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Abstract 

Colorectal cancer (CRC) is the result of a complex interaction between non-modifiable and 

modifiable risk factors. The modifiable factors include obesity, diet, lifestyle choices, inflammatory 

markers, and vitamin D (vitD) status. Recent literature also suggests an important link between gut 

microbiota and CRC prognosis and progression, however assessing whether the relationship is 

causal is challenging.  We conducted a comprehensive investigation of these factors to provide new 

insights on how their interplay affects CRC. We employed a multi-step approach.  

First, we designed a case-control study of CRC patients and healthy individuals. We found 

that several species, such as Parvimonas micra, Fusobacterium nucleatum and Bacteroides fragilis 

were significantly more abundant in cases. A poor lifestyle and a high-risk diet were significantly 

associated with CRC and mediation analysis suggested that the gut microbiota mediated the effect 

of diet on CRC risk. 

Then, we carried out a systematic review of the literature on human studies, to summarize 

the evidence published so far on the relationship between gut microbiota and vitD. We found that 

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were the most recurrent phyla 

increasing or decreasing following vitD supplementation and at increasing vitD serum levels or 

dietary intake. 

Finally, we designed a phase II randomized trial involving vitD supplementation or placebo 

for 1 year and including CRC survivors. Gut microbiota, circulating markers, diet and lifestyle were 

collected at baseline and at the end of the treatment. We found increased abundances of several 

probiotic taxa following vitD supplementation, including Faecalibacterium prausnitzii and 

Holdemanella biformis. We also found that the microbiota significantly mediated the effect of the 

supplementation on 25(OH)D levels. In the supplemented group, we found differences by 

sex/gender in the pathways involved in the biosynthesis of essential amino-acids. The weight status 

of the participants modulated the effect of the supplementation on both 25(OH)D levels and alpha 

diversity. In the supplemented group, 25(OH)D levels increased less at increasing Body Mass Index 

(BMI), while the change in alpha diversity was significantly and positively correlated with the change 

in 25(OH)D levels only in normal-weight individuals (BMI<25). For a subgroup of patients, we 

collected the gene expression (GE) profile evaluated on tumour tissue of a panel of 395 immuno-

related genes. We identified three clusters of patients based solely on GE. One of the clusters was 

associated with a higher risk of colorectal and clinical events. Alpha diversity at baseline was also 

significantly and inversely associated with the risk of colorectal and clinical events, while vitD 

supplementation and Galactin-9 had a protective effect on both outcomes. 

Overall, our findings provide new insights on the complex interconnection between 

modifiable risk factors of CRC and highlight the importance of personalized strategies. 
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Figura 0.1 Age-standardized incidence and mortality rates for CRC 

1. BACKGROUND ON COLORECTAL CANCER 

1.1 Epidemiology, incidence and mortality 

Colorectal cancer (CRC) is the third most prevalent cancer among men and the second most 

prevalent cancer among women, and is the second leading cause of cancer-related mortality1. It 

accounts for approximately 10% of all cancer diagnoses, with more than 1,900,000 new cases in 

20202. Males have substantially higher incidence and mortality rates than females, with age-

standardized global CRC incidence rates per 100,000 equal to 23.4 for men, and 16.6 for women1 

(Figure 1.1). 

Data from GLOBOCAN 2020 revealed significant geographical disparities in both incidence and 

mortality rates of CRC (Figure 1.1)1. Developed regions like Australia/New Zealand, Europe, and 

North America report the highest incidence, while Africa and South-Central Asia show the lowest. 

Interestingly, some traditionally low-risk areas, such as Spain and certain countries in Eastern Asia 

and Eastern Europe, have seen a sharp increase in incidence rates in the last years3,4. These 

geographical variations are often attributed to differences in diet, environmental factors, 

socioeconomic status, and screening practices5–7. 

 

Figure 1.1. In the first panel, age-standardized incidence rates for CRC by region and sex. In the 
second panel, age-standardized incidence and mortality rates for CRC by region. Data source: 
GLOBOCAN 2020. Graph production: International Agency for Research on Cancer (IARC) 
(https://gco.iarc.fr/today). World Health Organization. Adapted from: 
https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf  
 

Early detection is crucial for effective treatment. Survival rates for CRC are highly dependent on the 

stage at which the disease is diagnosed. Early-stage cases have a 90% five-year survival rate, which 

drops to 13% for late-stage diagnoses. The cumulative risk of dying from CRC between ages 0 and 

74 is 0.65% for men and 0.45% for women8,9. Advances in screening methods, including 

colonoscopies and various fecal tests, have contributed to improved survival rates, despite an 

increase in incidence10,11. 

https://gco.iarc.fr/today
https://gco.iarc.fr/today/data/factsheets/cancers/10_8_9-Colorectum-fact-sheet.pdf
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By 2030, it is projected that the global burden of CRC will surge by 60%, resulting in over 2.2 million 

new cases and 1.1 million deaths10. This increase is not solely due to genetic factors but is also 

strongly influenced by diet, lifestyle choices and environmental factors. It is expected to be the 

result of economic development and the transition of developing countries towards a “western 

lifestyle”, characterized by high consumption of processed foods, red meat, and alcohol, as well as 

sedentary behavior and obesity10. 

Recent research has also highlighted the role of the gut microbiome in the prognosis and 

progression of CRC12,13. A diverse and balanced gut microbiome is essential for maintaining 

intestinal homeostasis, and disruptions in this microbial community, known as dysbiosis, have been 

found to be implicated in the initiation and progression of CRC14. Certain bacterial species, like 

Fusobacterium nucleatum, are found in higher abundances in CRC tumors and are believed to 

promote cancer through various mechanisms, including chronic inflammation, alteration of host 

metabolism, and direct interaction with cancer cells15. Moreover, the gut microbiome and the fecal 

microbiota transplantation (FMT) seem to influence the effectiveness of cancer treatments, 

including chemotherapy and immunotherapy16,17. Therefore, the gut microbiome may not only 

serve as a potential diagnostic and prognostic marker but it could also offer promising opportunities 

for targeted therapeutic interventions to improve CRC outcomes.  

Making a comprehensive understanding of the epidemiological landscape and etiology of CRC is 

therefore essential for the development of effective strategies aimed at the prevention, early 

detection, and treatment of this increasingly prevalent disease. 

1.2 Risk factors 

Several factors contribute to the development of CRC, categorized into non-modifiable and 

modifiable determinants11,18,19. Non-modifiable risk factors, such as genetic predispositions and 

family history, are inherent and cannot be altered, whereas modifiable risk factors are 

predominantly associated with environmental influences and lifestyle behaviors. 

 

1.2.1 Non-Modifiable risk factors 

 Age 

Age is one of the most important risk factor of sporadic CRC, with the risk of CRC significantly 

increasing after the age of 50. It was estimated that individuals over 65 have about three times 

higher risk of CRC than those aged 50-64 years and about 30 times the risk of those aged 25–4920. 

However, data from the United States shows that the incidence of CRC in individuals younger than 

50 has been increasing, and this increase does not appear to be attributable to the enhancement 

of screening programs, as the disease is being diagnosed at later stages21–23. 
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The reasons for this increase, though, are not clear and are probably multifactorial, due to a mix of 

genetic predisposition and changes in environmental and lifestyle factors24.  

 Inflammatory Bowel Disease (IBD) 

Inflammatory bowel disease (IBD) is a group of autoimmune disorders that lead to chronic 

inflammation in the gastrointestinal tract and is associated with a higher risk of CRC25,26. The two 

most common forms of IBD are Crohn's disease (CD) and ulcerative colitis (UC).  

Patients with IBD have a higher risk of CRC compared to the general population26–29, with this risk 

increasing with increasing duration and severity of IBD condition30–32. Although IBD-associated CRCs 

are only 1-2% of total cases of CRC in the general population33, mortality rates are higher34,35 for 

both CD and UC.  

The etiology of IBD is complex, involving a combination of genetic, environmental, and 

microbiological factors that trigger an overactive immune response, leading to persistent 

inflammation36. Several pathways have been proposed to explain the progression from 

inflammation to tumorigenesis in IDB-associated CRCs, which are distinct from those implicated in 

sporadic CRC. These pathways involve genetics and epigenetics alterations, crosstalk between 

immune system cells which leads to cytokine dysregulation and activation of specific signaling 

pathways, such as the nuclear factor kappa B (NF-κB) pathway, and environmental factors such as 

gut microbiota37. Growing evidence, in fact, shows the association between IBD and gut dysbiosis, 

with higher abundances of specific bacterial species observed not only in IBD patients but also in 

patients with CRC38–40. 

 Personal and family history of colorectal cancer or colorectal polyps 

Individuals with a personal history of CRC are more likely to develop it in the future, especially if 

they were first diagnosed at a young age. A history of adenomatous polyps also increases the risk 

of CRC, particularly if the polyps are large (>1 cm) or multiple, or if they show high-grade dysplasia41. 

Family history is another important risk factor for CRC, with nearly one-third of CRC patients having 

a case of CRC in the family. Individuals with a first-degree relative (parent, sibling, or child) 

diagnosed with CRC have a 2 to 4 times higher risk of having the disease compared to the general 

population, and this risk is even higher if the relative was diagnosed before the age of 50 or if 

multiple family members have been affected by the disease42,43. Additionally, a higher risk of CRC 

has been observed also in case of family history in distant relatives or in case of family history of 

adenomas42,44. These clusters of CRC in families have been attributed not only to genetic 

predisposition but also to shared lifestyle factors and to a combination of both. 

 Hereditary syndromes 

While the majority of CRC cases are sporadic, it is estimated that approximately 5-10% are 

hereditary45, meaning they are directly linked to inherited gene mutations.  
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Lynch syndrome (LS) is the most common hereditary CRC syndrome, accounting for about 3% of all 

CRC cases45. It is an autosomal dominant disorder caused by mutations in mismatch repair genes 

like MLH1, MSH2, MSH6, and PMS2. Individuals with LS have an elevated risk of developing CRC, as 

well as other cancers such as endometrial, ovarian, and gastric cancers46. Depending on the affected 

gene, people with LS have a lifetime risk of CRC up to 50%, a predominance of right-sided lesions 

and a younger age of onset, with the average age of first diagnosis being 48 years47,48. Through a 

meta-analysis of published literature, we investigated the relationship between obesity and CRC 

risk in LS patients. We found a sex/gender-specific association between obesity and CRC in patients 

with LS, with obese men having double the odds of developing CRC compared to non-obese men 

(Summary Relative Risk (SRR)=2.09; 95%CI: 1.23–3.55, I2= 33%), while no differences were observed 

between obese and non-obese women. Moreover, patients with LS carrying MLH1 mutation had a 

significant higher risk of CRC at increasing body-mass index (BMI) levels (SRR for an increase in 5 

kg/m2 BMI: 1.49; 95% CI: 1.11–1.99, I2= 0%), while no differences according to BMI were observed 

in those carrying the MSH2 mutation49. 

Familial Adenomatous Polyposis (FAP) is another autosomal dominant syndrome characterized by 

the development of hundreds to thousands of adenomatous polyps in the colon and rectum. FAP 

accounts for approximately 1% of CRC cases45 and is caused by inherited mutations in the 

adenomatous polyposis coli (APC) gene50. Without colectomy, individuals with FAP have a high 

lifetime risk of CRC, with 87% of untreated FAP individuals developing CRC by age 45. Attenuated 

FAP (AFAP) also carries a high risk of CRC, but it is characterized by fewer adenomas and a later age 

of CRC onset than FAP51. 

Unlike FAP and Lynch syndrome, MUTYH-Associated Polyposis (MAP) is an autosomal recessive 

condition. It is caused by mutations in the MUTYH gene and is characterized by a predisposition to 

CRC and multiple adenomatous polyps, although fewer than in FAP (typically fewer than 500 

adenomas)50. 

Other rare hereditary syndromes related to CRC are Peutz-Jeghers syndrome (characterized by 

mutations in the LKB1/STK11 gene), juvenile polyposis syndrome, and serrated polyposis 

syndrome52. 

 

1.2.2 Modifiable risk factors 

 Overweight and obesity 

Obesity is a significant risk factor for several types of cancer, including CRC, with several studies 

highlighting its relationship with both the incidence and mortality of the disease53. This association 

is particularly strong for colon cancer compared to rectal cancer and appears to be gender specific54. 

Generally, an individual is considered obese if his/her Body Mass index (BMI) is greater than 30. 
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Compared with normal weight men, obese men have a significantly higher risk of CRC, with the 

association with colon being stronger than that with rectum. In women, the association between 

obesity and colon cancer is weaker than in men and is not significant with rectal cancer54. 

Moreover, obesity is associated with later-stage CRC and with lymph nodal metastases55, while 

obesity before diagnosis is associated with a 22% higher risk of CRC-specific mortality and a 25% 

higher risk of all-causes mortality compared to non-obese56. 

Being overweight (BMI>25), not just obese, also contributes to CRC risk, even among those who are 

physically active57,58. Abdominal fat, as measured by waist circumference or waist-to-hip ratio, is 

strongly correlated with CRC risk, independent of overall body weight59–61. Timing of weight gain 

also matters; excess weight during adolescence and young adulthood appears to be an important 

risk factor for CRC in women, while for men, the risk increases later in life62,63.  

The biological mechanisms leading from obesity to carcinogenesis are very complex and not yet 

fully understood. One hypothesis is that the aberrant secretion of adipokines by adipose tissue may 

foster a pro-inflammatory environment64. Two such adipokines, leptin and adiponectin, have been 

the focus of several studies due to their contrasting roles in metabolic regulation and their potential 

impact on cancer development and progression. 

Adiponectin is recognized for its anti-inflammatory and antiproliferative properties, playing a 

crucial role in glucose regulation and fatty acid breakdown65. Conversely, leptin acts as a pro-

inflammatory, proliferative, and anti-apoptotic agent62,66. In the context of obesity, it is usually 

observed an increase in leptin levels coupled with a decrease in adiponectin levels67,68. The 

dysregulated secretion of these adipokines contributes to a pro-inflammatory environment, with 

overweight individuals characterized by elevated levels of inflammatory markers such as IL-6, TNFα, 

and C-reactive protein69. This state is associated with a higher prevalence of chronic inflammatory 

diseases, which could lead to DNA damage and, consequently, to carcinogenesis. 

Obesity is also associated to metabolic syndrome, characterized by insulin resistance, elevated 

glucose and lipid levels, and hypertension. Both adiponectin and leptin have roles in these 

metabolic processes, as adiponectin improves insulin sensitivity, while leptin, in excess, can 

exacerbate insulin resistance70.  

 

 Not being physically active 

Several studies have shown that physical activity is inversely associated with CRC risk71–76 and with 

overall and CRC-specific mortality77. Specifically, the most physically active individuals have a 27% 

reduced risk of proximal CRC and a 26% reduced risk of distal CRC compared to the least active 

ones75. However, even transitioning from a sedentary life to an active one later in life showed a 

reduction in CRC risk78. 
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 Diet 

The role of diet on CRC risk has been widely investigated in the literature, with evidence suggesting 

a key role of dietary habits on the development of CRC79–81.  This relationship could be indirect, 

through high calorie intakes leading to obesity and inflammation, or direct, through the effect of 

specific dietary components. Recent research suggests that the relationship between diet and CRC 

may also be mediated by the modulation of gut microbiota, which is significantly affected by dietary 

patterns and was found to be associated with both CRC prognosis and progression82,83.  

Diets rich in consumption of red meats, refined carbohydrates and processed sugar are correlated 

with inflammation and appears to be associated with increased risk of CRC, whereas diets rich in 

vegetables and fruits intake seem to have a protective effect84. However, studying the actual direct 

effect of diet and specific food components on the onset of CRC is very challenging. 

 High red and processed meat consumption 

In 2015, the International Agency for Research on Cancer (IARC) classified processed meat as 

"carcinogenic to humans" and red meat as "probably carcinogenic for humans", primarily based on 

evidence related to CRC risk85. Similarly, in 2018 the World Cancer Research Fund/American 

Institute for Cancer Research (WCRF/AICR) concluded that the evidence on consumption of 

processed meat was convincing, whereas the evidence for consumption of unprocessed red meat 

was classified as probable. They estimated an 18% increase in CRC risk for every 50 gr/day of 

processed meat and a 12% increase for every 100 grams/day of red meat. The risk is notably higher 

for colon cancer compared to rectal cancer and is more pronounced for processed meat than for 

red meat86. 

Various mechanisms have been proposed to explain this association, including an effect of specific 

constituents of meat and/or the formation of carcinogens during high-temperature87. 

Although this evidence is not entirely consistent across all studies and is based on observational 

studies, the prevailing scientific consensus supports limiting the consumption of red and processed 

meats as a preventive measure against CRC.  

 Low fruit and vegetables consumption 

The relationship between the consumption of fruits and vegetables and the risk of CRC has been a 

topic of extensive research, but the findings have been somewhat inconsistent. While many 

epidemiological studies have indicated a protective effect of a diet rich in fruits and vegetables 

against CRC79–81, others have challenged this association. 

A large prospective cohort study found no significant association between fruit and vegetable 

consumption and the incidence of either colon or rectal cancer88. However, a pooled analysis of 14 

cohort studies found that consuming more than 800 gr of fruits and vegetables daily decreases the 

risk of distal colon cancer, although it had no effect on proximal colon cancer89. Another meta-
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analysis of 19 cohort studies supported this, revealing a modest protective effect, particularly for 

distal colon cancers, when consumption exceeded 100 grams per day90.  

A vegetarian diet was also found associated with a reduced CRC risk compared to non-

vegetarians91,92. However, two meta-analyses found no significant relationship for fruit 

consumption and a weak association for vegetable consumption when comparing the highest and 

lowest levels of intake86,93. 

 Low whole grains/fiber consumption 

Dietary fiber is believed to reduce CRC risk due to factors like increased stool volume and faster 

transit time, which reduce exposure to carcinogens. This relationship appears to be stronger with 

whole grains94, with two meta-analyses showing a reduction of 5% CRC risk for every 30 gr/day of 

whole-grain intake86,93. Additionally, a case-control nested within the European Prospective 

Investigation into Cancer and nutrition (EPIC) study showed an association between high 

consumption of whole grain and reduced rate of distal colon cancer, although no association with 

overall CRC risk95.  

Other studies found a protective effect of fiber intake on colonic adenomas96–100, while others found 

none101–105. This inconsistency in results is most likely dependent on the type of fiber106,107 and on 

the processed form103 investigated in each study. 

Another research suggested an interaction between the gut microbiota and fiber consumption, 

with a fiber-rich diet possibly mediating the effect of Fusobacterium nucleatum – a species known 

to promote tumorigenesis – on the risk of CRC. 

 Vitamin D 

Vitamin D (vitD) is a fat-soluble nutrient that plays a pivotal role in multiple physiological functions, 

including the regulation of calcium and phosphate, bone health, and immune system support.  

It exists in two primary forms: vitamin D2 (ergocalciferol), which is derived from plant-based 

sources, and vitamin D3 (cholecalciferol), usually derived from animal sources. 

Although vitD is primarily synthesized by exposing the skin to ultraviolet B rays from the sun, both 

forms can also be acquired through dietary sources that include fatty fish such as salmon, mackerel, 

and sardines, as well as cod liver oil, fortified foods like milk and cereals, beef liver, and egg yolks. 

Upon ingestion or synthesis, vitD is metabolized in the liver to 25-hydroxyvitamin D (25(OH)D), 

which is the primary circulating form of vitD and the best indicator of vitD status108. 

The role of vitD in cancer prevention and treatment has been a subject of increasing scientific 

interest. VitD regulates cell growth and differentiation, inhibits the uncontrolled proliferation of 

cancer cells, and promotes apoptosis, a form of programmed cell death that is often disrupted in 

cancer cells109. It also has anti-inflammatory properties, which are significant since chronic 

inflammation is a known risk factor for several types of cancer110. Moreover, vitD modulates the 
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immune system, enhancing the effects of monocytes and macrophages that fight pathogens and 

reducing the proliferation of pro-inflammatory cytokines111. 

According to the World Health Organization, CRC is the type of cancer with the greatest risk 

associated with poor vitD status112. Numerous studies have suggested an inverse relationship 

between vitD levels and CRC outcomes, although the evidence establishing causality remains 

inconclusive. 

Several epidemiological studies and meta-analysis of prospective cohort studies, which are less 

prone to reverse causation bias, showed that low serum concentrations of 25(OH)D were 

associated with increased total cancer mortality113–116. Moreover, a meta-analysis of observational 

studies showed a significant inverse relationship between CRC risk and serum 25(OH)D117, whereas 

meta-analyses of randomized trials have shown that vitD supplementation reduces overall 

mortality118 and total cancer mortality119–122.  

A recent study including data from the UK Biobank cohort, involving 411,436 participants aged 40–

69, revealed that during a median follow-up of 12.7 years, individuals with vitD deficiency (25(OH)D 

<30 nmol/L) had significantly higher overall and CRC-specific mortality compared to those with 

sufficient levels (25(OH)D ≥50 nmol/L). VitD insufficiency (30-50 nmol/L) was also associated with a 

14% increase in CRC mortality, whereas vitD supplementation was associated with a 15% reduction 

in overall cancer mortality123. 

However, randomized clinical trials (RCTs) examining vitD supplementation for CRC prevention have 

yielded inconsistent results124–126, likely due to methodological limitations such as sample size, 

dosing regimens, and follow-up duration.  

Most of these studies, though, primarily focused on older populations, despite a concerning rise in 

CRC incidence among individuals under 50127 - an age group also recently displaying higher rates of 

vitD deficiency (<20 ng/mL) compared to older individuals128. This evidence highlighted the 

necessity of exploring the role of vitD in early-onset CRC, particularly in the context of vitD 

deficiency status. 

The prospective Nurses’ Health Study II found that in young women vitD intake was associated with 

a lower incidence of early-onset CRC in a 24 years follow-up. This inverse relationship was significant 

for both dietary and supplemental sources of vitD and extended to the onset of adenomas and 

serrated polyps129.  

Another prospective study involving a Korean adult cohort found an inverse dose-response 

relationship between serum 25(OH)D levels and CRC risk in individuals younger than 50. In contrast, 

this association was less pronounced and occasionally non-significant in older individuals, 

suggesting that vitD deficiency may be a stronger risk factor for early-onset CRC130. 

The Vitamin D and Omega-3 Trial (VITAL), enrolling more than 25,000 participants, found no 

significant effect of vitD3 supplementation on CRC incidence. However, the majority of participants 

were not deficient in vitD at the study baseline.   
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Interestingly, they identified an interaction effect between vitD supplementation and body weight 

on both 25(OH)D levels and CRC outcomes131. At baseline, levels of 25(OH)D were inversely 

correlated with BMI. Furthermore, in the supplemented group, increases in 25(OH)D were lower at 

higher BMI. In the trial they also observed that supplementation was associated with a significant 

24% lower incidence of cancer132 and 42% lower mortality from cancer133 among participants with 

normal body weight, but no reductions in overweight or obese individuals.  

These findings suggest that the efficacy of vitD supplementation may vary based on individual 

characteristics, such as adiposity, and highlight the need of further investigation into personalized 

supplementation strategies for those at risk. 

 Smoking 

In 2009, the IARC stated that there is sufficient evidence to conclude that tobacco smoking is a 

causative factor for CRC134. A large number of studies have shown that cigarette smokers have a 

significantly higher risk of developing CRC135, as well as all types of colonic polyps, particularly more 

advanced adenomas136, but also hyperplastic polyps and those with dysplasia137,138. 

Moreover, smoking is significantly associated with a lower CRC-specific survival, particularly among 

current smokers139,140. We carried out a systematic review of the literature141 which showed that 

quitting smoking at or around the time of diagnosis has a beneficial effect on the disease-specific 

survival of patients with gastrointestinal cancers, including CRC, compared to those who continue 

to smoke. 

 Alcohol 

Alcohol consumption has been identified as a significant risk factor for the development of many 

diseases, including CRC. Several studies and meta-analyses have consistently shown that moderate 

to heavy drinking significantly increases the risk of CRC142–144. Specifically, individuals who consume 

two to three drinks per day face a 21% higher risk, while those consuming four or more drinks daily 

see their risk escalate by 52%, compared to non-drinkers. However, light drinkers (up to one drink 

per day) did not show a significant increase in risk.   

 

 Gut microbiota  

The gut microbiota is a complex community of microorganisms, including bacteria, viruses, fungi, 

and other microbes, that inhabit the gastrointestinal tract. These microorganisms play a crucial role 

in various physiological processes such as digestion, nutrient absorption, vitamin synthesis, and 

immune system modulation. The gut microbiota of an individual is a dynamic entity that can be 

influenced by various factors like diet, lifestyle, and medication, and it plays a significant role in 

maintaining homeostasis in the body.  
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Conversely, the term "microbiome" denotes the aggregate genetic content of all microorganisms 

in a specific habitat, including the gut. This term extends beyond the microbiota to encompass their 

genetic material, genomes, and interactions with the environment, offering a holistic perspective 

on the functional potential of the microbial community. 

The disruption of gut microbiota, known as dysbiosis, is associated with a number of diseases, 

including CRC145. Despite inter-individual variations in gut microbiota composition, two meta-

analyses including case-control studies identified reproducible microbiome signatures in CRC, 

setting the basis for future diagnostic applications146,147. Among these, Fusobacterium nucleatum is 

known to be significantly enriched in patients with CRC. It also appears to contribute not only to 

CRC pathogenesis but also on the modulation of responses to therapeutic interventions like 

chemotherapy and immune checkpoint inhibitors148. Furthermore, intratumoral colonization by 

specific bacteria, predominantly of the Fusobacterium genus, were found to be associates with CRC 

progression and metastasis149–152. 

On the other hand, certain beneficial bacteria, acting as probiotics, are often depleted in CRC, 

suggesting an imbalance between pro-tumorigenic and anti-tumorigenic species148.  

Emerging evidence suggests a causal relationship between gut dysbiosis and CRC. Experimental 

models have shown that fecal microbiota from CRC patients can accelerate tumorigenesis in germ-

free mice153,154. Moreover, specific bacterial strains have demonstrated tumorigenic potential in 

mono-colonization studies. The gut microbiota also interacts with environmental factors like diet 

and smoking to influence CRC risk. Various molecular mechanisms, including genotoxicity and 

inflammation, are implicated in this process. 

Inflammation is a recognized risk factor for CRC, and gut dysbiosis plays a critical role in mediating 

inflammation in the gastrointestinal tract. Specific pathobionts, such as F. nucleatum and 

Bacteroides fragilis, are associated with colonic inflammation and CRC development. 

Mechanistically, these pathobionts activate inflammatory pathways like IL-17 and NF-κB, 

contributing to both CRC initiation and progression148,155. 

Metabolites produced by the gut microbiota, such as secondary bile acids and hydrogen sulfide, are 

also implicated in CRC risk. Elevated levels of these metabolites, often influenced by high-fat diets, 

promote tumorigenesis through mechanisms like oxidative DNA damage and NF-κB activation156,157. 

Integrated omics analyses have identified correlations between the gut microbiome and 

metabolome, offering further insights into CRC pathogenesis158–161. 

The current research frontier focuses on the precise and personalized modulation of the gut 

microbiota for clinical applications. The aim is to transition from broad-spectrum interventions like 

fecal microbiota transplantation to more targeted approaches, to leverage the gut microbiota for 

CRC prevention, treatment optimization, and early diagnosis. 
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1.3 Scope of the research 

In this thesis project, we conducted a comprehensive investigation of the interplay between 

modifiable risk factors of CRC – specifically, vitD status/levels, circulating biomarkers of 

inflammation, obesity, and diet – and the gut microbiome. This multifaceted approach aimed to 

provide a comprehensive understanding of how the interrelationships between these factors can 

affect the prognosis and progression of CRC, accounting for possible sources of bias and 

confounding.  

To accomplish this, we employed a multi-step approach.  

First, we designed a case-control study comparing patients with CRC to healthy controls. In this 

study, we collected data on gut microbiome, a range of circulating biomarkers related to 

inflammation, adipocytes, and vitD, as well as information on diet and lifestyle.  

Second, we conducted a systematic review of the literature on the relationship between vitD and 

microbiota both in humans, including both studies on healthy individuals and on individuals with 

dysbiosis conditions.  

Lastly, we designed a RCT study involving survivors of CRC, who were randomly assigned to either 

placebo or daily vitD3 supplementation for one year. For these patients, we collected data on gut 

microbiome, circulating and vitD-related biomarkers, diet, and lifestyle at baseline and at the end 

of the treatment. Additionally, for a subgroup of these patients, we had gene expression profiles 

from tumor tissues for a set of immune-related genes from the Oncomine Immune Response 

Research Assay (OIRRA).  

The statistical methodology employed for the analysis and integration of these diverse data sets 

was another major focus of this thesis project. Particularly, the microbiota data posed unique 

methodological challenges, as its high dimensionality, sparseness, and compositional nature 

precluded the use of conventional statistical methods. In light of these complexities, we employed 

advanced statistical techniques to ensure a more robust and insightful interpretation of the 

interrelationships among the variables under investigation. 
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Following is a more detailed summary of the research outline: 

1. Study Design: Case-Control 

o Primary Objective: To identify the risk factors for CRC, including gut microbiome, 

diet, lifestyle, circulating biomarkers. 

o Secondary Objectives: 

 To investigate the relationship between diet/lifestyle and gut microbiome. 

 To assess the effect of high-risk diets and lifestyle on CRC. 

 To investigate the role of microbiome as a mediator of the effect of a high-

risk diet on CRC risk. 

 To integrate the different risk factors to identify patterns in CRC patients. 

 To investigate the role of microbiome on CRC prognosis and progression. 

2. Study Design: Systematic Review on Human Studies 

o Primary Objective: To synthesize existing literature on the relationship between 

the microbiota and vitD, focusing on both healthy subjects and those with dysbiosis 

conditions. 

3. Study Design: Randomized Controlled Trial (RCT) 

o Primary Objective: To assess the impact of vitD supplementation on microbiome 

composition in CRC survivors. 

o Secondary Objectives: 

 To explore the role of gut microbiome as a mediator of vitD 

supplementation on 25(OH)D levels. 

 To investigate the role of circulating biomarkers, diet, obesity, and 

sex/gender and their interplay on the outcomes of vitD supplementation. 

 To estimate the associations between the immune-related transcriptomic 

profile and the investigated risk factors on the incidence of relapse and 

adenoma under vitD supplementation. 

Methodological Challenges: 

o To address the challenges related to the high dimensionality, sparseness, and 

compositional nature of omics data. 

o To formulate effective strategies for the integration of multiomics data to obtain 

meaningful insights. 

o To develop robust methodologies to estimate (causal) associations in the omics 

framework. 
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2. CASE-CONTROL STUDY: CRC PATIENTS AND HEALTHY CONTROLS 

2.1 Rationale of the study 

As we described, CRC arises from a multifaceted interaction of both non-modifiable and modifiable 

risk factors. These include obesity, dietary habits, lifestyle choices, inflammatory markers, and vitD 

levels. The gut microbiome has also emerged as a significant player in CRC, though determining if 

this relationship is causal remains intricate. These risk factors are intricately interconnected, each 

influencing and being influenced by the others. 

Inflammation markers, which are associated with tumor initiation and progression162–164, are 

modulated by adipose tissue through the release of adipokines, such as adiponectin. Adiponectin 

levels are usually reduced in obese individuals165, with obesity being another important risk factor 

for CRC. Obesity usually leads to vitD deficiency166, a condition linked to various chronic diseases, 

including cancer. Numerous meta-analyses of RCTs have shown that vitD supplementation is 

associated with decreased total and cancer mortality118,167,168. Additionally, some evidence suggests 

that vitD may modulate the gut microbiome169–171, fostering an anti-inflammatory environment. 

The gut microbiome has been extensively studied in the context of CRC, leading to the identification 

of several predictive biomarkers for the disease146,147. The microbiome is also influenced by dietary 

habits, with diets high in red meat and low in fruits and vegetables being associated with a higher 

risk of CRC. 

Despite the substantial body of evidence, the concurrent interplay among these risk factors and 

CRC are not yet fully understood. For this reason, the first step in our research was to design a case-

control study, including both CRC patients and healthy controls, to delve deeper into the intricate 

network of risk factors involved in CRC etiology172 (Figure 2.1).  
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  Figure 2.1. Graphical representation of the selected population for the case-control study. The 

diagram illustrates the division between cases (CRC patients) and controls (healthy individuals), as 

well as the primary and secondary objectives of the study. 

 

2.2 Study design and participants 

A total of 66 participants, including 34 CRC cases and 32 controls, were recruited and screened at 

the European Institute of Oncology (Milan, Italy). Cases with recent CRC diagnosis and aged 

between 35 and 70 years were enrolled before surgery or neoadjuvant treatment for resectable 

CRC.  

Exclusion criteria for cases were: 

- previous history of any cancer (5 years, other than cervical intraepithelial neoplasia or non-

melanoma skin cancer);  

- presence of mutations known to be associated to familial CRC (FAP, Lynch syndrome);  

- current daily supplementation of vitD or calcitriol or high dose of calcium; 

- history of malabsorption syndrome or any chronic IBD;  

- use of antibiotics in the last 6 weeks, chronic alcoholism, and any medical condition that in 

the physician’s opinion could potentially interfere with vitD metabolism.  

Controls were subjects with a recent negative colonoscopy and no other relevant gastrointestinal 

disorder. Cases and controls were matched for age (±5 years) and season at blood collection (±2 

months). However, 2 patients were lost after enrollment.  

The study (IEO #118) was approved by the Institutional Review Board (European Institute of 

Oncology Ethical Committee), and all subjects gave their written informed consent according to 

ICH-Good Clinical Practice. 

Figure 2.1 Graphical summary case-control sudy 
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2.3 Materials and methods 

2.3.1 Circulating Biomarkers 

Morning fasting blood samples were collected at baseline. Serum was separated by 10 min of 

centrifugation at 1350× g and stored at −80 °C for subsequent biomarker quantification. Serum 

concentrations of 25(OH)D were measured by a chemiluminescence microparticle immunoassay 

(CMIA) designed for the automated instrument Architect (Abbott Diagnostics, Lake Forest, IL, USA). 

Due to high seasonal variability, different cut-off points were considered to define 25(OH)D 

deficiency in different seasons (<20 ng/mL in summer/autumn and <10 ng/mL in winter/spring). For 

the high-sensitivity C-reactive protein (hs-CRP) analysis, we employed a latex immunoturbidimetric 

high-sensitivity method on the same instrument. IGF-II was measured by sandwich ELISA from 

Mediagnost (Bensheim, Germany). IGFBP-3, IL-6, vitamin D binding protein (VDBP), leptin, and 

adiponectin were determined by ELISA (R&D Systems). Serum zonulin was determined using an 

ELISA kit from Elabscience (Wuhan, China). Subjects with non-detectable IL-6 levels were imputed 

with the lowest detectable value (3.13 pg/mL). 

