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Abstract

This note aims at illustrating the application of the Virtual Element Method to elasticity problems in mixed form,

following the Hellinger-Reissner variational principle. In order to highlight the potential and the flexibility of our approach,

we focus on a three-dimensional low-order Virtual Element scheme, but similar considerations apply to two-dimensional and

higher-order methods.
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1. Introduction

The Virtual Element Method (VEM) is a recent technology for the approximation of partial differential
equation problems. VEM was born in 2012, see [1], as an evolution of modern mimetic schemes (see for
instance [2] and the references therein), which share the same variational background of the Finite Element
Method (FEM). The basic motivation of VEM is the need to construct an accurate Galerkin scheme with
the following two properties.

• The flexibility to deal with highly general polygonal/polyhedral meshes, including “hanging ver-
texes” and non-convex shapes.

• The conformity of the method, i.e. the property to build an approximated solution which shares
the same “natural” regularity as the analytical solution of the problem.

To achieve both the requirements above, the virtual element method abandons the local polynomial ap-
proximation concept typical of FEM, and use, instead, approximating functions which are solutions to
suitable local partial differential equations (of course, connected with the original problem to solve).
Therefore, in general, the discrete functions are not known pointwise, but a limited information of them
are at disposal. However, the available information is sufficient for forming the stiffness matrix and the
right-hand side.

In this paper we wish to present the application of VEM to the linear elastic problem in mixed form,
following the so-called Hellinger-Reissner principle (see [3], for instance). More precisely, we report some
of the results obtained by our research team, focusing on a three-dimensional low-order scheme. However,
we remark that:

1. two-dimensional Hellinger-Reissner VEMs have been developed and analysed, both for a low-order
case (see [4]) and for high-order methods (see [5]);

2. the extension to higher-order schemes for three-dimensional problems is available (see [6]).

It is interesting to notice that our approach gives rise to methods which enjoy the following basic
features.

© 2022 Carlo Lovadina, Michele Visinoni, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0).

mailto: carlo.lovadina@unimi.it
http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by/4.0/


C. Lovadina, M. Visinoni

• The stress field is a-priori symmetric and H(div)-regular;
• all the schemes are inf-sup stable, see [3], and optimally convergent;
• for all the schemes we can easily perform a suitable hybridization procedure (see [7], and [8] for scalar
mixed problems). Besides providing an efficient way to solve the linear system stemming from the
discrete problem, this technique also allows to post-process an improved approximated displacement
field.

It is well-known that, all together, the above properties are hardly met in the framework of the Finite
Element Method, but they are within the reach of the Virtual Element Method, due to its great flexibility.

An outline of the paper is as follows. In Section 2 we introduce the equations of linear elasticity
in terms of stresses and displacements. Then the Hellinger-Reissner variational formulation is presented,
together with its Galerkin approximation. Afterwards, we detail the VEM discretization we are interested
in, stating also the convergence result proved in [9]. Section 3 describe the hybridization technique applied
to our method, as well as the error estimate for the post-processed displacement field. In Section 4 we
provide a few numerical results which support and confirm the theoretical predictions. In addition, we
briefly investigate on the sensitivity to the choice of the stabilization parameter involved in the numerical
scheme. Finally, Section 5 draws some conclusions.

Throughout the paper, for any non-negative integer k, we denote with Pk(ω) the space of polynomials
of degree at most k and defined on the set ω ⊆ Rd (d =1, 2, or 3). Moreover, we will use standard
notations for Sobolev spaces and their norms and semi-norms.

2. The Hellinger-Reissner elasticity problem and its VEM discretization

We consider the following well-known 3D linear elasticity problem. Given a polyhedral domain Ω ⊆ R3

and an external load f : Ω → R3, find the symmetric stress tensor field σσσ : Ω → R3×3 and the displacement
field u : Ω → R3 such that:

(1)


− div σσσ = f in Ω

σσσ = Cεεε(u) in Ω

u = 0 on ∂Ω

.

