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Abstract—Touch exploration of fabric is used to evaluate its
properties, and it could further be leveraged to understand a
consumer’s sensory experience and preference so as to support
them in real time to make careful clothing purchase decisions.
In this paper, we open up opportunities to explore the use of
technology to provide such support with our FabricTouch dataset,
i.e., a multimodal dataset of fabric assessment touch gestures.
The dataset consists of bilateral forearm movement and muscle
activity data captured while 15 people explored 114 different
garments in total to evaluate them according to 5 properties
(warmth, thickness, smoothness, softness, and flexibility). The
dataset further includes subjective ratings of the garments with
respect to each property and ratings of pleasure experienced in
exploring the garment through touch. We further report baseline
work on automatic detection. Our results suggest that it is
possible to recognise the type of fabric property that a consumer
is exploring based on their touch behaviour. We obtained mean
F1 score of 0.61 for unseen garments, for 5 types of fabric
property. The results also highlight the possibility of additionally
recognizing the consumer’s subjective rating of the fabric when
the property being rated is known, mean F1 score of 0.97 for
unseen subjects, for 3 rating levels.

Index Terms—Dataset, fabric, gesture recognition, movement,
touch, muscle activity, multimodal

I. INTRODUCTION

Clothing is central to living in the human society. From
birth, there are few settings in our lives where clothing in some
form is not relevant. Further, clothing not only has cultural,
economic, and political significance [1], [2], but clothes are
also intimate objects as they are worn on the body or otherwise
stay closer to the body than most other objects that we interact
with in everyday life [3]. Touch is the most basic sense used
to interact with clothing as touch is critical in wearing, caring
for, as well as evaluating, e.g. while shopping, the properties
(such as softness) of the fabric of clothes [3]. Our work
in this paper contributes a novel dataset called FabricTouch,
containing fabric assessment touch gestures to support the
development of applications that encourage more sustainable
fashion consumption and usage. We further use the dataset to
investigate automatic detection of the fabric properties being
explored by a person and their subjective rating of the property,
based on their touch behaviour.

The motivation behind our work is the urgent need to foster
and support more careful and reflective purchasing of clothes.

Such consumer behaviour has been highlighted as one of the
elements through which society can combat fast fashion and its
negative impact on the environment and the humans who live
in it [4]. Careful and reflective consumers would pay attention
to quality (higher quality translating to longer durability),
select items that are valued (e.g. for their comfort, and so more
likely to be used for longer), and buy less. Touch is significant
in informing this attentive purchase practice [3]. As Stanes
proverbially puts it, “The eye shortlists the possibilities, but
the hand has the power of veto.” [3](p. 232). In fact, tactile
experience or evaluation that influences consumer preferences
has long had an important place in shaping textile engineering
[5]. Clothing designers also employ tactile evaluation in their
design process [6]. For example, they explore fabric with their
hand(s) to query its properties and its behaviour in response
to touch, e.g. using fingers to hold the fabric by one of its
corners to perceive how it drapes, or pulling the fabric between
two hands to perceive its stretchability [6]. They also evaluate
tactile experience with other parts of the body, usually the
forearm, that function as ‘passive’ recipients of the experience
while the (other) hand acts as the ‘active tool-hand’ [6]. Here,
their touching the fabric is not at the forefront of exploration
so much as the fabric touching them [6].

Although objective methods, such as textile surface testers
that measure the roughness-smoothness of fabric, have been
used to capture relevant fabric properties, tactile experience of
fabric is understood to be largely subjective [3], [5], [7]. In
this paper, we focus on the two subjective dimensions of tactile
evaluation, tactile sensation and affect [7]. We capture sensory
assessment of warmth, thickness, smoothness, softness, and
flexibility, which tactile sensation is particularly sensitive to
[5], [7], in our FabricTouch dataset. Findings of pilot studies
carried out with the aim of understanding tactile gestures used
by consumers in exploring clothing fabric support this choice.
Our dataset further contains assessment of tactile pleasure
(enjoyment), informed by the pilot studies.

The current paper makes the following contributions:
1) FabricTouch dataset: The first dataset on touch gestures

for fabric assessment, it consists of hand muscle activity
and arm movement data captured from 15 participants
while exploring several different types of garments and
using wearable sensor bracelets. It further contains RGB
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images of each garment, labels of the fabric properties
explored by a participant for each garment, the par-
ticipant’s ratings of the fabric with respect to each of
the 5 properties, and the level of pleasure that they
experienced during exploration of the fabric.

