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Nuclear matter is studied within the Density Functional Theory (DFT) framework. Our method
employs a finite number of nucleons in a box subject to periodic boundary conditions, in order to
simulate infinite matter and study its response to an external static potential. We detail both the
theoretical formalism and its computational implementation for pure neutron matter and symmetric
nuclear matter with Skyrme-like Energy Density Functionals (EDFs). The implementation of spin-
orbit, in particular, is carefully discussed. Our method is applied to the problem of the static
response of nuclear matter and the impact of the perturbation on the energies, densities and level
structure of the system is investigated. Our work is a crucial step in our program of ab initio-based
nuclear EDFs [Phys. Rev. C 104, 024315 (2021)] as it paves the way towards the goal of constraining
the EDF surface terms on ab initio calculations.

I. INTRODUCTION

Nuclear matter, an ideal infinite system made of
strongly-interacting nucleons, is currently subject to in-
tense study from multiple perspectives, due to its con-
nections to the nuclear physics of finite nuclei [1–3], the
astrophysics of neutron stars and gravitational waves [4–
6], and the physics of cold Fermi gases [7, 8].

Nuclear matter has been studied theoretically both
within ab initio theory and Density Functional Theory
(DFT). In synthesis, ab initio or first-principle methods
aim at finding an exact or systematically improvable so-
lution to the many-body problem starting from a Hamil-
tonian that describes the interactions among the con-
stituent nucleons [9, 10]. DFT, on the other hand, maps
the many-particle problem to a single-particle (s.p.) self-
consistent (s.c.) problem that is based on the concept of
an Energy Density Functional (EDF), i.e. on expressing
the total energy of a generic system as a functional of its
(generalized) densities [11–13]. DFT is in principle an
exact theory, but the EDF which are currently used rely
heavily on phenomenology [12].

The equation of state (EOS), i.e. (at zero temperature)
the energy per particle as a function of the neutron and
proton densities, is the fundamental ground state (g.s.)
property of homogeneous matter and has been the main
target of most works, see the reviews Refs. [1, 5, 14].
Another line of research has focused on inhomogeneous
nuclear matter [8], motivated by the fact that the inner
crust of neutron stars is not uniform [4] and by the at-
tractive possibility of constraining specific terms of the
nuclear EDFs (see e.g. Refs. [15–18]). Neutron and
neutron-proton drops, i.e. nuclear matter confined by an
external trap, have been studied e.g. in Refs. [15, 19–21].
The problem of the response of nuclear matter subject
to a weak periodic perturbation has also been tackled.
The dynamical response function has been determined
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for rather general EDFs numerically [22] and analytically
(see Refs. [23, 24] and references therein). Recently, Gez-
erlis and collaborators [25–27], extending techniques used
for the electron gas [28–30] and cold atoms [31], have at-
tacked the problem of the neutron matter static response
ab initio with the Auxiliary Field Diffusion Monte Carlo
(AFDMC) method [32, 33].

While the EOS and the static and dynamic response
can be studied directly in the thermodynamic limit (TL)
in the framework of DFT [1, 23], most ab initio methods
simulate infinite matter by employing a finite number of
particles (see e.g. Refs. [9, 34–38]). In fact, they are lim-
ited to few tens of fermions at most, which implies that
ab initio results are affected by finite-size (FS) effects.
In this context, developing a finite-A DFT formalism for
nuclear matter is important for two reasons. First, very
large numbers of particles can be studied in DFT due
to its low computational cost and thus a playground for
understanding and handling FS effects is provided. In
Refs. [27, 39], for example, ab initio simulations of per-
turbed matter were extrapolated to the TL with the aid
of DFT calculations. Second, the finite-A DFT approach
is instrumental in our program of constructing ab initio-
based EDFs started in Ref. [40], since it paves the way to
matching ab initio and DFT calculations with the same
number of particles in a consistent manner. The EOS
of uniform matter has already been employed in a local
density approximation scheme [22, 40] to link the EDF
to microscopic theory. Full-fledged EDFs, however, must
incorporate surface terms that can act exclusively in non-
uniform systems. Perturbed nuclear matter, in this re-
spect, is a promising candidate for setting constraints on
the EDF surface contribution (see e.g. Ref. [8, 31, 41]).

This work is devoted to a detailed description of the so-
lution of the DFT problem for nuclear matter under the
effect of an external perturbation for Skyrme-like EDFs.
Our approach is based on simulating nuclear matter us-
ing a finite number of nucleons in a box on which peri-
odic boundary conditions are imposed. The formalism
for pure neutron matter (PNM) and symmetric nuclear
matter (SNM), together with its numerical implementa-
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tion, are presented; a careful analysis of the treatment
of spin-orbit is provided. The static response problem is
then tackled with this method and the effect of the per-
turbation on the energies, densities and level structure of
the system is investigated.

This paper is structured as follows. Section II is de-
voted to a detailed description to the finite-A nuclear
DFT formalism and to its numerical implementation.
Section III reviews the theory of the static response of
homogeneous matter. Results are presented in Sec. IV.
Lastly, Section V summarizes our work and presents fu-
ture developments.

II. NUCLEAR DFT FORMALISM

A. Overview of nuclear DFT

We give a brief overview of nuclear DFT [11, 12]. De-
tails are given in our previous work Ref. [40] and refer-
ences therein.

We consider quasi-local (or Skyrme-like) EDF mod-
els [11] for time-reversal-invariant systems, such as spin-
saturated nuclear matter, and neglect pairing. We adopt
the Kohn-Sham (KS) scheme [13], in which a representa-
tion in terms of s.p. orbitals ψj(x) is introduced and the
kinetic energy term is equal to that of a non-interacting
Fermi system. Then, the total energy of a generic sys-
tem is written as a functional of number density ρt(x), ki-
netic density τt(x) and spin-orbit density Jt(x) (see App.
A 3 for their definition) with t = 0, 1 labelling isoscalar
(ρ0 = ρn + ρp) and isovector (ρ1 = ρn − ρp) quantities,
and has the following structure:

E =

∫
dx E(x) = Ekin + Epot + Eext (1)

which comprises the kinetic energy, a nuclear potential
energy term and possibly an external potential contribu-
tion,