 

2.3.2 Single Nucleotide Polymorphism (SNPs) Analysis 

Genomic DNA was extracted from whole blood specimens using a QIAamp DNA blood kit (Qiagen, 

Valencia, CA, USA), according to the manufacturer’s instructions on the automated platform 

“QIAcube” (Qiagen, Valencia, CA, USA), and quantified using NanoDrop spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA). DNA samples were genotyped for a comprehensive set 

of single nucleotide polymorphisms (SNPs). We analyzed Bsm1 (rs1544410), Taq1 (rs731236), Fok1 

(rs228570), and Apa1 (rs7975232) in the VDR gene; 3 SNPs involved in vitD metabolism (CYP24A1-

rs6013897, CYP27B1-rs10877012, CYP2R1-rs10741657); and rs2282679, rs7041, and rs4588 in the 

GC gene coding for the main transporter of vitD in the circulation. SNPs genotyping was performed 

by the TaqMan SNP Genotyping Assays using an ABI PRISM 7500 FAST Real-Time polymerase chain 

reaction (PCR) System (Thermo Fisher Scientific). Briefly, nearly 10 ng of DNA in 2 μL was added to 

a 10-μL reaction well together with 8 μL of reaction mix containing forward and reverse primers 

and 2 allele-specific fluorescent labelled probes (1 wild-type and 1 variant allele-specific). Control 

samples, representing a complete set of genotypes for all SNPs, were processed in each run. Hardy–

Weinberg equilibrium (HW) for genotype frequencies was tested using a chi-squared test in 

controls. 

 

2.3.3 Microbiota Analysis 

Freshly voided stool samples were collected from controls and cases (before surgery, or any other 

treatment), and transported refrigerated to the laboratory within 6 hours from collection and 

immediately frozen at −80 ° C. 
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For metagenomic analysis, genomic bacterial DNA was isolated from feces of CRC patients and 

healthy controls with the G’NOME isolation kit (MP Biomedicals) following a published protocol173. 

The V5-V6 hypervariable regions of 16S rRNA gene were amplified and sequenced using the Illumina 

MiSeq platform, following library preparation and sequencing procedures previously described174.  

No evidence of batch effect related to the 2 sequencing runs was observed (intraclass correlation 

coefficient at phylum level: 0.98; 95% CI: 0.95–0.99).  

Whole metagenome shotgun sequencing175 was also applied on the same DNA samples. 

Metagenomic libraries were generated with a Nextera XT DNA Sample Prep Kit (Illumina, San Diego, 

CA, USA) and sequencing was carried out on the HiSeq2500 platform (Illumina) at a targeted depth 

of 5.0 Gb (100-bp paired end reads). Shotgun metagenomics sequencing samples were pre-

processed as previously described146. 

 

2.3.4 Dietary Assessment 

The dietary habits of participants at the time of enrollment were collected using a short 

questionnaire (Supplementary Table S1).  Our questionnaire assessed the consumption of groups 

of food usually included in the Italian diet and that allowed to measure adherence to a 

Mediterranean diet. Participants were prompted to indicate their typical weekly intake for each 

food group by selecting an option from a five-tier scale, which ranged from 'never or seldom' to 

'highly frequent.' To aid in precise reporting, a reference portion size was provided for each food 

category. The questionnaire was also adapted to estimate the dietary consumption of vitD, 

distinguishing between the consumption of fatty fish (rich in vitD) and the consumption of other 

fish.  

To avoid the problem of sparse data, we created categories of similar food types by grouping the 

answers on the intake of the single types of foods belonging to the same category (such as sweets, 

any meat, diary products etc.). We then identified high-risk consumptions for each category 

following the WCRF recommendations for cancer prevention176,177. 

 

2.4 Statistical methods 

2.4.1 Bioinformatic analysis for microbiome data (16S and shotgun)  

The taxonomic annotation of raw Illumina MiSeq reads was performed using the pipeline BioMaS178 

. In particular: (i) the overlapping Paired End (PE) reads were merged into consensus sequences 

using pair-end read merger (PEAR)179 and sequences shorter than 50nt were removed. Non-

overlapping PE reads were further denoised by removing low-quality regions (quality-score 

threshold equal to 25) and discarding PE reads containing sequences shorter than 50nt by using 

Trim-Galore; (ii) both consensus and unmerged PE reads were mapped on the 11.5 release of the 
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RDP II database180,181 using Bowtie2182; (iii) to obtain the taxonomic classification, mapping data 

were filtered according to two parameters: identity percentage (≥90%) and query coverage (≥ 70%). 

In particular, sequences matching on RDP II with an identity percentage of at least 97% were 

directed to species classification183, while the others were classified at higher taxonomic levels. The 

NCBI taxonomy was used as reference taxonomy. Raw Illumina sequences in Operational 

Taxonomic Units (OTUs) were filtered by applying QIIME. In particular: (i) adaptor trimming: 

Illumina Nextera adaptor was removed by applying trim galore; (ii) PE reads were merged by 

applying PEAR; (iii) OTU definition was achieved by applying the QIIME open-picking procedure 

(reference database and taxonomy: greengenes 13.8); (iv) chimeric sequences were removed using 

Chimera-Slayer. The OTU table was re-generated by excluding chimeric OTUs and normalized by 

rarefaction. 12.5 million PE reads were produced in the 16S rRNA analysis. The mean number of PE 

reads per sample was about 187,000. About 97.5% of the sequences were taxonomically annotated 

using BioMaS. In particular, 89.5% and 68.2% of the sequences were taxonomically annotated at 

genus and species rank, respectively. In total, 744 operational taxonomic units (OTUs) were 

detected using 97% similarity threshold. The total number of sequences represents ranges from 

115,437 to 204,779 sequences (Median 169,084, Average 168,265). Taxonomic data were 

summarized at phylum, class, order, family, genus and species level, normalized by applying 

DESeq2184. To better understand microbiota composition and its role in the CRC carcinogenesis, we 

also analyzed microbiota species and pathways from shotgun metagenomics. Shotgun data were 

missing for 2 CRC patients and 5 controls. Quantitative taxonomic profiling was performed using 

MetaPhlAn2185, whereas HUMANn2186 was used to profile pathway and gene family abundances. 

The generated profiles are available through the curated MetagenomicData R package.  

 

2.4.2 Statistical analysis to investigate independent role of microbiome and interactive 

factors  

Baseline demographic and epidemiological characteristics of cases and controls were summarized 

in terms of median and interquartile range for numerical variables and absolute frequency and 

percentages for categorical variables. Differences between groups were tested with Wilcoxon rank-

sum test for numerical variables and with Chi-square test (Fisher exact test for sparse data) for 

categorical variables.  

Circulating biomarkers were investigated as continuous variables and categorical variables. Because 

25(OH)D levels significantly vary according to the season187,188,188, we compared levels of 25(OH)D 

by using different cut-offs point for vitD deficiency depending on the season of blood collection: 

values below 10 ng/ml in winter, spring and initial summer (from November to June) and below 20 

ng/ml in late summer and autumn189. The cut-off point for hs-CRP was chosen based on the median 

value of controls, the cut-off point for adiponectin was chosen based on first quartile among 

controls. The cut-off point chosen for IL-6 was based on the literature190.  
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The WCRF score was built based on the cancer prevention lifestyle guidelines set by the 

WCRF/AICR176,177. Participants were deemed to adhere to the recommendations if their BMI was 

lower than 25, they reported engaging in regular physical activity, and they had a healthy diet, 

which was defined as a diet high in fruit and vegetable consumption or low in meat desserts, cakes, 

and pastries consumption. We also build two risk dietary scores: one was a categorical variable and 

the other was a continuous variable obtained as a linear combination of the food groups found to 

be significantly associated to CRC in the multivariable logistic model.  

The first step in the investigation was to identify the taxa whose normalized abundances were 

significantly different between cases and controls. We did this by using Linear Discriminant Analysis 

(LDA) effect size (LEfSe)191, which allows to identify the taxa statistically different among groups and 

to estimate their effect size. All p-values were set at 0.05, two-sided, adjusting for False Discovery 

Rate (FDR) using the Benjamini–Hochberg correction. Differences by cases and controls were also 

assessed using multivariable logistic regression models, which included CRC status as independent 

variable, the normalized abundance of each taxa as a covariate and that were adjusted for 

confounding factors.   

After identifying the taxa significantly different between cases and controls, we employed different 

statistical methodologies – both supervised and unsupervised – to integrate the microbiota data 

with the other sources of data at our disposal. 

We employed network analysis to visualize the interrelationships among the circulating biomarkers, 

the CRC-associated taxa, BMI and the continuous diet score obtained from multivariable logistic 

model. The network was based on the Spearman's rank-order correlation matrix, with the 

correlations computed on pairwise complete observations. The network visualization was 

generated using a force-directed ("spring") layout, which positions nodes based on their 

relationships, treating nodes as repelling objects and edges as connecting springs. To ensure the 

reliability of our network, we applied the BH procedure to control the FDR during multiple 

hypothesis testing. This ensured that only statistically significant relationships were retained in the 

final network visualization. The networks were generated using the “qgraph” package in R. 

We further explored the potential relationship(s) between circulating biomarkers and gut 

microbiota by performing Canonical Correspondence Analysis (CCA)192. CCA is an unsupervised 

multivariate method usually employed in ecological studies to investigate the relationships 

between species abundances and sets of environmental variables (in our case, the circulating 

biomarkers). CCA, unlike ordinary correspondence analysis (CA), constrains the ordination of the 

biological variables (in our case, the species abundances) by the set of environmental variables so 

that the variation in species composition is explained in terms of environmental gradients. The 

method is useful to visualize the complex relationships in a reduced-dimensional space, where both 

the species and environmental variables are plotted. In our study, we used a triplot to display the 
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first two CCA components, incorporating both the taxa and circulating biomarkers for the case and 

control groups.  

We integrated the microbiota data with the biomarkers, BMI and the diet score using the Data 

Integration Analysis for Biomarker Discovery (DIABLO)193. DIABLO is a framework of the mixOmics 

R package designed for supervised analysis of multiple datasets194 [25]. We implemented a block 

sparse Partial Least Squares Discriminant Analysis (sPLS-DA) model to discriminate between the 

CRC patients and healthy controls, accounting for all the types of information at our disposal.  

Partial Least Squares Discriminant Analysis (PLS-DA) is a statistical method used for classification 

and predictive modeling. It is an extension of Partial Least Squares (PLS) regression tailored for 

categorical response variables. In PLS-DA, the goal is to find the combination of variables that best 

separates different classes usually in a high-dimensional dataset. This is achieved by projecting the 

original variables onto a new set of variables, called latent variables or components, which are linear 

combinations of the original variables. These new components are constructed so that they 

maximize the covariance between the observed data and the class labels. 

PLS-DA is particularly useful when dealing with "small n, large p" problems, where the number of 

observations (n) is small compared to the number of variables (p). It is also beneficial when the 

predictor variables are highly collinear. 

In the context of block sPLS-DA, “blocks” refer to the different types of data included in the analysis. 

In our case, we have two blocks: the microbiota dataset and the clinical dataset (including the 

circulating biomarkers, BMI and the diet score). The “sparse” modality applied to the PLS-DA model 

aims to provide a selection of the variables that are most relevant for the discrimination between 

classes, so to reduce the dimensionality of the data. This is useful in high-dimensional settings like 

ours, where the number of variables is much higher than the number of the samples.  

Each block is then analyzed simultaneously in a supervised manner through PLS-DA after the step 

of variable selection to identify the variables that mostly contribute to the discrimination of the 

groups. Results from each block is then integrated and visualized simultaneously (usually through 

heatmaps) allowing for a more comprehensive and holistic analysis. 

In our analysis, we estimated the first two components by tuning the optimal number of variables 

for each block through 10x100-fold cross-validation (CV). The final sPLS-DA model was then fit by 

using the tuning setting so defined.  

A heatmap plot was then generated to graphically integrate the results on the first two components 

of each block.  
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2.4.3 Mediation analysis in the counterfactual framework 

To estimate the role of microbiome as mediator of dietary factors on CRC development, we 

performed a mediation analysis based on a counterfactual framework approach195,196.  

In this context, a mediator is a variable that lies on the causal pathway between an exposure (in our 

case, diet) and an outcome (CRC). This implies that the mediator is influenced by the exposure and, 

in turn, has an effect on the outcome.  

 

 

Figure 2 2 DAG mediation analysis 

c’=vector of confounders. 

Figure 2.2. DAG (Directed Acyclic Graph) showing the causal pathway in mediation analysis under 
the counterfactual framework. 
 

The counterfactual framework allows for a formal, causal interpretation of this mediation effect by 

considering potential (or counterfactual) outcomes under different scenarios in which, for each 

level of the exposure, there is a potential outcome for the mediator, and for each level of the 

mediator, there is a potential outcome for the final outcome (Figure 2.2). 

This happens through the decomposition of the Total Effect (TE) of the exposure on the outcome 

into the Natural Direct Effect (NDE) and the Natural Indirect Effect (NIE): 

 

- Natural Direct Effect (NDE): it quantifies how much of the TE goes directly from the 

exposure to the outcome without passing through the mediator. Specifically, it measures 

the effect of the exposure on the outcome while holding the mediator at the level it would 

have taken had the exposure not occurred. 

- Natural Indirect Effect (NIE): it quantifies how much of the TE occurs through the mediator. 

Specifically, it measures how the outcome would change if the mediator were modified to 

the level it would take under the exposure, while keeping the exposure constant. 

 

By definition: 

𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸 
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Distinguishing between a mediator and a confounder is a crucial step in mediation analysis. A 

mediator is a variable that lies in the causal pathway between the exposure and the outcome, while 

a confounder is a variable that is associated with both the exposure and the outcome but is not part 

of the causal pathway. 

Misclassification of both during the analysis can lead to different types of bias, affecting both the 

validity and interpretation of the results. 

Directed Acyclic Graphs (DAGs) can be instrumental to ensure that all the hypothesis in a mediation 

analysis are correctly made.  They provide a visual depiction of the causal structure among variables 

by representing variables as nodes and causal relationships as arrows (Figure 2.2), simplifying the 

task of identifying variables that lie in the causal pathway (mediators) and those that are outside of 

it (confounders).     

In our analysis, we decomposed the TE of diet on CRC into a NDE and a NIE acting through the 

microbiota, considering alcohol consumption and physical activity as confounders of the pathway. 

In agreement with previous publications197,198, the microbiota was evaluated considering the ratios 

of Bifidobacteria to Escherichia genera and Firmicutes to Bacteroides phyla, which have been shown 

to be modified with obesity and inflammation199. Both ratios were log-transformed, adding 1 unit, 

and modelled as mediators with linear regression models, whereas ORs with 95% CIs were obtained 

for NIE using unconditional logistic regression models adjusting for alcohol and physical activity. We 

also evaluated BMI as mediator of diet. The formulas used to calculate each effect are as follows.  

 

Let Y be the binary outcome (CRC status), A the exposure (diet), M the mediator variable 

(microbiota) and C a set of multiple confounders (alcohol and physical activity).  

The outcome Y was modelled using logistic regression as follows:  

 

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑌 = 1|𝑎, 𝑚, 𝑐)} = 𝜃0 + 𝜃1𝑎 + 𝜃2𝑚 + 𝜃3𝑎𝑚 + 𝜃4
′ 𝑐 

 

where c is the vector of confounders.  

 

The mediator M was modelled using linear regression as follows:  

 

𝑀 = 𝛽0 + 𝛽1𝑎 + 𝛽2
′ 𝑐 

 

where c is the vector of confounders.  

 

Provided that the assumption that the outcome Y is rare holds, we derived NDE and NIE on the 

Odds Ratio scale as following:  
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𝑙𝑜𝑔{𝑂𝑅𝑁𝐷𝐸} = {𝜃1 + 𝜃3(𝛽0 + 𝛽1𝑎∗ + 𝛽2
′ 𝑐 + 𝜃2𝜎2)}(𝑎 − 𝑎∗) + 0.5𝜃3

2𝜎2(𝑎 − 𝑎2) 

 

where 𝜎2 is the variance of the error term in the regression model on mediator M. For the binary 

exposure A, the two levels being compared are a*=0 and a=1. Thus, the NDE provides an estimate 

of how much the outcome Y would change if the exposure A were set at level a=1 versus level a*=0, 

having the mediator set to level it would naturally have in the absence of exposure.  

 

𝑙𝑜𝑔{𝑂𝑅𝑁𝐼𝐸} = 𝜃2𝛽1(𝑎 − 𝑎∗) 

 

Thus, the NIE estimates how much the outcome Y would change if the exposure A was set to level 

a=1, but the mediation M changes from the level it would have if a*=0 to the level it would take if 

a=1.  

 

2.4.4 Subgroup analyses to evaluate associations with prognostic factors and CRC 

recurrence  

We evaluated differences in taxa abundances between CRC cases and healthy controls by pT, 

lymph-nodes involvement (pN) and early recurrence. Comparisons were made between healthy 

controls, pT1-2 and pT3-4 CRC patients, between healthy controls and CRC patients with or without 

involvement of lymph nodes and between healthy controls, CRC patients with no recurrence and 

CRC patients with recurrence. Non-parametric Kruskal-Wallis tests were used to assess differences 

by pT and pN. Time to relapse for cases was calculated from the day of diagnosis to the day of first 

cancer relapse (recurrence or adenoma) or last follow-up. We calculated Kaplan-Meier curves for 

disease free survival. Log-rank tests were used to investigate differences between survival curves. 

Cox proportional hazard models were employed to adjust for confounders. All statistical tests were 

two-sided.  

 

All the statistical analyses were performed using the SAS statistical software (version 9.4) and R, 

version 3.4. 
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2.5 Results 

2.5.1. Risk Factors and Circulating Biomarkers 

Demographic, epidemiological, and clinical characteristics for cases and controls are summarized in 

Table 2.1. 

 

Table 2.1. Descriptive characteristics of CRC patients (n = 34) and controls (n = 32). 

  CRC (N, %) Controls (N, %) Total (N, %) p-Value 

Sex Females 10 (29.4) 14 (43.7) 24 (36.4) 0.23 

 Males 24 (70.6) 18 (56.3) 42 (63.6)  

Age ≤60 years 18 (52.9) 20 (62.5) 38 (57.6) 0.43 

 >60 years 16 (47.1) 12 (36.5) 28 (42.4)  

BMI ≤25 11 (33.3) 20 (62.5) 31 (47.7) 0.02 

 >25 22 (66.7) 12 (37.5) 34 (52.3)  

Regular physical activity No 20 (58.8) 8 (25.0) 28 (42.4) 0.006 

 Yes 14 (42.2) 24 (75.0) 38 (57.6)  

Regular alcohol consumption No 5 (14.7) 15 (46.9) 20 (30.3) 0.005 

 Yes 29 (85.3) 17 (53.1) 46 (69.7)  

Colon cancer family history No 25 (73.5) 16 (50.0) 41 (62.1) 0.05 

 Yes 9 (26.5) 16 (50.0) 25 (37.9)  

Smoking Never 12 (35.3) 14 (75.0) 36 (54.5) 0.005 

 Current 9 (26.5) 3 (9.4) 12 (18.2)  

 Former 13 (38.2) 5 (15.6) 18 (27.3)  

CRC, colorectal cancer; BMI, body mass index. p-values were obtained with chi-squared test. 

 

Compared to healthy subjects, CRC cases were significantly more frequently obese (BMI>25; 66.7% 

vs 37.5% for cases and controls, respectively; p=0.02), regular alcohol consumers (85.3% vs. 53.1%; 

p=0.005) and smokers (64.8% vs. 25.0%; p=0.005), and engaged less frequently in regular physical 

activity (42.2% vs. 75.0%; p=0.006). However, no differences in terms of comorbidities (including 

diabetes and hypercholesterolemia) and current or recent use of drugs (including metformin, 

aspirin and statin) were observed. 
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Table 2.2. Descriptive statistics of circulating biomarkers in CRC patients and controls. 

  CRC   Controls   

 Median 
Lower 

Quartile 
Upper 

Quartile 
Median 

Lower 
Quartile 

Upper 
Quartile 

p-
Values 

25(OH)D (ng/mL) 1 19.8 11.2 25.1 23.4 16.1 31.4 0.12 

VDBP (µg/mL) 235 166 295 249 209 309.5 0.58 

Zonulin (ng/mL) 119 74 178 109 54 315 0.94 

IGFII (ng/mL) 671 578 769 695 614 806 0.41 

IGFBP3 (µg/mL) 2.17 1.95 2.59 2.36 2.16 2.64 0.09 

CRP (mg/dL) 0.23 0.12 0.39 0.10 0.05 0.20 0.01 

Adiponectin (µg/mL) 4.87 3.41 9.48 7.77 6.23 12.39 0.03 

Leptin (ng/mL) 6.56 4.25 14.15 6.71 5.19 15.43 0.67 

  N. (%) N. (%)  

Vitamin D 
(ng/mL) 1 

Sufficient 24 (70.6) 29 (90.6) 0.04 

 Deficient 10 (29.4) 3 (9.4)  

hs-CRP 
(mg/dL) 2 

≤0.1 7 (20.6) 16 (50) 0.012 

 >0.1 27 (79.4) 16 (50)  

Adiponectin 
(µg/mL) 3 

≤6 20 (58.8) 7 (21.9) 0.002 

 >6 14 (41.2) 25 (78.1)  

IL-6 
(pg/mL) 4 

≤4 25 (73.5) 30 (93.8) 0.03 

 >4 9 (26.5) 2 (6.3)  

Differences between median values were assessed with Wilcoxon rank-sum tests and differences in 
frequencies with chi-squared tests.1 Vitamin D deficiency is defined relative to the season: <20 ng/mL in 
summer/autumn and <10 ng/mL in winter/spring.2 Cut-off point chosen on the basis of median value of 
controls. 3 Cut-off point chosen on the basis of first quartile among controls.4 Cut-off point chosen on the 
basis of the literature. 

 

Circulating biomarkers were also significantly different between cases and controls (Table 2.2). 

Cases had a significantly higher inflammation status, with higher hs-CRP (>0.1; 79.4% vs. 50.0% for 

cases and controls, respectively; p=0.012) and IL-6 (>4; 26.5% vs. 6.3%; p=0.03), and lower 

adiponectin (≤6; 58.8% vs. 21.90%; p=0.002). CRC patients were also significantly more often 

deficient in vitD than controls (29.4% vs. 9.4%; p=0.04), with vitD deficiency status defined 

considering different cut-offs based on the season of blood withdrawal.  

These cut-offs were identified based on the existing literature (<20 ng/mL in summer/autumn and 

<10 ng/mL in winter/spring; see Statistical Methods) and consistent with what we observed in our 

sample (Table 1.3).  
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Table 2.3. Descriptive statistics of 25(OH)D levels (ng/mL) by season and CRC status  

Season of 
blood withdrawal 

Status N Median Mean Lower Quartile Upper Quartile 

Summer-Autumn Cases 12 22.9 24.4 17.1 34.4 

  Controls 14 30.8 31.4 25.5 35.3 

Winter Cases 8 23.5 20.9 15.9 27.4 

  Controls 5 18.8 19.1 13.9 19.6 

Spring Cases 14 13.1 14.2 7.3 21.6 

  Controls 13 17.9 16.6 12.7 22.6 

 

In spring, levels of 25(OH)D were quite low (<20 ng/mL) in both cases and controls, especially in 

cases. However, 25(OH)D tended to be lower in cases compared to controls throughout the year, 

including in the summer-autumn period, when 25(OH)D levels were the highest and exceeded 20 

ng/mL. 

To better understand the relationship between CRC status and vitD, we also looked at VDR, GC 

(which encodes VDBP), and polymorphisms of vitD-metabolizing enzymes (CYP24A1, CYP24A1, and 

CYP24A1, as well as at the dietary intake.   

ff FokI polymorphism and AA CYP24A1 polymorphism were significantly more frequent in CRC 

patients compared to controls (ff FokI : 20.6% vs. 3.1% for cases and controls, respectively, p=0.03; 

AA CYP24A1: 14.7% vs. 0%, p=0.02; Table 2.4), while no differences were observed for the other 

polymorphisms. 
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Table 2.4. Frequencies of CRC patients and controls by mutation status of polymorphisms. 

VDR, GC, and CYP SNPs  CRC 
n = 34(%) 

Controls 
n = 32 (%) 

Total 
n = 66 (%) 

p-Value 

Fok1 rs2228570 (A > G) 
FokI 

GG (FF) or GA (Ff) 27 (79.4) 31 (96.9) 58 (87.9) 0.03 

(A = rare nucleotide) AA (ff) 7 (20.6) 1 (3.1) 8 (12.1)  

Bsm1 rs1544410 (C > T) 
BsmI 

CC (bb) or CT (Bb) 31 (91.2) 27 (84.4) 58 (87.9) 0.39 

(T = rare nucleotide) TT (BB) 3 (8.8) 5 (15.6) 8 (12.1)  

Taq1 rs731236 (A > G) 
TaqI 

AA (TT) or AG (Tt) 32 (94) 27 (84) 58 (89) 0.20 

(G = rare nucleotide) GG (tt) 2 (6) 5 (16) 7 (11)  

Apa1 rs7975232 (C > A) 
ApaI 

AA (AA) or AC (Aa) 27 (79.4) 25 (78.1) 52 (78.8) 0.9 

(C = rare nucleotide) CC (aa) 7 (20.6) 7 (21.9) 14 (21.2)  

GC rs2282679 (T > G) TT or TG 31 (91.2) 31 (96.9) 62 (93.9) 0.33 

(G = rare allele) GG 3 (8.8) 1 (3.1) 4 (6.1)  

GC rs4588 (G > T) GG or GT 31 (91.2) 31 (96.9) 62 (93.9) 0.33 

(T = rare nucleotide) TT 3 (8.8) 1 (3.1) 4 (6.1)  

GC rs7041 (A > C) CC or CA 27 (79.4) 28 (87.5) 55 (83.3) 0.38 

(A = rare nucleotide) AA 7 (20.6) 4 (12.5) 11 (16.7)  

CYP24A1 rs6013897 (T > A) TT or TA 29 (85.3) 32 (100) 61 (92.4) 0.02 

(A = rare nucleotide) AA 5 (14.7) 0 (0.0) 5 (7.6)  

CYP27B1 rs10877012 (G > T) GG or GT 31 (91.2) 29 (90.6) 60 (90.9) 0.93 

(T = rare nucleotide) TT 3 (8.8) 3 (9.4) 6 (9.1)  

CYP2R1 rs10741657 (A > G) GG or GA 31 (91.2) 32 (100) 63 (95.5) 0.09 

(A = rare nucleotide) AA 3 (8.8) 0 (0) 3 (4.5)  

VDR, vitamin D receptor; GC, Vitamin D Binding Protein gene; CYP, cytochrome P450; SNPs Single Nucleotide 
Polymorphism; p-values were obtained with chi-squared test and Fisher’s exact test. 

 

 



 
 
 

36 
 

The dietary intake of vitD was quantified considering the level of consumption of fatty fish (intended 

as salmon, herring, mackerel), which is known to be rich in cholecalciferol. This data was collected 

through a short diet questionnaire that was administered to each patient at enrollment (see 

Statistical Methods; Supplementary Table S1).  

Table 2.5. Descriptive statistics of 25(OH)D levels (ng/mL) by consumption of fatty fish (dose: 150 

gr) and CRC status 

            

Frequency of 
fatty fish consumption 

Status N Median Lower Quartile Upper Quartile 

Rarely (once/twice a month) Cases 17 19.3 12.8 24.5 

  Controls 10 18.5 13.0 23.4 

Once a week Cases 13 15.2 9.7 23.8 

  Controls 11 24.5 14.2 30.0 

Two/three times a week Cases 4 31.1 17.7 34.4 

  Controls 11 26.0 17.9 35.3 

      
 

We found a dose–response trend of 25(OH)D with increasing consumption of fatty fish among 

controls (Table 2.5), whereas levels of vitD in cases remained low independently of the fatty fish 

consumption.  
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2.5.2. Microbiome Biomarkers and Functional Profiles 

We performed shotgun metagenomic analysis and 16S sequencing to characterize the fecal 

microbiota in cases and controls (Figure 2.3). In line with the literature, we found significantly higher 

abundances of Fusobacterium nucleatum, Escherichia coli, Parvimonas micra, and Bacteroides dorei 

in CRC cases. Conversely, probiotic species, such as Bifidobacterium longum and Bacteroides dorei, 

were significantly more abundant in controls, even after adjusting for confounders such as age, 

smoking, and alcohol consumption (Figure 2.3b). In addition, significantly higher abundances of 

metabolic pathways associated with gluconeogenesis, putrefaction, and fermentation was 

detected in cases. 

 

 

Figure 2 3 LEfSe microbiota 

Figure 2.3. Microbiome composition in CRC patients and healthy controls. (a) Bar plot representing 
the result obtained by applying linear discriminant analysis effect size (LEfSe) on metabarcoding 
shotgun data. The bar length represents the linear discriminant analysis (LDA) score as a measure 
of the significant differences between the CRC (red) and control (blue) subjects (LDA score > 2). (b) 
Bar plot representing the taxa associated with CRC obtained through applying multivariable logistic 
model on metabarcoding 16S data, adjusted for age, smoking, and alcohol consumption. The bar 
length represents the significant beta-coefficient as a measure of the association with CRC (red) or 
healthy control (blue) subjects (p < 0.05). 

 

 

2.5.3. Interplay between Vitamin D, Dietary Habits, and Microbiota in CRC 

Overall, cases reported to have a diet with a significantly higher consumption of pasta, rice, and 

bread (food rich in carbohydrates) (67.6% vs. 28.1% for cases and controls, respectively, for once a 
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day; p=0.001) and with a significantly reduced consumption of fatty fish (11.8% vs. 34.4% for cases 

and controls, respectively, for 2–3 times a week; p=0.03; Table 2.6). 

Table 2.6. Food intake frequencies for CRC patients and controls 

      

Foods consumptions Categories CRC (N, %) Controls (N, %) Total (N, %) P-value 

Dairy products 
(milk/cheese/yogurt) 

Not every day 5 (14.7) 8 (25.0) 13 (19.7) 0.29 

 Once a day 29 (85.3) 24 (75.0) 53 (80.3)  

Pasta, rice and bread Not every day 11 (32.4) 23 (71.9) 34 (51.5) 0.001 

 Once a day 23 (67.6) 9 (28.1) 32 (48.5)  

Fruit and vegetables Not every day 6 (17.6) 5 (15.6) 11 (16.7) 0.83 

 Once a day 28 (82.4) 27 (84.4) 55 (83.3)  

Meat or processed meat At most once a week 4 (11.8) 4 (12.5) 8 (12.1) 0.93 

 At least twice a week 34 (88.2) 28 (87.5) 58 (87.9)  

Eggs Rarely 9 (26.5) 9 (28.1) 18 (27.3) 0.49 

 Once a week 15 (44.1) 17 (53.1) 32 (48.5)  

 2-3 times a week 10 (29.4) 6 (18.8) 16 (24.2)  

Fatty fish Rarely 17 (50.0) 10 (31.3) 27 (40.9) 0.03 

(salmon, herring, mackerel) Once a week 13 (38.2) 11 (34.4) 24 (36.4)  

 2-3 times a week 4 (11.8) 11 (34.4) 15 (22.7)  

Fish (other) Rarely 10 (29.4) 6 (18.8) 16 (24.2) 0.57 

 Once a week 15 (44.1) 14 (43.8) 29 (43.9)  

 2-3 times a week 8 (23.5) 10 (31.3) 18 (27.3)  

Sweet/cakes/chocolate ≤1 a week 8 (23.5) 14 (43.8) 22 (33.3) 0.08 

 ≥2 times a week 26 (76.5) 18 (56.3) 44 (66.7)  

      

P-values were obtained with Chi-squared test. Meat consumption includes any type of meat (white and red), including 
processed meat and liver consumption. CRC=colorectal cancer. 

 

Information on lifestyle (including smoking, alcohol consumption and physical activity) and diet 

were included as covariates in a multivariable logistic regression model to identify the risk factors 

significantly associated with CRC status. To avoid the problem of sparse data in the diet assessment, 

we grouped the answers on the consumption of every type of food enquired in the questionnaire 

into high-risk groups of foods. Based on the information collected with the questionnaire 

(Supplementary Table S1), we defined the following groups: 

-  High consumption of sweets and cakes, defined as: high ice cream (Q22≥3) or high 

chocolate (Q23≥3) or high sweets (Q24≥3). 

- High consumption of cereals/carbohydrates, defined as: [high bread (Q5≥4) and pasta/rice 

(Q3≥4)] or [high crackers/breadsticks (Q6≥4) and pizza (Q7≥4)].   
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- Low consumption of fatty fish, defined as: low fish including salmon, herring, and mackerel 

(Q12<1). 

- High consumption of meat, defined as: high meat (Q9≥3) and high processed meat (Q11≥3). 

- Low consumption of fruit and vegetables, defined as: high soups (Q4≥4) or high vegetables 

(Q18≥4) or high fruit (Q20≥4). 

 

High consumption in alcohol was significantly associated with CRC (Odds Ratio (OR)=6.20 [95% 

Confidence Interval (CI): 1.27-30.20]; p=0.024), whereas an inverse significant association was 

observed for regular physical activity (OR=4.31 [95%CI: 0.08-0.99]; p=0.049). Regarding diet, high 

consumptions of sweets and cakes and a diet low in fatty fish and high in cereals and carbohydrates 

were significantly associated with CRC status (high sweets  and cakes: OR=4.31 [95%CI: 1.02-18.28]; 

p=0.048; low fatty fish and high cereals/carbohydrates: OR=5.88 [95%CI: 1.49-25.0; p=0.048; Table 

2.7). 

Based on these findings and using the data available to us, we built a dichotomous variable to 

indicate whether or not the patient was adhering to the WCRF/AICR guidelines for cancer 

prevention summarized in Figure 2.4. 

 

Figure 2.4. Cancer prevention recommendations provided by WCRF/AICR. Source: WCRF. Adapted 
from: https://www.wcrf.org/diet-activity-and-cancer/cancer-prevention-recommendations/after-
a-cancer-diagnosis-follow-our-recommendations-if-you-can/  

 

Figure 2 4 WCRF/AICR recommendations 

https://www.wcrf.org/diet-activity-and-cancer/cancer-prevention-recommendations/after-a-cancer-diagnosis-follow-our-recommendations-if-you-can/
https://www.wcrf.org/diet-activity-and-cancer/cancer-prevention-recommendations/after-a-cancer-diagnosis-follow-our-recommendations-if-you-can/
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A patient was considered to adhere to the recommendations if his/her BMI was lower than 25 or if 

he/she was physically active, and if his/her diet was high in fruit and vegetables or low in meat 

consumption or low in sweets.  

This score was found to be significantly and strongly associated with CRC status, with higher odds 

of CRC for those not following the WCRF guidelines [OR=0.23; 95%CI:  0.08-0.67; p=0.007; Table 

2.7). 

 
Table 2.7. Multivariable logistic models: diet and risk factors associated with CRC. 

 Lifestyle Risk Score OR 
Lower 95% 

CI 
Upper 95% 

CI 
p-

Values 

Risk factors Regular physical activity 0.28 0.08 0.99 0.049 

 Ever smoking 3.21 0.85 12.14 0.086 

 High alcohol 6.20 1.27 30.20 0.024 

Diet High sweets and cakes 4.31 1.02 18.28 0.048 

 Low fatty fish and 
highcereals/carbohydrates 2 

5.88 1.49 25.0 0.011 

 WCRF score 1 0.23 0.08 0.67 0.007 

p-values were obtained from multivariable logistic models. 1 WCRF score: adherent if BMI < 25, high physical 
activity and a healthy diet (high consumption of fruit and vegetables, or low consumption of meat or low 
consumption of sweets, cakes, and pastries). 2 Low fatty fish and high cereals/carbohydrates: Low fatty fish 
(salmon, herring, mackerel) less than twice a week and high cereals (pasta, rice, and bread) at least once a 
day. 

 

 

Next, we investigated whether specific species were enriched in subjects adhering to WCFR 

recommendations or to other dietary habits. Because both diet, lifestyle behaviors and microbiota 

are strongly dependent on socio-demographic characteristics and because we suppose a 

relationship between them and CRC, we investigated the association between microbiota and 

WRCR/diet through multivariable logistic regression, adjusting for CRC status, age and sex/gender. 

