPE implements fast algorithms to analyze the overall characteristics of the graph,
including Breadth and Depth-first search, Dijkstra, Tarjan’s strongly connected com-
ponents, efficient Diameter computation, spanning arborescence and connected com-
ponents, approximated vertex cover, triads counting, transitivity, clustering coefficient
and triangles counting, Betweenness and stress centrality, Closeness and harmonic cen-
trality, as well as optimized implementations for algebraic set graph-operations and
node and edge filters.

H.2 Construction of train and test graphs for edge
prediction

To generate train and test samples for the evaluation of edge prediction task, GRAPE makes
available Kfold, Monte Carlo and Connected Monte Carlo techniques. All methods may
be stratified relatively to user-provided edge types. We show examples in figure H.1
on a graph with two components.

(a) Original graph (b) Kfolds (c) Monte Carlo
(d) Connected
Monte Carlo (e) Negative edges

Figure H.1: Different holdouts on a graph with multiple components: From left to
right, A) the graph considered, composed of two connected components, B) K-folds edge holdouts
(we represent each validation fold with a different colour), C) Monte Carlo Holdout, sampling random
edges for the validation set (in red) that may generate new connected components and D) Connected
Monte Carlo Holdout, sampling random edges for the validation set (in red) without generating new
connected components. Finally, in picture E), we show in red as dotted, the generated negative edges.
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H.2.1 K-folds

As per the normal Kfolds, this mechanism splits the graph edges into k folds to be
used for cross-validating a model on a link prediction task (figure H.1b). We suggest
using this method when the graph is either composed of a single connected component
with high density or, if multiple connected components exist, each component has a
high density to avoid creating new components when the procedure randomly removes
edges.

H.2.2 Monte Carlo

This method randomly samples the edges, but multiple holdouts may share the same
edges (figure H.1c). The training graph generated with this method, as for the afore-
mentioned k-folds method, may contain more components than the original graph.

H.2.3 Connected Monte Carlo

Often, in link prediction tasks, it is assumed a closed word hypothesis: that is, compo-
nents that are not connected do not have unknown edges connecting them. By using
the Connected Monte Carlo holdouts guarantees that the training graph always has
the same number of connected components of the original graph without creating new
ones by reserving a set of edges forming a spanning arborescence for the training set
and sampling the test set edges only from the remaining edges (figure H.1d). The con-
nected Monte Carlo holdout avoids introducing a negative bias when the task assumes
a closed word hypothesis. For instance, a link prediction model working on the closed
word assumption would not predict links between the different components that, for
instance, a simple Monte Carlo holdout may generate.

H.2.4 Negative edge sampling

To train edge prediction models, it is common practice to generate negative edges,
that is edges that do not exist in the graph. We generate such edges by sampling their
vertices from the same connected components, to avoid easily predictable negative
edges. Indeed, from our experimental studies we noted that negative edges between
two graph connected components have odd embeddings that make it easy to identify
them, causing a positive bias in the model performance (figure H.1e). To sample
massive amounts of source and destination nodes we use a SIMD-vectorized version of
xorshift, detailed in the section B. Edges may be sampled by either following a uniform,
or more preferably, a scale-free distribution. The latter has been shown to introduce
less covariate-shift and therefore make the sampled negative edges a meaningful task,
while often the uniform sampling can sample trivially false edges.
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Appendix I

Additional ALPINE results

In this chapter we briefly report the model parameters used in the ALPINE experiments
and the results obtained in the node-label and edge predictions.

I.1 Node embedding models parameters
In this section we succinctly report the parameters employed to train all the considered
node embedding models within the ALPINE experiments.

Parameter Value

random_state 42
embedding_size 100
epochs 100
learning_rate 0.05
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.1: Parameters used for node embedding model Second-order LINE

Parameter Value

random_state 42
embedding_size 100
epochs 100
learning_rate 0.05
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.2: Parameters used for node embedding model First-order LINE

Parameter Value

embedding_size 100
dtype u8
window_size 2

Table I.3: Parameters used for node embedding model Degree-based WINE
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Parameter Value

dtype u8
window_size 2

Table I.4: Parameters used for node embedding model Node-label-based WINE

Parameter Value

dtype u8

Table I.5: Parameters used for node embedding model Node-label-based SPINE

Parameter Value

embedding_size 100
dtype u8

Table I.6: Parameters used for node embedding model Degree-based SPINE

Parameter Value

random_state 42
embedding_size 100
alpha 0.75
epochs 30
clipping_value 6.0
walk_length 128
iterations 10
window_size 5
max_neighbours 100
learning_rate 0.001
learning_rate_decay 0.9
dtype f32