Ekin =

∫
dx Ekin(x) =

∫
dx

~2

2m
τ0(x), (2)

Epot =

∫
dr Epot(x), (3)

Eext =
∑
t=0,1

∫
dx ρt(x)vt(x). (4)

Throughout this work Epot has the form [40]

Epot(x) =
∑
t=0,1

(∑
γ

(
cγ,0 + cγ,1β

2
)
ργ+1

0 (5)

+ Cτt ρtτt + C∆ρ
t ρt∆ρt + CJt J

2
t + C∇Jt ρt∇ · Jt

)
with β = ρ1/ρ0 being the isospin asymmetry. The KS-
DFT equations are found by minimizing the EDF w.r.t

the s.p. orbitals ψ∗j (x) and read for protons and neutrons
(q = n, p) [11][

−∇ · ~2

2m∗q(x)
∇+ Uq(x) + vq(x)+ (6)

Wq(x) · (−i) (∇× σ)

]
ψj(x) = εjψj(x)

where the fields entering the equations are defined as

Uq =
δE

δρq

~2

2m∗q
=
δE

δτq
Wq =

δE

δJq
. (7)

m∗q(x), Uq(x) and Wq(x) are called effective mass, mean
field and spin-orbit potential, respectively.

B. Infinite nuclear matter

Nuclear matter is an infinite system of nucleons that
interact through the strong interaction only [1]. (The
Coulomb interaction is neglected.) In the following we
concentrate on zero-temperature and spin-unpolarized
matter. Moreover, we limit ourselves to the limiting cases
of SNM (ρn = ρp = ρ0/2) and PNM (ρp=0, ρn = ρ0), al-
though extensions are straightforward. The fundamental
quantity that characterizes homogeneous matter is the
EOS e(ρ, β) = E(ρ, β)/A, where E is the total energy of
the system and e the energy per nucleon. We also re-
mind that in homogeneous matter both the gradients of
the density and the spin-orbit density vanish [40].

Some theoretical approaches attack nuclear matter di-
rectly in the TL. These include nuclear DFT [1, 23] and
e.g. Self-consistent Green’s functions [42]. Most ab ini-
tio methods, though, simulate infinite matter by using a
finite number of particles (see e.g. Refs. [34, 35, 38]).
Among them is AFDMC [33], that has been used ex-
tensively not only for the nuclear matter EOS, but also
for inhomogeneous matter, namely neutron drops [15], as
well as for neutron matter response [26]. DFT, too, can
be formulated with a finite nucleon number, as proposed
in Ref. [39]. The standard technique adopted in most
studies [33, 34] involves considering A fermions enclosed
in a cubic box of size L and volume Ω = L3 and imposing
periodic boundary conditions (PBCs) on the wave func-
tion. The cell size is chosen such as the density of the
system is a fixed and constant ρ0 = A/Ω. In this frame-
work, the TL corresponds to the limit in which both A
and L go to infinity while keeping ρ0 fixed [43]. The free
gas (FG), that is the starting point for studying inter-
acting matter, is described in terms of s.p. plane waves
orbitals eik·x/

√
Ω with wave number k and kinetic en-

ergy ~2k2

2m . As a consequence of PBCs, the momenta k

are quantized, i.e. k = 2π
L n where n is a three-component

vector of integer numbers. Since the energy depends on
k2 and thus on n2, a ”momentum space” shell structure
emerges, with different energy levels being labelled by n2

and being degenerate. The first few momentum space



3

”magic numbers” are given by A/g =1, 7, 19, 27, 33
etc. [34], where g is spin/isospin degeneracy (2 for spin-
saturated PNM, 4 for for spin-saturated SNM). Typically,
the number of fermions in a calculation is selected so as
to correspond to a shell closure of the FG in both ho-
mogeneous and perturbed matter. As we discuss below,
this choice is fundamental when calculating the EOS with
finite-A methods.

C. Solution of DFT in a periodic box

We discuss in detail the solution of the DFT problem
for a finite number of nucleons enclosed in a cubic box
with PBCs. We focus on spin-saturated PNM and SNM,
which are the most important cases for nuclei and neu-
tron stars [1]. Moreover, SNM and PNM can be treated
as two-component (spin up/down) fermionic systems in
a unified way. The case of asymmetric matter (ρn 6= ρp,
N 6= Z) would require some limited extensions of the for-
malism and is left for future studies. From now on, for
the sake of simplicity in the notation the isospin labels
(q or t) are suppressed.

We consider an external potential v(z) that is a func-
tion of the z coordinate only. Thus, translational invari-
ance is broken in the z direction, but still holds in the
xy plane. In order to respect PBCs, v(z) must be peri-
odic as well. Moreover, we adopt the spin- and isospin-
independent sinusoidal potential

v(z) = 2vq cos (qz) (8)

with q being an integer multiple of qmin = 2π/L. The
s.p. wave functions (in 2-spinor notation), then, have the
following structure:

ψn,λ(x) =
eikxx√
L

eikyy√
L

(
φn,λ(z, ↑)
φn,λ(z, ↓)

)
(9)

PBCs imply that kx and ky are quantized in units of
2π/L, i.e. kx = 2π

L nx and ky = 2π
L ny, and φn,λ(z) is pe-

riodic, i.e. φn,λ(z+L) = φn,λ(z). The states are labelled
by the three integer numbers n, plus a spin quantum
number λ = ±1 whose precise meaning will be discussed
below.