We found that a diet rich in fatty fish and with reduced cereals and carbohydrate consumption was 

significantly associated with higher abundances of Lactobacillus species (Figure 2.5a). On the other 

hand, an opposite diet – rich in carbohydrate and low in fatty fish – was significantly associated with 

higher abundances of Clostridium ramosum (belonging to the Firmicutes phylum). 

Patients following WCRF guidelines showed an enrichment of Bacteroides salyersiae, which is a 

normal part of the gut flora and was found to be significantly more abundant in vegans200, and in 

Phascolarctobacterium succinatutens, which is known to convert succinate into propionate201. 

Conversely, subjects not adhering to the recommendations showed higher abundances of species 

belonging to the oral microbiome, such as Streptococcus sanguinis and Eubacterium infirmum 

(Figure 2.5b). 
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Figure 2 5 Barplot WCRF, diet, microbiota 

Figure 2.5. Species associated with diet and World Cancer Research Fund International (WCRF) 
guidelines. Results from logistic models of shotgun data. Bar plot representing the result obtained 
by applying multivariable logistic models, adjusted CRC status, age, and sex. The bar length 
represents the significant beta-coefficients of the models (p < 0.05). High-risk diet or not following 
the WCRF (red) and low-risk diet or following WCRF (blue). “Yes” indicates low-risk diet—“high fatty 
fish and low carbohydrates/cereals”; “No” indicates high-risk diet. “Yes” indicates those who follow 
WCRF guidelines; “No” indicates those who do not follow WCRF guidelines. (a) for high fatty fish 
and low cereals intake. (b) for adherence to WCRF guideline. 

 

2.5.4. Microbiome-Mediated Diet Effect on CRC Risk 

To understand if the relationship between a high-risk diet and CRC was – at least partially – 

mediated by the modulation of the gut microbiota, we conducted a mediation analysis under the 

counterfactual framework. 

Through a DAG, we visually represented the causal pathway(s) we hypothesized to link the 

exposures (high-risk diets) to the outcome (CRC), both directly and indirectly through the 

microbiota, and identified the potential confounders affecting this pathway.  

Diet information was summarized with a binary variable assessing a “low fatty fish and high 

carbohydrates/cereals” consumption, whereas the microbiota was summarized through the 

Bifidobacteria/Escherichia genera ratio, an indicator of “healthy” intestinal flora. We found that in 

subjects consuming a “low fatty fish and high carbohydrates/cereals” diet (which we found to be 

associated with CRC and is poor in vitD), the odds of CRC decreased at increasing levels of the log-

transformed ratio of Bifidobacteria over Escherichia genera (Indirect Effect through microbiome: 

OR=0.31 (95% CI: 0.10–0.94), p=0.03), confirming a mediating effect of the microbiota. The direct 

effect of diet on CRC, independent of microbiota, was also statistically significant (p= 0.001), as well 

as the total effect (p=0.03) (Figure 2.6). 
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Figure 2.6. Direct acyclic graph of mediation model analyses. Gut microbiota as mediator of the 
effect of “low fatty fish and high carbohydrates/cereals” diet (exposure) on CRC risk (outcome). In 
red, natural indirect effect (NIE) and natural direct effect (NDE); in blue, the effect of confounders 
on exposure–outcome relationship. p-values were obtained from mediation analysis. The gut 
microbiota was summarized through Bifidobacterium/Escherichia ratio. Alcohol and physical 
activity were confounders. No exposure-mediator interaction was assumed, as it was not 
statistically significant in multivariable analysis.  
 

We also considered body-mass index (BMI) as mediator of the effect of diet on CRC. However, the 

NIE was not statistically significant (p = 0.73), suggesting an independent role of diet and obesity as 

risk factors for CRC.  

Firmicutes over Bacteroides ratio, another indicator of normal intestinal homeostasis associated 

with obesity and inflammation202, was also evaluated as a mediator of the effect of diet, but no 

significant indirect effect was observed (NIE: OR = 0.96 (95% CI: 0.13–6.80; p = 0.97). 

 

2.5.5. Integrative Data Analysis 

The interrelationships between circulating biomarkers, vitD, BMI and diet were further investigated 

through a network analysis based on the Spearman correlation matrix. Only significant correlations 

were plotted after adjusting for the false discovery rate (FDR). The diet score was created as a linear 

combination of the regression coefficients and dietary groups associated with CRC in the 

multivariable analysis shown in Table 2.7. 

BMI was directly and positively correlated with the diet score (Spearman correlation coefficient, 

R=0.41; p< 0.001), and the diet score was positively correlated with both hs-CRP (R=0.37; p=0.002) 

and IL-6 (R=0.27; p=0.027). IL-6 was inversely correlated with 25(OH)D (R=-0.27; p=0.0027) and 

positively correlated with the cluster of CRC-associated taxa, with a direct correlation with F. 

nucleatum (R=0.31; p=0.01) and P.micra.  Adiponectin showed a significant inverse correlation with 

BMI (R=−051; p<0.001), while BMI was positively correlated with zonulin (R=0.36; p=0.004), a 

protein modulating the intestinal barrier function (Figure 2.7). 

Figure 2 6 Mediation analysis case-control study 
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Figure 2 7 Correlation network 

Figure 2.7. Correlation network analysis among circulating markers, BMI, dietary score, and CRC-
associated species. The width of each edge corresponds to the absolute values of Spearman 
correlation coefficients and the transparency of edge represents the p-value after Benjamini-
Hochberg (BH) correction. The line color indicates the direction of the correlation (blue for positive 
and violet for negative). Correlations with p-values less than 0.05 after BH correction are displayed. 
In the network, the CRC-associate taxa identified in the multivariable analyses in Figure 2.3b were 
included. 

 

 

To better understand the correlation between circulating biomarker and the microbiota community 

in CRC cases and controls, we performed an unsupervised multivariate analysis based on canonical 

correspondence analysis (CCA). In the triplot in Figure 2.8 the first two components are shown. Each 

factor’s weight is proportional to its arrow length.  
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Figure 2 8 CCA analysis 

 Figure 2.8. Triplot of Canonical Correspondence Analysis. Arrows indicate the direction and 
magnitude of the circulating biomarkers, systemic inflammatory markers correlation with bacterial 
community structures. Healthy controls are in green and colorectal cancer cases in red. All the CRC-
associate taxa identified in the multivariable analyses in Figure 2.3b were included. 

 

The first component of the CCA was the only one that was significantly associated with CRC status 

(p=0.001). This component correlated negatively with IL-6 and hs-CRP, with the negative side 

mostly characterizing CRC cases, and positively with 25(OH)D, VDBP, and adiponectin, with the 

positive size mostly characterizing healthy subjects (Figure 2.8). F. nucleatum, Parvimonas micra, 

and Porphyromonas positively correlated with hs-CRP and IL-6, whereas Bacteroides dorei and 

Bifidobacterium longum positively correlated with 25(OH)D and adiponectin. The second 

component was mostly characterized by the separation between Zonulin, on the negative axis, and 

the other biomarkes. Zonulin was positively – although weakly – correlated with the first 

component of CCA, characterized by healthy controls, and positively correlated with 

Bifidobacterium longum and Mogibacterium. 

A supervised integrative analysis was eventually performed using block sPLS-DA based on the Data 

Integration Analysis for Biomarker Discovery (DIABLO) framework (see Statistical Methods).  

This approach allowed us to distinguish between CRC patients and healthy controls by combining 

the “discriminative power” of each block of information (the ‘clinical’ block and the ‘microbiota’ 

block), after a step of feature selection. As a result, we were able to identify the taxa most 

discriminative of CRC status after accounting for the clinical condition and diet of each patient.  

We compared the results of this model with the results of the model including only the microbiota 

data. As shown in Figure 2.9, the inclusion of clinical factors and diet led to a better discrimination 

between CRC patients and healthy controls compared to using microbiota data alone. Specifically, 
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we observed that CRC cases exhibited higher BMI, elevated levels of inflammation, increased diet 

scores, and greater abundances of several taxa like Fusobacteria, Tissierellales, and Parvimonas 

micra, especially in PT 3-4 patients. Conversely, healthy controls showed higher levels of vitD, 

adiponectin, zonulin, and Bacteroides, including Bacteroides dorei. These results regarding 

microbiota are consistent with those obtained from the multivariable analysis in Figure 2.3b, which 

was adjusted for confounders. 

 

 

Figure 2 9 sPLS-DA for integration case-control study 

Figure 2.9. Block sPLS-DA for data integration. (a) Heatmap for data integration including the scaled 
variables selected from the first two components of each block. Plot generated by performing a 
block sparse partial least square-differential analysis (sPLS-DA) (10-fold cross-validation and 100 
repeats) and selecting the most discriminative species, circulating biomarkers, BMI, and diet score. 
(b) Heatmap plot generated by performing a sparse partial least squares differential analysis (sPLS-
DA) (10-fold cross-validation and 100 repeats) and selecting the most discriminative species, 
including the scaled abundances of taxa selected from the first two components. 

 

 

2.5.6. Association of gut microbiota with CRC Prognostic Factors and Relapse 

We also conducted an exploratory analysis to investigate associations between gut microbiota and 

tumor size (pathological T, pT), lymph node involvement (pathological N, pN) and early recurrence.  

Parvimonas and Dialister genera were very low among controls and the abundance increased 

among cases with worse prognosis (pT3-4 and pN+; p<0.0001 and p=0.03, respectively; Figure 2.10).
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Figure 2 10 Boxplot microbiota and prognostic factors 

Figure 2.10. Association of microbiota with colorectal cancer (CRC) prognostic factors. On the left, 
boxplots of genus Parvimonas abundances by pT (controls, pT1-2 and pT3-4). On the right, boxplots 
of genus Dialister abundances by lymph-nodes involvement (controls, CRC patients without lymph-
node (pN0) and CRC patients with lymph-node involvement (pN+)). 

 

At 29-month median follow-up, we had four patients with cancer recurrence and five patients with 

adenomas.  

Abundances of F. nucleatum, genus Parvimonas, and Tissierella class were significantly lower in 

healthy controls, higher in cases with no recurrence, and very high in cases with cancer recurrence 

(Kruskall–Wallis test: p=0.0002, p=0.0003, p=0.0006, respectively; Figure 2.11). 

Upon categorizing F. nucleatum into high and low abundance based on the upper quartile of the 

distribution among cases, we found that patients with high F. nucleatum had a significant higher 

risk of recurrence (log-rank test: p=0.03; Figure 2.11d). This association remained statistically 

significant also in Cox proportional hazard model, after adjusting for lymph node involvement 

(p=0.02). Altogether, these data suggest that the microbiota composition plays a significant role 

throughout the tumorigenic process, including progression, and may influence prognosis. 
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Figure 2 11 Plots microbiota and CRC recurrence 

Figure 2.11. Box plots of taxa significantly associated with CRC status (a–c). Panel (d) Kaplan–Meier 
curves for disease-free survival p-value indicated in panel 8d was obtained from multivariate Cox 
regression models adjusting for lymph node status. * Excluding 1 outlier. 
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3. SYSTEMATIC REVIEW ON MICROBIOTA AND VITAMIN D IN HUMANS  

3.1 Rationale of the review 

VitD is a fat-soluble vitamin essential for maintaining bone health by facilitating the absorption of 

calcium and phosphate in the intestines. It exists in two primary forms, VitD2 and VitD3, which 

differ by a double bond between C22 and C23 and a methyl group at C24; this effects the 

bioavailability of the two forms, with vitD3 being more readily absorbed at the intestinal level.  

The richest source of dietary intake of vitD is fatty fish, followed by egg yolk, liver, meat, and 

fortified dairy products203,204. However, the greatest amount of vitD is synthesized at skin level after 

UVB exposure. 

Associations between vitD and immune modulation, cardiometabolic disorders, cancer risk and 

overall mortality have been reported in several epidemiological and clinical studies205–208. However, 

these encouraging findings have not been consistently replicated in interventional studies. To 

establish a causal link and advocate for vitD utilization, it is imperative to delve deeper into its non-

skeletal roles, especially its interplay with the immune system.  

A mechanism through which vitD exerts its effects could be by modulating the gut microbiota, 

whose alterations have been implicated in diseases such as cardiovascular disease, diabetes, and 

cancer. 

VitD receptor (VDRs), which mediate the actions of active vitD3, are abundantly expressed in the 

gut and are instrumental in immune regulation and maintaining intestinal equilibrium209,210. While 

the direct impact of vitD on bacterial populations is not fully elucidated, few studies have shown its 

potential antimicrobial properties, both in vitro and in humans.  

On the other hand, the microbiota is involved in maintaining the integrity of the intestinal mucosal 

barrier, protecting against pathogens, providing vitamins and metabolites, and shaping and 

regulating the immune response. This last function seems to be the key point linking the condition 

of dysbiosis with various diseases such as cancer, diabetes and cardiovascular or autoimmune 

diseases211. Consequently, a possible role of vitD in modulating the microbial composition of the 

gut could prove to be crucial in maintaining the function of the immune system and, consequently, 

human health210. 

In order to provide a deeper understanding of the association between vitD and gut microbiota 

alterations and/or composition, we conducted a systematic review of the existing literature of 

human studies212 providing estimates of the association/correlation between microbiota and either 

vitD supplementation, vitD serum concentration (quantified with 25(OH)D) or dietary intake (Figure 

3.1). 

 

 



 
 
 

49 
 

  

Figure 3 1 Graphical representation systematic review 

Figure 3.1. Graphical representation of the possible pathway going from vitD (either dietary, 
supplemented or synthesized following sun exposure) to the gut microbiota in humans.  

 

3.2. Search Strategy 

The literature search was carried out in compliance with PRISMA guidelines and extended up to 

January 2021. The databases consulted included PubMed, EMBASE, CINAHL, and Cochrane, and the 

search was limited to peer-reviewed articles published in English. The keywords "vitamin D," 

"vitamin D3," "cholecalciferol," and "25 Hydroxyvitamin D" were used in conjunction with 

"microbiota," "gut microbiota," "microbiome," or "dysbiosis." 

The eligibility criteria were based on the PICOS framework213. We included human studies involving 

participants of all ages and health statuses (healthy and non-healthy). Both interventional and 

observational studies focusing on vitD supplementation, dietary vitD intake, and serum 25(OH)D 

levels were considered. All the selected studies had to provide at least one estimate of the 

association between the microbiota and vitD. Data on alpha diversity, beta diversity, species 

richness and the prevalence of bacterial taxa were collected. In interventional studies, outcomes 

regarding the microbiota were compared either to baseline (in case of single-arm trials) or to a 

control group (in case of two-arms studies). 

We organized and reviewed the collected studies into separate categories based on:  

- Scope of the analysis : 

o Effect of vitD supplementation on microbiota. 
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o Association/correlation between vitD serum levels or vitD and microbiota. 

- Health status of the study population: 

o Healthy individuals. 

o Individual with dysbiosis, pregnancies, obesity or diabetes.  

- Microbiota sample type: 

o Stool samples. 

o Biopsy samples.  

We provided the phylogenetic classification for all the taxa that were found to be significantly 

correlated/associated with vitD in the collected studies. 

For the studies involving healthy participants and with microbiota evaluation from fecal samples, 

we calculated and displayed the percentage of taxa either increasing or decreasing in relation to 

vitD within each phylum over the total number of identified taxa. These were presented in 

frequency or mirror plots, differentiated by whether the study was focused on supplementation or 

on assessing serum vitD levels or dietary intake. Where applicable, plots at the family level were 

also included. 
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3.3 Results 

The PRISMA flowchart in Figure 3.2 illustrates the study selection criteria for this systematic 
review.  

 

 Figure 3.2: Flowchart of the section of the studies included in the systematic review. 

Out of 955 publications, 25 were considered eligible for the analysis. As detailed in Table 3.2, the 

study designs included 14 interventional studies, comprising 7 RCTs214–220, and 11 observational 

studies, of which 4 cohort studies221–224, 6 cross-sectional studies225–230, and 1 case-control study231. 

The majority of the studies were conducted in the United States and Europe, four in East Asia and 

the Middle East, two in Canada, and the remaining two in Africa and Brazil. 

Most of the studies included healthy populations. However, specific cohorts were also investigated: 

five studies were conducted on pregnant women218,221,232–234, four studies recruited individuals with 

ulcerative colitis and Crohn's disease230,231,235,236, and individual studies focused on participants with 

multiple sclerosis237, cystic fibrosis217, HIV216, and prediabetes220. Only one study included a 

population of overweight/obese individuals216. 

In all interventional studies, the duration of vitD supplementation was 14–15 weeks on average. 

Dosages varied, ranging from a minimum of 400 international units (IU) to a maximum of 10,000 IU 

per day. Eight 215,217,219,220,235–238 enrolled participants with serum levels of 25(OH)D less than 30 

ng/mL, usually considered a cut-off of vitD deficiency status.  

The analysis of microbiota was performed on stool samples, although four studies216,230,231,239 also 

examined biopsies of gastrointestinal tissue. Methodological heterogeneity was observed in DNA 

extraction, amplification, and 16S rRNA sequencing procedures, largely attributable to the analysis 

Figure 3 2 Flowchart study selection 
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of different hypervariable regions. Only two studies employed shotgun metagenomic 

sequencing225,231.  

 

Table 3.1. Characteristics of selected studies. 

Author, Year 
Participants 

(n°) 
Country, 

Cohort Name 
Health status, 

Inclusion Criteria 

Vitamin D 
Supplementation, 
Dietary Vitamin D 

Intakes or 25(OH)D 
Measure 

Microbiota 
Analysis 

Hypervariable 
Region of 16 
sRNA Gene 

Double-blind, randomized controlled trials 

Ciubotaru, 2015220 
 

115 US Prediabetes, AAM veteran, aged 
35–85 years, BMI 28–39, serum 
25(OH) D < 29 ng/mL 

ARM1: 400 IU/week + 
placebo; ARM2: 400 
IU/week + 50,000 
UI/week for 12 weeks 

Ion Torrent 
Personal Genome 
Machine 

V4 

Charoenngam,2020219 
 

20 US Healthy adults, serum 25(OH)D 
levels < 30 ng/mL 

Three different arms: 
600, 4000 or 10,000 
UI/day for 8 weeks 

uBiome Inc. NR 

Hjelmsø, 2020218 
 

580 DK, 
COPSAC2010 

cohort 

Pregnant women, gestational 
age 24 weeks 

2800 UI/day from 12 to 
16 weeks 

Illumina MiSeq V4 

Kanhere, 2018217 
 

38 US Patients with CF, age ≥ 18 year, 
no contraindication to oral high-
dose vitamin D. Serum 25(OH)D 
level at baseline 37 ± 6 ng/mL 

50,000 UI/week for 12 
weeks 

Illumina MiSeq V4 

Missailidis, 2019216 
 

23 ET ART-naïve HIV-positive 
individuals > 18 years, CD4+ T 
cells counts > 350 cells/mL, and 
plasma viral loads > 1000 
copies/mL 

5000 UI/day (plus 
phenylbutyrate suppl) 
for 16 weeks 

Illumina MiSeq V4 

Naderpoor,2018215 
 

26 AU Healthy adults, serum 25(OH)D 
levels < 20 ng/mL, BMI > 25, 
stable weight 

100,000 UI at baseline 
followed by 4000 
UI/day for 16 weeks 

Illumina MiSeq 
platform 

V6-V8 

Sordillo, 2016214 
 

261 US Pregnant women, aged 18–40 
years, gestational age 10–18 
weeks 

Maternal  vitDS with 
400 or 4000 UI/day for 
22–30 weeks 

Pyrosequencing 
16S RNA gene 

V3–V5 

Non-randomized interventional studies 

Bashir, 2016239 
 

16 AT Healthy adults, BMI 20–30, non-
smokers 

980 UI/Kg (week 1–4), 
490 UI/Kg (week 5–8) 

GS FLX V1–V2 

Bosman, 2019240 
 

21 CA Healthy adults, aged 19-40 
years, Fitzpatrick skin types I-III 

Average 1389 UI/day Illumina MiSeq V6–V8 

Cantarel,2015237 
 

15 US Multiple Sclerosis/Healthy 
women, 25 (OH)D < 30 ng/mL, 
BMI 18-30 

5000 UI/day for 90 days PhyloChip Array NR 

Garg, 2018235 
 

25 GB 25(OH)D < 50 ng/mL; For UC 
patients: partial Mayo index of ≤ 
4, and stable therapy 

40,000 UI/week for 8 
weeks 

Illumina MiSeq V3- V4 

Schäffler, 2018236 
 

17 DE CD/Healthy adults, serum 
25(OH)D levels < 30 ng/ml 

20,000 UI/day 1-3 + 
20,000 UI every other 
day for 4 weeks 

Illumina MiSeq V3- V4 

Singh, 2020238 
 

80 QA Healthy students, serum 
25(OH)D levels < 30 ng/ml 

50,000 UI/week for 12 
weeks 

Illumina MiSeq. 
Metagenomic 
analysis PICRUST 

V3–V4 

Tabatabaeizadeh, 
2020241 
 

50 IR Healthy young girls, no history 
of diabetes, hypertension, or 
chronic disease 

50,000 UI/week for 9 
weeks 

TaqMan assays NR 

Observational studies—Cohort 

Drall, 2020224 
 

1157 CA, CHILD 
cohort 

Pregnant women, gestational 
age 28 weeks 

Maternal and infant  
vitDS of 400 UI/day 

Illumina MiSeq 
platform 

V4 

Kassem,2020223 
 

499 US, WHEALS 
cohort 

Pregnant women, aged 21–49 
years, gestational ages from 25 
to 44 weeks 

Maternal serum 
25(OH)D and cord blood 
25(OH)D levels 

Illumina MiSeq V4 
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25(OH)D—25 hydroxyvitamin D; AAM—African-American men; ART- antiretroviral therapy; BMI—body mass index; CD—Crohn’s 

disease; FDR—false discovery rate; HIV—human immunodeficiency virus; IBD—inflammatory bowel disease; NR—not reported; 

PICRUST- phylogenetic investigation of communities by reconstruction of unobserved states; rRNA—ribosomal RNA; SNPs—single 

nucleotide polymorphism; T-RFLP—terminal restriction fragment length polymorphism; UC—ulcerative colitis; UI—international units; 

vitD—vitamin D; VDR—vitamin D receptor; vitDS—vitamin D supplementation. 

 

 

 

 

 

 

 

Mandal, 2016222 
 

60 NO, NoMIC 
cohort 

Pregnant women Dietary  vitD  intakes 
during 22 weeks of 
pregnancy: 
3.13 µg/day (median) 

Illumina MiSeq 
platform 

V4 

Talsness, 2017221 
 

913 NL, KOALA 
cohort 

Pregnant women, gestational 
age 14–18 weeks 

Maternal vitDS: < or > 
400 UI/day for 22–30 
weeks. Infant  vitDS: 
classified as yes or no 

5′- nuclease 
technique 

NR 

Observational studies—Cross-sectional 

Jackson, 2018229 
 

1724 GB, TwinsUK Healthy adults Use of  vitDS Illumina MiSeq 
technology 

V4 

Luthold, 2017228 
 

150 BR, NutriHS 
Study 

Healthy students, aged 18–40 
years, undergraduate or 
graduate from nutrition colleges 

Dietary  vitD intakes (I: 
1.66–4.95/ II: 4.97–
7.18/ III: 7.56–39.87 
µg/day) 

Illumina MiSeq 
technology 

V4 

Seura, 2017227 
 

28 JP Healthy young women, aged 
20–22 years, normal weight 

Dietary  vitD intakes 
(3.5 ± 2.5 µg/day) 

T-RFLP method NR 

Soltys,2020230 
 

87 SK UC and CD Serum 25(OH)D levels Illumina MiSeq V4 

Thomas, 2020226 
 

567 US Healthy men (community-
dwelling), aged 65 years or older 

vitDS presents in 424 
participants, not 
quantified. 
Measure of 25(OH)D; 
1,25(OH)2D; 
24,25(OH)2D 

Illumina bcl2fastq V4 

Wu,2011225 
 

98 US Healthy volunteers, aged 2 to 50 
years 

Dietary vitD intakes 454/Roche 
pyrosequencing. 
Additional 
metagenomic 
analysis with 
shotgun method 

V1-V2 
 

Observational studies—Case-control 

Weng, 2019231 
 

113 CN Age >18 years and confirmed 
diagnosis of IBD (CD); BMI 
within the normal range and 
have not taken any antibiotics, 
probiotics, prebiotics or yogurt 
within the previous 4 weeks 

Dietary vitD intakes Illumina MiSeq 
System. 
Additional 
metagenomic 
analysis with 
shotgun method 

V4 
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3.3.1 Alpha and beta diversity in relation to vitamin D 

For the assessment of microbial diversity, various metrics were employed across the studies; 

however, the Shannon index and weighted Unifrac distance were most frequently used for 

evaluating alpha and beta diversity, respectively.  

Table 3.2 summarizes, for each study, the main findings on changes in 25(OH)D levels and in alpha 

and beta diversity following vitD supplementation; Table 3.3 summarizes the findings on the 

correlation between dietary vitD intakes or serum 25(OH)D levels and alpha and beta diversity in 

the selected studies.  

Overall, vitD supplementation increased serum levels of 25(OH)D. Regarding alpha diversity, only 7 

studies have found an association with vitD, albeit with inconsistent findings (Table 3.2 and Table 

3.3). Specifically, two interventional studies reported a decline in community richness following vitD 

supplementation215,236. In contrast, Bosman et al. found a significantly lower diversity and richness 

in the non-supplemented group compared to the supplemented. Singh et al. found a significant 

increase in alpha diversity following vitD supplementation, but only in observed OTUs and Chao1 

indices, and not in the Shannon Index, both species richness and evenness. In cohorts of pregnant 

women, both maternal serum 25(OH)D or dietary vitD intake were significantly and inversely 

correlated with infant richness and diversity (Table 3).  

With respect to beta diversity, significant alterations were found after vitD supplementation in 

biopsies of the upper gastrointestinal tract, but not in fecal samples or in lower gastrointestinal 

biopsies (Table 3.2). Some evidence showed significant shifts in bacterial community composition, 

related to both vitD supplementation and serum 25(OH)D levels (Table 3.2 and Table 3.3). 
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Table 3.2. Results of selected studies on alpha and beta diversity with vitamin D supplementation. 

Author, Year Comparison Serum 25(OH) Levels Sample Alpha and Beta Diversity 

Double-blind, randomized controlled trials 

Ciubotaru, 2015220 
 

Serum 25(OH)D: 
quintiles 

Baseline: 14 ± 6 ng/mL 
Post: 36 ± 24 ng/mL 

Stool Alpha diversity: NS 
Beta diversity: significant 
different bacterial 
composition found in Q1 
vs. Q4 of 25(OH)D at genus 
and family levels 

Charoenngam,2020219  Different doses of vitDS Baseline: 16.9 ± 6.0 ng/mL; 20.3 
± 6.3 ng/mL; 18.5 ± 3.5 ng/mL 
Post: 20.0 ± 3.4 ng/mL; 39.0 ± 
8.7 ng/mL; 67.3 ± 3.1 ng/ml 

Stool Alpha diversity: NS 
Beta diversity: NR 

Hjelmsø, 2020218 
 

Different doses of 
prenatal vitDS 

Not reported Infant stool Alpha diversity: NS 
Beta diversity: NS 

Kanhere, 2018217 
 

Supplemented group 
vs placebo group in vit 
D insufficient at 
baseline 

Baseline: vitD suff: 37 ± 6 ng/mL; 
vitD insuff, Pl.: 22 ± 6; vitD insuff, 
suppl.: 25 ± 5 ng/mL 
Post: vitD insuff, Pl.:25 ng/mL; 
vitD insuff, suppl.: 45 ng/ml 

Stool Alpha diversity: NS 
Beta diversity: significantly 
different composition at 
follow-up in the 
supplemented group 
compared to the placebo 

Missailidis, 2019216 
 

Supplemented group 
versus placebo group 

Baseline: NR 
Post: NR 

Mucosal 
gut biopsy 

Alpha diversity: NS 
Beta diversity: NS 

Naderpoor,2019215 
 

Supplemented group 
versus placebo group 

Baseline: vitD group 31.54 ± 4.4 
vs. Pl 31.07 ± 4.1 nmol/L 
Post: vitD group 91.14 ± 25.8 vs. 
Pl 31.58 ± 14.11 nmol/L 

Stool Alpha diversity: significant 
reduction in richness at 
follow-up in the 
supplemented group 
Beta diversity: significant 
difference in composition 
between groups at follow-
up at the genus level 

Sordillo,2016214  
 

Maternal vitDS 
Umbilical cordon 
25(OH)D levels 

Baseline: 22.7 ± 11.9 ng/ml Stool Alpha diversity: NS 
Beta diversity: NR 

Non-randomized interventional trials 

Bashir, 2016239 
 

Post- versus pre-
supplementation 

Baseline: 22.3 ± 13.1 ng/mL 
Post: 55.2 ± 13.3 ng/ml 

Biopsy and 
stool 

Alpha diversity: significant 
increased richness in GA 
Beta diversity: significant 
change in composition only 
in upper GI tract 

Bosman, 2019240 
 

Prior vitD 
supplemented group 
(vitDS+) vs  prior non- 
vitD supplemented 
group (S-) before UVB 
exposure 

Baseline: NR 
Post: NR 

Stool Alpha diversity: vitDS- 
showed significantly lower 
diversity and richness 
before UVB exposure than 
vitDS+ 
Beta diversity: NR 

Cantarel,2015237 
 

Post- versus pre-
supplementation in 
healthy controls and in 
patients with multiple 
sclerosis 

Baseline: 23.2 ± 5.7 ng/mL in the 
HCs; 25.9 ± 4.4 ng/mL in MS 
Post: 59.8 ± 11.7 ng/mL in the 
HCs; 55.6 ± 17.0 ng/mL in MSs 

Stool Alpha diversity:NS 
Beta diversity: NS 

Garg, 2018235 
 

Post versus pre-
supplementation 

Baseline: 34 (range 12–49) 
nmol/L 
Post: 111 (range 71–158) nmol/l 

Stool Alpha diversity: NS 
Beta diversity: NS 

Schäffler, 2018236 
 

Post versus pre-
supplementation in 
healthy controls and in 
patients with CD 

Baseline: in CD 39.7 ± 23 nmol/L, 
in HC 29.6 ± 6.3 nmol/L 
Post: in CD 121.4 ± 43.2 nmol/L, 
in HC 143.0 ± 25.2 nmol/L 

Stool Alpha diversity: In HC, NS; 
in CD taxa significantly 
decreased after vitDS. 
Beta diversity: NS 

Singh, 2020238 
 

Post- versus pre-
supplementation 

Baseline: 11.03 ± 0.51 ng/mL 
Post: 34.37 ± 1.47 ng/mL 

Stool Alpha diversity: Significant 
increase in observed OTUs 
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and Chao1 indices, no 
difference in Shannon 
Index. 
Beta diversity: significant 
difference in composition 
between vs pro 
supplementation 

Tabatabaeizadeh, 
2020241  
 

Post- versus pre-
supplementation 

Baseline: 11 ± 9 ng/mL 
Post: 40 ± 17 ng/mL 

Stool Alpha diversity: NR 
Beta diversity: NR 

Observational studies—Cohort 

Drall, 2020224 
 

Pre vs post maternal 
vitDS and Infant vitDS 

Baseline: NR 
Post: NR 

Stool Alpha diversity: NR 
Beta diversity: NR 

Talsness, 2017221 
 

Comparisons of 3 levels 
of maternal vitDS; 
Infant vitDS vs non-
infant vitDS 

Baseline: 44.3 ± 18.3 nmol/L 
Post: NR 

Stool NR 

25(OH)D—25 hydroxyvitamin D; CD—Crohn’s disease; FDR—false discovery rate; HC—healthy controls; ND-
UVB—narrow-band ultraviolet-B; NR—not reported; NS –not significant; SNPs—single nucleotide polymor-
phisms; Pl—placebo; UC—ulcerative colitis; vitD—vitamin D; VDR—vitamin D receptor; vitDS—vitamin D 
supple-mentation; OTUs: operational taxonomic units. 
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Table 3.3. Results on alpha and beta diversity with vitamin D Intake or Serum 
Concentrations 

Author, year Comparison Serum 25(OH) levels Sample Alfa and beta diversity 

Observational studies—Cohort 

Kassem,2020223 
 

Maternal serum 
25(OH)D levels 
Umbilical cord 
blood 25(OH)D 
levels 

Baseline maternal serum 
25(OH)D: 25.04 
± 11.62 ng/mL 
Baseline umbilical cord 
blood 25(OH)D levels: 
10.88 ± 6.77 ng/mL 

Stool Alpha diversity: Prenatal 25(OH)D level 
significantly associated with decreased 
infant richness and diversity at 1 month; 
cord 25(OH)D level was positively 
associated with infant gut evenness in 
White women and negatively associated 
with infant evenness at 6 months. 
Beta diversity: both prenatal and cord 
25(OH)D were significantly associated with 
1-month composition 

Mandal, 2016222  Dietary maternal 
vitD intakes  

Baseline: Not reported 
Post: Not reported 

 Alpha diversity: vitD intake was 
significantly and inversely associated to 
whole tree phylogenetic and Shannon 
diversity 
Beta diversity: NS 

Observational studies—Cross-sectional 

Jackson, 2018229 
 

Intake of vitD 
supplements: yes 
versus no 

NR Stool Alpha diversity: NS 
Beta diversity: NS 

Luthold, 2017228 
 

Dietary vitD 
intakes: high 
versus low-tertile 
Serum 25(OH)D 
leves: high- 
versus low tertile 

Baseline: 23.9 ± 9.7 
ng/mL 

Stool Alpha diversity: NR 
Beta diversity: NR 

Seura, 2017227 
 

Dietary vitD 
intakes  

Baseline: NR 
 

Stool Alpha diversity: NR 
Beta diversity: NR 

Soltys,2020230 
 

Serum vitD levels 
in patients with 
UC and CD  

Baseline: in 
winter/spring 
25.05 ng/mL and 
summer/autumn period 
37.26 ng/ml 

Biopsy and 
stool 

Alpha diversity: NR  
Beta diversity: NS 

Thomas, 2020226 
 

vitD metabolites 25(OH)D (34.2 ng/mL), 
1,25(OH)2D (56 pg/mL), 
and 24,25(OH)2D (3.2 
ng/mL) 

Stool Alpha diversity: 1,25(OH)2D, active ratio 
and catabolism ratio are positively and 
significantly associated with diversity. 
Beta diversity: 1,25(OH)2D, 24,25(OH)2D, 
activation ratio, catabolism ratio 
significantly define clusters of microbial 
composition  

Wu,2011225  
 

Dietary vitD 
intakes 

Baseline: NR Stool Alpha diversity: NR 
Beta diversity: NR 

Observational studies—Case-control 

Weng, 2019231 
 

Dietary vitD 
intakes in healthy 
controls and 
patients with UC 
and CD 

Baseline: NR Biopsy and 
stool 

Alpha diversity: NR in UC  
Beta diversity: NR 

25(OH)D—25 hydroxyvitamin D; CD—Crohn’s disease; FDR—false discovery rate; HC—healthy controls; ND-
UVB—narrow-band ultraviolet-B; NR—not reported; NS—not significant; SNPs—single nucleotide 
polymorphisms; Pl—placebo; UC—ulcerative colitis; vitD—vitamin D; VDR—vitamin D receptor. 
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3.3.2 Distribution of Taxa at Phylum Level 

Firmicutes and Bacteroidetes were the phyla that increased the most frequently following vitD 

supplementation, followed by Proteobacteria and Actinobacteria. (Figure 3.3). Similar trends were 

observed in relation to vitD dietary intake or serum concentrations levels. Because we found 

contradictory results for Firmicutes, which either increased or decreased in relation to vitD, we 

carried out a more granular inspection at the family level (Figure 3.4). Taxa from Veillonellaceae 

and Oscillospiraceae families decreased more frequently at increasing levels of 25(OH)D or 

following vitD supplementation. For Lachnospiraceae family we did not identify a clear trend in 

relation to vitD, therefore we further investigated the differences at the genus level. We found that 

the genus Blautia mostly decreased after vitD supplementation and at increasing 25(OH)D. 