Table I.7: Parameters used for node embedding model DeepWalk GloVe

Parameter Value

random_state 42
embedding_size 100
epochs 30
clipping_value 6.0
number_of_negative_samples 10
walk_length 128
iterations 10
window_size 5
max_neighbours 100
learning_rate 0.01
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.8: Parameters used for node embedding model DeepWalk CBOW
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Parameter Value

random_state 42
embedding_size 100
epochs 30
clipping_value 6.0
number_of_negative_samples 10
walk_length 128
iterations 10
window_size 5
max_neighbours 100
learning_rate 0.01
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.9: Parameters used for node embedding model DeepWalk SkipGram

Parameter Value

random_state 42
embedding_size 100
epochs 30
walk_length 128
iterations 10
window_size 4
return_weight 1.0
explore_weight 1.0
max_neighbours 100
learning_rate 0.001
learning_rate_decay 0.9
alpha 0.75
use_scale_free_distribution True
dtype f32

Table I.10: Parameters used for node embedding model Walklets GloVe

Parameter Value

random_state 42
embedding_size 100
epochs 30
clipping_value 6.0
number_of_negative_samples 10
walk_length 128
iterations 10
window_size 4
return_weight 1.0
explore_weight 1.0
max_neighbours 100
learning_rate 0.01
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.11: Parameters used for node embedding model Walklets CBOW

181



Parameter Value

random_state 42
embedding_size 100
epochs 30
clipping_value 6.0
number_of_negative_samples 10
walk_length 128
iterations 10
window_size 4
return_weight 1.0
explore_weight 1.0
max_neighbours 100
learning_rate 0.01
learning_rate_decay 0.9
use_scale_free_distribution True
dtype f32

Table I.12: Parameters used for node embedding model Walklets SkipGram

Parameter Value

embedding_size 100
metric Neighbours Intersection size

Table I.13: Parameters used for node embedding model HOPE

Parameter Value

random_state 42
embedding_size 100
walk_length 128
iterations 10
window_size 10
max_neighbours 100

Table I.14: Parameters used for node embedding model NetMF

I.2 Node-label prediction

In this section we succinctly report the average and standard deviations of all the con-
sidered node embedding models within the ALPINE node-label prediction experiments.

I.2.1 Random forest parameters

The edge prediction model considered for the ALPINE node-label prediction experi-
ment is a Random Forest Classifier. The parameters used to train this random forest
are reported in table I.15.
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Parameter Value

random_state 42
n_estimators 1000
criterion gini
max_depth 10
min_samples_split 2
min_samples_leaf 1
max_features sqrt
bootstrap True
n_jobs 24
class_weight balanced

Table I.15: Parameters used for classifier model Random Forest Classifier

I.2.2 Performance

Method Balanced Accuracy F1 Score Precision Recall AUROC

DW CBOW 0.67± 0.06 0.72± 0.05 0.84± 0.02 0.67± 0.06 0.95± 0.01
DW GloVe 0.77± 0.03 0.79± 0.02 0.82± 0.02 0.77± 0.03 0.96± 0.01
DW SG 0.83± 0.03 0.84± 0.02 0.86± 0.02 0.83± 0.03 0.97± 0.00
Degree SPINE 0.74± 0.02 0.75± 0.02 0.77± 0.02 0.74± 0.02 0.94± 0.01
Degree WINE 0.68± 0.01 0.69± 0.02 0.71± 0.01 0.68± 0.01 0.92± 0.01
HOPE 0.74± 0.02 0.72± 0.02 0.73± 0.02 0.74± 0.02 0.94± 0.01
LINE (1st) 0.73± 0.09 0.77± 0.07 0.84± 0.01 0.73± 0.09 0.95± 0.02
LINE (2nd) 0.42± 0.05 0.46± 0.06 0.78± 0.03 0.42± 0.05 0.85± 0.02
Label SPINE 0.68± 0.03 0.63± 0.03 0.69± 0.03 0.68± 0.03 0.90± 0.01
Label WINE 0.71± 0.02 0.71± 0.02 0.74± 0.02 0.71± 0.02 0.94± 0.01
NetMF 0.80± 0.02 0.81± 0.02 0.83± 0.02 0.80± 0.02 0.97± 0.00
Walklets CBOW 0.80± 0.02 0.82± 0.02 0.85± 0.02 0.80± 0.02 0.97± 0.00
Walklets GloVe 0.60± 0.07 0.67± 0.06 0.86± 0.01 0.60± 0.07 0.94± 0.01
Walklets SG 0.69± 0.08 0.74± 0.07 0.86± 0.02 0.69± 0.08 0.95± 0.01

Table I.16: Node-label prediction performance of Random Forest model on different
node embedding of the Cora graph The value reported are the average and standard deviations
across 10 stratified Monte Carlo holdouts.