The general DFT equations (6) are now specialized to
our case. We first note that the fields are functions of
the z coordinate only: m∗ = m∗(z), U = U(z) and W =
W (z)ẑ. (The detailed expressions of the EDF and the
fields are reported in App. A 1.) For later convenience,
we define the transverse momentum as

knxny = kxx̂ + kyŷ =
2π

L
(nxx̂ + nyŷ) (10)

having magnitude

knxny =
√
k2
x + k2

y =
2π

L

√
n2
x + n2

y. (11)

Now, we discuss the spin-orbit term of Eq. (6) with the

help of
∂ψn,λ

∂x = ikxψn,λ and
∂ψn,λ

∂y = ikyψn,λ:

W(x) · (−i) (∇× σ)ψn,λ(x) = (12)

W (z) (−i) (∂xσy − ∂yσx)ψn,λ(x) =

W (z) (kxσy − kyσx)ψn,λ(x) =

W (z)Knx,nyψn,λ(x)

In the last equality, we have introduced the spin matrix
Knx,ny = kxσy − kyσx, which reads explicitly as

Knx,ny =

(
0 −i(kx + iky)

i(kx − iky) 0

)
. (13)

Since Knx,ny is not diagonal, it is clear that the states
ψn,λ cannot be eigenstates of σz. While one possibility
would be to solve the coupled DFT equation for the spin-
up and -down components, a better choice is to take the
ψ’s to be eigenstates of Knx,ny , as suggested in Ref. [44].
It is easy to verify that Knx,ny has eigenvalues ±knxny .
Thus we impose

Knx,nyψn,λ(x) = λknxnyψn,λ(x), (14)

where λ = ±1. Importantly, since Knx,ny is independent
of the position, Eq. (14) implies that the orbitals (9) can
be decomposed into the product of a single spatial orbital
and a constant spinor, namely

ψn,λ(x) =
eikxx√
L

eikyy√
L
φn,λ(z)χnx,ny,λ. (15)

The spinors χnx,ny,λ satisfy

Knx,nyχnx,ny,λ = λknxnyχnx,ny,λ, (16)

where

χnx,ny,λ =
1√
2

(
1

λeiφ

)
. (17)

In the last expression, the angle φ is given by φ =
arctan (ny/nx).

Physically, the states ψn,λ have a definite spin projec-
tion in the direction of the transverse momentum (10),
which is not fixed but depends on the numbers nx, ny.
The label λ thus can be interpreted as a spin projection
or helicity quantum number.

The kinetic term can be manipulated along the same
lines and is discussed in App. A 2. Finally, applying Eqs.
(A11), (12) and (14) to Eq. (6), we find the following one-
dimensional equations for the spatial orbital φn,λ(z):

− d

dz

(
~2

2m∗(z)
φ′n,λ(z)

)
+ (18)(

U(z) + v(z) + λknxnyW (z) +
~2

2m∗(z)
k2
nxny

)
φn,λ(z) =

εn,λφn,λ(z).
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These are s.p. state-dependent Schrödinger equations
that must be solved self-consistently due the density-
dependence of the fields. For a given set of quantum
numbers nx,ny and λ, nz labels the eigensolutions or-
dered by increasing s.p. energies ε. The z coordinate is
restricted to the symmetric interval

[
−L2 ,

L
2

]
.

We note that due to time-reversal invariance, that
holds if we consider the spin-independent potential (8),
the eigenvalues εn,+1 and εn,−1 are degenerate, while
in general λ = ±1 spatial orbitals are different. In
the special case of homogeneous matter (v = 0 and
ρ(z) = ρ0), though, the spin-orbit field W (z) vanishes
[see Eq. (A8)], and thus the equations for the spin-orbit
partners λ = ±1 are identical and so are the orbitals,
namely φn,+1 = φn,−1. As a consequence, the spin-orbit
density vanishes too [Eq. (A14)] and thus uniform mat-
ter is insensitive to spin-orbit. In passing, we also ob-
serve that the energy of a spin-saturated and closed-shell
system is invariant when the sign of the spin-orbit coef-
ficient is flipped, C∇J −→ −C∇J . Indeed, the effect of
this transformation is that of swapping the λ = 1 and
λ = −1 states in Eq. (18) and, if an equal number of
spin states is occupied, all the densities, including J(z),
remain unchanged, and so does the total energy.

We shall describe how the Schrödinger equation (18)
is solved, how the many-particle g.s. of the system is
constructed, and how the s.c. loop is dealt with. Due
to the intrinsic periodicity of the systems under study,
expanding Eq. (18) in the plane waves basis (see e.g.
Refs. [13, 45]) allows to solve the problem very efficiently.
Few tens of plane waves are typically enough to find con-
verged results even for moderately strong perturbations;
by contrast, the finite-difference approach used in Ref.
[39] requires a mesh of several hundreds points at least
and a much more time-consuming diagonalization. The
orbitals are Fourier-expanded as φ(z) = 1√

L

∑
k cke

ikz

where again k = 2π
L n and the Schrödinger equation is

recast into matrix form, namely∑
k′

(
h̃n,λ

)
k,k′

ck′ = εn,λck, (19)

where
(
h̃n,λ

)
k,k′

is the Hamiltonian matrix in the plane

waves basis and is derived in App. A 4.
Nuclear DFT is based on an independent-particle pic-

ture and the many-particle g.s. configuration is found by
occupying the first A energy levels of the system. In order
to determine them, Eqs. (18) are solved for several dif-
ferent combinations (nx, ny), and separately for the two
spin states λ [39]. Then, the solutions are collated and
the lowest-energy states are filled up with A/2 spin-up
and A/2 spin-down particles. (The discussion is limited
to spin-saturated system.) Energy levels are degenerate,
since nx and ny only enter Eq. (18) in the combina-
tion knxny ∝ n2

x + n2
y, so that inverting the sign of nx,

ny or both, or exchanging the two numbers, leaves the
equation invariant. Such degeneracy gnx,ny can be ex-
ploited to reduce the computational load of the method,

since we can restrict ourselves to the pairs (nx, ny) with
0 ≤ nx ≤ ny ≤ nmax. It is good practice to choose at
first a large value for nmax, though the following argu-
ment, which generalizes that of Ref. [39], allows to stop
the search over the (nx, ny) pairs sooner. Indeed, we
observe that knxny enters Eq. (18) in the combination

λknxnyW (z)+ ~2

2m∗(z)k
2
nxny . This contribution is positive

when knxny satisfies the inequality

knxny > k̄nxny = max
z

(
−λ2m∗(z)W (z)

~2

)
. (20)

Then, provided that knxny > k̄nxny , the lowest eigenvalue
of Eqs. (18) increases as knxny increases. Now, while
one is iterating over the combinations (nx, ny) (which
must have been sorted according to increasing values of
n2
x + n2

y), and separately for λ = +1 and -1, one checks
whether the lowest eigenvalue εnx,ny,0,λ is greater than
the energy of the first A/2 lowest-energy states found so
far. In that case, the cycle can be stopped, since we are
guaranteed by Eq. (20) that the many-nucleon g.s does
not receive contributions from higher n2

x + n2
y.