2) Investigation of the possibility of automatic detection
of two different fabric exploration elements based on
hand muscle activity and/or movement data: (1) auto-
matic identification of the type of fabric property that a
person is exploring (out of 5 property classes); and (2)
automatic recognition of subjective rating (on a scale of
3 levels) of a fabric with respect to a given property.

II. RELATED WORK

A. Tactile Hand Gestures Datasets

Although a large number of hand gesture datasets exist,
many are based on contactless gestures such as mid-air zoom
[8], wave [9], or sign language gestures [10], [11]. Only a
limited collection cover tactile hand gestures during human-
object interactions. One category of these datasets use smart
surfaces (i.e. surfaces embedded with sensors such as pressure
sensors or touchscreens) to capture gestural data. For example,
in [12] and [13], typing interactions are captured during the use
of smartphones. Similarly, in [14], petting gestures (e.g. stroke,
scratch, squeeze) on a zoomorphic object were collected.

The other category of tactile hand gesture datasets is
based on passive objects, i.e. objects without sensors that
capture gestures used in human-object interactions. One type
of datasets in this category use wearable sensors. An example
is the Ninapro dataset [15] captured during instructed hand
gestures, with only a portion of the gestures involving in-
teraction with an object (e.g. labels such as ‘large diameter
grasp’). Data was collected using surface electromyography
(sEMG), i.e. muscle activity sensors, and accelerometers (with
10 electrodes around the muscle belly of the forearm; 1 on the
wrist; and 2 on the biceps and triceps brachii), a data glove
with 22 angular data channels, and an inclinometer placed on
the wrist. Similarly, the csl-hdemg dataset has 168-channel
sEMG data from the muscle belly of the forearm captured
during gestures including controlled finger tapping while the
hand and forearm are laid flat on a table. The use of data gloves
that prevent haptic feedback during interaction with objects
in both datasets limits their representation of tactile gestures.
Indeed, gestures are shaped by the tactile experience of the
person interacting with an object (amongst other factors), and
so it is important to include natural haptic feedback while
recording touch gestures. This is particularly critical in the
context of clothing where changes in gestures may indicate
how fabric feels [16] as it responds to touch exploration.

A different type of datasets use head-mounted cameras.
For instance, the EPIC-KITCHENS dataset [17], collected
from 32 participants during everyday kitchen activities in their
homes, consists of videos which show hand gestures and
objects. The dataset was annotated for actions such as ‘pick
up spoon’ and also includes separate labels for objects (e.g.
‘vegetables’) and actions (e.g. ‘spray’). EPIC-TENT [18] is a

similar dataset captured from 24 participants during outdoor
camping tent assembly and contains both video and eye gaze
data. It includes action labels such as ‘pickup/open tent bag’.
Another is MECCANO [19], which includes videos captured
from 20 participants while they assembled a motorbike toy
model, with both action (e.g. ‘screw’) and object (e.g. ‘wheel
rim’) labels. A challenge with vision-based methods is the
problem of occlusion that is particularly relevant to exploration
of clothes where the hand can be placed under or inside a
clothing item while exploring it. Further, unlike muscle activity
sensors, video does not capture the effort of movement.

We contribute to the space of tactile hand gesture datasets
by introducing a new dataset captured during natural gestures
used while exploring clothes through touch and using sEMG
and inertia sensors that do not interfere with natural tactile
experience. We have chosen to use wearable sensors rather
than video cameras to be able to detect both gesture shapes
and effort rather than just their shapes. Wearable sensors
further allow for more ubiquitous sensing, and similar types of
sensors are increasingly being integrated in accessories (e.g.
smartwatches) and on the body (e.g. skin tattoo sensors [20]).
Nevertheless, insights from studies based on our dataset could
inform design of fabric touch assessment applications that em-
ploy cameras. The dataset aims to contribute an understanding
of how hand gestures reflect a person’s experience of clothing
fabric through touch. No other dataset is currently available
for this purpose. This work is part of a larger project, Textiles
Circularity Centre, aimed at designing technology to support
circular and sustainable fashion behaviour.