However, Thomas et al. found a significant positive correlation between the species Blautia obeum, 

a member of the genus Blautia, and the active form of vitD, 1,25(OH)D. The genus Roseburia was 

also inversely correlated with vitD levels, although Singh et al. found a positive correlation in the 

group of non-responders to vitD supplementation (25(OH)D: < 20 ng/mL at follow-up). Conversely, 

Funicanibacter, Lachnospira and Lachnobacterium were significantly more abundant in vitD -

supplemented individuals. 

Conflicting results were found for the genus Coprococcus, which was significantly more abundant 

in the supplemented cohort of untreated Multiple Sclerosis women patients237 and in the subjects 

with a high response to the supplementation (25(OH)D: > 75 ng/mL vs. < 50 ng/mL)216. It correlated 

positively with 1,25(OH)D and the activation ratio in Thomas et al. [42], but was inversely correlated 

with 25(OH)D levels in the healthy cohort by Luthold et al.  
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Figure 3 3 Distribution of taxa at Phylum level 

Figure 3.3. (a) For each phylum, the blue dot indicates the number of significant taxa in the phylum 
that increased with increasing levels of vitD serum levels or dietary intake, over the total number 
of significant taxa that increased with increasing levels of vitD serum levels or dietary intake in the 
non-supplementation group of studies (expressed in percentages); the red dot indicates the 
number of significant taxa in the phylum that decreased with increasing levels of vitD serum levels 
or dietary intake, over the total number of significant taxa that decreased with increasing levels of 
vitD serum levels or dietary intake in the non-supplementation group of studies (expressed in 
percentages). (b) For each phylum, the blue dot indicates the number of significant taxa in the 
phylum taxa that increased after vitD supplementation, over the total number of significant taxa 
that increased after vitD supplementation in the supplementation group of studies (expressed in 
percentages); the red dot indicates the number of significant taxa in the phylum that decreased 
after vitD supplementation, over the total number of significant taxa that decreased after vitD 
supplementation in the supplementation group of studies (expressed in percentages). 
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Figure 3 4 Distribution of families in Firmicutes phylum 

Figure 3.4. (a) mirror bar chart of the number of significant taxa in each family of Firmicutes phylum 
over the total number of significant taxa in each family of Firmicutes phylum found in the non-
supplementation group of studies: for each family, the violet bar indicates the number of significant 
taxa in the family that increased with increasing levels of vitD serum levels or dietary intake, over 
the total number of significant taxa in Firmicutes that increased with increasing levels of vitD serum 
levels or dietary intake (expressed in percentages); the orange bar indicates the number of 
significant taxa in the family that decreased with increasing levels of vitD serum levels or dietary 
intake, over the total number of significant taxa in Firmicutes that decreased with increasing levels 
of vitD serum levels or dietary intake (expressed in percentages); (b) Mirror bar chart of the number 
of significant taxa in each family of Firmicutes over the total number of significant taxa of Firmicutes 
phylum found in the supplementation group of studies: for each family, the violet bar indicates the 
number of significant taxa in the family that increased after vitD supplementation, over the total 
number of significant taxa in Firmicutes that increased after vitD supplementation (expressed in 
percentages); the orange bar indicates the number of significant taxa in the family that decreased 
after vitD supplementation, over the total number of significant taxa in Firmicutes that decreased 
after vitD supplementation (expressed in percentages). 
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3.3.3. Analysis of Phylogenetic Trees of Studies  

In studies involving vitD supplementation and including healthy subjects, Firmicutes, 

Actinobacteria and Bacteroidetes were the most recurrent phyla that either increased or decreased 

following supplementation (Figures S1 and S2). In Firmicutes phylum, several core genera from the 

Lachnospiraceae family, like Lachnospira, Fusicatenibacter and Lachonacterium, increased 

following vitD supplementation. Conversely, two studies reported a decrease in the 

Faecalibacterium genus from the Oscillospiraceae family219,238. Moreover, several genera from the 

Lactobacillales order, such as Lactococcus and Lactobacillus, were found to decrease after vitD 

supplementation, except for Enterococcus, which increased in the female cohort of adolescents by 

Tabatabaeizadeh et al. 

Increasing abundances were also found in Actinobacteria phylum, in particular in the 

Bifidobacterium genus, and in other genera from Bacteroidetes, such as Bacteroides, 

Parabacteroides and Alistipes. 

In the group of studies not involving vitD supplementation and including healthy subjects 

(Figures S3 and S4), the associations between microbial taxa and vitD serum levels or dietary intake 

were investigated. In Veillonella (Firmicutes phylum) and Haemophilus (Proteobacteria phylum) 

were found to be significantly more abundant in the lowest compared to the highest tertile of both 

vitD intake and serum 25(OH)D levels228. Coprococcus (Firmicutes phylum) and Bifidobacterium 

(Actinobacteria) genera were also found to be inversely correlated with 25(OH)D levels, even after 

adjustment for confounders. On the other hand, the Megasphera genus from the Negativicutes 

order (Firmicutes phylum) was significantly more abundant in the highest tertile of 25(OH)D levels 

compared to the lowest228. In the community-dwelling older-men cohort by Thomas et al., they 

observed a significant positive correlation between Coprococcus catus and Blautia Obeum species 

(Firmicutes phylum; Clostridia class) and the active form of vitD, 1,25(OH)2D. Moroever, they found 

a positive correlation between the Eubacteriales order, Ruminococcaceae, Lachnospiraceae, 

Victivallaceae families, Coprococcus and Mogibacterium genera, and the ratio of active vitD. 

Conversely, Blautia and Oscillospira, belonging to the Firmicutes phylum and Clostridia class, were 

significantly and negatively associated with both 1,25OH2D levels and the vitD active ratio 

(1,25OH2D/25(OH)D). 

In Tables S2–S7, we provided the phylogenetic reconstruction of the taxa that significantly 

decreased or increased after vitD supplementation, whereas in Tables S8-S11 we provided the 

phylogenetic reconstruction of the taxa that were significantly and positively or negatively 

correlated with either vitD serum levels or dietary intake. The tables were stratified according to 

health status of the enrolled populations and type of microbiome samples.  

One of the five RCTs included in the review showed a dose-response effect of vitD supplementation 

on microbiota composition, with increased abundances of Bacteroides and Parabacteroides in the 
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supplemented group219. In overweight or obese patients, a first loading dose of cholecalciferol 

(100,000 UI) followed by 4000 UI/day was significantly associated with a higher abundance of the 

genus Lachnospira and with a lower abundance of the genus Blautia215. 

In Singh et al, the changes in the microbiota following vitD supplementation occurred only in the 

superior gastro-intestinal tract and were detected in biopsies but not in fecal samples. On the other 

hand, Bosman et al. showed significant results only after the exposure to narrow-band ultraviolet 

B light, especially for the vitD -deficient group. 

Prenatal higher doses of vitD were also associated with significant changes in infant microbial 

composition, resulting in decreased abundances of Bilophila and Lacnospiraceae. Conversely, infant 

vitD supplementation did not show a significant effect on gut microbiota, except for the lower 

abundance of the genus Megamonas, as reported by Drall et al. Talsness et al. found that 

Bifidobacterium abundance was inversely related to higher levels of maternal 25(OH)D. 

Significant changes in microbiota in relation to vitD frequently occurred in IBD patients. One 

interventional non-randomized trial236 showed a significant increase of Firmicutes following vitD 

supplementation in patients with CD, whereas no significant change was observed in the healthy 

controls. A positive correlation between Firmicutes and dietary vitD intakes in CD was also found in 

a case-control study231. In UC patients, Enterobacteriaceae were found to significantly increase 

following vitD supplementation, while the Desulfovibrio genus increased at increasing levels of vitD 

intakes. Both taxa belong to the Proteobacteria phylum. 

Among the included studies, three did not find any association between vitD and gut microbiota. 

One study was a RCT216 including HIV patients and involving vitD supplementation for 16 weeks with 

a dose of 5000 UI/day. The second was a cross-sectional study227 of young Japanese women, where 

the association between vitD dietary intake and gut microbiota was investigated. The last one was 

a large UK twins cohort study229, where the authors did not find any significant association between 

self-reported use of vitD supplements and change in gut microbiota. 
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4. RANDOMIZED PHASE II TRIAL ON VITAMIN SUPPLEMENTATION 

4.1 Rationale of the study 

The final step in our research was to design a phase II randomized placebo-controlled trial to 

evaluate whether VitD supplementation and changes in serum levels of 25(OH)D could determine 

a microbial composition modification in CRC survivors. We enrolled patients with resected stage I 

and III CRC after surgery, and completion of the adjuvant therapy if occurred. Participants were 

randomly assigned to 2000 IU/day versus placebo and treated for 1 year. For each patient, we 

collected data on gut microbiome, diet and lifestyle, circulating markers at both baseline and at the 

end of the treatment. For a subgroup of patient, we also had the gene expression (GE) profiling of 

a set of 395 immuno-related genes evaluated in the tumor tissue. 

The primary endpoint of the study was to assess if vitD supplementation modulated the microbial 

composition of patients, whereas secondary analysed focused on the analysis of the interplay 

between the investigated factors to understand if and how they affected both gut microbiome and 

CRC progression. 

All the steps undertaken in the trial have been comprehensively summarized in Figure 4.1. 

 

 

 

Figure 4 1 Graphical representation of the trial 

Figure 4.1. Graphical representation of the steps undertaken in the trial, detailing the samples and 
data collections at the various time points throughout the research process. 
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 4.2 Study design and participants 

We designed a randomized double-blind placebo controlled phase II trial to evaluate whether vitD 

supplementation (and changes in serum 25(OH)D levels) affect the composition of gut microbiome.  

We enrolled 74 patients with resected stage I-III CRC after surgery, undergoing or not 

chemotherapy and/or radiotherapy, randomly assigned to either vitamin D3 2000 IU a day or 

placebo for 1 year with allocation 1:1. Stratification was made for chemotherapy (adjuvant or 

neoadjuvant) or not.  

The Istituto Europeo di Oncologia institutional review board approved the study with the number 

IEO 223 and Eudract number 2015-000467-14. 

 

Inclusion criteria were: 

- Patients with resected stage I-III CRC in the last 24 months. 

- Aged 35-75 years old. 

- Signed informed Consent according to the International Committee on Harmonization of 

Good Clinical Practice (ICH-GCP) guidelines. 

- Willingness to provide stool, blood samples and rectal mucosa biopsies.  

- Performance Status of 0-1 (ECOG). 

- Hematopoietic hepatic, renal functionality and serum calcium lower then grade 2 base on 

the common terminology criteria. 

 

Exclusion criteria were: 

- History of cancer in the prior five years (other than cervical intraepithelial neoplasia and 

non-melanoma skin cancer).  

- Carrier of a pathogenic mutation for the main syndrome for CRC (FAP, Lynch, other). 

- Clinical/radiological evidence or laboratory/pathology report of residual neoplasia or 

recurrence. 

- Vitamin D level ≥ 30 ng/ml (external exams). 

- Current daily supplementation of vitamin D (e.g. calcium citrate with vitamin D). 

- History of recurrent renal calculi.  

- History of malabsorption syndrome (e.g., pancreatic insufficiency, celiac disease, Crohn 

disease, any chronic IBD). 

- Chronic liver disease and/or renal disease with altered biochemical functions, or renal 

dialysis. 

- Pregnancy or breast feeding or planning on becoming pregnant during the study. 

- Known chronic alcoholism.  

- Known hypersensitivity to vitamin D. 
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- Any medical condition that in the physician’s opinion would potentially interfere with the 

subjects’ health. 

To avoid any effect of tumour treatment on the composition of the microbiome, a wash-out period 

of 4-6 months after surgery was planned for each patient enrolled before baseline visit. 

During the baseline visit, full medical history was collected, along with anthropometric 

measurements, blood and stool samples and information on smoking habits and any concurrent 

medications. A self-administered food frequency questionnaire was also administered 

(Supplementary Table 1). 

The therapy boxes of vitD and matching placebo were prepared by the pharmacists at the European 

Institute of Oncology. VitD3 was in an oily solution and the placebo was made to be visually identical 

to the active formulation. A six-month supply was provided to the participant at baseline visit. 

After 3 months, a phone call was made to check safety and compliance. At 6-month visit, safety, 

clinical examination and concomitant medications were assessed, and the new 6-month drug 

supply was provided. At 12-month final visit, safety, clinical examination, concomitant medications 

and all biological samples were collected. 

Compliance was assessed though a self-reported diary collected at each visit and graded according 

to the level of adherence (1=83-100%, 2= 66-82%, 3=25-65%, 4=25%, 5=none). A patient was 

considered compliant if their level of adherence was of grade 1 or 2 at all times. Since we did not 

measure the returned leftover agent, 25(OH)D measurements were considered as an additional 

compliance control. 

Targeted gene expression profiling was also conducted on the tumour tissue of participants using 

the RNA-based Next Generation Sequencing (NGS) panel Oncomine Immune Response Research 

Assay (OIRRA) (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer's 

instructions. This assay allows for the simultaneous evaluation of expression of 395 immune-related 

genes. However, data from this analysis was only available for 46 patients, resulting in a total of 48 

profiles. Notably, two patients had the analysis performed on two tumour samples because of 

different characteristics of the tumour in the two (i.e. different infiltration level of the neoplasia). 
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4.3 Materials and methods 

4.3.1 Sampling of biological specimens 

Morning fasting samples of whole etheylenediaminetetraacetic acid (EDTA)-treated blood and 

serum were collected at baseline and after 12 months following storage at -80°C until biomarker 

measurement. 

Freshly voided stool samples were collected at both timepoints. The stool sample was collected in 

a tube, stored at -20°C and then transported to the laboratory in a plastic bag containing an ice 

pack. Upon arrival to the laboratory, each sample was immediately frozen at -80°C. 

Serum 25(OH)D concentrations were determined by a commercially available chemiluminescent 

immune assay (Immunodiagnostic Systems, Pantec S.r.l., Turin, Italy). This method recognizes both 

metabolites of vitD (D2-D3). Concentrations of adiponectin, leptin, IL-10, IL-6 TNF-α were 

determined using an ELISA kit, whereas concentrations of CCL2/MCP1, CD27, CD40 Ligand, 

CXCL6/GCP-2, Galectin-3, IL-8/CXCL8, CD40, CXCL2/GROβ, Galectin-1, Galectin-9, IL-7 and B7-

H1/PD-L1 were obtained using the Immuno-Oncology Checkpoint LXSAHM-31 kit by R&D Systems. 

 

4.3.2 Microbiome Analyses 

For metagenomic analysis, genomic bacterial DNA was isolated from feces of patients using 

G'NOME isolation kit (MP Biomedicals) following a published protocol242. Whole metagenome 

shotgun sequencing175 was applied on the DNA samples. Metagenomic libraries were generated 

with a Nextera XT DNA Sample Prep Kit (Illumina, San Diego, CA, USA) and sequencing was carried 

out on the HiSeq2500 platform (Illumina) at a targeted depth of 5.0 Gb (100-bp paired end reads). 

DNA sequences were aligned to a curated database containing all representative genomes in 

RefSeq243 for bacteria with additional manually curated strains. Alignments were made at 97% 

identity against all reference genomes. Every input sequence was compared to every reference 

sequence in the CoreBiome Venti database using fully gapped alignment with BURST244 . Ties were 

broken by minimizing the overall number of unique Operational Taxonomic Units (OTUs). For 

taxonomy assignment, each input sequence was assigned the lowest common ancestor that was 

consistent across at least 80% of all reference sequences tied for best hit. The number of counts for 

each OTU was normalized to the OTU's genome length. OTUs accounting for less than one millionth 

of all species-level markers and those with less than 0.01% of their unique genome regions covered 

(and < 1% of the whole genome) were discarded. Samples with fewer than 10,000 sequences were 

also discarded. Count data was converted to relative abundance for each sample. The normalized 

and filtered table was used for all downstream analyses. 
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4.3.4 Pathway Analyses 

To analyze the gut microbiome, we applied bioBakery tools245 on whole shotgun metagenomic data 

of stool samples. To quantify the relative abundance of microbial species, we carried out MetaPhlAn 

3 pipeline246  on raw reads. MetaPhlAn profiles the microbial community with 1.1 million microbial 

protein-coding gene markers (circa 50-400 marker genes for each bacterial species). The relative 

abundances of microbial pathways and functional potentials were computed utilizing the HUMAnN 

3246. HUMAnN provides the contribution of each species to the gene families and pathways. 

 

4.3.5 Targeted next-generation sequencing gene expression analysis 

Gene expression analysis was performed using the RNA-based NGS panel Oncomine Immune 

Response Research Assay (OIRRA) (Thermo Fisher Scientific, Waltham, MA, USA) following the 

manufacturer's instructions. This assay enables the simultaneous evaluation of the expression of 

395 immune-related genes, including subgroups of leukocytes, antigen presentation, checkpoint 

pathways and tumor progression including low-expression genes involved in inflammatory 

signaling. Briefly, 25ng of RNA was used for the library preparation and the subsequent chip loading, 

both automatically performed on the Ion Chef System (ThermoFisher Scientific, Waltham, MA, 

USA). The sequencing run was done on Ion S5 System (ThermoFisher Scientific, Waltham, MA, USA) 

and genes expression data were obtained using the TorrentSuite ImmuneResponseRNA plugin 

software (ThermoFisher Scientific, Waltham, MA, USA).  

Tissue specimens were available for 62 patients, resulting in a total of 64 tumor samples. Out of 

these, 48 samples met the quality criteria set for the sequencing run (mapped reads> 1000000; 

valid reads> 80000). Ultimately, gene expression data was available for 46 patients. For two of these 

patients, the analysis was performed on two distinct tumour samples due to differences in tumour 

characteristics in the two samples, such as varying levels of neoplastic infiltration. 
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4.4 Statistical methods  

Demographic and clinical characteristics of the enrolled population were summarized by treatment 

arm using median and interquartile range for numerical variables and absolute frequencies and 

percentages for categorical variables. Wilcoxon rank-sum test and Chi-square test (or Fisher exact 

test, when appropriate) were used to test differences between treatment arms. Changes in 

25(OH)D concentrations between the two timepoints were tested within each arm using Wilcoxon 

signed-rank test. 

4.4.1 The challenge of compositional data analysis (CoDA) 

High-throughput sequencing technologies, such as 16S rRNA gene sequencing or metagenomic 

sequencing, have revolutionized the field of microbiome research, providing unprecedented 

insights into microbial diversity, function, and their roles in health and disease. 

However, the multitude of data that these technologies produce comes with its own set of 

challenges, especially in the realm of data analysis. 

These technologies generate a number of sequence reads for each sample, which are then mapped 

to known microbial taxa. The number of reads corresponding to each taxon is counted, but these 

counts are constrained by the total number of reads generated, which can vary between samples 

and sequencing runs. Given this constraint to the arbitrary total sum of reads, the raw read counts 

are often normalized to their relative abundances within each sample247. 

This means that the count of each taxon is divided by the total counts for all taxa in that sample, 

converting them into proportions that sum to 1 or any other constant or percentages that sum to 

100%. This normalization process allows for the comparison of microbial communities across 

different samples and conditions, even when the total number of sequence reads varies across 

samples. While relative abundances facilitate comparisons, it is important to recognize that they 

are compositional data.  

In a compositional dataset, the value of each component (in this case, each microbial taxon) is 

inherently dependent on the values of all other components. For example, an increase in the 

relative abundance of one taxon will necessarily result in a decrease in the relative abundance of 

one or more other taxa, even if their absolute abundances remain constant (Figure 4.2).  
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Figure 4 2 Sequencing data are compositional 

Figure 4.2. Adapted with permission from Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 
Microbiome Datasets Are Compositional: And This Is Not Optional. Front Microbiol. 2017 Nov 
15;8:2224. doi: 10.3389/fmicb.2017.02224248.  
High-throughput sequencing data are compositional. (A) illustrates that the data observed after 
sequencing a set of nucleic acids from a bacterial population cannot inform on the absolute 
abundance of molecules. The number of counts in a high throughput sequencing (HTS) dataset 
reflect the proportion of counts per feature (OTU, gene, etc.) per sample, multiplied by the 
sequencing depth. Therefore, only the relative abundances are available. The bar plots in (B) show 
the difference between the count of molecules and the proportion of molecules for two features, 
A (red) and B (gray) in three samples. The top bar graphs show the total counts for three samples, 
and the height of the color illustrates the total count of the feature. When the three samples are 
sequenced we lose the absolute count information and only have relative abundances, proportions, 
or “normalized counts” as shown in the bottom bar graph. Note that features A and B in samples 2 
and 3 appear with the same relative abundances, even though the counts in the environment are 
different. The table below in (C) shows real and perceived changes for each sample if we transition 
from one sample to another. 

 

This interdependence among parts – defined compositional dependence - violates the assumptions 

of independence that underlie most of the traditional statistical methods, necessitating the use of 

specialized techniques for compositional data analysis249,250. Additionally, the constrained nature of 

these data to a constant sum challenges other key assumptions of classical statistical 
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methodologies, specifically normality and homoscedasticity, as the data is bounded and not free to 

vary across the entire real number line251.  

The geometric implications of these violations are profound and can lead to misleading results and 

incorrect interpretations.  

4.4.1.1 CoDA: the simplex space and properties of compositional data 

By definition, compositional data are non-negative multivariate data, which carry only relative 

information. They usually have a constant-sum constraint, which implies a composition. The 

components of a composition are called parts, which are always positive and add up to the total252.  

Unlike most data types that are naturally located in an unconstrained real space, compositional 

parts are projected into a constrained geometric space known as the simplex space253 𝕊: 

𝕊𝐷 = {𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] ∈ ℝ+
𝐷: ∑ 𝑥𝑖 = 𝑘𝐷

𝑖=1 },    𝑘 > 0  

where 𝐱 is the composition, 𝑥𝑖, 𝑖 = 1, … , 𝐷 are the parts of the composition,  𝐷 is the number of 

parts and 𝑘 is the positive closure constant. (Figure 4.3) 

 

 

Figure 4 3 Three dimensional real and simplex space of compositional data 

Figure 4.3. Graphical representation of compositional data in: A. a three-dimensional real space; B. 
three-dimensional simplex space (ternary diagram). The figure was adapted from the notebook in 
Compositional Analysis of Data with CoDaPack provided by the CoDa-Research Group during the 
10th Course and Open Seminar on Compositional Data Analysis held in Girona (Spain) in July 3-7, 
2023. 
 

 

The three fundamental properties of compositional data are254:  

- Scale invariance: the results of the analysis should not depend on the scale or unit of 

measurement, as proportional positive parts carry the same information in terms of 

compositions (compositional equivalence). 
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- Permutation invariance: the order of parts is not relevant for the analysis. 

- Subcompositional coherence: the analysis of subcompositions after closure is not in 

contradiction with that obtained from the full composition. 

4.4.1.2 The log-ratio approach and data transformation 

The properties just described imply that the classical statistical methodologies are inadequate for 

the analysis of compositional data, especially the methods based on the covariance or correlation 

matrix of the observations.  

Pearson was the first to address this problem in 1897, when he pointed out the risk of obtaining 

spurious correlations in case of ratios whose numerators and denominators have common parts255. 

However, it was John Aitchison who, in the eighties, introduced the definition of “compositional 

data" for this kind of data and proposed a log-ratio approach to address these challenges252.  

He underlined that the key information in constrained data does not reside in the absolute values 

of the parts but rather in their ratios. This is because the ratio between any two parts remains 

constant, regardless of the other parts included in the composition and the constraint of closure 

(for the property of subcompositional coherence)253.  

However, ratios operate on a multiplicative scale, which can be difficult to handle. The log-ratio 

approach addresses this by applying a logarithmic transformation to the ratios, thereby converting 

the data to an additive scale.  

The simplest form of log-ratio function, which guarantees scale invariance, is the logarithmic 

transformation of a ratio between two parts of a composition: 

ln (
𝑥𝑖

𝑥𝑗
)          𝒙 ∈ 𝕊𝐷 

A generalization of the log-ratio transformation is the log-contrast function 

∑ 𝑎𝑖 ln  𝑥𝑖 = ln(∏ 𝑥𝑖
𝑎𝑖𝐷

𝑖=1 )𝐷
𝑖=1       with   ∑ 𝑎𝑖

𝐷
𝑖=1 = 0 

which is the linear combination of the logarithm of the parts with the coefficients 𝑎𝑖. The restriction   

∑ 𝑎𝑖
𝐷
𝑖=1 = 0 guarantees scale invariance. 

Several transformations have been proposed to shift compositional data from the simplex space to 

the real space, allowing the application of many of the conventional statistical methodologies. 

 

Given 𝒙 = [𝑥1 + 𝑥2 + ⋯ + 𝑥𝐷] a composition of 𝕊𝐷, the three main transformations based on the 

log-ratio approach are256: 

- The additive log-ratio (alr) transformation 

𝑎𝑙𝑟𝒙 = [ln
𝑥1

𝑥𝐷
, ln

𝑥2

𝑥𝐷
, … , ln

𝑥𝐷−1

𝑥𝐷
] ∈ ℝ𝐷−1 
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In this transformation, one part of the composition 𝑥𝐷 is chosen as a reference, and the ratios of all 

other components to this reference part are calculated. The natural logarithm of these ratios is then 

calculated to convert the data into an additive scale. This transformation results in a (𝐷 − 1)-

dimensional real vector, reducing the dimensionality of the original compositional data by one. 

Although the alr transformation is dependent on the choice of the reference part 𝑥𝐷, it has been 

shown that this choice does not affect the resulting inference257. However, this transformation is 

not an isotropy, meaning that the results obtained from statistical methods based on distances 

between alr vectors are not the same that would be obtained on the compositional distances in the 

simplex. For this reason, this transformation is not recommended for statistical analysis. 

 

- The centered log-ratio (clr) transformation 

 

𝑐𝑙𝑟𝒙 = [ln
𝑥1

𝑔(𝒙)
, ln

𝑥2

𝑔(𝒙)
, … , ln

𝑥𝐷

𝑔(𝒙)
] ∈ ℝ𝐷 

where 𝑔(𝒙) = (∏ 𝑥𝑖
𝐷
𝑖=1 )

1
𝐷⁄

 is the geometric mean of x and 𝑐𝑙𝑟𝒙 is a constrained vector of ℝ𝐷 so 

that ∑ 𝑐𝑙𝑟𝑖𝒙 = 0𝐷
𝑖=1 . 

This transformation returns a 𝐷-dimensional real vector, with the inherent constraint of the 

components summing to zero.  Consequently, the covariance matrix of the clr-transformed data is 

singular and the Pearson correlation coefficients 𝑐𝑜𝑟𝑟(𝑥𝑖,𝑥𝑗),   𝑖, 𝑗 = 1, … , 𝐷 are non-informative.  

Despite these drawbacks, the clr transformation is an isometry that preserves the compositional 

distances in the simplex space (see The geometry of the simplex space258). This property allows for 

the use of various standard statistical methodologies - especially those focused on clustering - in 

the transformed space, without altering the relationships between data points in the simplex. 

Additionally, it facilitates straightforward interpretation of results. For these reasons, we employed 

the clr transformation for our analysis of microbiome and gene expression data. 

 

- The isometric log-ratio (ilr) transformation259 

Similarly to the clr transformation, the ilr transformation is an isometry which preserves the 

geometry of the original compositional data into an unconstrained Euclidean space.  

It is defined by creating 𝐷 − 1 orthonormal (olr) coordinates – called balances - that capture the 

relationships between parts of the composition. One of the most employed methods to calculate 

olr coordinates is Sequential Binary Partition (SBP). SBP is a hierarchical binary partitioning of the 

components of a composition which, at each level of the hierarchy, splits the components into two 
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groups, and the geometric means of these groups are used to compute a set of coordinates. This 

hierarchical splitting continues until no more splitting is possible. 

Mathematically, the ILR transformation can be expressed as follows: 

𝑖𝑙𝑟(𝒙) = [𝑧1, 𝑧2, … , 𝑧𝐷−1] ∈ ℝ𝐷−1 

Each 𝑧𝑗  is calculated based on the SBP and is defined as: 

𝑧𝑗 = √
𝑛𝑗. 𝑑𝑗

𝑛𝑗 + 𝑑𝑗
ln

(𝑥𝑘1
… 𝑥𝑘𝑛𝑗

)
1

𝑛𝑗⁄

(𝑥𝑙1
… 𝑥𝑙𝑑𝑗

)
1

𝑑𝑗
⁄

 

where 𝑛𝑗 is the number of parts in the numerator coded as +1 in the sign matrix, 𝑑𝑗 is the number 

of parts in the denominator coded as -1 in the sign matrix.  

𝑘1, … , 𝑘𝑛𝑗
 are the labels of the parts in the numerator and 𝑙1, … , 𝑙𝑑𝑗

are the labels of the parts in the 

denominator. 

Although the ilr transformation is mathematically convenient and facilitates robust statistical 

analysis, the interpretation of results post-transformation can be very challenging. The creation of 

orthonormal coordinates based on SBP of the components usually leads to new transformed data 

that is difficult to relate back to the original components, especially in the case of high-dimensional 

datasets, like in microbiome studies. For this reason, we decided not to use this transformation in 

our study. 

 

4.4.1.3 The geometry of the simplex space 

The simplex space is a constrained geometric space where each point represents a composition. 

The geometry of the simplex is inherently different from Euclidean geometry due to the constant 

sum constraint. The concept of "distance" in the simplex space is not straightforward and requires 

a specialized metric, one of which is the Aitchison distance258. 

The Aitchison distance is a metric specifically designed for measuring the dissimilarity between two 

compositions in the simplex space and is usually denoted as 𝑑𝑎. Named after John Aitchison, this 

distance metric is based on the log-ratios of the components of the compositions being compared. 

Mathematically, the Aitchison distance 𝑑𝑎 between two compositions 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] and 𝐲 =

[𝑦1, 𝑦2, … , 𝑦𝐷] is defined as: 

𝑑𝑎(𝐱, 𝐲) = √
1

𝐷
∑

𝐷−1

𝑖=1

∑ (ln
𝑥𝑖

𝑥𝑗
− ln

𝑦𝑖

𝑦𝑗
)

2𝐷

𝑗=𝑖+1

= √
1

𝐷
∑ (ln

𝑥𝑖

𝑔(𝐱)
− ln

𝑦𝑖

𝑔(𝐲)
)

2
𝐷

𝑖=1
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where 𝐷 is the number of parts in 𝐱 and 𝒚, 𝑔(𝐱) and 𝑔(𝐲) are the geometric means of 𝐱 and 𝒚, 

respectively.  

The equation below shows that the Aitchison distance between two compositions is equal to the 

Euclidean distance between the clr-transformed compositions: 

𝑑𝑎(𝐱, 𝐲) = 𝑑(𝑐𝑙𝑟𝐱, 𝑐𝑙𝑟𝐲) = √∑(𝑐𝑙𝑟𝑖𝐱 − 𝑐𝑙𝑟𝑖 𝐲)2

𝐷

𝑖=1

 

where 𝑑 is the Euclidean distance. For this reason, the 𝑐𝑙𝑟 transformation is an isometry. 

Aitchison distance has scale invariance, permutation invariance and subcompositional dominance, 

making it a robust and reliable metric for statistical analysis260. 

 

 

4.4.1.4 Perturbation and power operations in the simplex 

Because of the sum-constraint of compositional data, the simplex space has its own set of 

operations, which are different from those in the Euclidian space. 

Let 𝐱 and 𝐲 be compositions in 𝕊𝐷, 𝑎 ∈ ℝ and 𝐶 the closuring function: 

- Perturbation of 𝐱 by 𝐲 

𝐱 ⊕ 𝐲 = C[x1y1, x2y2, … , xDyD] 

Perturbation in the simplex space is equivalent of vector addition in Euclidean space. Given two 

compositions 𝐱 and 𝐲, their perturbation is obtained through element-wise multiplication of the 

components, followed by closure. 

- Perturbation difference between 𝐱 and 𝐲 

𝐱 ⊖ 𝐲 = 𝐶[𝑥1/𝑦1, 𝑥2/𝑦2, … , 𝑥𝐷/𝑦𝐷] 

Perturbation difference is the inverse of the perturbation operation and corresponds to vector 

subtraction in Euclidian space. The perturbation difference between 𝐱 and 𝒚 quantifies the 

difference between the two compositions in the simplex and is obtained through element-wise 

division of each component of 𝐱 by each component of 𝐲, followed by closure. 

- Powering of 𝐱 by 𝑎 

a ⊖ 𝐱 = 𝐶[𝑥1
𝑎 , 𝑥2

𝑎, … , 𝑥𝐷
𝑎] 

Powering in the simplex corresponds to scalar multiplication in Euclidian space. Given a composition 

𝐱 and a real number  𝑎, the power transformation is obtained by raising each part of 𝐱 to the power 

𝑎, followed by closure. 
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In our study, we employed perturbation difference to evaluate changes in the microbiome following 

the 1-year treatment. Specifically, we calculated:   

𝒙𝑩 ⊖ 𝒙𝑨 = 𝐶[𝑥𝐵1
/𝑥𝐴1

, 𝑥𝐵2
/𝑥𝐴2

, … , 𝑥𝐵𝐷
/𝑥𝐴𝐷

] 

where 𝐶 is the closuring function, 𝐷 is the number of taxa, 𝒙𝑨 is the composition of the microbiome 

at baseline and 𝒙𝑩 is the composition of the microbiome at follow-up. 

After closuring, we applied the clr transformation for statistical analysis. 

 

4.4.1.5 The handling of zeros in CoDA 

One of the main hurdles in CoDA is managing zeros. This is because log-ratio approaches require 

logarithmic transformations, which are not defined for zeros.  

Zeros in a composition can exist for various reasons, and they can be categorized as follows261,262:  

- essential or structural zeros, which are real zeros indicating the absence of a specific part. 

Replacing these zeros with small values is not appropriate. 

- count zeros,  which can be present in discrete parts and are common in studies that involve 

counting, like those using data from high-throughput sequencing technologies. In such 

cases, Bayesian-multiplicative (BM) replacement methods are appropriate for imputation 

of zeros. These methods treat compositions as probability vectors in a multinomial model 

and replace zeros with small values263. 

- rounded zeros, which occur in continuous components and are typically small numbers that 

have been rounded to zero. This rounding usually happens because they fell below the 

maximum round-off error or below the detection limit (DL) of the instrument. In this case, 

zeros could be replaced using parametric/non-parametric and univariate/multivariate 

algorithms263. 

In our study, because we only had data on relative abundances for the gut microbiome, we assumed 

that the zeros were rounded.  For zeros imputation, we employed the non-parametric multiplicative 

simple imputation method of left-censored data, using the smallest relative abundance observed 

across all samples as DL. Conversely, for the Gene Expression (GE) data, we had information on 

absolute read counts. As a result, we employed the BM replacement method for zero imputation. 

Both replacement methods were employed using the ‘zCompositions’ package in R264. 
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4.4.1.6 Taxa selection with coda-lasso 

We selected the taxa whose abundances were significantly associated with vitD supplementation 

using the coda-lasso (Compositional Data Analysis with Least Absolute Shrinkage and Selection 

Operator) model. 