Once the occupied orbitals and the corresponding s.p.
energies have been found, the total energy and the den-
sities (App. A 3) of the system are computed. The total
energy is evaluated in two ways, i.e. as an integral of the
energy density,

E = L2

∫ L/2

−L/2
dzE(z), (21)

and by means of

E =
1

2

T +
∑
j

εj

+ Erea. (22)

The rearrangement energy Erea and the energy density
E(z) are given in App. A 1. The expressions (21) and (22)
must match when they are evaluated on the g.s. and this
provides a strong check on the correctness of the method
and on its convergence to the exact g.s.

A crucial aspect of DFT is that the potential is itself a
functional of the densities. Therefore, a s.c. solution to
the problem must be looked for [11]. At each iteration
i of the s.c. loop, the densities are determined for the
current values of the fields, as described above. Then
new fields are generated by linearly mixing the old fields
with the ones evaluated on the newly obtained densities
ρ(i) [46], namely

U (i+i) = αU (i) + (1− α)U
[
ρ(i)
]

(23)

and similar relations for W and ~/(2m∗). α is a mixing
parameter; in order to achieve convergence, it is safe to
be rather conservative, e.g. we choose α = 0.8−0.9 at the
beginning and then gradually decrease it as iterations go
by. At the beginning (i = 0), the densities are initialized
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at the uniform matter values ρ(z) = ρ0, τ(z) = 3
5ρ0q

2
F

and J(z) = 0 and the fields are determined accordingly.
The s.c. procedure is stopped if two conditions are

met: the energies between iterations i and i − 1 and, at
the same time, the two formulas (22) and (21) for the
energy at iteration i, agree within a chosen tolerance.
Thresholds of the order of 0.1-1 keV per nucleon can be
obtained usually in few tens of iterations. Combining
linear mixing and two convergence conditions makes our
approach rather robust.

III. THEORY OF THE STATIC RESPONSE

The theory of the response of homogeneous matter to
an external static perturbation is summarized. In-depth
discussions can be found in Refs. [29, 47, 48].

Consider a system with uniform g.s. density ρ0, de-
scribed either by a Hamiltonian Ĥ or an EDF. A static
potential v(x) coupled to the total density is then turned
on. v(x) is periodic so as to respect the PBCs. The den-
sity and energy of the g.s. of the perturbed system are
called ρv(x) and E[v], respectively. If the external po-
tential is weak enough, its effect can be treated pertur-
batively (see e.g. Refs. [43, 47]). The density fluctuation
induced by v(x), in particular, is linear in the external
potential and is written as follows:

δρ(x) = ρv(x)− ρ0 =

∫
dx′χ(x,x′)v(x′). (24)

The static response function χ(x,x′) has been introduced
and we stress that it depends exclusively on the proper-
ties of the unperturbed system. The response of homo-
geneous matter, in particular, is a function only of x−x′,
i.e χ(x,x′) = χ(x− x′).

While a generic periodic function v(x) is a superposi-
tion of plane waves, in the following we consider without
loss of generality a monochromatic potential oscillating
at a given wave number q, namely

v(x) = vqe
iq·x + c.c. = 2vq cos (q · x) . (25)

Thus the density fluctuation induced by the perturbation
(25) is monochromatic too and is given by

δρ(x) = 2ρq cos (q · x) , (26)

where the amplitude ρq is linear in vq, i.e.

ρq = χ(q)vq (27)

and χ(q) is the Fourier transform of χ(x,x′), see Eq.
(B6). The energy of the perturbed system, instead, is
quadratic in the external potential. In App. B, we derive
that the energy per particle is given by [29]

δev = ev − e0 =
χ(q)

ρ0
v2
q . (28)

The formalism we have outlined is valid both in the
TL and in finite systems, and both for DFT and for
Hamiltonian-based methods. The question is now how
to compute the response function in practice. For gener-
alized Skyrme EDFs [23] and Gogny and Nakada EDFs
[24], for example, the response in the TL can be deter-
mined analytically (App. C). An alternative for study-
ing χ(q) is provided by exploiting Eqs. (27) or (28).
The strategy to determine χ(q) for a uniform system at
a given density ρ0, and with a given particle number,
is the following. For a given (quantized) momentum q,
multiple calculations of the g.s. of the perturbed system
are performed for different values of the strength vq of
the external potential (25). Then χ(q) can be extracted
from the amplitude of the density fluctuations [Eq. (27)]
or from the energies [Eq. (28)] as a function of vq, for
sufficiently small vq. This strategy has been applied in
several contexts, e.g. Refs. [26, 29, 49, 50], and pro-
vides a relatively straightforward way to determine the
static response function numerically. We will interpolate
energies using the more general formula [26, 49]

δev = ev − e0 =
χ(q)

ρ0
v2
q + C4v

4
q (29)

which takes into account higher-order contributions.
Second-order perturbation theory, or equivalently the

spectral representation of the dynamical density response
χ(q, ω), can be employed to derive a formula that relates
χ(q) to the excited states of the homogeneous system
[43, 47]. For the case of the spin- and isospin-saturated
A-fermion FG, the response χ0,A at zero temperature is
given by [47, 49]

χ0,A(q) = −4mg

~2Ω

∑
k occ

1

(k + q)
2 − k2

, (30)

where the sum extends over the occupied momentum
states and terms with vanishing denominator are can be
safely neglected. Consistently with the assumptions of
Sec. II, we write k = 2π

L n and take q quantized and

parallel to the z direction, i.e. q = qẑ = 2π
L p ẑ, with p

integer. Then Eq. (30) is expressed as

χ0,A(q) = − mg

Lπ2~2

∑
n occ

1

p2 + 2pnz
. (31)

This formula is straightforward to evaluate: we deter-
mine the occupied states of the A-particle FG g.s. once
and then, for each value of q, we simply perform a
sum over these states. In the TL, nk = θ(qF − k),
1
Ω

∑
k −→

∫
dk

(2π)3 [43] and the static response becomes

the well-known Lindhard function at zero-frequency [51]

χ0(q) = −g mqF
2(~π)2

f

(
q

2qF

)
(32)

f(k) =
1

2

(
1 +

1− k2

2k
log

∣∣∣∣1 + k

1− k

∣∣∣∣) . (33)
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IV. RESULTS

The method described in Sec. II is applied to calculate
the EOS and the static response. The popular SLy4 EDF
[52] is used when not stated otherwise, and examples of
perturbed matter calculations are typically performed at
a reference density of ρ0= 0.16 fm−3. DFT energies are
converged within a tolerance of 1 keV per nucleon. Per-
turbation strengths are measured in units of the Fermi
energy of the corresponding system (vq/EF ). We plot
the static response function in the form −χ(q)/ρ0 (in
MeV−1), which is everywhere positive. Momenta are re-
ported either in units of the Fermi momentum (q/qF ) or
as integer multiples of the minimum allowed momenta
(qmin = 2π/L).