Method Balanced Accuracy F1 Score Precision Recall AUROC

DW CBOW 0.57± 0.02 0.57± 0.02 0.61± 0.02 0.57± 0.02 0.84± 0.02
DW GloVe 0.65± 0.03 0.65± 0.03 0.67± 0.03 0.65± 0.03 0.89± 0.01
DW SG 0.67± 0.04 0.67± 0.04 0.68± 0.03 0.67± 0.04 0.90± 0.01
Degree SPINE 0.55± 0.02 0.55± 0.02 0.63± 0.02 0.55± 0.02 0.84± 0.01
Degree WINE 0.46± 0.02 0.46± 0.02 0.57± 0.03 0.46± 0.02 0.81± 0.01
HOPE 0.51± 0.01 0.51± 0.01 0.62± 0.02 0.51± 0.01 0.82± 0.01
LINE (1st) 0.58± 0.08 0.58± 0.08 0.61± 0.06 0.58± 0.08 0.84± 0.04
LINE (2nd) 0.34± 0.03 0.33± 0.03 0.44± 0.05 0.34± 0.03 0.70± 0.02
Label SPINE 0.28± 0.10 0.25± 0.12 0.37± 0.15 0.28± 0.10 0.65± 0.09
Label WINE 0.48± 0.04 0.50± 0.04 0.64± 0.03 0.48± 0.04 0.81± 0.02
NetMF 0.56± 0.02 0.57± 0.02 0.65± 0.02 0.56± 0.02 0.86± 0.01
Walklets CBOW 0.60± 0.02 0.61± 0.03 0.64± 0.03 0.60± 0.02 0.88± 0.02
Walklets GloVe 0.58± 0.06 0.59± 0.06 0.62± 0.05 0.58± 0.06 0.83± 0.03
Walklets SG 0.62± 0.06 0.62± 0.06 0.64± 0.05 0.62± 0.06 0.85± 0.03

Table I.17: Node-label prediction performance of Random Forest model on different
node embedding of the CiteSeer graph The value reported are the average and standard devia-
tions across 10 stratified Monte Carlo holdouts.
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Method Balanced Accuracy F1 Score Precision Recall AUROC

DW CBOW 0.79± 0.01 0.79± 0.01 0.79± 0.01 0.79± 0.01 0.92± 0.00
DW GloVe 0.77± 0.01 0.77± 0.01 0.77± 0.00 0.77± 0.01 0.91± 0.00
DW SG 0.82± 0.01 0.81± 0.01 0.81± 0.00 0.82± 0.01 0.93± 0.00
Degree SPINE 0.77± 0.01 0.77± 0.01 0.77± 0.01 0.77± 0.01 0.91± 0.00
Degree WINE 0.63± 0.00 0.60± 0.01 0.66± 0.00 0.63± 0.00 0.83± 0.00
HOPE 0.78± 0.01 0.76± 0.01 0.76± 0.01 0.78± 0.01 0.91± 0.00
LINE (1st) 0.71± 0.10 0.71± 0.09 0.73± 0.07 0.71± 0.10 0.88± 0.05
LINE (2nd) 0.48± 0.01 0.48± 0.01 0.52± 0.01 0.48± 0.01 0.69± 0.01
Label SPINE 0.26± 0.05 0.20± 0.04 0.23± 0.14 0.26± 0.05 0.48± 0.03
Label WINE 0.67± 0.06 0.66± 0.07 0.67± 0.07 0.67± 0.06 0.80± 0.05
NetMF 0.81± 0.01 0.80± 0.00 0.80± 0.00 0.81± 0.01 0.93± 0.00
Walklets CBOW 0.81± 0.01 0.81± 0.01 0.81± 0.01 0.81± 0.01 0.93± 0.00
Walklets GloVe 0.55± 0.01 0.55± 0.01 0.58± 0.01 0.55± 0.01 0.76± 0.01
Walklets SG 0.77± 0.02 0.77± 0.01 0.78± 0.01 0.77± 0.02 0.91± 0.01

Table I.18: Node-label prediction performance of Random Forest model on different
node embedding of the PubMed Diabetes graph The value reported are the average and
standard deviations across 10 stratified Monte Carlo holdouts.

I.3 Edge prediction

In this section we succinctly report the average and standard deviations of all the con-
sidered node embedding models within the ALPINE edge prediction experiments. In
particular, for each node embedding model, we report the performance for all explored
edge embedding models.

I.3.1 Perceptron parameters

The edge prediction model considered for the ALPINE edge prediction experiment is
a Perceptron. The parameters used to train this perceptron are reported in table I.19.