For sake of simplicity, we here consider homogeneous Dirichlet boundary conditions, but other cases can
be considered and treated in standard ways. Moreover, we assume that the elasticity fourth-order sym-
metric tensor C is uniformly-bounded, positive-definite and sufficiently smooth. The Hellinger-Reissner
variational formulation of Problem (1) (see [3,10] for more details) is:

(2)


Find (σσσ,u) ∈ Σ× U such that

a(σσσ, τττ ) + b(τττ ,u) = 0 ∀τττ ∈ Σ

b(σσσ,v) = −(f ,v) ∀v ∈ U

where

(3) U :=
[
L2(Ω)

]3
, Σ := {τττ ∈ H(div; Ω) : τττ symmetric} ,

with H(div; Ω) :=
{
τττ ∈

[
L2(Ω)

]3×3
: div τττ ∈

[
L2(Ω)

]3}
. The spaces U and Σ are equipped with their

natural norms. Furthermore, the bilinear forms in (2) are defined as:

(4) a(σσσ, τττ ) :=

∫
Ω
C−1σσσ : τττ dΩ, b(σσσ,u) :=

∫
Ω
div σσσ · u dΩ,

and (·, ·) denotes the usual L2 scalar product. As it is well-known this problem is well-posed [3].
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A typical Galerkin approximation of Problem (2) can be written as follows:

(5)


Find (σσσh,uh) ∈ Σh × Uh such that

ah(σσσh, τττh) + bh(τττh,uh) = 0 ∀τττh ∈ Σh

bh(σσσh,vh) = −(f ,vh)h ∀vh ∈ Uh.

where Uh and Σh are the finite dimensional approximating spaces for the displacement and stress field,
respectively. Moreover, ah(·, ·), bh(·, ·) and (f , ·)h are suitable approximations of the corresponding bilinear
and linear forms. We consider a particular Galerkin scheme in the spirit of the Virtual Element Method
introduced in [1]. We thus need to introduce the approximation spaces and the approximated form, as
described below.

2.1. Definition of the approximating spaces

We first introduce a star-shaped polyhedral tessellation Ωh of Ω, h being the mesh-size, and we define
two finite dimensional spaces Uh ⊆ U and Σh ⊆ Σ, tailored to the mesh Ωh. Similarly to the finite element
approach, Uh and Σh will be obtained by gluing suitable local approximation spaces. Hence, we first fix
an element E ∈ Ωh.

For the local approximation space of the displacement field we then select:

(6) Uh(E) =
{
vh ∈

[
L2(E)

]3
: vh ∈ RM(E)

}
,

where

(7) RM(E) :=
{
r(x) = ααα + ωωω ∧

(
x− xE

)
s.t. ααα, ωωω ∈ R3

}
is the space of the local infinitesimal rigid body motions. Accordingly, for Uh(E) the following degrees of
freedom can be taken:

(8) vh −→
∫
E
vh · r dE ∀ r ∈ RM(E).

It follows that dim(Uh(E)) = dim(RM(E)) = 6. The global discrete displacement space Uh is then defined
by

(9) Uh =
{
vh ∈

[
L2(Ω)

]3
: vh|E ∈ Uh(E) ∀E ∈ Ωh

}
.

We remark that this space is made by explicitly known functions, as they are piecewise polynomials.
Instead, the virtual element concept comes into play when defining the local approximation space for

the stress field. In fact, we set:

(10)
Σh(E) :=

{
τττh ∈H(div;E) : ∃w∗ ∈

[
H1(E)

]3
such that τττh = Cεεε(w∗);

(τττh n)|f ∈ Th(f) ∀f ∈ ∂E; div τττh ∈ RM(E)
}
,

where, for each face f ∈ ∂E:

(11) Th(f) :=
{
ψψψ(x̃) = tf + a

[
nf ∧ (x(x̃)− xf )

]
+ p1(x̃)nf , s.t. a ∈ R, p1(x̃) ∈ P1(f)

}
.