A. EOS

As a first application, the EOS is studied in both SNM
(Fig. 1) and PNM (Fig. 2). The TL EOS is shown as
a solid line, while calculations with A=132, 16676 nucle-
ons and N=66, 8338 neutrons, respectively, are reported
as symbols. Multiples of 33 particles are commonly used
in infinite matter studies, because the kinetic energy per
particle of FG made of 33g particles is rather close to
TL FG energy (see Ref. [26], Fig. 1). As a prototypical
large-A system, we use a number of nucleons equal to
4169 times the spin/isospin degeneracy g, which corre-
sponds to filling up all the momentum shells of the FG
up to n2 = n2

x + n2
y + n2

z = 100. Indeed, the results for
these numbers of nucleons turn out to be practically in-
distinguishable from the TL curve and provide a strong
check on the correctness of numerical calculations. It can
also be appreciated that the N=66 and A=132 EOS give
energies very close to the TL EOS, so that the special
usefulness of these ”magic numbers” is confirmed also
for DFT calculations.

B. Free response

A second study concentrates on the static response of
the FG. The exact formula for χ0,N [Eq. (30)] is applied
in Fig. 3 for different numbers of neutrons and compared
to the TL response (32). FS effects are rather strong at
small or moderate momenta and manifest themselves as a
non-monotonic behaviour of χ0,N(q) at finite N, while the
TL response function is strictly decreasing in magnitude.
For q > 2qF , instead, the oscillations tend to disappear
and the curves match rather well for all particle numbers.
This qualitative change of behaviour is due to geometric
reasons, see e.g. the calculation of χ0(q) in Ref. [43]:
essentially, for q > 2qF any occupied momentum state
can be scattered from the g.s. (the Fermi sphere) to an
empty state and thus shell effects, that strongly affect
the results at small q, are ineffective. The special role of
q = 2qF is also signalled by the fact that the TL Lindhard

function (32) is non-analytical at that point. Moreover,
we note that the convergence to the TL as N is increased
is relatively slow and mild oscillations continue to persist
up to very large N.

Then, the free response is computed numerically and
compared to the analytical results. In particular, the FG
response is determined by solving the Mathieu problem
[26], i.e. the independent-particle problem of fermions
subject to the external potential (8) (with the EDF po-
tential terms turned off), for different momenta q and
for strengths vq/EF between 0.01 and 0.1 (with a step
of 0.01). Then the energy differences δev are interpo-
lated with the quartic formula (29) at each q. In Fig. 4,
a comparison is drawn in the case of PNM with N=66
neutrons between the exact response (filled squares) and
the values obtained through the fitting procedure (empty
diamonds). An almost perfect agreement is obtained,
with a modest discrepancy only at the lowest momen-
tum (q/qF ≈ 0.5). In order to better understand this
deviation, in Fig. 5 we consider the ratio between the
energy variation δev and the square of the perturbation
strength vq as a function of vq/EF . The exact response
is shown as a hollow symbol at vq = 0. If linear re-
sponse theory were exact, at least in a certain range of
small vq, the ratio δev/v

2
q would be constant. This is in-

deed verified for q/qmin > 1 over the whole interval con-
sidered, but at q/qmin = 1 a slight underestimation of
the response is observed at all finite perturbations. This
highlights that modest non-linear (fourth-order) contri-
butions are present in the behaviour of the system. Im-
portantly, though, the ratio correctly converges to the
exact response [ δev/v

2
q −→ χ0,N(q)/ρ0] as vq −→ 0.

C. Perturbed nuclear matter

Perturbed matter is now studied with the SLy4 EDF.
First, a preliminary analysis of the convergence of the cal-
culations with respect to the number of plane waves in-
cluded in the basis is presented. Fig. 6, which reports cal-
culations performed with N=66 neutrons at q/qmin = 1
for a small (vq/EF=0.1) and a moderate (vq/EF=0.25)
perturbation strengths, shows that in this case as few as
8 plane waves are sufficient to find energies converged
within 0.1 keV or less. As a general rule, though, the
number of plane waves required increases as a function
of the momentum q of the perturbation and in practice
we have found that a basis of 40 waves always yields
converged results for 66 or 132 nucleons. When thou-
sands of particles are considered, we raise the cutoff to
60 plane waves. Calculations remain very fast (few sec-
onds) even on a single processor. Then, the densities ρ(z)
as well as their Fourier components are shown in Figs.
7 and 8, respectively, for three perturbations that dif-
fer in strength and periodicity (q/qmin=1 with strengths
vq/EF=0.1, 0.25 and q/qmin=2 with vq/EF=0.1). From
the real space representation, one can appreciate that
densities closely resemble cosine function that oscillate
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Figure 1. SNM EOS computed with the SLy4 EDF
in the TL (line) and with a finite number of particles
(symbols).
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Figure 2. Same as Fig. 1, but for PNM.

Figure 3. Dashed lines: free response function
−χ0,N (q)/ρ0 in PNM at ρ0 =0.16 fm−3 as a function
of q/qF for different numbers of neutrons. Full line: re-
sponse in the TL (Lindhard function).

Figure 4. Static response −χ0,N(q)/ρ0 of the FG as a
function of q/qF in PNM at a density ρ0 = 0.16 fm−3.
The exact response (filled squares) and the response
determined by a fit to the Mathieu energies (empty dia-
monds) are shown for N=66 neutrons. For comparison,
the TL response (Lindhard function) is also plotted.

around the unperturbed density with the same periodic-
ity as that of the external perturbation [see Eq. (26)].
The Fourier analysis confirms that the response is es-
sentially harmonic, as in all cases a single component
at momentum q is clearly dominant with rather modest
contributions beyond the linear regime.