B. Hand Gesture Recognition Methods with Wearable Sensors

Most works in this area have been based on data captured
using sEMG sensors. For example, [15] used sEMG data
from the Ninapro (DB1) dataset and [21]–[25] similarly used
data captured using a commercial sEMG armband with dry
electrodes placed around the muscle belly of the forearm.
Some other studies [26], [27] used both sEMG data and data
from inertia measurement units (IMUs), i.e. accelerometers
and/or gyroscopes. A few used IMU data alone, e.g. [28].

Of these studies, several have been based on convolutional
neural networks (CNNs). For instance, [15] used an archi-
tecture of CNNs and recurrent neural networks (RNNs) with
attention applied along the time dimension on image data
created from sEMG signals. They obtained 87% accuracy in
discriminating between 50 gestures in the NinaPro dataset
with hold-out validation. [29] obtained 88.2% accuracy for
classification of 53 gestures from the same dataset based on a
CNN, with leave-one-subject-out cross-validation. Other rele-
vant studies are [21], [25] where CNNs were used with image
spectograms of sEMG signals. [21] obtained 97.8% accuracy
respectively for classification of 7 simple, mid-air gestures, e.g.
wrist flexion, based on hold-out validation. [24] similarly used
a multilayer perceptron on hand-crafted features (e.g. mean
absolute, gradient direction change) extracted from sEMG
signals. They obtained 98.7% accuracy for differentiation of 6
mid-air gestures (e.g. double finger tap). Another related study
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is [28] in which a restricted coulomb energy neural network
and accelerometer data were used to differentiate between 10
mid-air digit writing gestures. They obtained 98.6% with 5-
fold subject-dependent cross-validation.

Traditional learning algorithms, particularly support vector
machines (SVMs), have also been widely used. [22], for
example, used SVMs with hand-crafted features extracted
from both time and frequency domains of sEMG signals
(e.g. mean absolute, amplitude spectrum). Based on subject-
dependent leave-one-out cross-validation, they obtained 16.4%
accuracy for the classification of 40 instructed hand and finger
gestures such as mid-air pinching. [30] also used SVMs and
with mean sEMG as features, they achieved 90% accuracy for
4 mid-air gestures (e.g. hand close vs open). In [26], second
order polyfit features were extracted from both sEMG and
Euler angle data with accuracy between 88% and 93% for 7
mid-air gestures (such as clockwise hand tilt) based on subject-
dependent hold-out validation. SVMs were compared with k-
nearest neighbour, discriminant analysis, Naives Bayes, and
random forest models in [23]. The authors used features such
as mean absolute, gradient direction change, and waveform
length for sEMG signals. The best performance of 96.4%
(standard deviation=4.5%) for 3 simple mid-air gestures, e.g.
fist, was achieved with the random forest based on cross-
validation with separate subjects in the training and test sets.

The studies above highlight the feasibility of automatic
recognition of hand gestures based on sEMG and/or IMU
data using either deep learning or traditional machine learning
methods. However, there is still limited understanding of how
more complex gestures like rubbing to explore the roughness
of fabric can be modelled from such data. Real world gestures
like this can involve the two hands playing different roles [6]
and include interrupts (e.g. scratching the nose) in between,
unlike the instructed single-hand gestures and more controlled
settings in the studies discussed above. Our new dataset
includes sEMG and IMU data captured from both hands while
participants explore fabric properties without instruction about
what gestures to use in their exploration. This represents a
much more complex classification task than existing studies.

III. THE FABRICTOUCH DATASET

This study was approved by the local research ethics com-
mittee, and participants gave informed consent that covers
sharing of pseudonymised data with the research community.
Researchers can access the dataset by emailing the last author.

Data was captured using 2 gForcePro+ armbands (see
Figure 1) [31], each of which has 8 sEMG electrodes and a
9-axis IMU sensor. In this study, the armbands were worn on
each arm such that the placement on one arm was a vertical flip
of the placement on the other. We developed a custom mobile
application to enable participants to perform data capture on
their own. The app allowed the researcher to set up data
capture sessions that the participants would implement. The
researcher could set a duration for all exploration sessions, the
fabric properties to explore and rate, and the rating scale to
use for each property. For this study, the participants explored

Fig. 1: Top - Left to right: Sensor placement for our Fab-
ricTouch dataset; examples from Phase II collection showing
assessment of smoothness (finger caress), warmth (hand in-
side sock), and flexibility (pulling opposite side) respectively.
Bottom - Examples of garments from Phase I collection.