Parameter Value

random_state 42
number_of_epochs 100
number_of_edges_per_mini_batch 4096
learning_rate 0.01
first_order_decay_factor 0.9
second_order_decay_factor 0.999
avoid_false_negatives False
use_scale_free_distribution True

Table I.19: Parameters used for edge prediction model Perceptron
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I.3.2 Edge prediction performance

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.03 0.49± 0.17 0.50± 0.01 0.55± 0.01
Concatenate 0.50± 0.02 0.49± 0.18 0.50± 0.01 0.50± 0.02
Cosine 0.87± 0.02 0.87± 0.03 0.94± 0.01 0.95± 0.01
Euclidean 0.83± 0.04 0.80± 0.05 0.89± 0.03 0.92± 0.02
Hadamard 0.88± 0.02 0.87± 0.03 0.95± 0.01 0.95± 0.01
L1 0.87± 0.02 0.86± 0.03 0.94± 0.01 0.95± 0.01
L2 0.88± 0.02 0.87± 0.03 0.94± 0.01 0.95± 0.01
Maximum 0.87± 0.02 0.86± 0.03 0.94± 0.02 0.95± 0.01
Minimum 0.87± 0.02 0.86± 0.03 0.94± 0.02 0.95± 0.01
Sub 0.50± 0.07 0.46± 0.26 0.50± 0.00 0.45± 0.00

Table I.20: Edge prediction performance of Perceptron model on First-
order LINE of the Homo sapiens graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.45± 0.09 0.50± 0.00 0.51± 0.00
Concatenate 0.50± 0.00 0.47± 0.08 0.50± 0.00 0.50± 0.00
Cosine 0.81± 0.04 0.79± 0.06 0.89± 0.03 0.91± 0.03
Euclidean 0.59± 0.03 0.54± 0.05 0.62± 0.03 0.65± 0.04
Hadamard 0.81± 0.04 0.79± 0.06 0.89± 0.04 0.90± 0.04
L1 0.73± 0.05 0.69± 0.07 0.81± 0.04 0.83± 0.05
L2 0.72± 0.05 0.69± 0.08 0.80± 0.05 0.82± 0.06
Maximum 0.71± 0.04 0.68± 0.06 0.77± 0.05 0.79± 0.06
Minimum 0.69± 0.04 0.66± 0.04 0.75± 0.04 0.77± 0.05
Sub 0.50± 0.00 0.50± 0.02 0.50± 0.00 0.49± 0.00

Table I.21: Edge prediction performance of Perceptron model on DeepWalk
CBOW of the Homo sapiens graph The value reported are the average and stan-
dard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.00 0.01± 0.05 0.54± 0.01 0.56± 0.01
Concatenate 0.50± 0.00 0.01± 0.06 0.53± 0.01 0.53± 0.02
Cosine 0.61± 0.01 0.60± 0.02 0.67± 0.01 0.67± 0.01
Euclidean 0.63± 0.01 0.67± 0.00 0.70± 0.02 0.71± 0.02
Hadamard 0.50± 0.01 0.23± 0.21 0.52± 0.02 0.53± 0.00
L1 0.68± 0.01 0.70± 0.01 0.75± 0.01 0.74± 0.02
L2 0.70± 0.01 0.71± 0.01 0.76± 0.01 0.76± 0.01
Maximum 0.57± 0.02 0.59± 0.03 0.61± 0.01 0.63± 0.01
Minimum 0.55± 0.00 0.44± 0.05 0.57± 0.02 0.58± 0.01
Sub 0.50± 0.02 0.51± 0.08 0.50± 0.00 0.47± 0.01

Table I.22: Edge prediction performance of Perceptron model on Degree-
based SPINE of the Homo sapiens graph The value reported are the average
and standard deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.51± 0.01 0.41± 0.11 0.50± 0.01 0.52± 0.01
Concatenate 0.50± 0.01 0.41± 0.11 0.50± 0.01 0.50± 0.01
Cosine 0.85± 0.04 0.83± 0.05 0.93± 0.01 0.95± 0.01
Euclidean 0.69± 0.03 0.68± 0.03 0.76± 0.03 0.79± 0.03
Hadamard 0.84± 0.03 0.82± 0.04 0.92± 0.01 0.92± 0.01
L1 0.82± 0.03 0.79± 0.05 0.91± 0.02 0.92± 0.01
L2 0.80± 0.03 0.76± 0.05 0.86± 0.01 0.85± 0.05
Maximum 0.82± 0.03 0.79± 0.05 0.90± 0.02 0.91± 0.02
Minimum 0.81± 0.03 0.78± 0.04 0.89± 0.02 0.90± 0.01
Sub 0.50± 0.02 0.51± 0.06 0.50± 0.00 0.48± 0.01