The coda-lasso is a method based on penalized regression designed for variable selection that 

acknowledges the compositional but also multivariate structure of the microbiome data265. The 

LASSO regularization employed in this model accounts for the sparsity and the high-dimensionality 

of the data by imposing a penalty term on the regression coefficients, shrinking them to zero.  

As shown by the authors, the coda-lasso uses penalized regression with log-constraints to overcome 

the limitations of the centered log-ratio transformation (clr) in variable selection, which are due to 

its lack of subcompositional consistency. 

In mathematical terms, the log-constrained model with penalization is defined as following: 

 

𝑦𝑖 = 𝛽0 + 𝛽1 log(𝑥1𝑖) + ⋯ + 𝛽𝑘 log(𝑥𝑘𝑖) + 𝜀𝑖  

 

where 𝒙𝑖 = (𝑥1𝑖, … , 𝑥𝑘𝑖) is the composition of 𝑘 taxa in sample 𝑖 and  𝑥𝑘𝑖 is the relative abundance 

of taxa 𝑘  

with constraint ∑ 𝛽𝑗 = 0𝑗≥1 , where the regression coefficients 𝛽 = (𝛽0, … , 𝛽𝑘) are estimated to 

minimize 

∑ (𝑦𝑖 − 𝛽0 − 𝛽1 log(𝑥1𝑖) − ⋯ − 𝛽𝑘 log(𝑥𝑘𝑖))2𝑛
𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑗≥1       subject to ∑ 𝛽𝑗𝑗≥1 = 0 

 

This linear regression model thus establishes a relationship between log-transformed covariates 

and the outcome variable through a log-contrast function, which implies that the regression 

coefficients, with the exception of the intercept, are subject to a zero-sum constraint. This 

constraint serves to grant the principle of scale invariance. This model is then extended to 

incorporate a penalized term in the loss function for taxa selection and can be easily adapted to 

generalized linear models, including the logistic model that was implemented in our analysis. 

In our study, we used the coda-lasso function available in R at https://github.com/UVic-

omics/CoDA-Penalized-Regression, employing logistic regression and including vitD 

supplementation as outcome.  

We selected the taxa that were significantly different at follow-up between vitD supplemented and 

non-supplemented patients, and repeated the analysis including baseline relative abundances to 

exclude from the set of selected taxa those that were already differently abundant at baseline. 

In each coda-lasso model, we chose as optimal penalization term λ the one that provided the largest 

proportion of explained deviance without returning any warnings related to model convergence 

and overfitting. 

https://github.com/UVic-omics/CoDA-Penalized-Regression
https://github.com/UVic-omics/CoDA-Penalized-Regression
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4.4.1.7 Principal Component Analysis in Aitchison geometry 

To account for the compositionality of the microbiome data, we used the clr transformation on taxa 

relative abundances because of its isometric properties (see The log-ratio approach and data 

transformation). Zero values were imputed using the non-parametric multiplicative imputation 

method of left-censored data, using the smallest relative abundance observed across all samples as 

DL264.  We conducted a Principal Component Analysis (PCA) based on the covariance matrix, 

including the clr-transformed abundances of selected taxa during the follow-up period (Aitchison 

distance). Graphical representations, including scaled scores of the first two components and their 

corresponding biplots, were generated to identify patient clusters and examine the influence of 

each taxon on the component definition. If a component was deemed relevant to our study, the 

weight of each taxon was quantified using its loading value. A higher absolute value of the loading 

indicated a stronger correlation between the taxon and the component. Specifically, a positive 

loading value indicates a positive correlation, while a negative loading indicates an inverse 

correlation between the taxon and the component. 

Significant associations between the selected clr-transformed taxa abundances and vitD 

supplementation/sufficiency were estimated through multivariable logistic regression models, 

adjusting for significant confounders. Interactions between the microbiome and sex/gender on 

25(OH)D levels  were also investigated in multivariable regression models. 

For the functional analysis, we analyzed the abundances of pathways at the community level. 

Absolute counts were normalized with the counts per million (CPM) method. Only the pathways 

that where present in at least 10% of the patients at the end of the treatment were considered for 

the analysis. 

Imputation of zeros, pathways selection and analysis, were carried out using the same 

methodologies described for taxonomic data. 

 

4.4.2 Methods for alpha and beta diversity calculation 

Alpha and beta diversity are two fundamental concepts in the context of microbiome studies.  

Alpha diversity is a measure that quantifies the microbial diversity within individual samples. It 

provides insights into the richness and the evenness of the species within a sample. Specifically: 

- The species richness is the number of species (or OTUs) present in a given sample, without 

accounting for their abundances. 

- The evenness measures how similar the abundances of different species (or OTUs) are 

within a community. If the species in a sample are equally abundant, then evenness is 

maximum. Conversely, if one or a few species dominate on the others, evenness is low. 
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In the literature, there are several indices to quantify alpha diversity, which focus on different 

aspects of diversity. In our study, we used the Shannon Index, which combines richness and 

evenness into a single value, considering both the number of species and their abundance. Higher 

values of Shannon Index indicate greater diversity. We calculated the Shannon Index at baseline 

and post-treatment. Correlations and associations with the indices were calculated using non-

parametric tests, such as Wilcox rank-sum test, or univariable/multivariable regressions models. 

While alpha diversity focuses on the diversity within a single sample, beta diversity evaluates the 

differences between multiple groups of samples. Beta diversity is therefore very important for 

understanding how factors such as a disease or environmental conditions affect the composition of 

microbial communities.  

There are various metrics used to quantify beta diversity, such as the Jaccard Index, which measures 

the proportion of shared species between two samples, Bray-Curtis dissimilarity, which considers 

both the presence/absence and the abundance of species, and the UniFrac Distance, which 

incorporates phylogenetic relationships between species. 

In our study, we compared beta diversity by treatment arm using the Bray-Curtis dissimilarity. 

However, to account for the compositional nature of the data, we also used the Aitchison distance, 

i.e the Euclidian distance between the clr-transformed relative abundances of all taxa, as suggested 

by few papers in the literature266,267.  

We tested differences in beta diversity by treatment arm and by conditions using permutational 

multivariate analysis of variance (PERMANOVA).  
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4.4.3 Mediation analysis  

We conducted a mediation analysis based on the counterfactual framework approach268 to 

investigate if the taxa that were associated with the treatment also mediated the effect of vitD 

supplementation on the post-treatment 25(OH)D levels (Figure 4.4).  

 

 

Figure 4 4 DAG mediation analysis RCT 

Figure 4.4. DAG showing the causal pathway behind the mediation analysis employed in the trial. 
Exposure: vitamin D supplementation. Mediator: microbiome summarized through the second 
principal component (PC2) on the selected taxa (see Results). Outcome: post-treatment 25(OH)D 
levels. c’=vector of confounders. 25(OH)D = 25-hydroxyvitamin D 
 

 

We decomposed the total effect (TE) of vitD supplementation (exposure) on 25(OH)D levels 

(outcome) at follow-up into a natural direct effect (NDE) and a natural indirect effect (NIE) acting 

on serum vitD levels through the selected taxa (mediator), allowing for the interaction between 

vitD supplementation and the taxa (see Mediation analysis). Sex/gender and 25(OH)D levels at 

baseline were included as possible confounders.  

We summarized the abundances at follow-up of the selected taxa through the latent variable PC2 

obtained through PCA on the selected taxa (see Results) and included it in the model as mediator. 

The NDE was estimated by comparing the effect of vitD supplementation versus placebo on post-

treatment 25(OH)D levels, having PC2 set to the value it would naturally have under the placebo 

group, which is the condition of non-exposure. The NIE was estimated by comparing the effect of 

PC2 under vitD supplementation versus the effect of PC2 under placebo on post-treatment 25(OH)D 

levels.  

By definition, the TE of the exposure on the outcome is equal to the sum of NDE and NIE: 

𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸 

We thus calculated the three effects as follows. 
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Let 𝑌 be the outcome (25(OH)D levels at follow-up), 𝐴 the exposure (vitD supplementation), 𝑀 the 

mediator (the selected taxa summarized by PC2) and 𝐶 the set of confounders (sex/gender and 

25(OH)D levels at baseline).  

The outcome 𝑌 was modelled using linear regression as follows: 

𝐸{𝑌|𝐴 = 𝑎, 𝑀 = 𝑚, 𝐶 =  𝑐)} = 𝜃0 + 𝜃1𝑎 + 𝜃2𝑚 + 𝜃3𝑎𝑚 + 𝜃4
′𝑐 

where 𝑐 is the vector of confounders.  

The mediator 𝑀 was modelled using linear regression as follows: 

𝐸[𝑀|𝐴 = 𝑎, 𝐶 = 𝑐] =  𝛽0 + 𝛽1𝑎 + 𝛽2′𝑐 

where 𝑐 is the vector of confounders.  

We derived NDE and NIE as following: 

𝑁𝐷𝐸(𝑎, 𝑎∗; 𝑎∗) = {𝜃1 + 𝜃3(𝛽0 + 𝛽1𝑎∗ + 𝛽2
′ 𝐸[𝐶])}(𝑎 − 𝑎∗)  

𝑁𝐼𝐸(𝑎, 𝑎∗; 𝑎) = {𝜃2𝛽1 + 𝜃3𝛽1𝑎}(𝑎 − 𝑎∗)  

where the two levels of the binary exposure being compared are a*=0 (placebo group) and a=1 

(vitD supplementation group).  

For each effect, the p-value for statistical significance was obtained by calculating the standard 

errors for each expression using the delta method (see VanderWeele and Vansteelandt, 2009269, 

for more details). Because the numerical values of PC2 are not directly interpretable, we did not 

calculate the Controlled Direct Effect (CDE). 
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4.4.4 Scoring of diet and lifestyle based on WCRF/AICR recommendations 

We built a diet/lifestyle score for each time point based on WCRF/AICR recommendations for 

cancer prevention published in 2018176,177.  

The score is comprised of 6 components of the total 10 recommendations: 1) be a healthy weight; 

2) be physically active; 3) eat a diet rich in wholegrains, vegetables, fruit and beans; 4) limit 

consumption of “fast foods” and other processed foods high in fat, starches or sugars; 5) limit 

consumption of red and processed meat; 6) limit alcohol consumption. We did not include the 

recommendation on the sweet drinks consumption (this information was not available), on the 

breastfeeding component and the use of supplements for cancer prevention. The total value of the 

score can range from 0 to 6. Higher levels of the score indicate a higher adherence to the 

recommendations.  

Where possible, we used a three-level scoring system, given that partially meeting a 

recommendation may confer some benefit. Within each recommendation, if more than one sub-

recommendation is operationalized, the scoring weight is divided equally between them to retain 

a total of one point.  

Each component concerning dietary habits was calculated on the basis of the answers provided to 

the questionnaire in Supplementary Table S1. When an item was missing at a specific time point, it 

was imputed with the answer to the same item at the other time point. 

The scoring was defined as shown in Table 4.1. 
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Table 4.1 Scoring system of the diet/lifestyle score 

2018 WCRF/AICR 

RECOMMENDATIONS 
Reference questionnaire or data collected ITEM DESCRIPTION POINTS 

1. Be a healthy weight 

 BMI (kg/m2):   

Measured BMI 

18.5–24.9  1 

25.0–29.9  0.5 

<18.5 or ≥30  0 

2. Be physically active 

  Regular physical activity  

Do you engage in physical activity regularly? 
Yes 1 

No 0 

3. Eat a diet rich in 

wholegrains, vegetables, fruit 

and beans 

Questionnaire in Supplementary Table S1: 
Frequency of wholegrains cereals 

consumption 

Question Q3 5 
 

0.25 

 
4 

 
0.125 

 
≤3 

 
0 

 
Frequency of fruits consumption 

Question Q20 5 
 

0.25 

 
4 

 
0.125 

 
≤3 

 
0 

 
Frequency of vegetables consumption 

Question Q18 5 
 

0.25 

 
4 

 
0.125 

 
≤3 

 
0 

 
Frequency of soups consumption 

Question Q4 5 
 

0.25 

used as a proxy for consumption of beans 4 
 

0.125 

  ≤3   0 

4. Limit consumption of “fast 
foods” and other processed 

foods high in fat, starches or 

sugars 

Questionnaire in Supplementary Table S1: Frequency of sweets consumption 

Question Q24 1 
 

0.5 

 2-3 
 

0.25 

 
4-5 

 
0 

 
Frequency of pizza consumption 

Question Q7 1 
 

0.5 

used as a proxy for consumption of fast foods 2-3 
 

0.25 

  4-5   0 

5. Limit consumption of red 

and processed meat 

Questionnaire in Supplementary Table S1: Frequency of processed meat consumption 

Question Q11 1 
 

1 

used also as a proxy for consumption of red meat 2-3 
 

0.5 

  4-5   0 

6. Limit alcohol consumption 

 

At least one portion of alcohol during the 

week 

Do you consume alcohol during the week? 
No 

 
1 

Yes   0 

TOTAL RANGE SCORE       0-6 

BMI=Body Mass Index. 
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4.4.5 Transcriptomic signature based on Consensus Clustering 

We analyzed the expression profiles of 395 immuno-related genes from the OIRRA panel evaluated 

in the tumour tissue with the aim to build a “transcriptomic signature”. To achieve this, we 

identified clusters of patients based on their gene expression (GE) profile using the consensus 

clustering approach implemented in the ConsensusClusterPlus package270 in R. 

Consensus clustering is an extension of the traditional clustering approach. Instead of producing a 

single clustering of units, consensus clustering aims to find a stable and robust clustering solution 

by aggregating multiple clustering results, often derived from different initial conditions, parameter 

settings, or algorithms. This method is particularly useful in scenarios where assessing the stability 

and robustness of the identified clusters is challenging, such as when the "large p, small n" problem 

occurs, as in the omics context. 

The final averaged clustering result is typically represented as a consensus matrix, which indicates 

the frequency with which pairs of data points co-cluster across multiple runs.  

Specifically, ConsensusClusterPlus employs this methodology by randomly selecting subsets of 

items (referring to patients) and features (referring to genes). These subsets are then divided into 

up to k clusters using the chosen clustering algorithm. This entire procedure is conducted multiple 

times. Subsequently, pairwise consensus values are derived, which represent the frequency with 

which two items are clustered together across the different iterations270. 

To determine the optimal number of clusters, the package provides various graphical 

representations. These include the hierarchical clustering of the consensus matrix and a plot 

displaying the cumulative distribution function of the consensus distributions for each potential k 

value. 

In our study, we applied consensus clustering to the GE data, post the filtering and normalization 

steps. For filtering, only genes expressed in at least 10% of the patients were included in the analysis 

(resulting in 371 genes selected), whereas normalization was conducted using the Reads Per Million 

(RPM) approach. This method accounts for the sequencing depth by dividing the count of mapped 

reads by a one million scaling factor of the total mapped reads for each patient. As a result, the 

normalized GE data were compositional. To address this, we applied the clr-transformation to the 

normalized data, imputing the zeros using the Bayesian-multiplicative replacement method (see 

The handling of zeros in CoDA) based on total read counts.  

To ensure the reliability and robustness of the clustering partition, sensitivity analyses were 

performed. These involved conducting the consensus clustering analysis on the normalized data 

without clr-transformation, and including only one of GE profiles for the two patients whose GE was 

obtained from two distinct tumour samples.  
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Finally, the optimal number of clusters was determined through a graphical evaluation of the 

consensus matrix for each potential k number of clusters. The genes whose expression was 

significantly different across the optimal clusters were identified using the Kruskal-Wallis test.  

To account for the FDR, we adjusted the p-values using the Benjamini-Hochberg271 method. Only 

corrected p-values less than 0.05 were deemed to indicate statistical significance. 

 

4.4.6 Integrative Analysis of Data 

4.4.6.1 Network analysis 

To better understand the interplay between the investigated factors, we performed network 

analysis based on graphical LASSO (GLASSO). GLASSO272 is a statistical method which estimates the 

sparse inverse covariance by applying a penalization to the absolute values of the coefficients in 

the matrix. This results in a sparse network where only the most important edges (indicating partial 

correlations) are retained. The selection of the models was based on the Bayesian Information 

Criterion (BIC). All the networks were generated using the “qgraph” package in R, version 4.1.2. 

4.4.6.2 Block sparse Partial Least Square-Discriminant Analysis 

We employed the block sPLS-DA based on the DIABLO framework193, to integrate and analyze 

multiple datasets available in our study, namely the microbiome dataset, the circulating biomarkers 

dataset, the GE dataset and the dataset on diet and lifestyle. 

Mathematically, this method decomposes each data block into a product of two matrices: a matrix 

of loadings and a matrix of latent variables (scores). The primary objective is to identify latent 

variables, which are linear combinations of the original variables, which maximize the covariance 

between the data blocks and the categorical response variable (which, in our study, is the treatment 

arm and the occurrence of a clinical event).  

Unlike traditional PLS-DA, block sPLS-DA introduces a sparsity constraint on the loadings, which 

allows the selection of a subset of the most discriminative variables from each block. 

The scores from each latent variable are then included into a classifier – in our case, linear 

discriminant analysis - to classify samples into distinct groups.  

The model is based on a design matrix, which describes whether the datasets in each block should 

be correlated, or not. In our study, we estimated the correlation between each pair of blocks 

empirically, by executing PLS on each block pair. The models were performed including the clr-

transformed data in the microbiome block and in the GE block. 

To ensure model robustness and determine the optimal number of variables in each component, 

we utilized cross-validation.  
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The analysis was conducted using the mixOmics package194 in R, with parameters set based on 

cross-validation to optimize the number of components and the sparsity level. 

4.4.7 Event-Free Survival analysis 

For the Event-Free Survival (EFS) analysis, we included follow-up data collected until June 2022. 

Time-to-event was calculated as the time difference between the date of randomization and the 

date of first clinical event. For the patients who did not experience any clinical events, the time was 

calculated as the time between the day of randomization and the day of last visit. Because of the 

relative short follow-up period (median=3.7 years), we considered as clinical events not only 

tumour progression and death, but also colorectal adenomas and polyps. However, we 

distinguished between colorectal events, which included tumour relapses, adenomas, polyps and 

deaths, and any clinical events, which included also other tumours. The median follow-up was 

calculated as the median time of the patients who did not experience events. Comparisons in EFS 

by groups were carried out using Kaplan-Meier estimator and tested with log-rank test. 

Multivariable Cox proportional-hazards models were employed to estimate the risk of event in 

terms of hazard ratios (HRs); 95% confidence intervals were also provided. 

All statistical analyses were performed using R version 4.1.2 and SAS 9.4. 
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4.5 Results 

 

Figure 4 5 Flowchart RCT 

Figure 4.5. Overall study design flowchart and selection of patients included in the analysis.  
Vit D=Vitamin D. 

 

We enrolled 74 patients in the trial, with 36 allocated to the placebo group and 38 to the vitD 

supplementation group (Figure 4.5). Notably, 85% of the participants were compliant to the 

treatment, with 77% consuming over 83% of the prescribed vitD/placebo dosage.  

A summary of the clinical and demographic characteristics by treatment arm is provided in Table 

4.2. 
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Table 4.2. Baseline characteristics of the study population by treatment arm 

  
Placebo Vitamin D  

 P-value* 
(N=36) (N=38) 

Chemotherapy+, n (%)       

No 18 (50.0%) 18 (47.4%) 1 

Yes 18 (50.0%) 20 (52.6%)   

Age, median [Q1, Q3] 61.7 [54.4, 67.1] 62.4 [53.9, 67.2] 0.86 

Sex, n (%)       

Female 19 (52.8%) 15 (39.5%) 0.36 

Male 17 (47.2%) 23 (60.5%)   

Body Mass Index, median [Q1, Q3] 26.2 [23.5, 27.9] 26.4 [23.9, 29.4] 0.45 

Stage, n (%)       

0 2 (5.6%) 2 (5.3%) 1 

I 11 (30.6%) 11 (28.9%)   

II 11 (30.6%) 12 (31.6%)   

III 10 (27.8%) 11 (28.9%)   

Missing 2 (5.6%) 2 (5.3%)   

pT, n (%)       

T0 2 (5.6%) 2 (5.3%) 0.59 

T1 5 (13.9%) 2 (5.3%)   

T2 10 (27.8%) 12 (31.6%)   

T3 16 (44.4%) 20 (52.6%)   

T4 3 (8.3%) 1 (2.6%)   

Missing 0 (0%) 1 (2.6%)   

pN, n (%)       

N0 26 (72.2%) 26 (68.4%) 1 

N1 7 (19.4%) 8 (21.1%)   

N2 3 (8.3%) 3 (7.9%)   

Missing 0 (0%) 1 (2.6%)   

Site, n (%)       

Left colon 17 (47.2%) 14 (36.8%) 0.23 

Right colon 9 (25.0%) 17 (44.7%)   

Rectum 7 (19.4%) 5 (13.2%)   

Missing 3 (8.3%) 2 (5.3%)   

Histotype, n (%)       

Adenocarcinoma 26 (72.2%) 28 (73.7%) 0.4 

Multiple histotypes 10 (27.8%) 6 (15.8%)   

Other 0 (0%) 1 (2.6%)   

Missing 0 (0%) 3 (7.9%)   

Grade, n (%)       

G1 2 (5.6%) 1 (2.6%) 0.5 

G2 20 (55.6%) 19 (50.0%)   

G3 5 (13.9%) 11 (28.9%)   

Unknown 6 (16.7%) 5 (13.2%)   

Missing 3 (8.3%) 2 (5.3%)   

Radiotherapy°, n (%)       

No 32 (88.9%) 30 (78.9%) 0.55 

Yes 4 (11.1%) 7 (18.4%)   

Missing 0 (0%) 1 (2.6%)   

Q1=first quartile. Q3=third quartile. 
*p-values derived from Wilcoxon rank-sum test for numerical variables and from Chi-square test (or Fisher 
exact test, where appropriate) for categorical variables.  
+ Chemotherapy was administered in both adjuvant or neoadjuvant settings.  
° Radiotherapy was administered only in a neoadjuvant setting. 
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4.5.1 Vitamin D supplementation and circulating biomarkers 

Levels of 25(OH)D significantly increased in the supplemented group, reaching a median 

concentration of 39.0 ng/ml (Interquartile Range (IQR): 34.4-43.2 ng/ml) at follow-up (p < 0.001).  

All the patients in the vitD supplementation group positively responded to the treatment, achieving 

vitD sufficiency (intended as 25(OH)D ng/ml>30)  by the end of the study. 

No significant change was observed in the placebo group (p = 0.497), although 25% (9/36) of the 

patients reached vitD sufficiency – defined as 25(OH)D>30 ng/ml –  by the end of the treatment 

period (Third quartile (Q3): 29.8 ng/ml) (Table 4.3). 

 

Table 4.3. Distribution of 25(OH)D levels by timepoint and treatment arm 

 

VDBP also significantly increased following vitD supplementation (p=0.033), while no other 

circulated biomarker either increased or decreased post-supplementation (Table 4.4).  

 

 

 

 

 

 

 

 

 
Baseline 

25(OH)D 

Post 

25(OH)D 

Change in 25(OH)D 

(Post-Baseline) 
P-value* 

All patients (N=74)     

Placebo, n=36     

Median [IQR] 23.8 [15.9, 25.9] 20.7 [14.6, 29.8] 0.70 [-2.91, 4.50] 0.497 

Missing 0 1 (2.8%) 1 (2.8%)  

Vitamin D supplementation, n=38     

Median [IQR] 21.2 [14.5, 26.0] 39.0 [34.4, 43.2] 18.5 [10.8, 25.8] <0.001 

Missing 0 3 (7.9%) 3 (7.9%)  

     

*p-values derived from Wilcoxon signed-rank test for paired data that compared baseline 25(OH)D with post-
treatment 25(OH)D within each group; 25(OH)D = 25-hydroxyvitamin D; IQR = Interquartile range. 
Interquartile range is reported as [First quartile (Q1) – Third quartile (Q3)]. 25(OH)D values were obtained 
from the post-enrollment evaluation on serum samples. For the enrolment, self-reported data were 
considered.  
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Table 4.4 Distribution of the change (post-treatment – baseline) in circulating biomarkers by 

treatment arm 

 Placebo 
(N=36) 

Vitamin D 
(N=38) 

P-
value 

VDBP change (µg/mL), median [Q1, Q3] -9.00 [-34.5, 17.5] 9.00 [-11.0, 45.5] 0.033 

Missing 1 (2.8%) 3 (7.9%)  

25(OH)D change (ng/mL), median [Q1, Q3] 0.700 [-2.91, 4.50] 18.5 [10.8, 25.8] <0.001 

Missing 1 (2.8%) 3 (7.9%)  

Adiponectin change (µg/mL), median [Q1, Q3] 0.261 [-1.06, 1.86] 0.349 [-0.586, 1.32] 1 

Missing 1 (2.8%) 3 (7.9%)  

Leptin change (ng/mL), median [Q1, Q3] 0.953 [-1.03, 8.30] -0.195 [-2.15, 7.93] 0.632 

Missing 1 (2.8%) 3 (7.9%)  

IL-10 change (pg/mL), median [Q1, Q3] 0.0900 [-0.220, 0.680] 0.110 [-0.155, 0.525] 0.747 

Missing 1 (2.8%) 3 (7.9%)  

IL-6 change (pg/mL), median [Q1, Q3] 0.0600 [-0.525, 0.735] 0.0100 [-0.409, 1.34] 0.991 

Missing 1 (2.8%) 3 (7.9%)  

TNFα change (pg/mL), median [Q1, Q3] 0.500 [-0.550, 1.31] 0.100 [-0.650, 0.750] 0.213 

Missing 1 (2.8%) 3 (7.9%)  

CCL2/MCP1 change (pg/mL), median [Q1, Q3] 4.00 [-28.0, 60.5] 4.00 [-17.5, 38.0] 0.916 

Missing 1 (2.8%) 3 (7.9%)  

CD27 change (pg/mL), median [Q1, Q3] -126 [-505, 210] 138 [-238, 627] 0.0821 

Missing 1 (2.8%) 3 (7.9%)  

CD40 Ligand change (pg/mL), median [Q1, Q3] -1760 [-3120, -347] -2400 [-3540, 740] 0.963 

Missing 1 (2.8%) 3 (7.9%)  

CXCL6/GCP-2 change (pg/mL), median [Q1, Q3] -3440 [-5720, -1870] -3830 [-5090, -2310] 0.709 

Missing 1 (2.8%) 3 (7.9%)  

Galectin-3 change (pg/mL), median [Q1, Q3] 1820 [1490, 2060] 1820 [1460, 2260] 0.492 

Missing 1 (2.8%) 3 (7.9%)  

IL-8/CXCL8 change (pg/mL), median [Q1, Q3] -2000 [-2240, -1590] -2080 [-2470, -1610] 0.338 

Missing 1 (2.8%) 3 (7.9%)  

CD40 change (pg/mL), median [Q1, Q3] -4.00 [-38.5, 14.5] 10.0 [-10.0, 24.5] 0.188 

Missing 1 (2.8%) 3 (7.9%)  

CXCL2/GROβ change (pg/mL), median [Q1, Q3] -11.0 [-118, 43.5] 1.00 [-63.5, 85.0] 0.198 

Missing 1 (2.8%) 3 (7.9%)  

Galectin-1 change (pg/mL), median [Q1, Q3] -1130 [-2560, 706] 47.0 [-1330, 1960] 0.146 

Missing 1 (2.8%) 3 (7.9%)  

Galectin-9 change (pg/mL), median [Q1, Q3] 169 [-330, 825] 171 [-554, 773] 0.452 

Missing 1 (2.8%) 3 (7.9%)  

IL-7 change (pg/mL), median [Q1, Q3] -1.13 [-2.77, 1.06] 0 [-2.08, 3.25] 0.247 

Missing 1 (2.8%) 3 (7.9%)  

p-values derived by Wilcoxon rank-sum test. Q1= first quartile. Q3=third quartile. 
Change is defined as post-treatment – baseline values of the circulating biomarkers. 
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However, increasing levels of 25(OH)D were significantly and positively correlated with increasing 

levels of Galectin-3 (p=0.03) and Galectin-9 (p=0.04), after adjustment for treatment arm, 

sex/gender and age.  

We also observed differences by weight status, with adiponectin significantly increasing at 

increasing levels of 25(OH)D only in normal-weight individuals (p=0.047. Table 4.5; Figure 4.6). 

Change in IL-8/CXCL8 was also significantly and inversely correlated with increasing levels of 

25(OH)D in normal weight only (p=0.03), however a borderline significant association was also 

observed in the whole sample (p=0.06; Table 4.5). 

 

Table 4.5 Relationship between change in 25(OH)D and change in circulating biomarkers overall 

and by weight status. 

 25(OH)D change (ng/mL)  25(OH)D change (ng/mL)  25(OH)D change (ng/mL) 

Biomarker Beta* 95% CI p-value**   Beta* 95% CI p-value**   Beta* 95% CI p-value** 

 All (n=74)   Normal weight (n=28+)   Overweight (n=44) 

VDBP change (µg/mL) 0.31 [-0.92; 1.54] 0.62  0.26 [-2.22; 1.67] 0.77  0.47 [-1.15, 2.09] 0.56 

Adiponectin change (µg/mL) 0.07 [-0.01; 0.15] 0.08  0.12 [0.04; 0.20] 0.01  0.04 [-0.07, 0.15] 0.46 

Leptin change (ng/mL) 0.06 [-0.28; 0.41] 0.72  -0.05 [-0.69; 0.60] 0.88  0.09 [-0.35, 0.54] 0.67 

IL-10 change (pg/mL) 0.01 [-0.02; 0.05] 0.46  0.03 [-0.03; 0.09] 0.28  0.01 [-0.03, 0.06] 0.62 

IL-6 change (pg/mL) 0.05 [-0.21; 0.30] 0.71  0.21 [-0.41, 0.83] 0.49  -0.02 [-0.15, 0.12] 0.78 

TNFα change (pg/mL) 0.04 [-0.01; 0.09] 0.13  0.02 [-0.08; 0.12] 0.67  0.05 [-0.003, 0.11] 0.06 

CCL2/MCP1 change (pg/mL) 0.31 [-2.76; 3.38] 0.84  -1.57 [-9.06; 5.92] 0.67  1.47 -[0.748, 3.69] 0.19 

CD27 change (pg/mL) 16.6 [-3.74; 37.0] 0.11  14.3 [-17.2; 45.8] 0.36  9.19 [-19.1, 37.5] 0.52 

CD40 Ligand change (pg/mL) -6.6 [-89.8; 76.6] 0.87  12.6 [-128.5; 153.8] 0.85  -54.5 [-171, 62.4] 0.35 

CXCL6/GCP-2 change (pg/mL) -4.73 [-69.8; 60.3] 0.88  -17.4 [-99.1; 64.2] 0.66  1.27 [-102.1, 104.6] 0.98 

Galectin-3 change (pg/mL) 13.0 [1.0; 24.9] 0.03  23.8 [2.88; 44.6] 0.03  4.74 [-11.7, 21.2] 0.56 

IL-8/CXCL8 change (pg/mL) -11.2 [-23.1; 0.67] 0.06  -21.5 [-40.3; -2.74] 0.03  -3.95 [-21.7, 13.8] 0.65 

CD40 change (pg/mL) -0.09 [-1.19; 1.00] 0.87  -0.09 [-2.24; 2.07] 0.94  -0.29 [-1.65, 1.06] 0.66 

CXCL2/GROβ change (pg/mL) 1.02 [-3.09; 5.14] 0.62  1.26 [-3.87; 6.38] 0.62  2.13 [-4.41, 8.68] 0.51 

Galectin1 change (pg/mL) -42.1 [-129.0; 44.9] 0.34  -85.9 [-178, 5.77] 0.07  -14.7 [-142.4, 112.9] 0.82 

Galectin9 change (pg/mL) 0.7 [1.99; 59.5] 0.04  15.2 [-22.8; 53.2] 0.42  33.5 [-12.6, 79.6] 0.15 

IL-7 change (pg/mL) 0.04 [-0.06; 0.13] 0.42   0.08 [-0.08; 0.25] 0.31   0.01 [-0.13, 0.14] 0.94 

*Beta regression coefficient and **p-value of the change in 25(OH)D levels (post-treatment – baseline) 
included as a covariate in multivariable linear regression models, adjusted for sex/gender, treatment arm and 
age and having the change in levels (post-treatment – baseline) of each circulating biomarke as outcome. 
+ Two underweight patients (BMI<18.5) were not included. 
1CI = Confidence Interval. 
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Figure 4 6 Change in 25(OH)D by overweight status 

Figure 4.6. Scatterplots of change in 25(OH)D levels (post-treatment – baseline) and change in 
adiponectin levels (post-treatment – baseline) for (a) normal-weight (BMI.18.5-25) and (b) 
overweight (BMI>25) individuals.  
*p-values were obtained from the multivariable models in Table 4.5.  
 

 

Recent literature has indeed increasingly pointed out a relationship between obesity and vitD 

status, with emerging evidence suggesting a potential modifier effect of BMI on the response to 

vitD supplementation.  

In this context, the VITAL trial, a randomized, double-blind, placebo-controlled 2 × 2 factorial study 

involving supplementation of vitD3 at 2000 IU/d and marine ω-3 fatty acids, 1 g/d and enrolling 

more than 16,000 healthy participants, has provided pivotal data.  

In the trial, they found that vitD supplementation did not reduce the incidence of cardiovascular 

and cancer events in the whole sample. However, they observed a significant lower incidence of 

invasive cancer events in the vitD supplemented individuals compared to placebo, but only in the 

subgroup of normal-weight individuals (BMI<25)124.   

Moreover, the authors recently published results from a cohort study nested within the trial, 

including a subset of 2742 participants with available blood sample at 2-year follow-up. Within this 

cohort, vitD supplementation was significantly correlated with increasing levels of total 25(OH)D, 

25(OH)D3, free vitD, and bioavailable vitD compared to placebo. However, a significant interaction 

between the treatment and BMI was observed, with these increases being significantly lower in 

participants with higher BMI categories131.  

Interestingly, we observed similar results in our study. We found a significant interaction between 

baseline BMI and vitD supplementation on 25(OH)D (p=0.0498), with post-treatment 25(OH)D 

levels decreasing with increasing BMI in the supplemented group. The model was adjusted for 

season of blood draw and baseline 25(OH)D. Sex/gender and age were not significantly associated 
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with post-treatment 25(OH)D and were thus excluded from the model. A borderline significant 

interaction between the supplementation and BMI was also observed on the 1-year change in 

25(OH)D levels (p=0.085), which became significant after adjusting for baseline 25(OH)D levels 

(p=0.0498) (Figure 4.7).  

 

 

Figure 4 7 Interaction between vitD and BMI on 25(OH)D 

 

 

Figure 4.7. Predicted values of post-treatment 25(OH)D values and change in 25(OH)D values (post-
treatment – baseline) from multivariable regression models including the interaction between the 
treatment arm and baseline BMI. Specifically: 
a. Model: 25(OH)D levels (post) ~ BMI*Arm + season of blood draw + 25(OH)D levels (baseline). 
b. Model: Change in 25(OH)D levels ~ BMI*Arm + season of blood draw. 
c. Model: Change in 25(OH)D levels ~ BMI*Arm + season of blood draw + 25(OH)D levels 

(baseline). 
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4.5.2 Analysis of diet and lifestyle 

 

For both timepoints, we built a score on lifestyle and diet habits for each patient. The score was 

built following the recommendations on cancer prevention by WCRF/AICR. It includes information 

on weight status, physical activity, smoking, alcohol and high-risk diet (see Scoring of diet and 

lifestyle based on WCRF/AICR recommendations). The score ranged from a minimum of 0 and a 

maximum of 6, with 0 indicating absence of adherence to the recommendations and 6 indicating 

complete adherence.  