5 properties (warmth, thickness, smoothness, softness, and
flexibility) and rated each on a 7-item likert scale, e.g. from
‘hard’ to ‘very soft’ for softness. In addition, they rated the
level of pleasure on the same scale.

A. Collection Phases

There were two data collection phases.
1) Phase I Collection - Self-Selected Clothes at Home:

Lockdown and social distancing restrictions forced us to move
data capture out of lab settings into participants’ homes.
However, data based on clothes selected by participants from
their wardrobes and captured in their homes have an advantage
as we expect it to have fostered gestures more representative
of natural exploration of clothing. Participants could select any
clothing from their wardrobe (typically jeans, jumpers, coats,
and skirts). The only constraint given was that the participant
had to choose as wide a variety of material types as possible.
This was to ensure that many different fabric properties were
represented across a variety of garment and material types, to
capture the real-life variability of clothing handling gestures.

In this data collection phase, data was captured by the
participants themselves. For each participant, the researcher
was present via videoconferencing in the first round of capture
to guide the participant in case they experienced any problems;
the participant recorded data on their own in the second round,
which took place on a different day. For the two rounds, data
capture was completed with the participant seated, and with
the garment on a table in front of them. Participants explored
at least 6 garments in each round.

9 participants (8 female and 1 male) took part in this phase,
all students with ages between 20 and 27. They were rewarded
with £35 gift vouchers for their participation.

2) Phase II Collection - Pairs of Socks in the Lab: We
extended the Phase I data with gestures based on exploration of
socks, to capture both a clothing item not covered in the initial
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phase as well as between-subject variations for the same item.
We invited a different set of 6 participants to our lab (3 female
and 3 male), 5 students and 1 researcher; they explored six
pairs of socks of different material composition and thickness.
They received £15 gift vouchers for their participation.

B. Collection Procedure

At the start of each data capture round in either phase,
the participant recorded two EMG baselines: relaxed hands
and tight fists. The purpose of the baseline was twofold.
First, it was for use to check that the armbands were placed
correctly, e.g. fitted to the forearm with complete contact, and
ascertain the validity of each capture round. Second, it was to
enable normalisation of the EMG sensor data to account for
differences, e.g. in forearm morphology, between participants.

Next, for each garment, the participant explored each of
the 5 fabric properties in turn. As this was not a controlled
study, the property exploration was done in fixed order of
smoothness, thickness, warmth, flexibility, and softness in the
Phase I collection, rather than being randomised. Smoothness
and softness were set as far from one another as possible be-
cause previous unpublished studies suggested that consumers
confuse the two constructs. Nevertheless, in Phase II, both
the order of presentation of the fabric and exploration of the
properties were randomised. In the Phase I collection, the gar-
ment fabric was explored through touch for 20 seconds, which
previous studies found to be adequate. This was lowered to 15
seconds in Phase II based on the discovery that participants
found 20 seconds too long a period to explore a single fabric
property. No instructions were given to participants on how
to touch fabric to explore any of the 5 properties of interest.
Rather, they were free to touch the garment in any way that
they considered suitable to perceive the given property. 114
different garments were explored in total.

After exploration of a given property for a given garment,
the participant would rate the garment on the scale for that
property, e.g. scale from ‘rough’ to ‘smooth’ for the smooth-
ness property. After exploring and rating all 5 properties for
a garment, the participants would additionally rate how much
they enjoyed touching the garment fabric, on a 7-item Likert
scale from ‘not at all’ to ‘very much’.

C. Data Summary

There were a total of 888 exploration instances, 672 and 216
in Phases I and II respectively. For each instance, the following
sensor data were recorded for each of two hands: 8-channel
sEMG; 3D Euler angle; 4D quaternion; 3D acceleration; 3D
angular velocity; and 3D magnetic field strength and direction.