Table I.23: Edge prediction performance of Perceptron model on DeepWalk
SkipGram of the Homo sapiens graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.24± 0.21 0.50± 0.02 0.51± 0.01
Concatenate 0.50± 0.01 0.28± 0.19 0.50± 0.01 0.50± 0.01
Cosine 0.70± 0.01 0.69± 0.01 0.76± 0.02 0.78± 0.02
Euclidean 0.62± 0.02 0.63± 0.01 0.67± 0.03 0.70± 0.03
Hadamard 0.75± 0.01 0.73± 0.03 0.82± 0.01 0.82± 0.01
L1 0.70± 0.01 0.69± 0.01 0.76± 0.01 0.76± 0.02
L2 0.69± 0.01 0.69± 0.01 0.75± 0.01 0.76± 0.02
Maximum 0.69± 0.01 0.69± 0.01 0.75± 0.01 0.74± 0.01
Minimum 0.68± 0.01 0.68± 0.01 0.75± 0.01 0.73± 0.01
Sub 0.50± 0.02 0.49± 0.14 0.50± 0.00 0.48± 0.01

Table I.24: Edge prediction performance of Perceptron model on DeepWalk
GloVe of the Homo sapiens graph The value reported are the average and standard
deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.32± 0.31 0.50± 0.02 0.54± 0.02
Concatenate 0.50± 0.01 0.36± 0.30 0.50± 0.01 0.52± 0.02
Cosine 0.75± 0.04 0.76± 0.04 0.83± 0.04 0.86± 0.03
Euclidean 0.55± 0.01 0.57± 0.04 0.58± 0.02 0.60± 0.01
Hadamard 0.61± 0.03 0.57± 0.09 0.65± 0.04 0.64± 0.03
L1 0.61± 0.03 0.60± 0.07 0.66± 0.05 0.64± 0.05
L2 0.58± 0.02 0.53± 0.09 0.62± 0.05 0.59± 0.05
Maximum 0.54± 0.02 0.52± 0.16 0.56± 0.03 0.55± 0.02
Minimum 0.64± 0.03 0.58± 0.10 0.71± 0.04 0.73± 0.03
Sub 0.50± 0.02 0.49± 0.06 0.50± 0.00 0.47± 0.01

Table I.25: Edge prediction performance of Perceptron model on Degree-
based WINE of the Homo sapiens graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.02 0.50± 0.06 0.50± 0.01 0.54± 0.01
Concatenate 0.50± 0.02 0.50± 0.07 0.50± 0.01 0.49± 0.01
Cosine 0.84± 0.05 0.82± 0.08 0.92± 0.03 0.93± 0.03
Euclidean 0.77± 0.09 0.71± 0.14 0.83± 0.09 0.86± 0.08
Hadamard 0.85± 0.06 0.82± 0.08 0.92± 0.04 0.94± 0.03
L1 0.83± 0.06 0.80± 0.09 0.92± 0.04 0.93± 0.03
L2 0.84± 0.06 0.82± 0.08 0.92± 0.03 0.93± 0.03
Maximum 0.82± 0.08 0.80± 0.10 0.89± 0.07 0.90± 0.06
Minimum 0.82± 0.07 0.80± 0.10 0.89± 0.07 0.90± 0.06
Sub 0.51± 0.07 0.49± 0.17 0.50± 0.00 0.46± 0.01

Table I.26: Edge prediction performance of Perceptron model on Second-
order LINE of the Homo sapiens graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.02 0.49± 0.06 0.50± 0.02 0.55± 0.01
Concatenate 0.50± 0.02 0.49± 0.07 0.50± 0.01 0.50± 0.02
Cosine 0.89± 0.02 0.88± 0.03 0.95± 0.01 0.95± 0.01
Euclidean 0.84± 0.04 0.81± 0.06 0.91± 0.03 0.93± 0.02
Hadamard 0.89± 0.02 0.89± 0.03 0.96± 0.01 0.96± 0.01
L1 0.88± 0.03 0.87± 0.03 0.95± 0.01 0.96± 0.01
L2 0.89± 0.02 0.88± 0.03 0.95± 0.01 0.96± 0.01
Maximum 0.88± 0.03 0.88± 0.03 0.95± 0.02 0.96± 0.01
Minimum 0.88± 0.03 0.88± 0.03 0.95± 0.02 0.96± 0.01
Sub 0.52± 0.09 0.49± 0.21 0.50± 0.00 0.45± 0.00

Table I.27: Edge prediction performance of Perceptron model on First-
order LINE of the Mus musculus graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.47± 0.06 0.50± 0.00 0.51± 0.00
Concatenate 0.50± 0.00 0.47± 0.07 0.50± 0.00 0.50± 0.00
Cosine 0.83± 0.04 0.81± 0.05 0.90± 0.03 0.92± 0.03
Euclidean 0.60± 0.03 0.57± 0.06 0.64± 0.04 0.67± 0.05
Hadamard 0.83± 0.04 0.82± 0.05 0.91± 0.03 0.91± 0.03
L1 0.75± 0.05 0.72± 0.05 0.82± 0.05 0.84± 0.05
L2 0.74± 0.05 0.72± 0.07 0.82± 0.05 0.83± 0.06
Maximum 0.71± 0.04 0.68± 0.05 0.78± 0.05 0.79± 0.05
Minimum 0.72± 0.05 0.69± 0.05 0.78± 0.05 0.80± 0.06
Sub 0.50± 0.00 0.50± 0.01 0.50± 0.00 0.49± 0.00