Here above, nf is the outward normal to the face f , on which we have introduced 2D local coordinates
x̃. Moreover, tf is an arbitrary vector tangent to f and x(x̃) is the three dimensional position vector of
a point on f , determined by x̃. We remark that Th(f) can be seen as the space of vector functions whose
tangential component is a 2D rigid body motion defined on f , while the normal component is a linear
polynomial on f . Accordingly, for the local space Σh(E) the following degrees of freedom can be taken.
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• For each face f of the element E, the three degrees of freedom which determine the tangential com-
ponent of the tractions:

(12) τττh −→
∫
f
(τττh n)|f ·

[
θθθf + α

[
nf ∧ (x(x̃)− xf )

]]
df.

Above, α ∈ R and θθθf is an arbitrary vector tangent to the face f .
• For each face f of the element E, the three degrees of freedom which determine the normal component
of the tractions:

(13) τττh −→
∫
f
(τττh n)|f ·

[
q1(x̃)nf

]
df ∀ q1(x̃) ∈ P1(f).

It is easy to see that, for every τττh ∈ Σh(E), the divergence div τττh is completely determined by the
boundary information (degrees of freedom) at our disposal, see Proposition 3.1 in [9] for more details. In
addition, this set of degrees of freedom is unisolvent for the space Σh(E), so that its dimension is

dim(Σh(E)) = 6nEf ,

where nEf is the number of element faces. Furthermore, we notice that these degrees of freedom are entirely
defined on each polyhedron face, contrary to what happens to the Finite Element approach, where nodal
degrees of freedom must be always present, see [11,12] for instance. This nice property is crucial for the
simple hybridization procedure detailed in Section 3. The global discrete stress space Σh is then defined
by

(14) Σh :=
{
τττh ∈ H(div; Ω) : τττh|E ∈ Σh(E) ∀E ∈ Ωh

}
.

We remark that the regularity condition τττh ∈ H(div; Ω) essentially requires that the tractions τττhn are
continuous across each face of the mesh Ωh.

2.2. Definition of discrete bilinear forms

Given an element E ∈ Ωh we notice that for every τττh ∈ Σh(E) and vh ∈ Uh(E) the local mixed term

(15) bE(σσσh,vh) =

∫
E
div σσσh · vh dE

is computable by means of the information at our disposal: the stress and displacement degrees of freedom.
Analogously, since vh ∈ RM(E) the right-hand side term

(16) (f ,vh) =

∫
Ω
f vh dΩ =

∑
E∈Ωh

∫
E
f vh dE

is computable via quadrature rules for polyhedral domain. Therefore, there is not need to introduce any
approximation of the global terms b(·, ·) and (f , ·). Hence, it holds (cf. (5)):

bh(σσσh,vh) :=
∑
E∈Ωh

bE(σσσh|E ,vh|E) = b(σσσh,vh)

and
(f ,vh)h = (f ,vh).

Instead, to compute the local bilinear form

(17) aE(σσσh, τττh) =

∫
E
C−1σσσh : τττh dE
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we need to use the standard VEM technique [1,13], since we do not explicitly know the discrete stresses
in the element E. We introduce a suitable projection operator onto local polynomial functions, which is
computable via the degrees of freedom. In our case, we introduce ΠE : Σh(E) → [P0(E)]3×3

s , by requiring

(18)

∫
E
ΠE τττh : πππ0 =

∫
E
τττh : πππ0 dE ∀πππ0 ∈ [P0(E)]3×3

s .