For the Phase I instances, the ratings for each of the
5 properties ranged from 1 to 7 with mean (and standard
deviation) of 4.20 (1.8), 3.12 (1.7), 3.95 (1.6), 3.37 (1.9), and
4.26 (1.6) for smoothness, thickness, warmth, flexibility, and
softness respectively. The rating for enjoyment ranged between
1 and 7, mean=4.77, standard deviation=1.4.

For the Phase II instances, the ratings for the properties also
ranged from 1 to 7 except for flexibility whose minimum was

2. The mean (and standard deviation) for smoothness, thick-
ness, warmth, flexibility, and softness was 3.92 (1.64), 4.14
(1.53), 4.97 (1.83), 4.83 (1.52), and 4.44 (1.9) respectively.
The enjoyment rating ranged from 1 to 7 with mean of 4.44
and standard deviation of 1.8.

IV. AUTOMATIC RECOGNITION OF EXPLORED FABRIC
PROPERTY

To understand the problem space and set a baseline for
the community, we investigated the possibility of automatic
detection of fabric property being explored based on our novel
dataset. As a first step, we used random forests [32] of 100
trees for the task. Since this work focused on the properties
and did not include the enjoyment exploration, there were only
480 exploration instances for Phase I (data for one participant
was additionally excluded due to error in the signals recorded)
and 180 exploration instances for Phase II.

A. Preprocessing and Feature Extraction

For the Phase I data, only the last 15 seconds of each
exploration instance was used, for consistency with the Phase
II data where each exploration was for 15 seconds. Each 15-
second exploration was then segmented into 9 non-overlapping
segments. This led to a total of 4,320 segments for the Phase
I data and 1,620 segments for the Phase II data. For each
segment, we used data from the sEMG and IMU sensors.

For the sEMG, we first performed full-wave rectification as
is standard. We then normalized each signal by dividing by its
maximum, done separately for each channel, hand, and explo-
ration instance. For the IMU, we focused on the acceleration
and quaternion signals. We computed instantaneous velocity
and jerk from the acceleration and computed instantaneous
angular velocity, acceleration, and jerk from filtered quaternion
signals. For each of the angular velocity, acceleration, and jerk,
in addition to the values for each axis, we also computed a
total across axes. We first filtered the quaternion signals to
remove outliers outside the range of unit quaternions, [-1, 1].
For each of the 33 resulting signals (8 sEMG, 4 quaternion, 3
linear acceleration, 3 linear velocity, 3 linear jerk, 4 angular
velocity, 4 angular acceleration, 4 angular jerk), we extracted
the maximum, mean, and standard deviation in each segment
resulting in 99 features for each hand and 198 features in total
per segment (48 sEMG features and 150 IMU features).

We replaced missing values, e.g. due to error in the record-
ing individual signals, with the mean across segments and then
normalized the resulting feature table using z-score scaling to
zero mean and unit standard deviation.

B. Results and Discussion

1) Can the property assessed be recognized from
sEMG/IMU data?: The top half of Table I shows the results
of automatic recognition of explored fabric property based
on leave-one-clothing-out cross-validation (LOCOCV). We
compared use of all features with use of sEMG, quaternion-
based IMU, and acceleration-based IMU features separately.
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TABLE I: Explored fabric property recognition results (LOCOCV & LOSOCV) - Phase I data only

Features
F1 score - LOCOCV

Smoothness Thickness Warmth Flexibility Softness

sEMG 0.58 0.51 0.53 0.65 0.50

IMU (quaternion-based) 0.56 0.50 0.50 0.54 0.48

IMU (acceleration-based) 0.56 0.50 0.46 0.58 0.39

All 0.64 0.60 0.56 0.68 0.56

Features
F1 score - LOSOCV

Smoothness Thickness Warmth Flexibility Softness

sEMG 0.46 0.42 0.25 0.53 0.34

IMU (quaternion-based) 0.45 0.35 0.14 0.29 0.32

IMU (acceleration-based) 0.44 0.43 0.19 0.46 0.24

All 0.55 0.48 0.24 0.57 0.43

Fig. 2: Confusion matrix for automatic recognition of explored
fabric property (LOCOCV, Phase I data - all features).