Table I.28: Edge prediction performance of Perceptron model on DeepWalk
CBOW of the Mus musculus graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.00 0.22± 0.32 0.51± 0.05 0.54± 0.04
Concatenate 0.50± 0.00 0.23± 0.32 0.51± 0.04 0.52± 0.03
Cosine 0.65± 0.01 0.64± 0.01 0.72± 0.01 0.71± 0.01
Euclidean 0.65± 0.01 0.68± 0.01 0.74± 0.02 0.75± 0.02
Hadamard 0.51± 0.01 0.32± 0.20 0.52± 0.01 0.53± 0.01
L1 0.71± 0.01 0.73± 0.01 0.79± 0.01 0.78± 0.02
L2 0.73± 0.01 0.74± 0.01 0.81± 0.01 0.81± 0.01
Maximum 0.58± 0.01 0.55± 0.06 0.62± 0.01 0.64± 0.01
Minimum 0.56± 0.00 0.49± 0.02 0.59± 0.01 0.59± 0.01
Sub 0.50± 0.01 0.49± 0.06 0.50± 0.00 0.47± 0.01

Table I.29: Edge prediction performance of Perceptron model on Degree-
based SPINE of the Mus musculus graph The value reported are the average
and standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.02 0.43± 0.15 0.50± 0.01 0.52± 0.01
Concatenate 0.50± 0.01 0.44± 0.14 0.50± 0.01 0.50± 0.01
Cosine 0.87± 0.04 0.85± 0.05 0.95± 0.01 0.96± 0.01
Euclidean 0.73± 0.02 0.71± 0.03 0.79± 0.03 0.82± 0.03
Hadamard 0.85± 0.03 0.83± 0.05 0.94± 0.01 0.94± 0.00
L1 0.84± 0.03 0.82± 0.05 0.93± 0.02 0.94± 0.01
L2 0.81± 0.04 0.78± 0.06 0.89± 0.01 0.87± 0.04
Maximum 0.83± 0.03 0.81± 0.04 0.91± 0.02 0.92± 0.01
Minimum 0.83± 0.03 0.81± 0.04 0.92± 0.02 0.93± 0.01
Sub 0.50± 0.01 0.50± 0.04 0.50± 0.00 0.47± 0.00

Table I.30: Edge prediction performance of Perceptron model on DeepWalk
SkipGram of the Mus musculus graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.37± 0.26 0.50± 0.01 0.52± 0.01
Concatenate 0.50± 0.01 0.36± 0.25 0.50± 0.01 0.50± 0.01
Cosine 0.72± 0.01 0.72± 0.01 0.79± 0.01 0.81± 0.01
Euclidean 0.64± 0.02 0.65± 0.02 0.71± 0.02 0.73± 0.02
Hadamard 0.78± 0.02 0.77± 0.02 0.86± 0.02 0.85± 0.02
L1 0.74± 0.01 0.73± 0.01 0.82± 0.01 0.82± 0.01
L2 0.73± 0.01 0.73± 0.01 0.80± 0.01 0.81± 0.01
Maximum 0.72± 0.01 0.71± 0.01 0.79± 0.01 0.78± 0.01
Minimum 0.72± 0.01 0.72± 0.01 0.79± 0.01 0.78± 0.01
Sub 0.50± 0.02 0.48± 0.10 0.50± 0.00 0.48± 0.01

Table I.31: Edge prediction performance of Perceptron model on DeepWalk
GloVe of the Mus musculus graph The value reported are the average and standard
deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.36± 0.30 0.51± 0.03 0.54± 0.02
Concatenate 0.50± 0.02 0.44± 0.28 0.49± 0.02 0.52± 0.03
Cosine 0.79± 0.04 0.79± 0.04 0.85± 0.03 0.88± 0.03
Euclidean 0.56± 0.02 0.59± 0.04 0.60± 0.02 0.60± 0.01
Hadamard 0.62± 0.03 0.61± 0.10 0.67± 0.05 0.65± 0.04
L1 0.62± 0.03 0.63± 0.07 0.68± 0.05 0.65± 0.06
L2 0.59± 0.03 0.56± 0.10 0.63± 0.07 0.60± 0.07
Maximum 0.54± 0.02 0.53± 0.16 0.57± 0.03 0.56± 0.02
Minimum 0.66± 0.03 0.60± 0.09 0.73± 0.04 0.75± 0.03
Sub 0.50± 0.01 0.51± 0.03 0.50± 0.00 0.46± 0.00