This projection operator is computable. Indeed, we notice that each πππ0 ∈ [P0(E)]3×3
s can be written as

the symmetric gradient of a linear vectorial function, i.e. πππ0 = εεε(p1), with p1 ∈ [P1(E)]3. Hence, using
the divergence theorem, the right-hand side of (18) becomes∫

E
τττh : πππ0 dE =

∫
E
τττh : εεε(p1) dE = −

∫
E
div τττh · p1 dE +

∫
∂E

(τττhn) · p1 df

which is clearly computable through the degrees of freedom in Σh(E). Then, the approximation of aE(·, ·)
reads:

(19)

ahE(σσσh, τττh) := aE(ΠE σσσh,ΠEτττh) + sE ((I −ΠE)σσσh, (I −ΠE)τττh)

=

∫
E
C−1(ΠEσσσh) : (ΠEτττh) dE + sE ((I −ΠE)σσσh, (I −ΠE)τττh) ,

where sE(·, ·) is a suitable stabilization term which scales like the continuous bilinear form aE(·, ·). We
propose the following choice:

(20) sE(σσσh, τττh) := κE hE

∫
∂E

(σσσhn) · τττhn df.

Above, κE is a positive constant to be chosen according to C−1, while hE is the diameter of the element
E. The global approximated bilinear form ah(·, ·) to be used in Problem (5) is then defined as

ah(σσσh, τττh) :=
∑
E∈Ωh

ahE(σσσh|E , τττh|E).

With all the quantities defined in Sections 2.1 and 2.2, we are ready to build the discrete problem (5).
In [9] we have proved that the method is inf-sup stable, see [3], for instance. Moreover, under the usual
regular assumptions on the mesh and on the solution to Problem (2), for the discrete Problem (5) we
have the following error estimate

(21) ||σσσ − σσσh||Σ + ||u− uh||U ≤ Ch,

where C is independent of h. Finally, for homogeneous and isotropic materials, the above estimate is
robust with respect to the value of the bulk modulus, thus the scheme is optimally convergent also in the
nearly incompressible regime.

3. Hybridization procedure

The hybridization procedure in the framework of mixed methods is a computational technique to
re-write the discrete problem in a different way. Its main feature is that the resulting linear system is
symmetric and positive definite, instead of the original indefinite one, cf. [7]. Moreover, by this procedure
it is possible to get a better approximation of the displacement solution, see [8].

More precisely, in our case the hybridization technique and its consequences can be split into the
following three steps, which will be detailed below:

• the introduction of suitable Lagrange multipliers to impose the stress H(div)-conformity;
• the application of the static condensation algorithm to reduce computational costs;
• the design of a suitable post-processing procedure.
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3.1. Imposing H(div)-conformity via Lagrange multipliers

This first step is characterized by the introduction of Lagrange multipliers to impose the required
continuity constraints across the interfaces, rather than enforcing them directly in the approximation
space. To accomplish this goal in a simple manner, it is crucial that the boundary stress degrees of
freedom are defined only on the faces and not on the element vertices. The idea is the following: instead
of considering the standard stress VEM space

(22) Σh :=
{
τττh ∈ H(div,Ω) : τττh|E ∈ Σh(E) ∀E ∈ Th

}
,

we introduce the larger discrete space

(23) Σ̃h :=
{
τττh ∈

[
L2(Ω)

]2×2
: τττh|E ∈ Σh(E) ∀E ∈ Th

}
.

Now, calling FI
h the set of the internal faces of Ωh, we define the space of Lagrange multipliers by (cf. (11)):

(24) Λh(FI
h) :=

{
µµµh ∈

[
L2(FI

h)
]3

: µµµh|f ∈ Th(f) ∀ f ∈ FI
h

}
.

where, with a little abuse of notation, we denote with L2(FI
h) the L

2 space defined on the interior skeleton
of Ωh, i.e., the union of f ∈ FI

h . Notice that the Lagrange multipliers are defined only on the internal faces
FI
h because their role is to match the normal component of the stresses, as required by the H(div,Ω)

regularity. To force such a continuity, we introduce the discrete bilinear form

(25) ch(·, ·) : Σ̃h(Ωh)× Λh(FI
h) → R

defined as:

(26) ch(τττh, µµµh) := −
∑
E∈Ωh

∫
∂EI

µµµh · τττh n df ∀τττh ∈ Σ̃h(Ωh), ∀µµµh ∈ Λh(FI
h),

where ∂EI = ∂E ∩FI
h . We observe that although τττh is virtual, such bilinear form is computable. Indeed,

we are integrating over faces where both µµµh and τττhn are polynomials. Then, the hybridized version of
Problem (5) reads as follows:

(27)


Find (σσσh,uh, λλλh) ∈ Σ̃h × Uh × Λh(FI

h) such that

ah(σσσh, τττh) + b(τττh,uh) + ch(τττh, λλλh) = 0 ∀τττh ∈ Σ̃h,

b(σσσh,vh) = −(f ,vh) ∀vh ∈ Uh,

ch(σσσh, µµµh) = 0 ∀µµµh ∈ Λh(FI
h).