The results show performance well above chance-level
classification (F1 score = 0.2) for all 5 properties and for
each feature set. The best performance was obtained when
both sEMG and IMU features were combined (F1 score =
0.61, mean across properties). The use of the sEMG features
alone was better than either of the IMU feature sets alone
especially for warmth and softness, and the quaternion-based
features led to better performance than the acceleration-based
features for those same two properties. The acceleration-based
features were slightly better for flexibility than the quaternion-
based features. It is not surprising that the sEMG features are
superior to the IMU features given that the sEMG data is able
to capture hand- and finger-level movements whereas the IMU
data we collected can only represent whole-arm movements.
In addition, sEMG data captures movement effort which is
related to affect. The better performance of quaternion-based
features compared to acceleration-based features for warmth
and softness further suggests that assessment of rotational

arm movements is more helpful for recognizing these than
assessment of translational arm movements.

Flexibility was the easiest exploration to recognize (ex-
cept when the quaternion-based features were used). The
higher performance for flexibility is likely a result of the
distinctiveness of the prevalent gesture, pulling the fabric with
both hands, used by the participants to explore this property.
Softness consistently had the worst performance. As the con-
fusion matrix in Figure 2 shows, it was typically confused
with thickness and flexibility. Although the confusion with
exploration of thickness could be explained with participants’
use of two-/three-finger rubbing gestures for both properties,
the overlap with exploration of flexibility is not clear.

2) Is generalization to unseen participants feasible?: We
sought to understand how well automatic detection of explored
fabric properties based on sEMG and IMU data generalized to
unseen participants, and so we repeated the experiments above
but using leave-one-subject-out cross-validation (LOSOCV).
The bottom half of Table I shows the results.

As can be seen in the table, although the use of sEMG
features alone or together with the other features still had
better than chance level performance, as expected general-
ization to unseen subjects was worse than generalization to
unseen garments. Recognition of warmth exploration was only
marginally better than chance level for both the sEMG features
alone and all features, and it was lower than chance level when
only IMU features were used. As with LOCOCV, exploration
of flexibility was the best recognized except when quaternion-
based features were used, whereas recognition of smoothness
exploration was consistently much better than chance level.

The noticeably poorer performance for warmth in unseen
subjects versus in unseen garments, compared with the other
properties, suggests stronger idiosyncrasies for this property
assessment. This could be due to variations in the inter-
pretation of its definition. For example, it is assessed with
respect to temperature by some people, but in terms of comfort
and coziness by others. In the first type of interpretation,
relevant gestures could be touching and holding the garment or
otherwise wrapping the garment around the hand or inserting
the hand inside the garment. The second leads to different

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on January 31,2024 at 14:43:16 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Explored fabric property recognition results (All features) - Phase I & II data

Cross-validation strategy
F1 score

Smoothness Thickness Warmth Flexibility Softness

LOSOCV 0.44 0.34 0.29 0.38 0.22

LOCOCV 0.46 0.39 0.36 0.49 0.27

Leave out one subject-cloth combination 0.60 0.53 0.50 0.61 0.45

gestures, e.g. grabbing the garment and holding it against
oneself. Warmth could also be associated with garments that
a person has strong emotional attachment to, e.g. due to fond
memories. Such interpretation differences highlight affective
meanings of fabric property constructs and are also in line with
the knowledge that bodily gestures provide a way to predict
and confirm expected interoceptive and exteroceptive sensa-
tions [33]–[35]. It is hence important that datasets represent
the different meanings assigned to constructs, to reflect the
complexity of the language of (affective) touch of clothing.

3) How does inclusion of a different type of garment affect
performance?: The main difference between the Phase I and
II data collection is the type of garments explored. In Phase
I, participants explored a variety of garments such as jeans,
jumpers, coats, and skirts, while Phase II was focused on
socks. Compared to most other types of garments, for example
those designed to cover the upper and/or lower parts of the
body (e.g. shirts, dresses), socks have a peculiar form factor
that can invite a different type of exploration. For instance,
socks can fit on the hands like a glove and can also easily be
turned inside out while exploring their inner layer properties.
Further, their size allows them to be bunched up as a whole
and fit into the palm, e.g. in a crunching gesture. Thus, it
is valuable to investigate how combining gestures of socks
exploration (Phase II data) with gestures exploring other types
of garment (Phase I data) would affect performance.