Table I.32: Edge prediction performance of Perceptron model on Degree-
based WINE of the Mus musculus graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.02 0.50± 0.05 0.50± 0.01 0.54± 0.02
Concatenate 0.50± 0.02 0.50± 0.05 0.50± 0.01 0.50± 0.01
Cosine 0.84± 0.06 0.82± 0.08 0.93± 0.04 0.94± 0.03
Euclidean 0.76± 0.10 0.70± 0.15 0.83± 0.09 0.86± 0.09
Hadamard 0.85± 0.06 0.83± 0.09 0.93± 0.04 0.94± 0.03
L1 0.83± 0.07 0.80± 0.10 0.93± 0.04 0.93± 0.03
L2 0.85± 0.06 0.82± 0.09 0.93± 0.03 0.94± 0.03
Maximum 0.82± 0.08 0.79± 0.11 0.89± 0.07 0.90± 0.07
Minimum 0.82± 0.08 0.80± 0.11 0.89± 0.07 0.90± 0.07
Sub 0.49± 0.06 0.47± 0.14 0.50± 0.00 0.46± 0.01

Table I.33: Edge prediction performance of Perceptron model on Second-
order LINE of the Mus musculus graph The value reported are the average and
standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.49± 0.02 0.54± 0.04 0.50± 0.03 0.54± 0.03
Concatenate 0.51± 0.02 0.55± 0.05 0.50± 0.02 0.49± 0.03
Cosine 0.87± 0.03 0.87± 0.04 0.94± 0.03 0.94± 0.03
Euclidean 0.81± 0.05 0.77± 0.07 0.88± 0.05 0.90± 0.04
Hadamard 0.88± 0.03 0.87± 0.04 0.94± 0.03 0.94± 0.03
L1 0.87± 0.04 0.85± 0.04 0.94± 0.03 0.94± 0.03
L2 0.87± 0.04 0.87± 0.04 0.94± 0.03 0.94± 0.03
Maximum 0.86± 0.03 0.85± 0.04 0.94± 0.03 0.94± 0.03
Minimum 0.86± 0.03 0.85± 0.04 0.94± 0.03 0.94± 0.03
Sub 0.56± 0.04 0.62± 0.07 0.50± 0.00 0.45± 0.01

Table I.34: Edge prediction performance of Perceptron model on First-
order LINE of the Saccharomyces cerevisiae graph The value reported are the
average and standard deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.49± 0.01 0.57± 0.02 0.50± 0.01 0.51± 0.01
Concatenate 0.50± 0.01 0.56± 0.03 0.50± 0.01 0.50± 0.01
Cosine 0.84± 0.03 0.83± 0.04 0.92± 0.02 0.93± 0.02
Euclidean 0.63± 0.02 0.57± 0.04 0.65± 0.04 0.70± 0.04
Hadamard 0.82± 0.05 0.80± 0.07 0.91± 0.04 0.90± 0.04
L1 0.77± 0.04 0.74± 0.06 0.84± 0.04 0.85± 0.04
L2 0.73± 0.08 0.70± 0.14 0.83± 0.05 0.83± 0.05
Maximum 0.73± 0.04 0.72± 0.04 0.80± 0.05 0.80± 0.05
Minimum 0.73± 0.04 0.72± 0.04 0.79± 0.05 0.80± 0.05
Sub 0.50± 0.00 0.51± 0.01 0.50± 0.00 0.49± 0.00

Table I.35: Edge prediction performance of Perceptron model on DeepWalk
CBOW of the Saccharomyces cerevisiae graph The value reported are the av-
erage and standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.37± 0.30 0.49± 0.04 0.52± 0.03
Concatenate 0.50± 0.02 0.38± 0.29 0.49± 0.03 0.50± 0.03
Cosine 0.60± 0.07 0.66± 0.02 0.59± 0.20 0.61± 0.16
Euclidean 0.73± 0.02 0.74± 0.01 0.81± 0.02 0.81± 0.02
Hadamard 0.51± 0.03 0.47± 0.10 0.53± 0.02 0.54± 0.00
L1 0.77± 0.01 0.78± 0.01 0.85± 0.01 0.84± 0.02
L2 0.78± 0.01 0.79± 0.01 0.86± 0.01 0.85± 0.01
Maximum 0.61± 0.02 0.63± 0.01 0.67± 0.01 0.69± 0.00
Minimum 0.58± 0.01 0.52± 0.06 0.63± 0.02 0.62± 0.01
Sub 0.52± 0.01 0.54± 0.02 0.50± 0.00 0.46± 0.01