So far, we have always used particle numbers that cor-
respond to a shell closure of the free Fermi gas and im-
plicitly assumed that they are magic numbers for the
perturbed system as well. This hypothesis proves true
in general for weak potentials. Actually, its violation is
a sign that the picture itself of a small perturbation of
the homogeneous system is breaking down. In Fig. 9
the neutron level scheme of N=66 PNM (same case as
Fig. 7) is shown at two different perturbation strengths
(both with momentum q/qmin = 1). We remind that the
λ = ±1 energy eigenvalues are degenerate and we plot
the s.p. energies only for λ = +1. The quantum num-
bers n = (nx, ny, nz) (0 ≤ nx ≤ ny), and the number
of nucleons corresponding to shell closures, are reported
next to each level. Among the latter, magic numbers of
the FG are circled. In the case of the weaker potential,
the effect of the perturbation is to partially lift the de-
generacy of the free gas levels (as well as to lower the s.p.
energies), as can be seen from the triplets or doublets of
neighbouring levels. The overall structure of the homo-
geneous system, though, is preserved and indeed all the
FG magic numbers up to 33 are found in the perturbed

system too. A markedly different picture appears for the
stronger perturbation, where the level ordering of the FG
is severely altered. One consequence is that a shell clo-
sure is found not for 33 nucleons but for 35. We suggest
that the sudden changes in the slope of the energy as
a function of the perturbation mentioned in Ref. [39]
may be a side-effect of such ’shell-opening’ effects. The
key message is that care must be taken when studying
perturbed finite-A matter and not only global properties
(energy, density), but also the shell structure must be
looked at. For example, we warn that, if DFT or Math-
ieu orbitals are used to construct a reference state for
Quantum Monte Carlo [26, 53], it is crucial to check that
it be a closed-shell state, before embarking on expensive
calculations.

Next, the static response function is discussed. The TL
response of nuclear EDFs is known exactly [23] (App. C)
and is now compared to the finite-A calculations in both
SNM (Fig. 10) and PNM (Fig. 11). The numerical re-
sponse functions for the large-A system are in very good
agreement with the analytical predictions. The conver-
gence to the TL is thus verified and we can appreciate by
comparing to Fig. 3 that it is definitely faster (as a func-
tion of the number of nucleons) in the interacting (DFT)
system than for the FG. The small-A response, instead, is
characterized by a non-monotonic behaviour that is rem-
iniscent of that of the free response, with marked fluc-
tuations with respect to the TL function for q < 2qF .
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the square of the perturbation strength vq for the first
four allowed moments (q/qmin between 1 and 4) for
the same system as Fig. 4. Hollow symbols at vq = 0
represent the exact value of -χ0,N(q)/ρ0. Dashed lines
are guide to the eye.

4 6 8 10 12 14 16 18 20 22
N. plane waves

13.0

13.5

14.0

14.5

15.0

15.5

16.0

e 
(M

eV
)

vq/EF=0.10
vq/EF=0.25

Figure 6. Energy per particle of PNM with N=66 at
ρ0 = 0.16 fm−3 obtained with the SLy4 EDF as a func-
tion of the number of plane waves. Results are shown
for the lowest momentum (q = qmin) for two different
strengths of the external potential.
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Figure 7. Densities ρ(z) as a function of z/L in PNM
(N=66 neutrons) at a reference density ρ0 = 0.16 fm−3

(dashed horizontal line). Densities for three perturba-
tions, differing in strength and momentum (see legend),
are shown as symbols.
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Figure 8. Fourier components ρq of the density fluctua-
tions in the same cases as Fig. 7.

Lastly, we would like to understand the impact of the
spin-orbit terms on the static response. Spin-orbit was
neglected in Ref. [39] and its inclusion is one of the nov-
elties of our work. The response computed with the full
SLy4 EDF and for SLy4 with spin-orbit neglected, i.e.
with C∇J set to zero, is reported for SNM (Fig. 12) and
PNM (Fig. 13) both in the TL and for the usual A=132
and N=66 numbers of particles, respectively. One can
appreciate that spin-orbit has the main effect of lowering
the magnitude of χ(q) at all momenta, both in the TL

and in the finite systems and, while in SNM it consti-
tutes a small correction, in PNM it is a significant effect.
While the qualitative picture of Ref. [39] is not altered
in a fundamental way, quantitative results may change
noticeably. In particular, it is important to incorporate
spin-orbit terms if one aims at constraining the EDF pa-
rameters using ab initio information.
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Figure 9. Level structure of N=66 PNM. Two pertur-
bation strengths (at momentum q/qmin = 1) are shown.
The quantum numbers n = (nx, ny, nz) of each level
and the number of particles up to that shell are re-
ported. Momentum-shell magic numbers of the FG are
circled.

V. CONCLUSIONS AND PERSPECTIVES

To sum up, in this work we have studied nuclear matter
under the effect of an external potential within the DFT
framework. Our approach is based on simulating nuclear
matter with a finite number of nucleons enclosed in a
box and subject to PBCs, and the theoretical formalism
and numerical implementation have been presented in
detail for PNM and SNM for Skyrme-like EDFs. We have
discussed carefully how to treat spin-orbit terms and, in
particular, we have shown that, although in the presence
of spin-orbit the DFT orbitals are not eigenstates of the
spin projection operator, single-component equations can
still be derived. Then, the problem of the response of
nuclear matter to static density perturbations has been
analyzed with our technique.

Our method has been validated successfully by com-
paring the numerical results with analytical formulas for
the EDF EOS, the free gas response (both for finite-A
and TL systems) and the TL EDF response. The power
of DFT is demonstrated by the fact that systems of thou-
sands of particles can be computed in an extremely fast
and reliable way, and the convergence to the thermody-
namic limit has been verified numerically. Moreover, the
validity of linear response for weak perturbations, as well
as deviations occurring for stronger external potentials
have been investigated by looking at energies, densities
and level structures. We point out that the momentum
space magic numbers of uniform matter do not necessar-
ily correspond to shell closures of the perturbed system.
Therefore, care must be taken when the finite-A DFT
approach is used in conjunction with ab initio, for ex-
ample when DFT or Mathieu orbitals [26] are used as
a reference state in Quantum Monte Carlo. Moreover,
we have found that spin-orbit contributes significantly to

the PNM response, and to a lesser extent to the SNM
response. In future studies of inhomogeneous matter,
therefore, spin-orbit terms should be incorporated.