No differences by treatment arm were observed for the diet/lifestyle score both at baseline 

(p=0.10; Wilcoxon rank-sum test) and at the end of the treatment (p=0.33; Wilcoxon rank-sum test). 

Moreover, no clinical characteristic of the patients was associated with the score, although females 

tended to be more adherent to the recommendations than men (t-test: p=0.04; Wilcoxon rank-sum 

test: p=0.12) (Figure 4.8). 

 

 

Figure 4 8 Diet/lifestyle score by sex/gender 

Figure 4.8. Distribution of the diet/lifestyle score at baseline by sex/gender. 
*p-value derived from t-test on the means. 
+p-value derived from Wilcoxon rank-sum test on the ranks. 
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At both timepoints, adherence to WCRF recommendations was inversely correlated with levels of 

leptin, TNF-alpha, Galectin-9 and Galectin-1. IL-10 was positively correlated with the score at 

baseline, while CD40 was inversely correlated with the post-treatment score. Interestingly, a 

significant positive correlation between 25(OH)D levels and higher levels of adherence to WCRF 

recommendations was also observed, but only at the end of the treatment (p=0.05) (Table 4.6). 

 

Table 4.6 Correlations between the diet/lifestyle score and circulated biomarkers at both time 

points 

*Estimates derived from multivariable linear regression models including the diet/lifestyle score at baseline, 
adjusted for age and sex/gender and including the baseline levels of each circulating biomarker.                                                        
**Estimates derived from multivariable linear regression models including the diet/lifestyle score at the end 
of the treatment period, adjusted for age, sex/gender and treatment arm and including the post-treatment 
levels of each circulating biomarker 
1CI = Confidence Interval. 

 

 

 

 

 

 

 

 

 

 Diet/lifestyle score (baseline)*   Diet/lifestyle score (post)** 

Biomarker (baseline) Beta 95% CI1 p-value  Biomarker (post) Beta 95% CI1 p-value 

VDBP (µg/mL) -4.07 [-17.5; 9.38] 0.55  VDBP (µg/mL) 4.67 [-8.55; 17.9] 0.48 

25(OH)D (ng/mL) 0.33 [-1.54; 2.19] 0.73  25(OH)D (ng/mL) 2.31 [0.017; 4.61] 0.05 

Adiponectin (µg/mL) 0.51 [-0.951; 1.97] 0.49  Adiponectin (µg/mL) 1.31 [-0.220; 2.84] 0.09 

Leptin (ng/mL) -7.93 [-14.3; -1.54] 0.02  Leptin (ng/mL) -10.30 [-18.6; -1.95] 0.02 

IL-10 (pg/mL) 0.59 [0.025; 1.16] 0.04  IL-10 (pg/mL) 0.39 [-0.317; 1.10] 0.27 

IL-6 (pg/mL) -0.52 [-1.14; 0.097] 0.10  IL-6 (pg/mL) -1.36 [-3.91; 1.18] 0.29 

TNFα (pg/mL) -0.82 [-1.43; -0.211] 0.01  TNFα (pg/mL) -1.55 [-2.37; -0.722] <0.01 

CCL2/MCP1 (pg/mL) 0.88 [-98.0; 99.8] 0.99  CCL2/MCP1 (pg/mL) -12.70 [-146; 121] 0.85 

CD27 (pg/mL) -263.00 [-781; 256] 0.32  CD27 (pg/mL) -483.00 [-1,007; 40.5] 0.07 

CD40 Ligand (pg/mL) -425.00 [-992; 141] 0.14  CD40 Ligand (pg/mL) -260.00 [-794; 274] 0.33 

CXCL6/GCP-2 (pg/mL) -15.70 [-69.2, 37.8] 0.56  CXCL6/GCP-2 (pg/mL) -25.50 [-68.9; 17.9] 0.24 

Galectin-3 (pg/mL) -61.60 [-168; 44.7] 0.25  Galectin-3 (pg/mL) -45.00 [-154; 64.5] 0.42 

IL-8/CXCL8 (pg/mL) -0.89 [-2.00; 0.219] 0.11  IL-8/CXCL8 (pg/mL) -1.19 [-2.82; 0.445] 0.15 

CD40 (pg/mL) -18.80 [-38.2; 0.653] 0.06  CD40 (pg/mL) -24.10 [-40.8; -7.52] 0.01 

CXCL2/GROβ (pg/mL) 27.40 [-37.9; 92.6] 0.41  CXCL2/GROβ (pg/mL) -1.78 [-73.4; 69.8] 0.96 

Galectin-1 (pg/mL) -1721.00 [-3,081; -361] 0.01  Galectin-1 (pg/mL) -2167.00 [-3,769; -566] 0.01 

Galectin-9 (pg/mL) -624.00 [-1,189; -59.0] 0.03  Galectin-9 (pg/mL) -669.00 [-1,241; -97.2] 0.02 

IL-7 (pg/mL) 0.12 [-1.12; 1.35] 0.85  IL-7 (pg/mL) -0.66 [-2.12; 0.799] 0.37 
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4.5.3 Analysis of the gut microbiome 

Out of the 74 patients enrolled in the trial, gut microbiome data was available for 65 patients at 

both time points. Five drop-out patients were excluded, resulting in 60 patients. Of these, 32 were 

in the placebo group and 28 were in the supplementation group. Relative abundances of 980 taxa 

were available at both timepoints for each patient. 

4.5.3.1 Alpha diversity 

Alpha diversity was calculated for each patient and for each timepoint using the Shannon index, 

which accounts for both richness and evenness of the species.  

Overall, we observed no differences by treatment arm (p=0.66) in change of alpha diversity 

(calculated as post treatment – baseline alpha diversity), after adjusting for sex/gender, age, season 

of blood draw, baseline 25(OH)D levels and diet/lifestyle score. However, adherence to WCRF 

recommendations was positively correlated with the change in alpha diversity (p=0.04) (Table 4.7).  

 

Table 4.7 Association between vitD supplementation and change in alpha diversity from 

multivariable regression analysis adjusted for confounders 

 

 
Shannon Index change 

Characteristic Beta 95% CI1 p-value 

Arm (Vitamin D vs Placebo) -0.09 [-0.29; 0.10] 0.34 

Diet/Lifestyle score (baseline) 0.11 [0.01; 0.21] 0.03 

Sex/gender (Male vs Female) 0.06 [-0.16; 0.28] 0.60 

Age -0.01 [-0.02; 0.002] 0.13 

Season of blood draw     

    Autumn — —   

    Summer 0.25 [-0.05; 0.55] 0.11 

    Winter 0.04 [-0.25; 0.32] 0.79 

    Spring 0.01 [-0.26; 0.28] >0.9 

Baseline 25(OH)D -0.005 [-0.02; 0.01] 0.48 

1 CI = Confidence Interval       
Estimates derived from multivariable linear regression model. 
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When looking at weight status, we observed a significant interaction between overweight status 

(BMI>25) and change in 25(OH)D on the change in alpha diversity, with increasing alpha diversity 

at increasing levels of 25(OH)D in non-overweight patients, and no relationship in overweight 

(pint=0.01; pint=0.03 after excluding the two underweight patients) (Table 4.8; Figure 4.9).  

 

Table 4.8 Interaction between vitD supplementation and overweight status on change in alpha 

diversity from multivariable regression analysis adjusted for confounders 

 Shannon Index change 

Characteristic Beta 95% CI1 p-value 

25(OH)D change (ng/mL) 0.01 [0.001; 0.02] 0.03 

Overweight (Yes vs No) -0.16 [-0.38; 0.06] 0.14 

Sex/gender (Male vs Female) 0.08 [-0.12; 0.27] 0.44 

Age -0.003 [-0.01; 0.01] 0.62 

Season of blood draw     

    Autumn — —   

    Summer 0.14 [-0.14; 0.42] 0.31 

    Winter 0.09 [-0.16; 0.33] 0.48 

    Spring 0.11 [-0.13; 0.36] 0.34 

25(OH)D change (ng/mL)*Overweight -0.02 [-0.03; 0.00] 0.01 

       

Estimates derived from multivariable linear regression model. Interaction between treatment arm 

overweight status was introduced in the model. 

 

Figure 4.9. Scatterplots of change in 25(OH)D levels (post-treatment – baseline) and change in 
Shannon Index (post-treatment – baseline) by overweight status. (a) BMI≤25. (b) BMI>25. 

Figure 4 9 Scatterplots of change in 25OHD level and change in Shannon Index by overweight status 
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In general, patients who had experienced a more advanced CRC had a lower alpha diversity at 

baseline. In fact, this decrease in diversity tended to be correlated with increasing pT and advanced 

tumour stages, suggesting a potential relationship between the severity of the cancer and the 

diversity of the microbial community. However, at the end of the treatment period, the alpha 

diversity of these patients increased significantly more than that of patients having experienced 

early-stage cancer (Table 4.9). 

Table 4.9 Estimates of associations between clinical characteristics of patients and alpha diversity 

 Shannon Index (baseline)   Shannon index (change) 

Characteristic Beta 95% CI1 p-value   Beta 95% CI1 p-value 

Age 0.01 [0.00; 0.02] 0.104   -0.01 [-0.02; 0.004] 0.212 
Sex/gender               
    Female — —     — —   
    Male 0.12 [-0.07; 0.31] 0.217   -0.03 [-0.22; 0.16] 0.734 
Stage               
    0 — —     — —   
    I -0.4 [-0.85; 0.05] 0.085   0.45 [0.01; 0.89] 0.048 
    II -0.44 [-0.90; 0.01] 0.063   0.61 [0.17; 1.1] 0.009 
    III -0.42 [-0.88; 0.03] 0.073   0.52 [0.08; 0.96] 0.024 
pT               
    T0 — —     — —   
    T1 -0.23 [-0.76; 0.29] 0.388   0.34 [-0.17; 0.85] 0.2 
    T2 -0.45 [-0.90; 0.00] 0.054   0.47 [0.04; 0.91] 0.037 
    T3 -0.44 [-0.88; 0.00] 0.055   0.6 [0.18; 1.0] 0.008 
    T4 -0.45 [-1.0; 0.10] 0.114   0.47 [-0.07; 1.0] 0.093 
pN               
    N0 — —     — —   
    N1 0.05 [-0.18; 0.28] 0.688   -0.06 [-0.29; 0.17] 0.637 
    N2 -0.23 [-0.57; 0.12] 0.205   0.28 [-0.06; 0.62] 0.112 
Tumour side               
    Left colon — —     — —   
    Right colon -0.1 [-0.32; 0.12] 0.373   0.1 [-0.13; 0.32] 0.404 
    Rectum 0.12 [-0.16; 0.40] 0.398   0 [-0.29; 0.29] 0.981 
Histotype               
    Adenocarcinoma — —     — —   
    Multiple 
histotypes 

0.08 [-0.14; 0.30] 0.488   -0.07 [-0.30; 0.15] 0.514 

    Other -0.1 [-0.85; 0.65] 0.787   -0.4 [-1.1; 0.35] 0.302 
Grade               
    G1 — —     — —   
    G2 -0.33 [-0.88; 0.22] 0.24   0.41 [-0.13; 0.94] 0.14 
    G3 -0.27 [-0.84; 0.30] 0.362   0.29 [-0.26; 0.85] 0.303 
    Unknown -0.19 [-0.78; 0.39] 0.518   0.25 [-0.32; 0.82] 0.386 
Radiotherapy               
     No — —     — —   
     Yes 0.02 [-0.17; 0.21] 0.815   -0.06 [-0.33; 0.21] 0.664 
Chemotherapy               
     No — —     — —   
     Yes 0.02 [-0.17; 0.21] 0.815   0.14 [-0.05; 0.32] 0.146 
1 CI = Confidence Interval 

Beta regression estimates derived from linear regression models. 
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Alpha diversity at baseline was also significantly and positively correlated with adiponectin 

(p=0.029) and Galectin-1 (p=0.017), and inversely correlated with CCL2/MCP1 (p=0.001) and 

CXCL6/GCP2 (p=0.021). However, no significant correlation was observed between increasing levels 

of alpha diversity and increasing levels of circulating biomarkers during the study period, and 

between alpha diversity and the biomarkers at the end of the treatment (Table 4.10). 

 

Table 4.10 Estimates of association between baseline, post-treatment and change in circulating 

biomarkers with baselin, post-treatment and change in alpha diversity 

Characteristic+ 

Shannon Index (baseline)* Shannon index (post)** Shannon index (change)*** 

Beta 95% CI1 p-value Beta 95% CI1 p-value Beta 95% CI1 p-value 

VDBP (µg/mL) -0.03 -0.13, 0.07 0.521 -0.05 -0.14, 0.04 0.278 -0.06 -0.17, 0.04 0.226 

25(OH)D (ng/mL) 0.01 -0.09, 0.10 0.917 0.01 -0.12, 0.14 0.859 0.13 -0.02, 0.28 0.088 

Adiponectin (µg/mL) 0.11 0.01, 0.22 0.029 0.07 -0.02, 0.17 0.127 0.02 -0.07, 0.12 0.644 

Leptin (ng/mL) 0.05 -0.08, 0.18 0.415 -0.06 -0.18, 0.06 0.327 -0.06 -0.20, 0.07 0.371 

IL-10 (pg/mL) -0.05 -0.14, 0.04 0.319 0.05 -0.03, 0.14 0.229 0.01 -0.13, 0.14 0.935 

IL-6 (pg/mL) 0.05 -0.05, 0.15 0.293 0 -0.08, 0.08 0.981 0.04 -0.06, 0.13 0.412 

TNF-α (pg/mL) 0.05 -0.05, 0.15 0.279 -0.01 -0.10, 0.08 0.818 0.01 -0.10, 0.12 0.81 

CCL2/MCP1 (pg/mL) -0.14 -0.22, -0.06 0.001 -0.07 -0.15, 0.00 0.053 0.04 -0.05, 0.14 0.373 

CD27 (pg/mL) 0.1 0.00, 0.20 0.046 0.03 -0.06, 0.12 0.506 0.02 -0.09, 0.12 0.756 

CD40 Ligand (pg/mL) -0.01 -0.11, 0.08 0.805 0.02 -0.06, 0.11 0.597 -0.03 -0.13, 0.08 0.613 

CXCL6/GCP-2 (pg/mL) -0.1 -0.19, -0.02 0.021 -0.05 -0.12, 0.03 0.236 -0.04 -0.14, 0.05 0.356 

Galectin-3 (pg/mL) -0.04 -0.13, 0.06 0.455 0.03 -0.05, 0.11 0.488 0.01 -0.09, 0.11 0.854 

IL-8/CXCL8 (pg/mL) -0.04 -0.15, 0.07 0.45 0.01 -0.07, 0.10 0.731 0.04 -0.06, 0.13 0.451 

CD40 (pg/mL) 0.05 -0.06, 0.17 0.364 0.04 -0.06, 0.14 0.453 -0.02 -0.12, 0.07 0.647 

CXCL2/GROβ (pg/mL) -0.03 -0.13, 0.06 0.473 0.01 -0.07, 0.09 0.817 0.01 -0.10, 0.12 0.809 

Galectin-1 (pg/mL) 0.12 0.02, 0.22 0.017 -0.02 -0.11, 0.07 0.595 -0.04 -0.14, 0.05 0.351 

Galectin-9 (pg/mL) 0.04 -0.08, 0.16 0.508 -0.01 -0.11, 0.08 0.745 -0.02 -0.13, 0.09 0.719 

IL-7 (pg/mL) 0.01 -0.09, 0.11 0.851 0.02 -0.06, 0.10 0.617 0.03 -0.07, 0.14 0.554 

1 CI = Confidence Interval  

+ Biomarker values were scaled. 
*Estimates were obtained from multivariable linear regression models including the scaled baseline values of 
each biomarker as a covariate and the baseline Shannon Index as outcome. Models were adjusted for 
sex/gender and age. 
** Estimates were obtained from multivariable linear regression models including the scaled post-treatment 
values of each biomarker as a covariate and the post-treatment Shannon Index as outcome. Models were 
adjusted for sex/gender, age and treatment arm. 
*** Estimates were obtained from multivariable linear regression models including the scaled change in 
values of each biomarker as a covariate and the change in Shannon Index as outcome. Models were adjusted 
for sex/gender, age and treatment arm. 
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4.5.3.2 Beta diversity 

Beta diversity was first assessed using the Bray-Curtis distance between samples and tested 

between groups using PERMANOVA. Overall, no differences by treatment arm were observed both 

at baseline (p=0.84) ad at the end of the treatment (p=0.70).  

Differences in baseline microbiota were also tested according to previous chemotherapy. However, 

no significant differences were observed in either alpha diversity (Shannon index: p=0.64) or beta 

diversity (p=0.18). 

To account for the compositional structure of the microbiome data, we also looked at the Euclidean 

distance between the clr-transformed taxa abundances at follow-up, as suggested by recent 

literature266,267. Differences by groups were tested using PERMANOVA.  

No differences in post-treatment microbiome by treatment arm (p=0.83) were found after 

adjusting for age, sex/gender, season of blood draw, diet/lifestyle score and baseline 25(OH)D 

levels (Figure 4.10). However, age and sex/gender were significantly associated with microbiome 

composition (p=0.01 and p=0.04, respectively).  

 

 

Figure 4 10 PCA post-treatment microbiome 

Figure 4.10. Plot of the scaled scores of the first two components from principal component analysis 
(PCA) run on the clr-transformed abundances at follow-up of all the 979 taxa. Data points were 
colored according to treatment arm (red for the placebo group; blue for the vitamin D 
supplementation group). P-value was obtained from PERMANOVA. 
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We then looked at the change in microbiome composition within each patient after the study 

period. To do this, we applied perturbation difference between the post-treatment and baseline 

taxa abundances, as described in Perturbation and power operations in the simplex. After closuring, 

we used the clr-transformation and calculated the Euclidean distance matrix between data points. 

As for the post-treatment composition, we did not find any difference in the beta diversity of the 

change in microbiome by treatment arm (p=0.80). However, we found a borderline significant 

interaction between the vitD supplementation and BMI categories (overweight vs no overweight: 

p=0.06, Figure 4.11). 

 

 

Figure 4 11 PCoA on change in microbiome 

Figure 4.11. Plot of the scaled scores of the first two components from principal coordinates 
analysis (PCoA) run on the clr-transformed perturbation difference of abundances of taxa by 
treatment arm. Data points were colored according to overweight status (red for BMI≤25; blue for 
BMI>25).  
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4.5.3.3 Analysis of the gut microbiome at the end of the treatment 

Because the primary endpoint of the study was to identify potential beneficial taxa that changed 

after one year of vitD supplementation, only the patients with available microbiota at both 

timepoints (n=65) were considered for analysis273. Five drop-out patients in the supplementation 

group were further excluded. As a result, the final sample consisted of 60 individuals, 28 in the 

supplemented group and 32 in the placebo group. Except for two patients in the placebo group, all 

were compliant with the treatment. 

As in the overall population, 25(OH)D levels significantly increased in patients who received vitD 

supplementation, reaching a median post-treatment concentration of 40.4 ng/ml (IQR: 37.4-46.6 

ng/ml). No significant change was observed in the placebo group (p = 0.432), although about 25% 

reached vitD sufficiency by the end of the study (Q3: 31.0 ng/ml). 

Relative abundances of 980 taxa were available at both timepoints for each patient. They were clr-

transformed after zero-value imputation. Out of the total 980 taxa, we first selected 75 whose 

abundance at follow-up varied significantly between the two treatment groups. Twelve of these 

taxa were subsequently excluded because they were already significantly unbalanced between the 

groups at baseline, leaving 63 taxa for statistical analysis. The selection was carried out using coda-

lasso. 

Principal component analysis (PCA) was performed on the clr-transformed abundances at follow-

up of the 63 selected taxa. In Figure 4.12a, the scaled PCA scores of the first two components, which 

together explained about 17% of the total variance, are plotted. As shown in the figure, the second 

component (PC2) significantly discriminated (Wilcoxon rank-sum test, p < 0.001) vitD-

supplemented patients from those in the placebo group. Specifically, most of the supplemented 

patients fell within the component's negative axis (82% of the group), while the majority of patients 

in placebo (72%) had positive PC2 scores. These values, although not directly interpretable, 

identified two different microbiome-based clusters of PC2 that well discriminated between the two 

treatment groups.  
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Figure 4.12. a. Plot of the scaled scores of the first two components from principal component 
analysis (PCA) run on the clr-transformed abundances at follow-up of the 63 selected taxa. Data 
points were colored according to treatment arm (red for the placebo group; blue for the vitamin D 
supplementation group). b. Biplot of the first two components. Vectors represent the 63 taxa. 
Points represent individual samples. In red are the taxa that significantly associated to either 
vitamin D supplementation or sufficiency in multivariable regression analysis shown in Figure 4.14. 
 

 

a) 

b) 

Figure 4 12 PCA and biplot of post-treatment selected taxa 



 
 
 

103 
 

The biplot in Figure 4.12b and the loadings barplot in Figure 4.13 show the contribution of each of 

the 63 taxa on PC2: among the taxa that were correlated with the negative side of PC2, i.e., the one 

characterizing the supplemented patients, we found several species from Bacteroides genus, 

Faecalibacterium prausnitzii, - which is a well-known probiotic highly abundant in the gut 

microbiota of healthy adults - and Holdemanella biformis. In contrast, Shigella boydii and Raoultella 

ornithinolytic, as well as several species from Streptococcus and Escherichia genera, were the most 

correlated with the positive side of PC2, which mostly characterized the placebo group. 

 

 

 

Figure 4 13 Barplot of loading of post-treatment selected taxa 

Figure 4.13. Bar plots of the loadings of the 63 taxa on PC2 (second component from PCA run on 
the post-treatment clr-transformed abundances). A positive loading indicates a positive correlation 
with the component, a negative loading indicates an inverse correlation with the component. 
Because most of the vitamin D-supplemented patients had negative PC2 scores and most of the 
patients in the placebo group had positive PC2 scores, a taxa with a negative loading is expected to 
be more abundant at follow-up in those that were supplemented with vitamin D, while a taxa with 
a positive loading is expected to be more abundant in those receiving placebo. 
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Figure 4.14. Taxa significantly associated with a. treatment arm b. post-treatment vitamin D 
sufficiency (25(OH)D ng/ml). For each taxon, results are obtained from a multivariable logistic 
model including the post-treatment clr-transformed abundance of the taxon as covariate and 
adjusted for confounders. The bar length indicates the significant beta-coefficient of the taxon 
(p<0.05). If positive, the taxon was significantly more abundant in patients a. supplemented with 
vitamin D b. reaching vitamin D sufficiency at the end of the treatment. If negative, the taxon was 
significantly more abundant in patients a. in the placebo group b. not reaching vitamin D sufficiency 
at the end of the treatment. 25(OH)D = 25-hydroxy vitamin D. 

 

 

VitD-supplemented patients had significantly higher abundances of Leuconostoc 

pseudomesenteroides, Bacteroides gallinarum, Christensenella timonensis and Ruminococcus YE78 

(Figure 4.14a). 

Comparing the patients with vitD sufficiency (25(OH)D >= 30 ng/ml, n=36) versus those deficient 

(n=23) at follow-up, we found that Leuconostoc pseudomesenteroides and Ruminococcus YE78 

were also significantly more abundant in vitD-sufficient patients, regardless of treatment arm, 

together with Faecalibacterium prausnitzii and Bacteroides clarus (Figure 4.14b). Conversely, 

Eubacterium brachy and Bacteroides coprocola were significantly more prevalent in placebo-

treated patients and in those not reaching vitD sufficiency at the end of the study (Figure 4.14a-b). 

 

Figure 4 14 Barplots of taxa from multivariable models on vitD supplementation and sufficiency 
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4.5.3.3.1 Taxa-mediated effect of vitamin D supplementation on 25(OH)D levels 

Since PCA analysis confirmed differences in the 63 taxa between supplemented and non-

supplemented patients, we performed a mediation analysis to see if these taxa also mediated the 

effect of the supplementation on post-treatment 25(OH)D levels. To do this, we employed the 

counterfactual approach to mediation analysis, assuming an interaction between vitD 

supplementation (exposure) and the selected taxa (mediator) on 25(OH)D levels at follow-up 

(outcome). Both Natural Direct Effect (NDE) and Natural Indirect Effect (NIE) of vitD 

supplementation on post-treatment 25(OH)D levels were hypothesized and graphically 

represented using a DAG, with baseline 25(OH)D levels and sex/gender as confounders (Figure 

4.15). Because PC2 was the component that best discriminated the supplemented from the non-

supplemented, we used it as a proxy for the 63 taxa abundances.  

We found that vitD supplementation significantly and directly affected the final 25(OH)D levels 

(NDE: p<0.0001), but part of its overall effect was significantly mediated by the modulation of the 

63 taxa (NIE: p = 0.02) (Figure 4.15). 

 

Figure 4 15 Results from mediation analysis on post-treatment 25(OH)D 

Figure 4.15. Direct acyclic graph (DAG) of mediation analyses. The 63 selected taxa (summarized 
with PC2) as mediator of the effect of vitamin D supplementation (exposure) on post-treatment 
25(OH)D levels (outcome). In black, natural direct effect (NDE); in red, natural indirect effect (NDE); 
in blue, the effect of confounders on the exposure–outcome relationship. p-value obtained from 
mediation analysis. Significant direct effect of vitamin D supplementation on post-treatment 
25(OH)D (p<0.0001). The 63 taxa significantly mediate the effect of supplementation on post-
treatment 25(OH)D (p=0.02). 25(OH)D = 25-hydroxy vitamin D. 

 

4.5.3.3.2 Functional pathways and vitamin D 

We considered community-level pathway abundances for microbial function. At both timepoints, 

the abundances of 1465 pathways were computed for each patient and normalized using the counts 

per million (CPM) technique. Normalized abundances were clr-transformed after zero-imputing. 
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Only the pathways present in at least 10% of the analyzed patients (n=60) at the end of the 

treatment were considered (n=237 pathways). Using coda-lasso, we initially selected 40 pathways 

with post-treatment abundances significantly associated with the treatment arm. Of these, 8 were 

already significantly unbalanced at baseline. Consequently, 32 pathways were selected for 

investigation. One male patient in placebo was excluded from the statistical analysis because he 

had zero abundances for all the selected pathways. 

Post-treatment abundances of the 32 pathways were investigated in relation to both vitD 

supplementation and vitD sufficiency. In multivariate analysis, we observed significantly increased 

D-fructuronate degradation, superpathway of glycerol degradation to 1,3-propanediol, acetyl-CoA 

fermentation to butanoate II, superpathway of thiamin diphosphate biosynthesis II, guanosine 

nucleotides degradation II in patients that were vitD supplemented, with superpathway of glycerol 

degradation to 1,3-propanediol, superpathway of thiamin diphosphate biosynthesis II and 

guanosine nucleotides degradation II significantly more abundant also in those with post-treatment 

25(OH)D levels≥30 ng/ml. Conversely, L-histidine biosynthesis and pyrimidine deoxyribonucleosides 

salvage pathways were significantly more abundant in placebo patients, while the pathway of L-

ornithine de novo biosynthesis was more abundant in those with vitD deficiency at follow-up (Figure 

4.16a-b). 

 

Figure 4 16 Barplots of pathways from multivariable models on vitD supplementation and sufficiency 

Figure 4.16. Pathways significantly associated with a. treatment arm b. post-treatment vitamin D 
sufficiency (25(OH)D ng/ml). For each pathway, results are obtained from a multivariable logistic 
model including the post-treatment clr-transformed abundance of the pathway as covariate and 
adjusted for confounders. The bar length indicates the significant beta-coefficient of the pathway 
(p<0.05). If positive, the pathway was significantly more abundant in patients a. supplemented with 
vitamin D b. reaching vitamin D sufficiency at the end of the treatment. If negative, the pathway 
was significantly more abundant in patients a. in the placebo group b. not reaching vitamin D 
sufficiency at the end of the treatment. 25(OH)D = 25-hydroxy vitamin D. 
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4.5.3.3.3 Vitamin D, microbiome and sex/gender 

Looking at the distribution of 25(OH)D levels at both timepoints, we found that women in the 

supplementation group had lower vitD levels at baseline than men (pbaseline=0.04). However, the 

supplementation restored this gap, and by the end of the study both post-treatment levels and the 

change in 25(OH)D levels from baseline were comparable between men and women (ppost=0.70; 

pchange=0.95) (Figure 4.17d-f).  

 

 

 

Figure 4 17 Differences in 25(OH)D levels by sex/gender 

Figure 4.17. Boxplots of 25(OH)D levels and change of 25(OH)D from baseline by sex/gender at each 
timepoint and according to treatment arm. For the placebo group, the following 25(OH)D levels 
distributions are plotted: a. baseline; b. post-treatment; c. change from baseline. For the vitamin D 
supplementation group, the following 25(OH)D levels distributions are plotted: d. baseline; e. post-
treatment; f. change from baseline.  
In a. and d. p-values refer to the effect of the sex/gender covariate on baseline 25(OH)D levels and 
were derived from multivariable linear models adjusted for age, baseline Body Mass Index (BMI) 
and previous chemotherapy. 
In b. and e. p-values refer to the effect of the sex/gender covariate on post-treatment 25(OH)D 
levels and were derived from multivariable linear models adjusted for age, baseline BMI and 
previous chemotherapy. 
In c. and f. p-values refer to the effect of the sex/gender covariate on change of 25(OH)D levels 
from baseline and were derived from multivariable linear models adjusted for age, baseline BMI, 
previous chemotherapy and baseline 25(OH)D. 
 

 

Conversely, no significant difference in 25(OH)D levels at baseline was found between women and 

men in the placebo group (pbaseline=0.15), although vitD levels increased significantly more in men 

throughout the year of treatment (pchange=0.03) (Figure 4.17a-c).  
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We also looked at a potential interaction between sex/gender and the treatment-associated taxa 

on post 25(OH)D levels, using PC2 as a proxy for taxa abundances. The predicted regression lines 

stratified by sex/gender are shown in Figure 4.18. We found a statistically significant interaction 

between sex/gender and PC2 on 25(OH)D levels (p < 0.001), suggesting that men and women had 

a different taxa composition at follow-up and that this difference also affected the final 25(OH)D 

levels (Figure 4.18). 

 

 

Figure 4 18 Interaction between microbiome and sex/gender on 25(OH)D 

Figure 4.18. Regression lines obtained from a linear regression model run on post-treatment 
25(OH)D levels, including the interaction between sex/gender and PC2 (second component from 
PCA run on the post-treatment clr-transformed abundances of the 63 selected taxa) and adjusted 
for confounders. In the plot, the p-value of the beta regression coefficient of the interaction 
between sex/gender and PC2 on post-treatment 25(OH)D levels is displayed. 
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As for taxonomic data, PCA was computed on the selected 32 clr-transformed pathways at follow-

up. The first two components (Figure 4.19a-b), which explained about 30% of the total variance, did 

not differ between treatment groups. However, a difference between men and women could be 

detected in the first component (PC1), where the majority of men were distributed alongside the 

negative axis of PC1 (59% of men), whereas most of the women (74%) were in the positive side.  

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Plot of the scaled scores of the first two components from PCA run on the clr-
transformed abundances at follow-up of the 32 selected pathways. Data points were colored 
according to a. treatment arm (red for the placebo group; blue for the vitamin D supplementation 
group) b. sex (red for female; blue for male). 

 

 

This difference was further investigated in multivariate analysis, where an interaction between vitD 

supplementation and sex/gender was introduced. Results from the model showed that, while the 

abundances of the selected pathways summarized by PC1 was comparable between men and 

women in the placebo group, a significant difference was present between men and women after 

the supplementation (p = 0.006, Figure 4.20). 

 

 

Figure 4 19 PCA on post-treatment selected pathways 
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Figure 4.20. Least-square means obtained from the multivariable linear regression model run on 
PC1 (first component from PCA run on the post-treatment clr-transformed abundances of the 32 
selected pathways), including the interaction between sex/gender and treatment arm and adjusted 
for confounders. 
*p-value of interaction effect of treatment (vitamin D supplementation vs placebo) and sex on PC1 
at follow-up. The model was adjusted for: previous chemotherapy and baseline BMI. 

 

The contribution of each pathway on PC1 was summarized in Figure 4.21 with their corresponding 

loading.  

 

 

Figure 4 21 Barplot of the loadings of selected post-treatment pathways 

Figure 4.21. Bar plots of the loadings of the 32 pathways on PC1 (first component from PCA run on 
the post-treatment clr-transformed abundances of the 32 selected pathways). A positive loading 
indicates a positive correlation with the component, a negative loading indicates an inverse 
correlation with the component. Because most of the women had positive PC1 scores and most of 
the men had negative PC1 scores, a pathway with a positive loading is expected to be more 
abundant at follow-up in women, while a pathway with a negative loading is expected to be more 
abundant in men. 

Figure 4 20 Least-square means interaction between treatment arm and PC1 pathways 
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Because women had mostly positive PC1 scores, a pathway with a positive loading was expected to 

be more abundant in women. Conversely, a pathway with a negative loading was expected to be 

more prevalent in men. Superpathway of L-lysine, L-threonine and L-methionine biosynthesis II and 

L-histidine biosynthesis were the pathways with the two largest positive loadings. Both pathways 

involve the biosynthesis of essential amino acids. Multivariate regression analysis confirmed that 

Superpathway of L-lysine, L-threonine and L-methionine biosynthesis II was significantly more 

abundant in supplemented women compared to supplemented men (p = 0.002, Figure 4.22) while 

L-histidine biosynthesis was significantly less abundant in supplemented men than supplemented 

women (p = 0.002, Figure 4.23).  

 

 

Figure 4 22 Least-square means of interaction between vitD supplementation and sex/gender on Superpathway of L-
lysine, L-threonine and L-methionine biosynthesis II 

Figure 4.22. Least-square means obtained from the multivariable linear regression model run on 
clr-transformed abundances of Superpathway of L-lysine, L-threonine and L-methionine 
biosynthesis II at follow-up, including the interaction between sex/gender and treatment arm and 
adjusted for confounders. 
*p-value of interaction effect of treatment (vitD supplementation vs Placebo) and sex/gender on 
superpathway of L-lysine, L-threonine and L-methionine biosynthesis II abundance (clr) at follow-up. 
The model was adjusted for: previous chemotherapy, baseline BMI and baseline 25(OH)D levels. 
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Figure 4 23 Least-square means of interaction between vitD supplementation and sex/gender on Pathway of L-histidine 
biosynthesis 

Figure 4.23. Least-square means obtained from the multivariable linear regression model run on 
clr-transformed abundances of Pathway of L-histidine biosynthesis at follow-up, including the 
interaction between sex/gender and treatment arm and adjusted for confounders. 
*p-value of interaction effect of treatment (vitamin D supplementation vs placebo) and sex/gender 
on L-histidine biosynthesis pathway abundance (clr) at follow-up. The model was adjusted for 
baseline BMI and baseline 25(OH)D levels. 
 

 

 

However, both pathways looked comparable among non-supplemented men and women. 