Similar to the evaluation carried out on the Phase I data
above, we performed LOSOCV and LOCOCV. As can be
seen in Table II, generalization to unseen subjects or garments
was worse when both Phase I and II data were used together.
Softness was the property with the largest decrease in recogni-
tion performance. In the Phase I data, each garment explored
was unique to the respective participant unlike the Phase II
data where all the participants explored the same pairs of
socks. So, beyond the LOCOCV done here, we also performed
leave-one-subject-clothing-combination-out CV, i.e. a variant
of LOCOCV where only explorations of a given pair of socks
by a single participant in the Phase II data instances were held
out at a time during cross-validation. In the ordinary LOCOCV,
explorations of the given pair of socks by all participants
are held out together in one fold. The adapted LOCOCV,
i.e. leave-one-subject-clothing-combination-out, led to much
better performance across all properties although performance
was still lower than using Phase I data alone.

These findings suggest that generalization is better with
both garment types and subjects seen during training. We
have already discussed the difficulty of generalizing to unseen
subjects in Section IV-B2. With unseen garment types, beyond

the differences between types of garments (e.g. skirts vs
socks) in terms of their shapes and sizes, differences in tactile
experience due to the properties (e.g. dryness, lightness) and
composition (e.g. wool vs nylon) of their fabric itself can
lead to additional differences in tactile exploration of any
single property. Empirically, we found statistically significant
differences in perceived fabric properties between the two data
collection phases based on linear mixed model analysis, i.e.
accounting for repeated measures from the same subjects. In
particular, differences were significant for warmth (p=0.018,
t=-2.66, n=145), thickness (p=0.033, t=-2.36, n=145), and
flexibility (p=0.02, t=-3.61, n=143). No statistical difference
was found for smoothness and softness.

V. AUTOMATIC RECOGNITION OF SUBJECTIVE RATING OF
FABRIC PROPERTIES

We further explored the possibility of automatic detection of
the subjective rating of a given fabric property for a baseline.
Preliminary experiments using random forest showed poor
discrimination between the ratings (e.g. average F1 score of
0.36 for 3 levels). Thus, we explored the use of RNNs that
allow capture of temporal information, in particular long short-
term memory neural networks (LSTMNNs) [36], [37]. We
used a simple model with a single LSTM layer followed by a
3-layer multilayer perceptron (MLP) with hidden units of sizes
20 and 10 respectively. The LSTM layer was shared by each
of the two hands and the encodings for the two hands were
then concatenated before being processed by the MLP. We
compared this LSTM-based model with a 3-layer MLP without
the LSTM. We additionally compared with random forest. We
evaluated the models using LOSOCV and LOCOCV.

A. Preprocessing and Feature Extraction

We used both Phase I and II data for the experiments
described in this section. The same processing methods de-
scribed in Section IV-A were applied except that instead
of segmentation of each exploration instance (duration = 15
seconds) into 9 segments, segmentation into 15 was used. For
each segment, we extracted the same types of features as in
Section IV-A, but we did not include the total across axes for
angular velocity, acceleration, and jerk. Thus, there were only
30 signals used here. With 3 features per signal (maximum,
mean, standard deviation), there were a total of 90 features
for each hand. To explore temporal characteristics, for the
LSTMNN and MLP models, we extracted these features from
three non-overlapping slices within each segment, making 540
features for these two models. In addition to these sensor-
based features, we included 5 categorical features to represent
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TABLE III: F1 scores for automatic recognition of subjective ratings of explored fabric properties

Model
F1 scores - LOCOCV F1 scores - LOSOCV

Low Medium High Low Medium High

Random forest 0.25 0.62 0.37 0.18 0.64 0.14

LSTMNN 0.77 0.86 0.79 0.63 0.79 0.67

MLP 0.97 0.98 0.97 0.97 0.98 0.97

the explored fabric property such that each was a ‘1’ for
the property explored in a given exploration segment and
‘0’ otherwise. We used the ground truth here, but in future
work, the explored fabric property information will come from
automatic recognition such as presented in Section IV.

Rather than discrimination between all 7 property intensities
captured in our dataset, we focused on detection of 3 levels as
a first step. This lower level of granularity has the advantage
of reducing the effect of between-subject variations in the use
of the rating scale. There is also the additional advantage of
having more data per class. We re-coded ratings of 1 and 2
on the original scale as low level, 3 to 5 as medium level,
and 6 and 7 as high level. There were 1,500, 3,210, and 1,590
instances for the low, medium, and high classes.