It can be proven, see [14], that Problem (27) is well-posed; more importantly, if (σσσh,uh, λλλh) ∈ Σ̃h×Uh×
Λh(FI

h) solves problem (27), then (σσσh,uh) is also the solution of Problem (5).

3.2. Static condensation

The second step is merely an algebraic manipulation which leads to a symmetric and positive definite
linear system the can be efficiently solved. Let us start recalling the matrix form of Problem (27):

(28)

 Ã B̃ C̃

B̃T O O

C̃T O O

σσσh

uh

λλλh

 =

OF̃
O

 .

Here above the symbol ∼ highlights that the quantity under consideration refers to the (discontinuous)
space (23), rather than to the conforming one (22). One of the advantages of the discontinuous stress
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degrees of freedom is that the matrices Ã and B̃, corresponding to the discrete bilinear form ah(·, ·) and
the mixed term b(·, ·) are block matrices. Each block corresponds to a single element, so that Gauss
elimination of σσσh and uh from system (28) can be permformed elementwise, see [14] for details. Thus, we
end up with the following linear system involving only the multipliers:

(29) Hλλλh = R

where

(30) H = C̃T Ã−1C̃ − (C̃T Ã−1B̃)(B̃T Ã−1B̃)−1(B̃T Ã−1C̃)

and

(31) R = (CT Ã−1B̃)(B̃T Ã−1B̃)−1F̃ .

The matrix H is symmetric and positive definite, so that “ad-hoc” methods to solve (29) can be employed
(for instance, Cholesky decomposition method). Once we have solved it to get λλλh, the displacements and
the stresses can be obtained explicitly via matrix-vector multiplication, again see [14] for details.

3.3. Post-processing procedure

This last step is characterized by the possibility to reconstruct a better approximation of the dis-
placement field through a post-processing procedure. Indeed, since the Lagrange multipliers λλλh have the
physical interpretation of (generalized) displacements, the idea is to use them to design a higher-order
(non-conforming) approximation u∗

h of the displacement field. Our choice is based on a vectorial version
of the non-conforming VEM scheme described in [15]. More precisely, the local virtual space is:

(32) U∗
h(E) :=

{
v∗
h ∈

[
H1(E)

]3
:
∂v∗

h

∂n
= ∇v∗

hn ∈ [P0(f)]
3 ∀f ∈ ∂E, ∆v∗

h = 0

}
.

Accordingly, for U∗
h(E) we can take the following degrees of freedom:

(33) v∗
h → 1

|f |

∫
f
v∗
h df = Π∂

0λλλh,

where

(34) Π∂
0 :

[
L2(FI

h)
]3 → [

P0(FI
h)
]2 ⊆ Λh(FI

h),

is the L2-projection onto the space of vector constant functions. Moreover, under the usual regular
assumptions on the mesh and on the solution, the following error estimates can be established, see
Theorem 5.3 in [14]:

(35) ||u− u∗
h||0 ≤ Ch2.

and, if the family of meshes {Ωh}h is also quasi-uniform, it holds

(36) |u− u∗
h|1,Ωh

=

√ ∑
E∈Ωh

||∇(u− u∗
h)||20,E ≤ Ch.

As usual, in the above estimates the quantity C is independent of h (and of the bulk modulus when
homogeneous and isotropic materials are considered).