This work represents an intermediate step in the pro-
gram of developing ab initio-based EDFs started in Ref.
[40]. Indeed, inhomogeneous systems are to be studied in
order to gain information about the gradient terms of the
EDF. Our efforts are currently devoted to the ab initio
response of both SNM and PNM, aiming at constraining
the nuclear EDF by matching DFT and ab initio results.
In particular, our strategy involves tuning the EDF pa-
rameters on the ab initio energies obtained with the same
number of particles so to keep FS effects under control.
Results will be presented in a forthcoming publication
[54].

Moreover, while here we have focused on PNM and
SNM and presented results for density perturbations
only, the formalism can be easly extended to isospin-
asymmetric matter, as well as (introducing time-odd den-
sities in the theory [11]) to spin-polarized matter and to
spin/isospin perturbations.
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Appendix A: Details on nuclear EDFs

Further details on the EDF and the mean fields are pro-
vided. In this work we focus on PNM and SNM, that can
be treated as two-component (spin up/down) fermionic
systems. We adopt the convention for which Cτ stands
for Cτ0 in SNM and Cτnm = Cτ0 +Cτ1 in PNM, and likewise
for C∆ρ, C∇J and the cγ coefficients.

1. EDFs

The expression of the EDF E under the assumptions
of Sec. II is the following:

E(z) = Ekin(z) + Ebulk(z) + Cτρ(z)τ(z)+ (A1)

C∆ρρ(z)ρ′′(z)− C∇Jρ′(z)Jz(z)

with

Ekin(z) =
~2

2m
τ(z), (A2)

Ebulk(z) =
∑
γ

cγρ
γ+1(z). (A3)
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Figure 10. Static response of SNM at ρ0 = 0.16 fm−3

obtained with the SLy4 EDF. The solid line represents
the TL response, while symbols denote calculations for
a finite number of particles (A=132 and 16676).
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Figure 11. Same as Fig. 10, but for PNM. Calculations
are performed with N=66 and 8338 neutrons (symbols)
and in the TL.
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Figure 12. SNM static response obtained in the TL and
for A=132 nucleons with the full SLy4 EDF and SLy4
with spin-orbit terms neglected (’no spin-orbit’ in the
legend).
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Figure 13. Same as Fig. 12, but for PNM with N=66
neutrons.

The rearrangement term was computed in Ref. [40] and
is given by

Erea = L2

∫
dz
∑
γ

(
1− γ

2

)
cγρ

γ+1(z). (A4)

The expressions for the mean field, effective mass and
spin-orbit potential are also shown:

~2

2m∗(z)
=

~2

2m
+ Cτρ(z), (A5)

U(z) = U bulk(z) + Cττ(z) + 2C∆ρρ′′(z) + C∇JJ ′z(z)
(A6)

with

U bulk =
∑
γ

cγ (γ + 1) ργ(z), (A7)

and lastly

Wz(z) = −C∇Jρ
′
(z). (A8)
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2. Kinetic term

We derive the kinetic term of Eq. (18). First, the
gradient and the Laplacian of ψn,λ [Eq. 15] are reported:

∇ψn,λ(x) = ikxψn,λ(x)x̂ + ikyψn,λ(x)ŷ (A9)

+
1

L
ei(kxx+kyy)χnx,ny,λφ

′
n,λ(z)ẑ,

∇2ψn,λ(x) = −
(
k2
x + k2

y

)
ψn,λ(x) (A10)

+
1

L
ei(kxx+kyy)χnx,ny,λφ

′′
n,λ(z).

Using these expressions, we elaborate on −∇ ·(
~2

2m(z)∇ψn,λ

)
as follows:

−∇ ·
(

~2

2m∗(z)
∇ψn,λ(x)

)
= (A11)

− ~2

2m∗(z)
∇2ψn,λ(x)− d

dz

(
~2

2m∗(z)

)
∂ψn,λ

∂z
=

1

L
ei(kxx+kyy)χnx,ny,λ[
− d

dz

(
~2

2m∗(z)
φ
′

n,λ(z)

)
+

~2

2m∗(z)
k2
nxnyφn,λ(z)

]
.

The constant spinor χ and the exponential appear in all
terms in Eq. (6), thus they can be simplified and drop
out of the the final equations (18).

3. Densities as a function of the orbitals

Number density, kinetic density and spin-orbit density
may be computed from their definitions as functions of
the occupied orbitals [11] applied to the wave functions
(15). Eqs. (A9) and (A10) are also used to find

ρ(z) =
∑
j

|ψj(x)|2 =
1

L2

∑
n,λ

|φn,λ(z)|2 (A12)

τ(z) =
∑
j

|∇ψj(x)|2 (A13)

=
1

L2

∑
n,λ

(∣∣φ′n,λ∣∣2 + k2
nxny |φn,λ|

2
)

Jz(z) =
∑
j

ψ∗j (x) (−i) (∇× σ)3 ψj(x) (A14)

=
∑
n,λ

ψ∗n,λ(x)Kψn,λ(x)

=
1

L2

∑
n,λ

λknxny |φn,λ(z)|2

where only the z component of J does not vanish and Eq.
(16) has been used.

4. Hamiltonian in the plane waves basis

We derive the Hamiltonian matrix in the plane waves

basis
(
h̃n,λ

)
k,k′

(Eq. (19)). We start from the real space

DFT equations (18) and Fourier-expand the orbitals as

φ(z) = 1√
L

∑
k′ ck′e

ik′z. Then, we project on the k plane

wave by multiplying by e−ikz/
√
L and integrating over z

for−L/2 ≤ z ≤ L/2. The multiplicative terms are simple
to treat and one easily finds the Fourier transform

Ũ(k − k′) =
1

L

∫ L/2

−L/2
dz e−i(k−k

′)z (A15)(
U(z) + v(z) + λknxnyW (z) +

~2

2m∗(z)
k2
nxny

)
.