B. Results and Discussion: Can subjective rating of fabric
properties be recognized?

Table III shows the results obtained comparing the 3 models
based on both LOCOCV and LOSOCV.

The random forest model performs very poorly with worse
than chance level recognition for the two minority classes (low
and high levels) and has mean F1 scores of 0.41 and 0.32 with
LOCOCV and LOSOCV respectively.

Both the MLP and LSTMNN perform far better and well
above chance level classification with mean F1 scores of 0.97
and 0.81 respectively based on LOCOCV and mean F1 scores
of 0.97 and 0.70 respectively for LOSOCV. As can be seen,
the MLP model has considerably higher performance than
the LSTMNN, both with LOCOCV and LOSOCV. The larger
number of parameters for the LSTMNN (which includes a
LSTM layer in addition to the same number of fully connected
layers as the MLP model), given the size of the dataset
(n = 6, 300), may have contributed to its lower performance.
Another critical difference between the two models is where
fusion of the property information features and the sensor-
based features occur. For the MLP model, the fusion is done
at the input level, whereas for the LSTMNN it occurs mid
level after the LSTM layer encoding of the sensor-based
features. Given the importance of the property information,
this difference may have influenced the performance of the
models. The results also suggest that static touch postures are
more informative for recognition of the rating levels than the
temporal relationships between postures.

VI. ETHICAL IMPACT STATEMENT AND CONCLUSION

We present a novel multimodal hand gestures dataset of
naturalistic fabric touch assessment interactions, FabricTouch.
The dataset includes 8-channel sEMG data and 16-channel

IMU data from each of the two forearms for 15 people while
they explored a wide variety of garments in their homes or
in lab settings. The dataset further contains labels for garment
fabric properties explored in each interaction, subjective rat-
ings of the given property for the given garment, and the level
of pleasure experienced in exploring the fabric through touch.

The investigation of automatic detection of details of such
tactile fabric interaction based on this dataset reveals the
possibility of equipping technology with the capability of
automatic recognition of the fabric property being explored,
mean F1 score of 0.61 for 5 classes of properties being
explored for garments not included in the training data. For
automatic identification of 3 levels of the consumer’s rating
of the property based on their touch behaviour and given that
the property being explored is known, we obtained mean F1
score of 0.97 for people that the system was not trained on.

Our work provides groundwork for addressing sustainability
in the fashion industry through the consumer. Fast fashion is
one of the world’s most wasteful and polluting industries, driv-
ing impulsive purchase of clothes that are quickly disposed of
by consumers, returned (then disposed of by shops) or unused
[39]. Our dataset was created as a starting point in developing
a fabric touch databank that enables the creation of affective-
touch-aware technology which invites tactile exploration to
foster reflection and awareness during purchase or in caring
for clothes. Further, fostering engagement in touch interactions
with clothes could increase bonding with the clothes [40]. The
larger project on textile circularity that this work sits within
covers the broader textile value chain.

The work is currently limited with respect to diversity
and inclusivity as the dataset does not currently capture the
diversity of touch abilities. For example, it does not cap-
ture touch exploration by people with only one hand or no
hands, people with upper limb movement disorders such as
cerebral palsy or stroke, or people with sensory disorders.
It is expected that people with such conditions may have
alternative gestures for exploring clothing. Further, although
our data was captured from two different countries (China,
UK), it is important to note that our work is largely based on
understanding of consumer behaviour and fabric handling for
limited geographies and cultures. As noted in our introduction,
clothing has cultural, economic, and political significance that
may be reflected in how people purchase, use, experience, care
for, and discard clothes in different countries and regions. It
is, for instance, unknown if (and to what extent or how) the
problem that we address is relevant in regions beyond rich,
industrialized countries. Our long-term aim is to gradually
build a more inclusive dataset for the UK and in parallel
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work with other researchers in the area to develop a more
geographically inclusive understanding of clothing handling,
purchase, and use behaviours.

The dataset and findings of the paper are significant contri-
butions given that research on touch gestures is still limited in
comparison to other modalities, more so for fabric experience.
They invite the community to build recognition models for
tactile exploration of clothing fabrics and lay the groundwork
for further studies to capture and support a consumer’s sensory
experience during clothing exploration.
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