Table I.36: Edge prediction performance of Perceptron model on Degree-
based SPINE of the Saccharomyces cerevisiae graph The value reported are
the average and standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.51± 0.02 0.48± 0.10 0.50± 0.01 0.52± 0.01
Concatenate 0.50± 0.01 0.47± 0.10 0.50± 0.01 0.51± 0.01
Cosine 0.85± 0.02 0.83± 0.03 0.94± 0.01 0.94± 0.01
Euclidean 0.64± 0.01 0.61± 0.02 0.69± 0.01 0.72± 0.01
Hadamard 0.82± 0.02 0.79± 0.04 0.90± 0.01 0.90± 0.01
L1 0.81± 0.02 0.79± 0.03 0.89± 0.01 0.89± 0.01
L2 0.74± 0.04 0.70± 0.08 0.78± 0.03 0.77± 0.06
Maximum 0.78± 0.02 0.76± 0.03 0.86± 0.01 0.87± 0.01
Minimum 0.78± 0.02 0.75± 0.03 0.86± 0.01 0.87± 0.01
Sub 0.51± 0.00 0.52± 0.02 0.50± 0.00 0.49± 0.00

Table I.37: Edge prediction performance of Perceptron model on DeepWalk
SkipGram of the Saccharomyces cerevisiae graph The value reported are the
average and standard deviations across 10 connected Monte Carlo holdouts.
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Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.01 0.36± 0.15 0.50± 0.02 0.52± 0.02
Concatenate 0.50± 0.02 0.48± 0.08 0.50± 0.02 0.50± 0.02
Cosine 0.68± 0.04 0.69± 0.04 0.75± 0.04 0.74± 0.05
Euclidean 0.61± 0.03 0.62± 0.04 0.65± 0.05 0.66± 0.04
Hadamard 0.73± 0.02 0.73± 0.01 0.81± 0.02 0.78± 0.02
L1 0.73± 0.02 0.74± 0.01 0.80± 0.02 0.77± 0.03
L2 0.72± 0.02 0.74± 0.01 0.79± 0.02 0.77± 0.02
Maximum 0.72± 0.01 0.72± 0.01 0.78± 0.01 0.76± 0.02
Minimum 0.71± 0.01 0.72± 0.01 0.78± 0.01 0.75± 0.01
Sub 0.51± 0.01 0.57± 0.04 0.50± 0.00 0.48± 0.01

Table I.38: Edge prediction performance of Perceptron model on DeepWalk
GloVe of the Saccharomyces cerevisiae graph The value reported are the average
and standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.50± 0.02 0.44± 0.24 0.50± 0.02 0.56± 0.04
Concatenate 0.50± 0.02 0.46± 0.23 0.49± 0.02 0.55± 0.04
Cosine 0.80± 0.02 0.80± 0.02 0.85± 0.02 0.86± 0.01
Euclidean 0.59± 0.05 0.62± 0.05 0.65± 0.04 0.64± 0.02
Hadamard 0.66± 0.05 0.61± 0.13 0.70± 0.08 0.68± 0.07
L1 0.67± 0.05 0.66± 0.06 0.75± 0.07 0.72± 0.07
L2 0.62± 0.05 0.59± 0.09 0.68± 0.07 0.65± 0.07
Maximum 0.54± 0.03 0.59± 0.10 0.56± 0.05 0.55± 0.03
Minimum 0.65± 0.06 0.57± 0.15 0.70± 0.10 0.73± 0.09
Sub 0.52± 0.02 0.54± 0.04 0.50± 0.00 0.45± 0.00

Table I.39: Edge prediction performance of Perceptron model on Degree-
based WINE of the Saccharomyces cerevisiae graph The value reported are the
average and standard deviations across 10 connected Monte Carlo holdouts.

Edge embedding Accuracy F1 Score AUROC AUPRC

Add 0.49± 0.02 0.53± 0.05 0.49± 0.03 0.53± 0.02
Concatenate 0.50± 0.03 0.53± 0.05 0.49± 0.02 0.49± 0.01
Cosine 0.86± 0.04 0.84± 0.05 0.93± 0.02 0.94± 0.02
Euclidean 0.78± 0.05 0.73± 0.08 0.85± 0.05 0.88± 0.04
Hadamard 0.86± 0.04 0.84± 0.05 0.94± 0.02 0.94± 0.02
L1 0.85± 0.04 0.83± 0.05 0.94± 0.02 0.94± 0.02
L2 0.86± 0.04 0.84± 0.05 0.94± 0.02 0.94± 0.02
Maximum 0.84± 0.04 0.82± 0.05 0.92± 0.03 0.92± 0.03
Minimum 0.84± 0.04 0.82± 0.05 0.92± 0.03 0.92± 0.03
Sub 0.53± 0.03 0.58± 0.05 0.50± 0.00 0.46± 0.01

Table I.40: Edge prediction performance of Perceptron model on Second-
order LINE of the Saccharomyces cerevisiae graph The value reported are the
average and standard deviations across 10 connected Monte Carlo holdouts.
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