Looking at the opposite side of the loadings barplot, superpathway of thiamin diphosphate 

biosynthesis II and 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I were the pathways 

with the largest negative loadings, so with the highest inverse contribution on PC1. In multivariable 

analysis, 6-hydroxymethyl-dihydropterin diphosphate biosynthesis I was borderline significantly 

associated to treatment (p = 0.051), with an indication of decreasing levels in the supplementation 

group, but no significant association with sex/gender (p = 0.14) or interaction between vitD 

supplementation and sex/gender was observed (p = 0.09). Superpathway of thiamin diphosphate 

biosynthesis II, on the other hand, was also not significantly different by sex/gender, although, 

overall, it was significantly more abundant in supplemented patients (p = 0.001, Figure 4.24). 
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Figure 4 24 least-square means of interaction between vitD supplementation and sex/gender on superpathway of 
thiamin diphosphate biosynthesis II 

Figure 4.24. Least-square means obtained from the multivariable linear regression model run on 
clr-transformed abundances of superpathway of thiamin diphosphate biosynthesis II at follow-up, 
including the interaction between sex/gender and treatment arm and adjusted for confounders. 
*p-value of the treatment effect (vitamin D supplementation vs placebo) on superpathway of 
thiamin diphosphate biosynthesis II abundance (clr) at follow-up. The model was adjusted for 
sex/gender and baseline 25(OH)D levels. 
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4.5.3.4 Analysis of the change in microbiome 

We used coda-lasso to select the taxa whose change was significantly different between the two 

treatment arms. The model was implemented after applying perturbation difference between the 

post-treatment and baseline taxa abundancies and closure. 

We identified 21 taxa that differently changed during the study period according to the treatment: 

genus Enterococcus, genus Sutterella, Bifidobacterium biavatii, Cellulomonas flavigena,  

Cryptobacterium curtum, Enterococcus durans,  Enterorhabdus caecimuris,  Eubacterium infirmum,  

Eubacterium pyruvativorans, s__Lachnospiraceae_bacterium_3-1,  Lactobacillus parabuchneri,  

Lactobacillus sanfranciscensis,  Prevotella buccalis,  Pyramidobacter piscolens,  Raoultella 

ornithinolytica, Streptococcus intermedius, s__Streptococcus_sp._263_SSPC, 

s__Streptococcus_sp._C150, s__Streptococcus_sp._HMSC062D07, s__Streptococcus_sp._I-P16, 

s__Victivallales_bacterium_CCUG_44730. 

Of these, genus Sutterella, Enterorhabdus caecimuris, Cellulomonas flavigena, Prevotella buccalis, 

Eubacterium infirmum, Cryptobacterium curtum, s__Streptococcus_sp._263_SSPC, 

s__Streptococcus_sp._I-P16 significantly increased in patients supplemented with vitD. 

To summarize the overall change of the gut microbiome accounting for the compositional structure 

of data, we built a score based on PCA applied on the clr-transformed perturbation of the 

abundances at the two time points. Scaling and centering were applied, and the final score of each 

patient was calculated as the linear combination of the score of each component multiplied by the 

square root of its eigenvalue: 

 

 

𝑆𝑐𝑜𝑟𝑒𝑚𝑖𝑐𝑟𝑜𝑏𝑖𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑔𝑒
(𝑗) = √𝜆1 ∗ 𝑃𝐶1𝑗 + √𝜆2 ∗ 𝑃𝐶2𝑗 + ⋯ + √𝜆60 ∗ 𝑃𝐶60𝑗 

 

 

where 𝑃𝐶𝑖𝑗 is the score of the principle component i for the patient j,  𝜆𝑖is the eigenvalue of the 

principal component i, with i, j=1,…,60. 

 

Once again, we observed a significant interaction between vitD and weight status, with change in 

25(OH)D levels being correlated with the score in normal-weight individuals (p=0.04), but not in 

overweight (p=0.31) (Figure 4.25). 

 

 

 



 
 
 

115 
 

 

Figure 4 25 Score of microbiome change vs change in 25(OH)D by overweight status 

Figure 4.25. Scatterplots of change in microbiome score and change in 25(OH)D levels by 
overweight status. a. BMI≤25. b. BMI>25.  
*p-valued derived from a multivariable linear regression model on the score of microbiome change, 
adjusted for age, sex/gender, season of blood draw and treatment arm, including individuals with 
BMI≤25. 
**p-value derived from a multivariable linear regression model on the score of microbiome change, 
adjusted for age, sex/gender, season of blood draw and treatment arm, including individuals with 
BM>25. 
 

 

 

 

4.5.3.4.1 Integrative Data Analysis of gut microbiome, circulating markers, diet and 

lifestyle, and weight status 

To better comprehend the intricate interplay between the diversity of the gut microbiome, diet, 

lifestyle, and circulating markers, we estimated networks based on partial Spearman correlations 

to integrate all this information. To assure the robustness of the displayed relationships, L1 

regularisation was applied. 

We estimated two distinct networks, one for normal-weight individuals (BMI≤25) and one for 

overweight individuals (BMI>25), as the evidence shown so far seemed to suggest a different 

modulation of the microbiome and circulating markers based on the weight status of patients. 
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Figure 4 26 Network analysis by overweight status 

Figure 4.26. Network analysis based on Spearman partial correlations, stratified by overweight 
status. a. BMI≤25. b. BMI>25. The significant edges (indicating partial correlations) were retained 
using graphical LASSO. The line color indicates the direction of a correlation (green for positive and 
red for negative). 
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Network analysis confirmed a complex and intricate interconnection among the factors in normal-

weight individuals. 

The change in 25(OH)D levels was directly correlated with the microbiome change score, as well as 

with the baseline and change in alpha diversity.  In particular, alpha diversity increased with 

increasing 25(OH)D levels, and 25(OH)D levels increased more in individuals with low alpha diversity 

at baseline. Interestingly, change in 25(OH)D was also positively and directly correlated with 

increasing levels of adiponectin and baseline adherence to WCRF recommendations, which, at the 

same time, appeared to mediate the relationship between change in 25(OH)D levels and change in 

VDBP (Figure 4.26). 

In overweight individuals, no significant relationship between the investigated factors was 

identified, with the exception of the correlation between alpha diversity at baseline and at the end 

of the treatment (Figure 4.26). 

The subsequent phase of data integration involved employing block sPLS-DA. Block sPLS-DA is a 

multivariate analysis method used to integrate and analyze data from multiple sources or 'blocks', 

to select relevant variables from each block that contribute to the discrimination of groups. 

In our case, we used block sPLS-DA to identify the taxa that were significantly altered post vitD 

supplementation, while also accounting for the change in circulating biomarkers, dietary habits and 

lifestyle, and BMI. To do that, we created two blocks: the “microbiome” block, including the change 

in microbiome (obtained as the clr-transformation of the perturbation difference between the post-

treatment and baseline relative abundances), and the “clinical” block, including the change in 

circulating biomarkers, and the baseline diet/lifestyle score and BMI. 

The design matrix for the model was chosen based on the observed correlation structure between 

the blocks, determined by executing PLS on each block pair. We considered the first two PLS 

components provided by the model and identified the optimal number of variables in each block 

for each component using 5x50 cross-validation. 

We selected ten taxa for each component of the "microbiome" block, and two and fourteen 

variables for the first and second component of the biomarker/lifestyle block, respectively. 

Overall, both blocks of data effectively discriminated between the vitD supplementation group and 

the placebo group. In particular, the first component showed a high capacity for discrimination 

between the two groups, with positive scores mainly identifying the placebo arm and the negative 

scores primarily identifying the vitD supplementation group (Figure 4.27). 
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Figure 4 27 PLS score of “microbiome change” and “change in biomarker, diet/lifestyle, BMI” blocks on vitD suppl 

Figure 4.27. Scatter plot of the scores of the first two components estimated for each “block” of 
data (the “microbiome” block including the clr-transformed change in taxa abundances and the 
“biomarker/lifestyle” block including the change in circulating biomarkers, baseline diet/lifestyle 
score and baseline BMI) through block sparse Partial Least Square-Discriminant Analysis (block 
sPLS-DA), including the treatment arm as outcome. A step of variable selection was first employed 
on the components of each block through L1 (LASSO) penalization. The optimal number of variables 
to select from each component of each block was estimated using 5x50 CV. 
 

 

As expected, the two biomarkers that characterized the first component of the biomarkers and 

lifestyle block were 25(OH)D and VDBP. Their variations during the treatment period effectively 

differentiated between the supplementation and placebo groups. Conversely, for the microbiome 

block, the first component was defined by changes in ten taxa, namely:     Dehalococcoides mccartyi,    

genus Peptoniphilus,    Hallella seregens,    genus Sutterella,   s__Lachnospiraceae_bacterium_3-1,    

s__Streptococcus_sp._I-P16,    Cryptobacterium curtum, Porphyromonas uenonis,    

s__Streptococcus_sp._263_SSPC,    Mitsuokella multacida.  

Of these, Dehalococcoides mccartyi, Hallella seregens, genus Sutterella,    s__Streptococcus_sp._I-

P16, Cryptobacterium curtum, s__Streptococcus_sp._263_SSPC,    Mitsuokella multacida increased 

in the supplementation group (Figure 4.28). Genus Sutterella, Cryptobacterium curtum, 

s__Lachnospiraceae_bacterium_3-1, s__Streptococcus_sp._263_SSPC, s__Streptococcus_sp._I-P16 

were also selected by the coda-lasso model. 
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Figure 4 28 Loadings of PLS components in “microbiome change” and “change in biomarker, diet/lifestyle, BMI” blocks 

 
Figure 4.28. Barplots represent the loadings of the variables selected from the first component of 
each block in the block sPLS-DA model, with the treatment arm included as the outcome. In the 
"microbiome" block, 10 taxa were retained. In the "biomarker/lifestyle" block, change in 25(OH)D 
and VDBP were selected. The loading for each selected variable is allocated to the arm where that 
variable exhibits a higher median value. 
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The hierarchical clustering-based clustered image map in Figure 4.29, which visualizes the scaled 

values of the variables selected from the first component of both data blocks, shows that the 

change in the 10 chosen taxa, as well as in the levels of 25(OH)D and VDBP, clearly distinguish 

between the two treatment arms.  

 

Figure 4.29. Clustered Image Map for the variables selected on component 1 by block sPLS-DA 
including the treatment arm as outcome. Hierarchical clustering of the scaled values of the selected 
variables was employed based on Euclidian distance and the complete linkage method. The color 
scale ranges from blue indicating low values to red indicating high values. Patients were displayed 
in rows while the selected variables were displayed in columns. The two data blocks in the model 
were: the “microbiome” block, which included the perturbation difference between the taxa 
abundance in the two time following clr-transformation, and the “biomarker/lifestyle” block, 
including the changes in circulating biomarkers, baseline diet/lifestyle score and baseline BMI. 
ch_VDBP = change in VDBP levels. ch_25(OH)D = change in 25(OH)D levels. 

Figure 4 29 Heatmap of microbiome and biomarkers integration 
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4.5.4 Analysis of Gene Expression 

We performed a clustering analysis on the expression profiles of the immune-related 395 genes 

from the OIRRA panel, evaluated in the tumour tissue. High-quality reads were generated for 46 

patients, meeting the quality standards of the laboratory. For two patients, gene expression (GE) 

profiling was performed on two distinct samples due to the heterogeneous characteristics of the 

tumor in each sample.  

After filtering (retaining only genes expressed in a minimum of 10% of the samples, leading to the 

selection of 371 genes) and zero imputation, we clr-transformed the normalized GE data to address 

its compositional nature.  

We used consensus clustering on the clr-transformed data to group patients into distinct clusters, 

aiming to define a sort of "transcriptomic signature". We employed every possible combination of 

clustering algorithms (hierarchical, paritioning around medoids, k-means) and distance metrics 

(pearson [1 - Pearson correlation], spearman [1 - Spearman correlation], Euclidean, maximum, 

Canberra and minkowski) available in the ConsensusClusterPlus package in R, to identify the optimal 

clustering partition of patients based on their GE. 

 

 

Figure 4 30 Consensus Clustering GE data 

Figure 4.30. Hierarchical clustering of the consensus matrix which included the 46 samples of GE 
after clr-transformation and considering k=3 clusters. The clustering was carried using the 
partitioning around medoids algorithm based on the Spearman distance metric (1-Spearman 
correlation). High intensities of blue indicate high consensus. 

consensus matrix k=3

1
2
3
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Eventually, three robust GE clusters of patients were identified (Figure 4.30). They were determined 

using the partitioning around medoids algorithm, based on the Spearman distance.  These clusters 

exhibited strong agreement across subpartitions and remained consistent even in the sensitivity 

analysis including the normalized GE data, without the clr-transformation. Moreover, the same 

clusters were obtained when we included, one at a time, the GE profiles of the patients who had 

two separate GE analyses on distinct tumour tissue samples. 

Cluster 1 included 26 patients, Cluster 2 included 16 patients and Cluster 3 included 4 patients. After 

correction for multiple testing, the clr-transformed expression of 50 genes and the normalized 

expression of 96 genes (without clr-transformation) was significantly different across the three 

clusters (padj<0.05). Of these 96 genes, 42 were included in the set of 50 genes identified in the main 

analysis based on the clr transformation (see Supplementary Table S12; Figure 4.31). 

 

 

Figure 4 31 Heatmap of differentially expressed genes in the 3 GE clusters 

Figure 4.31. The heatmap includes the scaled clr-transformed expression of the 42 genes that were 
differently expressed between the three GE clusters. The color scale ranges from blue indicating 
low expression to red indicating high expression. Columns were grouped based on on the Gene 
Expression cluster. Genes in the heatmap were hierarchically clustered using the Spearman 
distance metric (1-Spearman correlation) and the "complete" linkage method. GE=Gene 
Expression. Expr.=scaled clr-transformed expression of genes. 
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Cluster 2 was associated with a higher risk of colorectal events compared to Cluster 1 and Cluster 3 

(log-rank test for colorectal events: p=0.023; Figure 4.32), with 9 patients out of 16 experiencing at 

least one colorectal event during the follow-up period (Figure 4.33). It was characterized by high 

expression levels of 11 of the 42 reproducible selected genes (KLRD1, CXCL13, CD3D, NKG7, CCL5, 

CD79A, SLAMF7, TNFRSF-17, HLA-DOB, POU2AF1, NXF1) which conversely, were found to be 

underexpressed in Cluster 1. Cluster 3 also exhibited increased expression of these genes, along 

with another set of genes that were also highly expressed in Cluster 1. 

 

 

 

Figure 4 32 K-M curves by GE cluster 

Figure 4.32. Kaplan-Meier curves for event-free survival (EFS) and Log-Rank test according to the 
three GE clusters. In a. are the Kaplan-Meier curves for colorectal events, which include tumour 
relapse, death but also colorectal adenomas and polyps. In b. are the Kaplan-Meier curves for any 
clinical events, which include tumour relapse, death, colorectal adenomas and polyps, and other 
tumours. 
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Figure 4 33 Heatmap of differentially expressed genes in the 3 GE clusters annotated by CRC event 

Figure 4.33. The heatmap includes the scaled clr-transformed expression of the 42 genes that were 
differently expressed between the three GE clusters. The color scale ranges from blue indicating 
low expression to red indicating high expression. Annotations for the GE clusters and occurrence of 
colorectal events were done. Genes in the heatmap were hierarchically clustered using the 
Spearman distance metric (1-Spearman correlation) and the "complete" linkage method. GE=Gene 
Expression. Expr.=scaled clr-transformed expression of genes. 

 

 

 

Of the four individuals in Cluster 3, three were males and one was female. When compared to 

patients in Clusters 1 and Cluster 2, all individuals in Cluster 3 had undergone both radiotherapy and 

chemotherapy and, notably, exhibited higher levels of 25(OH)D both at baseline and at the end of 

the treatment period (Figure 4.34). Additionally, they had reduced levels of inflammation, higher 

baseline IL-7 and IL-8/CXCL8 levels, and a lower BMI (Figure 4.35). 
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Figure 4.34 Boxplot of the distribution of 25(OH)D levels a. at baseline b. at the end of the treatment 
period by Gene Expression cluster. 
 

 

Figure 4 35 Heatmap of circulating bi

omarkers, diet/lifestyle and BMI by GE cluster 

Figure 4.35. The heatmap includes the scaled values of the circulating biomarker, BMI and 
diet/lifestyle score at baseline. The color scale ranges from blue indicating low values to red 
indicating high values. Columns were grouped based on the Gene Expression cluster. The included 
variables in the heatmap were hierarchically clustered using the Spearman distance metric (1-
Spearman correlation) and the "complete" linkage method. GE=Gene Expression. Value=scaled 
values of the included variables. BMI=Body Mass Index. 
 

Figure 4 34 25OHD distributions by GE cluster 
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4.5.5 Analysis of Colorectal and Clinical events 

4.5.5.1 Integrative Data Analysis of gut microbiome, gene expression, circulating markers, 

diet and lifestyle, and weight status 

In total, 40 patients had the GE profiling and microbiome evaluation at both time points. We 

included them in an integrative analysis of GE data, microbiome, circulating biomarkers, 

diet/lifestyle score and BMI at the end of the treatment, in order to identify patterns that could 

differentiate between patients who experienced at least one colorectal event during the follow-up 

period and those who did not. 

To achieve this, we employed block sPLS-DA including three distinct data blocks: "post-treatment 

microbiome," "post-treatment circulating markers, diet/lifestyle score, BMI," and "gene 

expression”. Microbiome and GE data were clr-transformed.  

We considered the first two PLS components of the model, estimating the optimal number of 

variables for each block via 5x50-fold cross-validation. The final model was obtained excluding one 

outlier patient, which accounted for most of the variability of the first component. 

Overall, the integration of the tree blocks of data appeared to effectively distinguished patients 

who have experienced at least one colorectal event during follow-up from those who have not 

(Figure 4.36). Notably, the microbiome block, through the combination of the first two components, 

and the GE block, primarily through its first component, emerged as the most discriminative. In 

contrast, the circulating biomarkers, diet/lifestyle and BMI block provided the least differentiation 

between the two groups. 
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Figure 4 36 PLS score of “microbiome change”,  “change in biomarker, diet/lifestyle, BMI”  and "GE" blocks on CRC events 

Figure 4.36. Scatter plot of the scores of the first two components estimated for each “block” of 
data (the “microbiome” block including the clr-transformed abundances of taxa at the end of the 
treatment, the “biomarker, diet/lifestyle score, BMI” including the post-treatment values of the 
circulating biomarkers, the diet/lifestyle score and BMI, and the “gene expression” block including 
the clr-transformed expression of the genes). The components were estimated through block 
sparse Partial Least Square-Discriminant Analysis (block sPLS-DA), including the occurrence of at 
least one colorectal event as outcome. A step of variable selection was first employed on the 
components of each block through L1 (LASSO) penalization. The optimal number of variables to 
select from each component of each block was estimated using 5x50 CV. One outlier patient was 
excluded from the analysis. 

 

 

For the microbiome, we selected 10 taxa from each component. For GE, we selected 10 genes from 

the first component and 5 genes from the second component. From the circulating markers, 

diet/lifestyle and BMI block, we selected 4 variables from the first component and 2 from the 

second (Figure 4.37). 
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Figure 4 37 Loadings of PLS components in “microbiome change”, “change in biomarker, diet/lifestyle, BMI” and "GE" 
blocks 

Figure 4.37. Barplots represent the loadings of the variables selected from a. the first component 
and b. the second component of each block in the block sPLS-DA model, with the occurrence of at 
least one colorectal event as outcome.  The “microbiome” block includes the clr-transformed 
abundances of taxa at the end of the treatment; the “biomarker, diet/lifestyle score, BMI” includes 
the post-treatment values of the circulating biomarkers, the diet/lifestyle score and BMI; the “gene 
expression” block including the clr-transformed expression of the genes. The loading for each 
selected variable is allocated to the arm where that variable exhibits a higher median value. 
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The heatmap displayed in Figure 4.38 shows that the features selected from the first two 

components of each block define a cluster which identifies most of the patients who experienced 

at least one colorectal event. Specifically, this group of patients exhibited elevated levels of CD27 

and CD40, along with higher abundances of genus Lactococcus, s__Rothia_sp._HMSC067H10, 

s__Atopobium_sp._oral_taxon_199, s__Streptococcus_sp._HMSC073D05, 

s__Streptococcus_sp._HMSC074F05, s__Streptococcus_sp._HMSC076C09, 

s__Streptococcus_sp._HMSC072C09, s__Streptococcus_sp._HMSC072G04, 

s__Eggerthella_sp._1_3_56FAA by the end of the treatment. Moreover, the genes CD28, CCR4 and 

CCL22 were upregulated in this subset of patients. Interestingly, CCL22 was found to be significantly 

upregulated in F. nucleatum-infected CRC cell lines, suggesting a role in F. nucleatum-related 

colorectal tumorigenesis274.  

 

 

Figure 4 38 Heatmap of microbiome, biomarkers and GE  integration 

Figure 4.38. Clustered Image Map for the variables selected on component 1 by block sPLS-DA 
including the occurrence of at least one colorectal event as outcome. Hierarchical clustering of the 
scaled values of the selected variables was employed based on Euclidian distance and the complete 
linkage method. The color scale ranges from blue indicating low values to red indicating high values. 
Patients were displayed in rows while the selected variables were displayed in columns. The 
“microbiome” block includes the clr-transformed abundances of taxa at the end of the treatment; 
the “biomarker, diet/lifestyle score, BMI” includes the post-treatment values of the circulating 
biomarkers, the diet/lifestyle score and BMI; the “gene expression” block including the clr-
transformed expression of the genes. 
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4.5.5.2 Event-Free Survival analysis 

As a final step in our investigation, we included the time dimension through multivariable Cox 

proportional hazard model and integrated all the findings presented so far to determine if any of 

the examined factors was associated with a higher risk of developing a colorectal event or 

experiencing any clinical event (Table 4.11). 

 

Table 4.11 Summary estimates from multivariable Cox Proportional-Hazards models including GE, 

diet/lifestyle, vitamin D status and Galectin-9 

Characteristic 

Any event   Colorectal event 

HR1 95% CI1 p-value   HR1 95% CI1 p-value 

Gene Expression cluster               

    1 — —     — —   

    2 3.97 1.27, 12.4 0.018   4.92 1.48, 16.4 0.009 

    3 2.03 0.19, 21.9 0.56   2.22 0.20, 24.2 0.514 

    NA 2.48 0.65, 9.46 0.185   3.43 0.86, 13.6 0.08 

Diet and lifestyle score (baseline) 0.75 0.47, 1.20 0.228   0.91 0.57, 1.44 0.678 

Vitamin D sufficiency (post), Yes vs No 0.28 0.09, 0.89 0.03   0.31 0.10, 0.98 0.046 

Shannon Index (baseline) 0.16 0.04, 0.63 0.009   0.18 0.04, 0.73 0.017 

Season of blood draw               

    Winter — —     — —   

    Autumn 0.42 0.10, 1.78 0.238   0.92 0.20, 4.27 0.915 

    Summer 1.78 0.44, 7.26 0.422   3.75 0.80, 17.5 0.092 

    Spring 0.99 0.25, 3.82 0.984   2.17 0.48, 9.81 0.312 

Galectin-9 (baseline) per 100 pg/mL 

increase* 
0.95 0.92, 0.95 0.002   0.96 0.93, 0.99 0.011 

1 HR = Hazard Ratio, CI = Confidence Interval 

*significant associations also for Galectin-9 at the end of the treatment. Age, sex/gender, tumour treatment 
and characteristics were not significantly associated with neither outcome.  Colorectal events include tumour 
recurrence, death, adenomas and polyps. Any events include colorectal events and other tumours. 
 

 

Age, sex/gender, and the clinical characteristics of the tumour were not significantly associated 

with the risk of colorectal and any clinical event, and were therefore excluded from the models. 

The same was for BMI, overweight status (BMI > 25) and obesity status (BMI > 30). 

Even though the diet/lifestyle score did not reveal a significant association with the risk of clinical 

and colorectal events (p=0.23 and p=0.68, respectively; Table 4.11), it was kept in the model to 

account for the lifestyle habits of patients. 

A pivotal finding was that achieving vitD sufficiency (25(OH)D > 30) by the end of the treatment 

period acted as a significant protective factor for both outcomes, resulting in an approximate 70% 

reduction in risk for both colorectal and any clinical events (Hazard Ratio (HR) = 0.28, 95%CI: 0.09-
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0.89; p = 0.03 for clinical events; HR = 0.31, 95%CI: 0.10-0.98; p = 0.046 for colorectal events; Table 

4.11). 

In line with what already observed in univariate analysis, individuals in Cluster 2 had a significantly 

higher risk of both outcomes compared to Cluster 1 (HR = 3.97, 95%CI: 1.27-12.4; p = 0.02 for clinical 

events; HR = 4.92, 95%CI: 1.48-16.4; p = 0.01 for colorectal events; Table 4.11). No differences were 

observed between Cluster 1 and Cluster 3, and between Cluster 1 and those without the GE 

evaluation. 

Alpha diversity at baseline was also strongly and inversely correlated with the two outcomes, with 

individuals with low diversity at baseline being at greater risk (HR = 0.16, 95%CI: 0.04-0.63; p = 0.01 

for clinical events; HR = 0.18, 95%CI: 0.04-0.73; p = 0.02 for colorectal events; Table 4.11).  

While none of the changes in biomarker levels were associated with the risk of either outcome, 

Galectin-9 was significantly and inversely correlated with the risk of colorectal events and clinical 

events, both pre- and post-treatment (HR = 0.95, 95%CI: 0.92-0.95; p = 0.002 for clinical events; HR 

= 0.96, 95%CI: 0.93-0.99; p = 0.01 for colorectal events; Table 4.11). Galectin-9 is a member of the 

galectin family of proteins and is involved in several biological processes, including the modulation 

of immune responses, cell-to-cell adhesion, and apoptosis. Several studies have shown a close 

relationship between Galectin-9 and CRC275, as it is downregulated in colon tumour tissues276, and 

high levels of Galectin-9 were found to be associated with improved overall survival in CRC276,277. 

In Figure 4.39 are the Kaplan-Meier curves including the factors associated with both outcomes, 

stratified according to their median value. 
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Figure 4 39 K-M curves galectin-9, shannon index, vitD sufficiency 

Figure 4.39. Kaplan-Meier curves for event-free survival and colorectal event-free survival and Log-
Rank tests according to the median of baseline and post-treatment Galectin-9, the median of the 
Shannon Index at baseline and vitamin D sufficiency (25(OH)D>60 ng/mL) at the end of the 
treatment period. 
Colorectal events include tumour recurrence, death, adenomas and polyps. Any events include 
colorectal events and other tumours. 
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4.5.5.3 Fusobacterium nucleatum, vitamin D and colorectal events 

Fusobacterium nucleatum is a common bacterium in the oral cavity known to be significantly 

associated with CRC and oral diseases. Data on the bacterium prevalence at both timepoints is 

provided in Figure 4.40, according to treatment arm and colorectal event (median follow-up = 3.7 

years).  

 

Figure 4 40 Prevalence of Fusobacterium nucleatum at both time points 

Figure 4.40. Data on prevalence of Fusobacterium nucleatum at both time points and according to 
treatment arm and study compliance. pts = patients. 

 

Due to the short follow-up period, we considered a colorectal event not only death and cancer 

relapse but also colorectal adenomas and polyps. 

In univariate analysis, the colorectal EFS of patients with F. nucleatum only at baseline was 

significantly worse (p = 0.047) (Figure 4.41).  

 

 

Figure 4 41 K-M curves by prevalence of F. nucleatum at both time points 

Figure 4.41. Kaplan-Meier curves for event-free survival (EFS) and Log-Rank test according to the 
presence of Fusobacterium nucleatum at either time point. 
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However, after adjusting for baseline 25(OH)D and post vitD sufficiency (which, in this instance, was 

a proxy for the treatment effect, having also included drop-outs), the association between 

Fusobacterium nucleatum at baseline and an increased risk of event was significant, regardless of 

the presence of the bacterium post-treatment (Cox Proportional-Hazards model: HR yes versus no: 

3.19; 95%CI: 1.21-8.35; p = 0.019).  

However, no significant association was found between the post-treatment presence of the 

bacterium and risk of colorectal event.  

Post-treatment abundances in those with the bacterium were significantly and inversely correlated 

with age (beta: -0.14; 95%CI: -0.21; -0.08; p = 0.001), significantly higher in those carrying it from 

baseline (beta: 2.8; 95%CI: 1.3-4.2; p = 0.003) and borderline significantly lower in those reaching 

vitD sufficiency at the end of the treatment (beta: -1.3; 95%CI: -2.7-0.02; p = 0.05) (Table 4.12; 

Figure 4.42a).  

 

Table 4.12 Results from multivariate linear regression on log(F. Nucleatum relative abundance) at 

follow-up in those who had it 

 

 

 

 

 

 

1 CI = Confidence Interval; f.u = follow-up; F. nucleatum = Fusobacterium nucleatum.  
Beta regression coefficients were estimated with a multivariable linear regression model including the log-
transformed relative abundance of Fusobacterium nucleatum at the end of the treatment period. The model 
included only the patients with the bacterium at this time point. 

 

 

 

 

 

 

 

 

 

 

 

Characteristic Beta 95% CI1 p-value 

Age -0.14 [-0.21; -0.08] 0.001 

Vitamin D sufficiency at f.u. (yes vs no) -1.3 [-2.7; 0.02] 0.052 

F. nucleatum at baseline (yes vs no) 2.8 [1.3; 4.2] 0.003 
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Figure 4 42 F. nucleatum and vitD 

In addition, an inverse correlation between F. nucleatum and post-treatment 25(OH)D levels was 

observed, with abundances decreasing as vitD levels increased (Figure 4.42b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42 a. Boxplots of log-transformed relative abundances of Fusobacterium nucleatum in 
patients who have it at the end of the treatment, according to vitamin D sufficiency status 
(25(OH)D≥30 ng/ml) at follow-up. p-value comes from the multivariable linear regression model 
summarized in Table 4.12 b. Scatterplot displaying post-treatment 25(OH)D levels in x-axis and log-
transformed relative abundances of Fusobacterium nucleatum in patients who had it at the end of 
the treatment in y-axis. 
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5. DISCUSSION 

 

Overall, our results confirm a relationship between gut microbiome and vitD, and suggest an 

interplay between them and diet and other risk factors in the CRC setting. 

In the case-control study, we identified several taxa significantly more abundant in cases 

compared to controls, such as Parvimonas micra, F. nucleatum, and Bacteroides fragilis. We also 

observed that subjects who did not follow WCRF recommendations for cancer prevention had a 

significantly higher risk of CRC, and that a high-risk diet was associated with a higher inflammatory 

status and with higher abundances of several species, particularly F. nucleatum and Clostridium 

ramosum. Interestingly, we also found an inverse association between CRC risk and high fatty fish 

consumption but not with other types of fish. Fatty fish is a source of dietary vitD3, and high 

consumption can increase serum 25(OH)D. Moreover, the results from the mediation analysis 

suggested that the microbiota, through its modulation, can mediate the effect of a high risk diet on 

CRC risk. Altogether, these results showed that the integration of lifestyle risk factors, circulating 

biomarkers, and microbiome could significantly improve our ability to discriminate healthy subjects 

from CRC patients. However, the small sample size and the large number of variables considered in 

the analysis, together with the lack of external validation, are strong limitations of the study. 

Furthermore, all the variables were measured at a single timepoint, therefore our estimates could 

be affected by reverse causation bias. 

The next step in our research was to conduct a systematic review of the literature on vitD 

and the microbiota in humans, to determine if the current scientific evidence suggested a possible 

modulatory effect of vitD on the microbial diversity and composition. 

Overall, we found a relationship between vitD and microbiota composition, despite the substantial 

heterogeneity of the collected studies. Regarding alpha and beta diversity, a large dietary intake of 

vitD appeared to induce a change in the composition of the bacterial community in some studies, 

as well as an impact on species richness. At the phylum level, Firmicutes, Actinobacteria and 

Bacteroidetes were reported to be the most affected, either increasing or decreasing in relation to 

both vitD supplementation and serum levels.  

However, most of the studies identified were observational studies, with only 7 being RCTs. While 

RCTs are generally less subject to biases, the studies we reviewed often included small sample sizes, 

with only 4 having over 500 participants. Many observational studies did not account for potential 

confounders like environment, lifestyle, diet, or sampling times, with the risk of introducing bias in 

the identified associations between vitD and the microbiota. Additionally, the diverse 

characteristics and health statuses of participants in these studies sometimes resulted in 

inconsistent findings.  

For this reason, the next step in our research was to design a RCT involving vitD 

supplementation for CRC survivors with vitD deficiency (25(OH)D<30 ng/mL), to investigate if and 
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how the supplementation modulated the species known to be beneficial for human health. For vitD 

supplementation, a daily dose regimen was adopted. In a recent systematic review and individual 

patient data meta-analysis of RCTs, a daily dosing of vitD supplementation was found to be 

significantly associated with a 12% reduction in cancer mortality, whereas no effect was observed 

with high doses vitD supplementation at longer intervals119.  

By the end of the treatment, we observed increased abundances of several taxa in the group of 

patients supplemented with vitD. Several of them belonged to the Bacteroides genus, such 

as Bacteroides clarus and Bacteroides gallinarum. Species from Bacteroides are known to play an 

important role in modulating the human immune system by 

metabolizing polysaccharides and oligosaccharides, thus supplying the host with nutrition and 

vitamins278. These results are also consistent with what we observed in our systematic review of 

the literature, where Bacteroidetes emerged as one of the most recurrent phyla increasing 

following vitD supplementation. Holdemanella biformis was also more abundant in supplemented 

patients. This species was shown to have an anti-tumorigenic effect by producing fatty acids that 

control tumor cell proliferation279. Additionally, Faecalibacterium prausnitzii, highly present in the 

human gut and one of the major gut's butyrate producer, was found in higher abundances in both 

supplemented and vitD sufficient groups of patients. Known for its anti-inflammatory properties280, 

especially in IBD conditions281, recent studies also suggest a potential protective role of F. prausnitzii 

on both the initiation and progression of CRC282. 

The mediation analysis suggested that vitD supplementation modulated a specific group of taxa, 

and that this modulation significantly mediated the effect of the supplementation on 25(OH)D 

levels. These findings are consistent with those observed in our case-control study, in which we 

found that a high consumption of fatty fish – that is, a vitD-rich diet – significantly increased the 

levels of Bifidobacteria/Escheria ratio (an indicator of "good" intestinal health), thereby decreasing 

the risk of CRC. 

Functional analysis also revealed differences by treatment arm, with superpathway of glycerol 

degradation to 1,3-propanediol, superpathway of thiamin diphosphate biosynthesis II (with thiamin 

diphosphate also known as vitamin B1) and pathway of guanosine nucleotides degradation II 

significantly more abundant in both vitD supplemented and vitD sufficient individuals.  

Regarding the change in microbiome throughout the study period, we identified a group of taxa 

that increased following vitD supplementation, including several strains of Streptococcus, 

Cryptobacterium curtum, and the genus Sutterella. 

Overall, the supplementation did not change the microbial diversity. However, the weight status of 

patients deeply modulated the effect of the supplementation on both microbiome diversity and 

serum 25(OH)D levels. Indeed, we observed a significant interaction between vitD supplementation 

and BMI, with 25(OH)D levels increasing less in the supplemented group at increasing BMI. These 

results are consistent with a secondary analysis of the VITAL trial that was recently published in 

https://www.sciencedirect.com/topics/medicine-and-dentistry/polysaccharide
https://www.sciencedirect.com/topics/medicine-and-dentistry/oligosaccharide
https://www.sciencedirect.com/topics/medicine-and-dentistry/cell-proliferation
https://www.sciencedirect.com/topics/medicine-and-dentistry/faecalibacterium-prausnitzii
https://www.sciencedirect.com/topics/medicine-and-dentistry/butyric-acid
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JAMA Network Open131. With over 16,000 participants, VITAL is one of the largest randomised 

controlled trials involving vitD supplementation for cancer and cardiovascular prevention. In the 

study, the authors investigated the change in serum vitD levels in a sub-cohort of 2,742 participants 

with a blood sample available at the 2-year follow-up. The authors discovered that supplementation 

significantly increased all circulating markers related to vitD. However, these increases decreased 

substantially as BMI categories increased. The same trial also revealed that only normal-weight 

individuals (BMI <25) in the supplementation group had a lower incidence of invasive cancer events 

compared to the placebo group, whereas there were no differences in the overweight and obese 

groups124.   