The derivative term is slightly more involved and is dis-
cussed in detail. We simplify the notation by defining

B(z) = ~2

2m∗(z) and dropping the subscripts n, λ and move
on to compute

1√
L

∫ L/2

−L/2
dze−ikz

[
− d

dz

(
B(z)φ′(z)

)]
. (A16)

An integration by parts, followed by inserting φ′(z) =
i√
L

∑
k′ k
′ck′e

ik′z, gives

1√
L

∫
dzB(z)φ′(z)

d

dz
e−ikz = (A17)

− i k√
L

∫
dz B(z)φ′(z)e−ikz =

k
∑
k′

k′ck′
1

L

∫
dzB(z)e−i(k−k

′)z =

k
∑
k′

B̃(k − k′)k′ck′

where

B̃(k − k′) =
1

L

∫ L/2

−L/2
dz e−i(k−k

′)z ~2

2m∗(z)
. (A18)

In case effective mass terms are absent, m∗(z) = m,

B̃(k − k′) is simply equal to ~2

2mδk,k′ and one recovers

in h̃k,k′ the usual kinetic term ~2

2mk
2. Summing the B̃

and Ũ terms, one finds the Hamiltonian matrix

h̃k,k′ = kB̃(k − k′)k′ + Ũ(k − k′). (A19)

Appendix B: Details on the static response theory

Further details on the static response theory are given
in what follows, and in particular the key equation (28) is
derived. The starting point is the formula for the density
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fluctuation (24), using which χ can be expressed as the
functional derivative

χ(x,x′) =
δρv(x)

δv(x′)

∣∣∣∣
v=0

. (B1)

We now want to prove that the dependence of the energy
on the perturbation is instead quadratic. Indeed, this
can be verified by first expanding E[v] (understood as a
functional of v) around the unperturbed system v = 0,
namely [29]

E[v]− E[0] =

∫
dx

δE

δv(x)

∣∣∣∣
v=0

v(x)+ (B2)

1

2

∫
dx

∫
dx′

δ2E

δv(x) δv(x′)

∣∣∣∣
v=0

v(x)v(x′).

Then, we notice that δE
δv(x) = ρv(x) as the external poten-

tial enters E[v] the energy with the term
∫
dxv(x)ρ(x)

and thus δE
δv(x)

∣∣
v=0

= ρ0. Differentiating the energy twice

and inserting Eq. (B1), moreover, we find

δ2E[v]

δv(x) δv(x′)
=
δρv(x)

δv(x′)
= χ(x,x′). (B3)

Therefore, Eq. (B2) can be recast as [29]

E[v]− E[0] =

∫
dxv(x)ρ0+ (B4)

1

2

∫
dx

∫
dx′χ(x,x′)v(x)v(x′),

and we immediately see that the first-order term van-
ishes, v being periodic. (A more general argument is
presented in Ref. [47]). We also remind that the homo-
geneous matter response depends only on x − x′ due to
translational invariance, i.e χ(x,x′) = χ(x− x′).

Then one can transform Eq. (B4) to momentum space
inserting the Fourier expansions

δρ(x) =
∑
k

ρke
ik·x, v(x) =

∑
k

vke
ik·x (B5)

χ(x− x′) =
1

Ω

∑
k

χ(k)eik·(x−x
′). (B6)

Then

E[v]− E[0] =
Ω

2

∑
k

vkχ(k)v−k. (B7)

If the monochromatic potential (25) is considered in place
of a generic perturbation, and if the relations ρ0 = A/Ω
and χ = χ(|q|) that hold for uniform matter are em-
ployed, we find that the energy per particle of the per-
turbed system is given by [29]

δev = ev − e0 =
χ(q)

ρ0
v2
q . (B8)

Appendix C: EDF response in the thermodynamic
limit

The dynamic response of a large class of general-
ized Skyrme EDFs has been determined in the thermo-
dynamic limit analytically in Ref. [23] and references
therein. We summarize the main formulas here for the
case of PNM and SNM. A slightly different notation is
also introduced.

First, for later convenience we define Kbulk as

Kbulk =
∑
γ

cγγ(γ + 1)ργ−1. (C1)

Then, the following W functions are defined as in Ref.
[23], namely

W1(q)/g = Kbulk −
(

2C∆ρ +
Cτ

2

)
q2 (C2)

W2/g = Cτ (C3)

Wso/g = C∇J . (C4)

W2 is a constant proportional to Cτ , while W1 mixes the
Cτ and Cδ coefficients and carries a momentum depen-
dence through q2. Lastly, Wso is a spin-orbit constant.

Now, we introduce adimensional functions X and in-
sert them into χ(q) (eq. (67), Ref. [23]). With k =
q/2qF , we define ρ̃ as ρ in SNM and 2ρ in PNM. With
this trick, the expressions for SNM [55] and PNM [56]
are identical. The X functions are derived from the cor-
responding W functions by means of

X1 =
m∗c2

(~c)2
ρ̃
W1(q)

q2
F

(C5)

X2 =
m∗c2

(~c)2
ρ̃W2 (C6)

Xso =
m∗c2

(~c)2
ρ̃Wso. (C7)

We further elaborate on X1 by splitting it as the sum
or a bulk and a momentum-dependent contributions:

X1(k) = Xbulk +Xsurf (k) (C8)

with

Xbulk = g
m∗c2

(~c)2

ρ̃

q2
F

Kbulk (C9)

Xsurf (k) = −4g

(
2C∆ρ +

Cτ

2

)
m∗c2

(~c)2
ρ̃k2. (C10)

Finally, by using χ(q) = −ρ 2m−1(q)/A, with m−1 be-
ing the inverse energy-weighted sum rule of the strength
function, and collecting some constant factors, one ends
up with following formula for the TL response of a nu-
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clear EDF:

χ(q) = −3
m∗c2

(~c)2

ρ

q2
F

f(k) (C11)[(
1 +

3

8
X2

)2

+
3

4

(
X1(k) +X2(1− k2)

)
f(k)

− 3

64
X2

2

(
2 +

26

3
k2 + (1− k2)f(k)

)
f(k)

− 3

8
k2f(k)X2

so

(
1 + 3(1− k2)f(k)

)]−1

. (C12)

with f(k) defined in Eq. (33).
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