4. Numerical results

In this section, we validate the theoretical results by means of numerical experiments on a problem
for which the analytical solution is explicitly known; then we briefly present a computational investigation
on the sensitivity of the method solution to the stabilization parameter κE , see (20).
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Test Case. Given the unit cube Ω = [0, 1]3, we consider a 3D elastic problem with the following
analytical displacement solution u = (u1, u2, u3)

T :
u1 =

(
x− x2

) (
y − y2

)
(2 z − 1)−

(
x− x2

) (
z − z2

)
(2 y − 1)

u2 =
(
y − y2

) (
z − z2

)
(2x− 1)−

(
x− x2

) (
y − y2

)
(2 z − 1)

u3 =
(
x− x2

) (
z − z2

)
(2 y − 1)−

(
y − y2

) (
z − z2

)
(2x− 1)

(37)

The stress solution σσσ and the loading term f are computed accordingly. For this problem we consider
a homogeneous and isotropic material with Lamé coefficients λ = 105, µ = 0.5, which corresponds to a
nearly incompressible case.

We consider the four families of meshes depicted in Figure 1: standard structured cubes, Delaunay
tetrahedralization of Ω, Voronoi tessellation with Lloyd algorithm to regularize the elements, Voronoi
tessellation with random control points. Moreover, the parameter involved in the stabilization term (20)
is always chosen as κ = κE = 1

2tr(C
−1) for every element E (except for Section 4.4).

Cube Tetra CVT Rand

Figure 1. Overview of adopted meshes for numerical tests.

4.1. Convergence results

To study to convergence in actual computations, we use the following error norms:

• L2 error norm for the displacement field: Eu := ||u− uh||0.
• L2 error on the divergence: Eσσσ,div := ||div σσσ − div σσσh||0.
• L2 error on the projection: Eσσσ,Π := ||σσσ −Πσσσh||0, where Π is such that Π|E = ΠE .
• Discrete error norms for the stress field:

Eσσσ :=

 ∑
f∈Fh

hf

∫
f
κ |(σσσ − σσσh)n|2

1/2

,

where hf is the diameter of the face f .

In Figure 2 we display the h-convergence graphs of the proposed VEM approach. As expected the
method leads to an asymptotic convergence rate equal to 1 for all error norms and meshes. Moreover,
the convergence graphs are close to each others, confirming the robustness of the proposed scheme with
respect to element shape.

4.2. Post-processing results

We now show the accuracy of the post-processed displacement field obtained by the hybridization
procedure. We measure the error by means of the following quantities:

E0
u∗
h
:= ||u−Π∇u∗

h||0 and E1
u∗
h
:= |u−Π∇u∗

h|1,Th ,
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Figure 2. h-convergence results for all meshes.
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Figure 3. Post-processing. Convergence plots for the error E0
u∗

h
and E1

u∗
h
for test case 3D.

where u is the analytical solution, u∗
h represents the non-conforming reconstruction of the displacement

solution and Π∇ is the standard projection operator defined in [14,15].
Figure 3 displays the corresponding convergence histories. The convergence rate for the error E0

u∗
h

is approximately 2, while for the error E1
u∗
h
is 1, as expected by estimates (35) and (36). Although
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estimate (36) has been proved only for quasi-uniform meshes, the numerical tests suggest that the same
behaviour occurs for more general situations (e.g., Rand meshes are not quasi-uniform but still a first
order convergence rate takes place). Moreover, the convergence lines of each mesh are close to each others,
showing, once again, the VEM robustness with respect to the mesh distortion.

4.3. Comparison of solving time

We show the effect of the hybridization technique on the solution time of the resulting linear system.
Accordingly, we qualitatively compare the solving times between the standard low-order VEM approach
(i.e. to compute the solution to the linear system stemming from Problem (5)) and the hybridized scheme
procedure (i.e. to compute the solution of linear system (29) and then get σσσh and uh). We use the open-
source library PETSc [16]. In particular, we use the direct solver MUMPS: LU factorization for the
standard method; Cholesky for the hybridized one. Moreover, we run our test only on one processor in
order to have the same setting for both the cases.