In our study, we found that weight also modulated the effect of vitD supplementation on the 

change in alpha diversity, which was significantly and positively correlated with the change in 

25(OH)D levels only in the normal-weight individuals. In this subgroup, the change in 25(OH)D levels 

was also significantly and positively correlated with increasing adiponectin levels and a diet and 

lifestyle in accordance with WCRF cancer prevention recommendations. On the other hand, in the 

subgroup of overweight patients, no significant relationship – estimated in terms of partial 

correlations – was identified among vitD levels, diet/lifestyle, the microbial diversity and any of the 

investigated circulating markers. 

The mechanisms underlying the inverse relationship between BMI and 25(OH)D levels are intricate 

and remain to be fully elucidated. A prevailing theory posits that, given the fat-soluble nature of 

vitD, the increased amount of adipose tissue in obese individuals serves as a reservoir, entrapping 

a greater quantity of vitD and subsequently diminishing its availability in the bloodstream283,284. An 

alternative theory suggests potential modifications in vit D metabolism associated with obesity. This 

condition may induce alterations in the enzymatic activity within the liver and kidneys responsible 

for vitD metabolism, impacting the transformation of vitD to its active form131. 

In the era of precision medicine, another pivotal point in research is to consider and account for sex 

and gender differences throughout investigations. In our study, we identified sex/gender 

differences in both vitD levels and gut microbiome, especially in the supplemented group. 

Regarding vitD metabolism, it has been shown that women absorb less vitD and have a different 

fatty acid metabolism following vitD supplementation compared to men285. Moreover, emerging 

evidence has shown that both biological sex and gender significantly affect gut microbiota. This 

appears to be attribute not only to sex hormones, but also to host metabolism, gut-brain 

communication, diet and environmental factors285–289.  

In our trial, we found a significant interaction between gut microbiota and sex/gender on 25(OH)D 

levels at follow-up. The abundances of pathways related to the biosynthesis of essential amino acids 

were also significantly different between males and females, but only if supplemented. Sex/gender-

specific associations in short-chain acylcarnitines and branched-chain amino acid metabolites were 

also found in a metabolomics cohort study of critically-ill patients supplemented with high doses of 
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vitD3290. In addition, a mouse study investigating the relationship between dietary vitamin B6 

supplementation and colon luminal environment identified significant differences by sex on colonic 

free amino acids such as threonine, ornithine, aspargine/aspartate ratio and glutamine/glutamate 

ratio291. 

For a subset of 45 patients, we could also assess the GE profile of 395 immune-related genes 

evaluated in the tumor tissue. Three cluster of patients were identified solely based on GE data. 

One of these clusters, which we named Cluster 2, was significantly associated with a higher risk of 

experiencing a clinical event during the follow-up period, especially colorectal. The patients 

experiencing at least one colorectal event were characterized by an overexpression of CD28, CCR4 

and CCL22 genes. Interestingly, the expression of CCL22 was found to be significantly upregulated 

in Fusobacterium nucleatum-infected CRC cell lines, suggesting a role of CCL22 in F. nucleatum-

related colorectal tumorigenesis274. 

Fusobacterium nucleatum is a proinflammatory292 bacterium of the oral cavity that is highly 

abundant in CRC patients293. However, it is still unclear whether this relationship is just an 

association or implies a causal involvement of the bacterium in CRC prognosis and progression. In 

our study, Fusobacterium nucleatum was present in 14 patients at baseline and in 12 patients post-

treatment. However, looking at preliminary data on clinical events, we found that only patients with 

F. nucleatum at baseline had worse EFS, whereas no association between the bacterium after the 

treatment and events was observed. This result could indicate that the bacterium is only an 

indicator of the patient's health status rather than a promoter of tumor carcinogenesis. Moreover, 

post-treatment abundances of Fusobacterium nucleatum were lower in those reaching vitD 

sufficiency, probably confirming the anti-inflammatory effect of vitD on tumorigenesis294. Alpha 

diversity was also significantly and inversely correlated with risk of both colorectal and any clinical 

events, with individuals with lower diversity being at higher risk. Low diversity was probably an 

indicator of a poor health condition in the individuals, as it tended to be lower in those with low 

baseline adiponectin levels and who had experienced a more advanced CRC. However, it was in 

these patients that the diversity increased more through the 1-year study period. 

Regarding the effect of the supplementation on EFS, we found a significant protective effect of vitD 

on the risk of onset of clinical events, including colorectal. Indeed, we found that those who reached 

vitD sufficiency status by the end of the treatment period had a significant reduction in risk of both 

clinical and colorectal events. While the literature on a protective effect of vitD supplementation 

on overall and cancer-related mortality is wider and supported by large cohort studies and meta-

analyses of RCTs, the evidence on the effect of vitD on cancer risk and progression – including 

colorectal – is conflicting. In our study, we observed a strong protective effect of vitD 

supplementation, with about 70% reduction in risk in those reaching 25(OH)D>30 ng/mL at follow-

up. These findings can probably be explained by the characteristics of the study population enrolled, 

which consisted of individuals with vitD deficiency status.  
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Galectin-9 was also significantly and inversely correlated with the risk of events. Interestingly, a 

relationship between galectin-9 and vitD levels was observed, with levels of Galectin-9 increasing 

at increasing levels of 25(OH)D. Galectin-9 is a protein that belongs to the galectin family, which is 

characterized by the ability to bind beta-galactoside sugars. Galectin-9 is involved in multiple 

cellular processes, such as cell-cell interactions, cell adhesion, and intracellular signaling. It is also 

involved in immune modulation, primarily in regulating T-cell responses, and has thus been studied 

in the context of a variety of diseases, including cancer. Regarding galectin-9 and CRC, low levels of 

galactin-9 expression were observed in colon tumor tissues, and such low expression was correlated 

with unfavorable histological grades and the occurrence of lymph node metastasis276. Conversely, 

a high expression of galectin-9 was correlated with improved overall survival in colon cancer 

patients276,277. Moreover, galectin-9 was found to inhibit the growth of CRC cell lines both in vitro 

and in vivo. This inhibitory action is believed to arise from the induction of apoptosis through 

changes in miRNA295. 

Overall, in our trial, we found that the transcriptomic profile, the microbial diversity and 

composition, vitD status and circulating marker levels of individuals were significantly associated 

with EFS. However, due to the short follow-up period (median follow-up: 3.7 years) and the 

resulting small number of advanced tumour recurrences observed to date, we carried out EFS 

analysis considering as clinical events not only tumour relapses and death, but also colorectal 

adenomas and polyps, which are mostly benign types of tumours. Therefore, a longer follow-up is 

necessary to identify robust results and establish causal relationships. 

As for the case-control study, the main limitation of the trial is the small sample size, especially 

when compared to the high number of variables analyzed. Moreover, without a validation set, we 

could not assess the reproducibility of the results, even though the randomization procedure and 

the multivariate statistical approaches allowing for confounders adjustment guaranteed a certain 

degree of estimates reliability.  

A consistent and challenging part of our research was dedicated to the study of the literature, in 

order to figure out the most appropriate computational and statistical methodologies to answer 

our research questions, taking into consideration the specifics of our data (in particular, the 

compositional and high-dimensional nature of the microbiome and GE data). With mediation 

analysis, we were able to go beyond statistical associations and observe a mediating effect of the 

microbiota on the effect of diet on CRC risk in the observational setting of the case-control study 

and on the effect of vitD supplementation on 25(OH)D levels in the prospective, interventional 

setting of the RCT. However, a crucial step of mediation analysis is the definition of the causal 

pathways linking the data, which needs to be supported by the evidence from the literature, as the 

formulation of implausible assumptions leads to unreliable results. 

 In conclusion, our research has provided further evidence on the intricate relationship 

between modifiable risk factors for CRC, with a specific focus on gut microbiome, vitD status/levels, 
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diet, lifestyle and circulating biomarkers, especially those related to inflammation and adipokines. 

Additionally, we explored the role of the transcriptomic profile of immune-related genes evaluated 

in the tumour tissue on CRC progression. 

We identified a fundamental role of both excess weight and sex/gender on the outcomes of vitD 

supplementation, which resulted in alteration in 25(OH)D levels, microbiome diversity and function, 

and in the modulation of the investigated markers. These findings are in agreement with emerging 

evidence from the recent literature and, in the era of precision medicine, highlight the necessity of 

taking into account these aspects in our investigations. By identifying and comprehending the 

complex risk factors and their interactions, we can pave the way for more informed and effective 

strategies in the CRC setting, ultimately leading to enhanced patient care and better health 

outcomes.  
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6. SUPPLEMENTARY TABLES 

Supplementary Table S1. Diet questionnaire administered to the patients enrolled in the case-

control study and in the trial 

 

(Translated from Italian) 

We would like to ask you a few questions about your usual (current) diet. In general, how often 

do you consume a portion of the following foods? If you eat a very small or very large portion 

(compared to the reference portion), halve or double the frequency of consumption. 

FOODS  FREQUENCY 

 
Portion of  
reference 

Rarely 
(never/ 

1-2 times a 
month) 

Once a 
week 

2-3 times 
a week 

Every day 
More than 
once a day 

SCORE  1 2 3 4 5 

Q1. Cow's milk (whole, partly  
skimmed or skimmed) 

125 gr      

Q2. Yoghurt (all types) (no soya yoghurt) 1 portion      

Q3. Pasta or rice (dry) 80 gr      

Q4. Soups 1 portion      

Q5. Bread (white, whole grain or  
seasoned) 

50gr      

Q6. Crackers, breadsticks or rusks 
1 packet 
30gr 

     

Q7. Pizza 150 gr      

Q8. Grated cheese, on pasta dishes  
and soups 

1 teaspoon      

Q9. Meat (all types) 100 gr      

Q10. Liver, all animals 100 gr      

Q11. Processed meat (ham, salami,  
bresaola, sausages etc.) 

50 gr      

Q12. Fish (salmon, herring, mackerel) 150 gr      

Q13. Fish (other types) 150 gr      

Q14. Eggs (hard-boiled, omelette,  
soft-boiled) 

n. 1      

Q15. Fresh cheeses (mozzarella, ricotta,  
robiola) 

100 gr      

Q16. Matured cheeses (emmenthal,  
provolone, caciotta etc.) 

50 gr      

Q17. Soy-based products 100gr      
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Q18. Vegetables (all types), raw, cooked,  
including salad 

250 gr       

Q19. Boiled, mashed, roasted,  
fried potatoes 

200 gr      

Q20. Fresh fruit (all types) 150 gr      

Q21. Dried and shelled fruit 30 gr      

Q22. Ice cream (no ice lollies and sorbets) 100 gr      

Q23. Chocolate 8 gr       

Q24. Other sweets (cake, brioche, snacks) 50 gr      



 
 

144 
 

 

Supplementary Table S2. Phylogenetic reconstruction of taxa that significantly decreased after 

vitamin D supplementation (Supplementation group) 

PY = Publication Year; NA= Not Available; GI = gastrointestinal; GC = gastric corpus; GA = gastric antrum; DD = duodenum; TI = 

terminal ileum; AO = appendiceal orifice; AC = ascending colon; SC = sigmoid colon; MS = Multiple Sclerosis; HC = Healthy Controls; 

CD = Crohn disease; Q3 = upper quartile; Q1 = lower quartile. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Bashir, 2016 Healthy Biopsy Upper GI: GC (n paired = 
13) 

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae NA Escherichia/Shigella 

  
Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

 

  
Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

 

  
Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax 

 

  
Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Enterobacteriaceae 

unclass 

 

  
Proteobacteria Gammaproteobacteria 

    

  
Upper GI: GA (n paired = 
13) 

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae NA Escherichia/Shigella 

  
Proteobacteria Betaproteobacteria Burkholderiales Burkholderiaceae Ralstonia 

 

  
Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

 

  
Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Stenotrophomonas 

 

  
Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae Enterobacteriaceae 

unclass 

 

  
Proteobacteria Gammaproteobacteria 

    

  
Upper GI: DD (n paired = 
13) 

Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae NA Escherichia/Shigella 

  
Actinobacteria Actinomycetia Micrococcales Microbacteriaceae Leucobacter 

 

  
Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

 

  
Lower GI: TI (n paired = 
11) 

Firmicutes Clostridia Eubacteriales Peptostreptococcaceae Peptostreptococcus 
 

  
Lower GI: AO (n paired = 
11) 

Firmicutes Clostridia 
  

Clostridia unclass. 
 

  
Lower GI: SC (n paired = 
11) 

      

  
Lower GI: AC (n paired = 
12) 

      

  
Stool Stool (n paired = 8) Proteobacteria Betaproteobacteria 

    

Bosman,2019 Healthy (female) Stool 
       

Cantarel, 2015 Healthy+MS 
(female) 

Stool 
 
 

 
 

Untreated MS vs HC or 
treated MS 

Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 
 

 
Healthy (female) 

       

 
MS (female) 

 
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae 

  

   
Treated vs HC or treated 
MS 

Firmicutes Clostridia Eubacteriales Eubacteriaceae Eubacterium 
 

   
Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 

 

Charoenngam, 
2020 

Healthy Stool 
 

Firmicutes Clostridia Eubacteriales Oscillospiraceae Faecalibacterium 
 

    
Firmicutes Clostridia Eubacteriales Ruminococcaceae 

  

    
Firmicutes Clostridia 
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Supplementary Table S3. Phylogenetic reconstruction of taxa that significantly decreased after 

vitamin D supplementation (Supplementation group) 

 

PY = Publication Year; NA= Not Available; 25(OH)D = 25 hydroxyvitamin D; HC = Healthy Controls; CD = Crohn Disease; Q3 = upper 
quartile; Q1 = lower quartile. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Ciubotaru, 
2015 

 
Prediabetes (males) Stool 25(OH)D (Q3 vs Q1) Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae 

  

    
Delta 25(OH)D (Q3 vs 
Q1) 

Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 
 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Dorea 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae 

  

Drall, 2020 
 

Pregnancy (infants) Stool Infant vit D 
supplementation 

Firmicutes Negativicutes Selenomonadales Selenomonadaceae Megamonas 
 

    
Firmicutes Negativicutes Veillonellales Veillonellaceae 

  

    Maternal prenatal 
or postnatal vit D 
suppl 

Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila (only 
breastfed) 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Other (only 

brestfed) 

 

Garg, 2018 
  

Stool 
        

Hjelmsø, 2020 
 

Pregnancy Infant 
stool 

        

Kanhere, 2018 
 

Cystic fibrosis Stool 
Stool: vit D 
sufficient vs vit D 
insufficient at 
baseline 

Proteobacteria Gammaproteobacteria 
    

   
Stool 

Stool: change in 
microbiota after 
supplementation 

Firmicutes Clostridia Eubacteriales Oscillospiraceae Anaerotruncus 
 

     
Firmicutes Negativicutes Veillonellales Veillonellaceae Veillonella 

 

     
Firmicutes Clostridia Eubacteriales Clostridiaceae 

  

     
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae 

  

Missailidis,2019 HIV 
 

Biopsy 
        

Naderpoor, 
2018 

Obesity Stool 
 Vit D suppl. vs 

Placebo at 
follow-up 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 
 

    25(OH)D>75 
nmol/L vs 
25(OH)D<50 
nmol/L at 
follow-up 

 
Firmicutes 

 
Clostridia 

 
Eubacteriales 

 
Oscillospiraceae 

 
Ruminococcus 

 

    
Firmicutes Clostridia Eubacteriales Clostridiaceae 

  

Schaffler, 2018 Crohn disease; Healthy Stool 
 

CD: Week 4 
      

    
HC 

      

Singh,2020 Healthy (female) Stool 
 

Main analysis Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia 
 

     
Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 

 

     
Firmicutes Clostridia Eubacteriales Oscillospiraceae Faecalibacterium 

 

     
Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

 

     
Firmicutes 
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Supplementary Table S4. Phylogenetic reconstruction of taxa that significantly decreased after 

vitamin D supplementation (Supplementation group) 

 

PY = Publication Year; NA= Not Available; 25(OH)D = 25 hydroxyvitamin D; vit D = vitamin D. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Singh,2020 Healthy (female) Stool 
Responders (>20 
ng/ml) vs non-
responders (<20 
ng/ml) 

      

   
Responders Firmicutes 

     

   
Non-responders Proteobacteria 

     

Sordillo,2016 Healthy Stool 
 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
 

Tabatabaeizadeh, 
2019 

Healthy (female, 
adolescents) 

Stool 
 

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
 

    
Bacteroidetes 

     

Talsness, 2017 Pregnancy (infants) Stool 
Vit D 
supplementation 
(none, <10mg, 
>=10mg) 

Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium Bifidobacterium sp 

   
25(OH) levels 
(quintiles) 

Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium Bifidobacterium sp 

   
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides fragilis 

   Infant vit D suppl. 
(yes vs no) 
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Supplementary Table S5. Phylogenetic reconstruction of taxa that significantly increased after 

vitamin D supplementation (Supplementation group) 

 

PY = Publication Year; NA= Not Available; GI = gastrointestinal; GC = gastric corpus; GA = gastric antrum; DD = duodenum; TI = 

terminal ileum; AO = appendiceal orifice; AC = ascending colon; SC = sigmoid colon; MS = Multiple Sclerosis; HC = Healthy Controls; 

CD = Crohn disease; Q4 = upper quartile; Q1 = lower quartile. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Bashir, 2016 Healthy Biopsy Upper GI: GC (n 
paired = 13) 

Proteobacteria Alphaproteobacteria Hyphomicrobiales Bradyrhizobiaceae Bradyrhizobium 
 

  
Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Sulfurospirillum 

 

  
Actinobacteria Actinomycetia Actinomycetales Actinomycetaceae Actinomyces 

 

  
Upper GI: GA (n 
paired = 13) 

Firmicutes Bacilli Lactobacillales Carnobacteriaceae Alkalibacterium 
 

  
Proteobacteria Alphaproteobacteria Hyphomicrobiales Bradyrhizobiaceae Bradyrhizobium 

 

  
Proteobacteria Alphaproteobacteria 

    

  
Upper GI: DD (n 
paired = 13) 

Proteobacteria Alphaproteobacteria Hyphomicrobiales Bradyrhizobiaceae Bradyrhizobium 
 

  
Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium 

 

  
Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae Halomonas 

 

  
Bacteroidetes 

   
Bacteroidetes unclass. 

 

  
Lower GI: TI (n paired 
= 11) 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia 
 

  
Lower GI: AO (n 
paired = 11) 

      

  
Lower GI: SC (n 
paired = 11) 

      

  
Lower GI: AC (n 
paired = 12) 

      

  
Stool Stool (n paired = 8) Actinobacteria Actinomycetia Actinomycetales Actinomycetaceae Actinomyces 

 

Bosman,2019 Healthy (female) Stool 
 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospira 
 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Fusicatenibacter 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae 

  

Cantarel, 2015 Healthy+MS (female) Stool 
 
 
 
 
 

 
Untreated MS 
vs HC or 
treated MS 

Firmicutes Clostridia Eubacteriales Oscillospiraceae Faecalibacterium 
 

   
Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae 

  

 
Healthy (female) 

       

 
Multiple Sclerosys 
(female) 

 
Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 

 

   
Firmicutes Clostridia Eubacteriales Oscillospiraceae Faecalibacterium 

 

   
Firmicutes Clostridia Eubacteriales Lachnospiraceae Coprococcus 

 

   
Treated vs HC or 
treated MS 

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium 
 

Charoenngam, 
2020 

Healthy Stool 
 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
 

    
Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

 

Ciubotaru, 
2015 

Prediabetes (males) Stool 25(OH)D (Q4 vs Q1) 
      

   
Delta 25(OH)D (Q4 vs 
Q1) 

      

Drall, 2020 Pregnancy (infants) Stool Infant vit D suppl. 
      

   Maternal 
prenatal or 
postnatal vit 
D suppl 

Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus (only 
breastfed) 
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Supplementary Table S6. Phylogenetic reconstruction of taxa that significantly increased after 

vitamin D supplementation (Supplementation group) 

 

 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; HC = Healthy Controls; CD = Crohn Disease; vit D = vitamin D. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Garg, 2018 
 

Stool 
 

Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium Clostridium colinae 

    
Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae 

  

Hjelmsø, 2020 Pregnancy Infant 
stool 

       

Kanhere, 2018 Cystic fibrosis Stool 
Stool: vit D 
sufficient vs vit D 
insufficient at 
baseline 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
 

    
Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

 

    
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae 

  

    
Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae 

  

  
Stool 

Stool: change in 
microbiota after 
suppl. 

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 
 

    
Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 

 

    
Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Acidaminococcus 

 

    
Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Phascolarctobacterium 

 

    
Bacteroidetes Bacteroidia Bacteroidales Odoribacteraceae 

  

    
Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae 

  

Missailidis,2019 HIV Biopsy 
       

Naderpoor, 
2018 

Obesity Stool 
Vit D suppl. vs 
Placebo at 
follow-up 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospira 
 

   25(OH)D>75 
nmol/L vs 
25(OH)D<50 
nmol/L 
at fullow-up 

 
Firmicutes 

 
Clostridia 

 
Eubacteriales 

 
Lachnospiraceae 

 
Coprococcus 

 
Coprococcus eutactus 

   
Firmicutes Clostridia Eubacteriales Lachnospiraceae Coprococcus 

 

Schaffler, 2018 Crohn disease; 
Healthy 

Stool CD: Week 4 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
 

   
Firmicutes Negativicutes Veillonellales Veillonellaceae Megasphaera 

 

   
HC 

      

Singh,2020 Healthy (female) Stool Main analysis Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium 
 

   
Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Akkermansiaceae Akkermansia 

 

   
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

 

   
Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes 

 

   
Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides 

 

   
Bacteroidetes 

     

   Responders (>20 
ng/ml) vs non-
responders (<20 
ng/ml) 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides acidifaciens 

   
Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus Ruminococcus bromii 

   
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides eggerthii 

   
Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

Barnesiella 
intestinihominis 
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Supplementary Table S7. Phylogenetic reconstruction of taxa that significantly increased after 

vitamin D supplementation (Supplementation group) 

 

 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; vit D = vitamin D. 

Author, PY Health Status Sample Stratification Phylum Class Order Family Genus Species 

Singh,2020 Healthy (female) Stool Responders Bacteroidetes 
     

   
Actinobacteria 

     

   
Proteobacteria 

     

   
Lentisphaeraea 

     

   
Non-responders Firmicutes Clostridia Eubacteriales Lachnospiraceae Roseburia Roseburia faecis 

   
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteroides 

eggerthii 
   

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella Prevotella copri 

   
Firmicutes Clostridia Eubacteriales Oscillospiraceae Oscillospira Oscillospira 

guilliermondii 
   

Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes Alistipes finegoldii 

Sordillo,2016 Healthy Stool 
 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnobacterium 
 

Tabatabaeizadeh, 
2019 

Healthy 
(female, 
adolescents) 

Stool 
 

Firmicutes Bacilli Lactobacillales Enterococcaceae Enterococcus 
 

    
Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

 

    
Firmicutes 

     

Talsness, 2017 Pregnancy (infants) Stool 
Vit D 
supplementation 
(none, <10mg, 
>=10mg) 

      

   
25(OH) levels 
(quintiles) 

      

   
Infant vit D suppl. (yes 
vs no) 
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Supplementary Table S8. Phylogenetic reconstruction of taxa that were significantly and 

negatively associated with either vitamin D serum concentrations or intake (Non-

supplementation group) 

 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; vit D = vitamin D. 

 

 

 

 

 

 

 

 

 

Author, PY Health Status Vit D Sample Stratification Phylum Class Order Family Genus Species 

Kassem, 
2020 

Pregnancy 
Prenatal maternal 
25[OH]D and cord 
25[OH]D 

Stool Prenatal maternal 
25(OH)D 

Firmicutes Tissierellia Tissierellales Peptoniphilaceae Anaerococcus 
 

    
Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

 

    
Cord 25(OH)D Firmicutes Clostridia Eubacteriales Lachnospiraceae Mediterraneibacter Ruminococcus 

gnavus 

Luthold, 
2017 

Healthy Dietary vit D intake Stool Dietary Vit D intake 
tertiles 

Firmicutes Negativicutes Veillonellales Veillonellaceae Veillonella 
 

     
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

 

Luthold, 
2017 

Healthy 25(OH)D Stool 25(OH)D 
concentrations tertiles 

Firmicutes Negativicutes Veillonellales Veillonellaceae Veillonella 
 

     
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 

 

     
Firmicutes Clostridia Eubacteriales Lachnospiraceae Coprococcus 

 

     
Actinobacteria Actinomycetia Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

 

Mandal, 
2016 

Pregnancy Dietary vit D intake Stool Maternal microbiota Bacteroidetes 
     

Seura, 2017 Healthy (female) Dietary vit D intake Stool 
       

Soltys, 2020 Ulcerative Colitis Serum Vit D levels Stool Stool 
      

   
Biopsy Biopsy: sigma inflamed Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus Haemophilus 

parainfluenzae 
   

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 
 

   
Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

 

   
Firmicutes Bacilli Lactobacillales Streptococcaceae 

  

   
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae 

  

   
Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae 

  

   
Proteobacteria Gammaproteobacteria Pasteurellales 

   

   
Fusobacteria Fusobacteriia Fusobacteriales 

   

   
Fusobacteria 

     

   
Biopsy: sigma non-
inflamed 

Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Collinsella Collinsella 
aerofaciens 

   
Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

 

   
Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae 

  

   
Fusobacteria Fusobacteriia Fusobacteriales 

   

   
Actinobacteria 

     

   
Fusobacteria 
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Supplementary Table S9. Phylogenetic reconstruction of taxa that were significantly and 

negatively associated with either vitamin D serum concentrations or intake (Non-

supplementation group) 

 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; 1,25(OH)2D = 1,25 hydroxyvitamin D2; 24,25(OH)2D = 24,25 

hydroxyvitamin D2; vit D = vitamin D. 

Author, PY Health Status Vit D Sample Stratification Phylum Class Order Family Genus Species 

Soltys, 2020 Crohn disease 25(OH)D Stool Stool 
      

   
Biopsy Biopsy: sigma inflamed Firmicutes 

     

    
Biopsy: sigma non-
inflamed 

      

    
Biopsy: terminal ileum 
inflamed 

      

    Biopsy: terminal 
ileum non- 
inflamed 

      

 
Thomas, 
2020 

 
Healthy (male, 
older) 

25(OH)D; 1,25(OH)2D; 
24,25(OH)2D; 
activation ratio 
(1,25(OH)2D/25(OH)D) 
and 
catabolism ratio 

 
Stool 

 
1,25(OH)2D 

 
Firmicutes 

 
Clostridia 

 
Eubacteriales 

 
Oscillospiraceae 

 
Oscillospira 

 

     
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 

 

     
Firmicutes Clostridia Eubacteriales Oscillospiraceae Anaerotruncus 

 

    
Activation ratio Firmicutes Clostridia Eubacteriales Oscillospiraceae Oscillospira 

 

     
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 

 

Weng, 2019 
Ulcerative Colitis; 
Healthy controls 

Dietary vit D intake Biopsy Firmicutes Clostridia Eubacteriales Lachnospiraceae Dorea 
 

  
Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 2 

 

  
Stool Firmicutes Clostridia Eubacteriales Clostridiaceae Clostridium 

Clostridium 
clostridioforme 
CAG:132 

Crohn disease; 
Healthy 
controls 

Dietary vit D intake Biopsy Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 
 

  
Actinobacteria Actinomycetia Micrococcales Intrasporangiaceae Janibacter 

 

  
Proteobacteria Hydrogenophilalia Hydrogenophilales Hydrogenophilaceae Hydrogenophilus 

 

  
Stool 

      

Wu, 2011 Healthy Dietary Vit D intakes Stool 
 

Firmicutes Negativicutes Veillonellales Veillonellaceae Dialister 
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Supplementary Table S10. Phylogenetic reconstruction of taxa that were significantly and 

positively associated with either vitamin D serum concentrations or intake (Non-

supplementation group) 

 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; vit D = vitamin D intake. 

Author, PY Health Status Vit D Sample Stratification Phylum Class Order Family Genus Species 

Kassem, 
2020 

Pregnancy 
Prenatal maternal 
25(OH)D and cord 
25(OH)D 

Stool Prenatal maternal 
25(OH)D 

Firmicutes Clostridia Eubacteriales Lachnospiraceae Mediterraneibacter Ruminococcus 
gnavus 

    
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

 

    
Actinobacteria Actinomycetia Corynebacteriales Corynebacteriaceae Corynebacterium 

 

    
Firmicutes Clostridia Eubacteriales Clostridiaceae 

  

    
Cord 25(OH)D Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter 

rhizosphaerae 
    

Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 
 

    
Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Bulleidia 

 

    
Actinobacteria Actinomycetia Corynebacteriales Corynebacteriaceae Corynebacterium 

 

    
Firmicutes Tissierellia Tissierellales Peptoniphilaceae Finegoldia 

 

    
Firmicutes Tissierellia Tissierellales Peptoniphilaceae Peptoniphilus 

 

    
Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 

 

    
Firmicutes Clostridia Eubacteriales Clostridiaceae 

  

    
Proteobacteria Gammaproteobacteria Enterobacterales Enterobacteriaceae 

  

Luthold, 
2017 

Healthy Dietary vit D intake Stool Dietary Vit D intake 
tertiles 

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 
 

Luthold, 
2017 

Healthy 25(OH)D Stool 
25(OH)D 
concentrations 
tertiles 

Firmicutes Negativicutes Veillonellales Veillonellaceae Megasphaera 
 

Mandal, 
2016 

Pregnancy Dietary vit D intake Stool Maternal 
microbiota 

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 
 

Seura, 
2017 

Healthy (female) Dietary vit D intake Stool/Biopsy 
       

Soltys, 
2020 

Ulcerative Colitis 25(OH)D Stool Stool 
      

   
Biopsy Biopsy: sigma 

inflamed 

      

   
Biopsy: sigma non-
inflamed 

      

Soltys, 
2020 

Crohn disease 25(OH)D Stool Stool Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus 
 

     
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae 

  

     
Proteobacteria Gammaproteobacteria Pasteurellales 

   

   
Biopsy Biopsy: sigma 

inflamed 

      

   
Biopsy: sigma non-
inflamed 

      

   Biopsy: 
terminal 
ileum 
inflamed 

      

   Biopsy: terminal 
ileum non- 
inflamed 
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Supplementary Table S11. Phylogenetic reconstruction of taxa that were significantly and 

positively associated with either vitamin D serum concentrations or intake (Non-

supplementation group) 

PY = Publication Year; 25(OH)D = 25 hydroxyvitamin D; 1,25(OH)2D = 1,25 hydroxyvitamin D2; 24,25(OH)2D = 24,25 

hydroxyvitamin D2; vit D = vitamin D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author, 
PY 

Health 
Status 

Vit D Sample Stratification Phylum Class Order Family Genus Species 

 

Thomas, 
2020 

 

Healthy 
(male, 
older) 

25(OH)D; 1,25(OH)2D; 
24,25(OH)2D; 
activation ratio 
(1,25(OH)2D/25(OH)D) 
and 
catabolism ratio 

 

Stool 

 

1,25(OH)2D 

 

Firmicutes 

 

Clostridia 

 

Eubacteriales 

 

Lachnospiraceae 

 

Coprococcus 

 

Coprococcus 
catus 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia Blautia 

Obeum 
    

Activation 
ratio 

Firmicutes Clostridia Eubacteriales 
Eubacteriales Family 
XIII. Incertae Sedis Mogibacterium 

 

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae Coprococcus 

 

    
Firmicutes Clostridia Eubacteriales Ruminococcaceae 

  

    
Firmicutes Clostridia Eubacteriales Lachnospiraceae 

  

    
Lentisphaerae Lentisphaeria Victivallales Victivallaceae 

  

    
Firmicutes Clostridia Eubacteriales 

   

Weng, 
2019 

Ulcerative 
Colitis; 
Healthy 
controls 

Dietary vit D intake Biopsy Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 
 

  
Stool Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

 

  
Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

 

Crohn 
disease; 
Healthy 
controls 

Dietary vit D intake Biopsy Firmicutes Clostridia Eubacteriales Lachnospiraceae Fusicatenibacter 
 

  
Firmicutes Clostridia Eubacteriales Lachnospiraceae Blautia 

 

  
Firmicutes Clostridia Eubacteriales Lachnospiraceae Lachnospiracea 

incertae sedis 

 

  
Stool Firmicutes Clostridia Eubacteriales Oscillospiraceae Ruminococcus 

 

  
Firmicutes Clostridia Eubacteriales Lachnospiraceae Fusicatenibacter 

 

  
Proteobacteria Oligoflexia Bdellovibrionales Bdellovibrionaceae Bdellovibrio 

 

  
Bacteroidetes Bacteroidia Bacteroidales Barnesiellaceae Barnesiella 

 

Wu, 
2011 

Healthy Dietary Vit D intakes Stool 
 

Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 
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Supplementary Table S12. List of genes significantly expressed in the 3 GE cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of genes  

AXL KLRD1 

BCL6 LMNA 

CBLB LRP1 

CCL5 MAPK1 

CCNB2 MIF 

CD3D MKI67 

CD47 MMP2 

CD79A MRC1 

CD80 NCF1 

CEACAM1 NKG7 

CXCL13 OAS1 

EGFR POU2AF1 

EGR2 RPS6 

EGR3 SKAP2 

FOXM1 SLAMF7 

FOXO1 SNAI2 

GUSB TCF7 

HLA-DOB TNFRSF17 

IL18 TOP2A 

IRS1 TWIST1 

KLF2 VCAM1 
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7. SUPPLEMENTARY FIGURES 

 

 

 
Supplementary Figure S 1 Phylogenetic tree of taxa increasing/decreasing post vitD suppl1 

Supplementary Figure S1. Phylogenetic tree of taxa that significantly decreased after vitamin D 
supplementation (supplementation group). 
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Supplementary Figure S 2 Phylogenetic tree of taxa increasing/decreasing post vitD suppl2 

Supplementary Figure S2. Phylogenetic tree of taxa that significantly increased after vitamin D 
supplementation (supplementation group). 



 

157 
 

 

 

 
Supplementary Figure S 3 Phylogenetic tree of taxa increasing/decreasing by vitD levels 

Supplementary Figure S3. Phylogenetic tree of taxa that were significantly and negatively 
associated with     either vitamin D serum concentrations or intake (non-supplementation group). 
AR = Activation ratio of vitamin D, defined as 1,25(OH)2D/25(OH)D; 25(OH)D = 25 hydroxyvitamin 
D; 1,25(OH)2D = 1,25 hydroxyvitamin D2. 
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Supplementary Figure S 4 Phylogenetic tree of taxa increasing/decreasing by vitD levels2 

 

Supplementary Figure S4. Phylogenetic tree of taxa that were significantly and positively associated with 
either vitamin D serum concentrations or intake (Non-supplementation group). 
AR= Activation ratio of vitamin D, defined as 1,25(OH)2D/25(OH)D; 25(OH)D = 25 hydroxyvitamin D; 
1,25(OH)2D = 1,25 hydroxyvitamin D2. *Eubacteriales Family XIII. Incertae Sedis. 
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