Table 1. Comparison of solving time (in seconds) between standard approach and
hybridization technique for our test case

Cube Tetra

Step Standard Hybrid Standard Hybrid
1 0.09 0.13 (28.27%) 0.10 0.15 (20.57%)
2 2.93 2.23 (68.89%) 2.55 2.53 (50.94%)
3 403.44 94.19 (92.57%) 485.59 234.48 (95.34%)
4 4058.78 659.77 (97.60%) 2633.88 1283.38 (98.24%)

CVT Rand

Step Standard Hybrid Standard Hybrid
1 0.56 0.58 (44.67%) 0.75 0.76 (49.29%)
2 59.35 29.53 (88.07%) 114.25 41.37 (88.62%)
3 15778.60 3997.49 (99.10%) 22003.10 8517.07 (99.40%)
4 101685.00 26988.20 (99.73%) 147205.00 49210.70 (99.77%)

Table 1 summarizes the outcomes for each mesh refinement step. Moreover, in the column “Hybrid”,
we also show the percentage of time used to solve the linear system (29) (the remaining time is used for the
static condensation and for computing σσσh and uh). We notice that refining the meshes, the hybridization
procedure shows better performance (in time) than the standard procedure. Furthermore, we observe
that this improvement becomes more and more effective as the time for solving system (29) becomes
dominant (this occurs for larger and larger systems).

4.4. Investigation on sensitivity of stabilization parameter

To explore the sensitivity on the choice of the stabilization parameter, we consider the following test.
We fix a single mesh for each type: for Cube, CVT and Rand families we select a mesh with 1000 elements,
while for Tetra family we take 2449 elements (this choice corresponds to the second step of the sequences
used in the previous tests). We then pick different values of the stabilization parameter, cf. (20), to show
the effect of the stabilization term on the discrete solution of Problem (5). More precisely, we take κ as
follows:

(38) κ = κ(α) =
1

2
tr(C−1)α, whereα ∈

{
10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104

}
.

In Figure 4 we plot the the errors Eu, Eσσσ,div, Eσσσ,Π and Eσσσ versus the parameter α in a log-log scale.
On the one hand, we notice that the best performances are reached (approximately) for α ∈ [10−1, 1],
which confirms that our initial choice κ = 1

2tr(C
−1) is sensible. On the other hand, things goes wrong if

we take κ “too large” or “too small”. In the first case (for instance, consider α = 104) the stabilization
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Figure 4. Investigation of stabilization parameter.

term matters much more than the consistency term in (19). From Figure 4, we notice that the error
Eu grows, while the errors Eσσσ,Π and Eσσσ are basically the same. This outcome might be interpreted by
inspecting the first equation of Problem (5): if κ is “large”, the bilinear form bh(·, ·), and thus the discrete
displacement uh, risks to be negligible. Instead, in the second case (for instance, consider α = 10−4), the
stabilization term becomes “small” and the bilinear form ah(·, ·) of Problem (5) tends to get singular: as
a consequence, the discrete stresses are out of control and the corresponding errors grow (except Eσσσ,div).
Different considerations apply to the latter error measure Eσσσ,div: from the second equation of (5) we find
that it always holds

div σσσh = −Phf ,

where Ph denotes the L2- projection onto Uh. Since the term −Phf is of course independent of κ, the
quantity Eσσσ,div is so, as well.

5. Conclusions

We have reported on some of our results concerning the Virtual Element Method applied to the
Hellinger-Reissner formulation of linear elasticity problems. More precisely, we have considered a 3D
low-order scheme, for which we present the relevant theoretical results, as well as some numerical out-
comes. Thus, we have shown that the VEM approach is surely a valid alternative to other more classical
paradigms (FEMs, for instance).

We finally remark that other many contributions about the VEM discretization of linear elasticity
problems are available in the literature; for instance, we cite [17]. But one may also exploit schemes
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designed for the Stokes equations, see for example [18], or [19], where methods based on discrete exact
sequences (e.g., see [20], [21] [22]) are considered.
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