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Preface

What is a representation? First and foremost, a representation can be seen as some sort
of model of the thing it represents [167]. In other words, a representation establishes
the existence of a represented world and a representing world, as well as the existence
of a relation between the two worlds. Such a relation maps objects of the represented
world to objects of the representing world and, most importantly, determines what
aspects of the objects from the represented world are being modelled by objects of the
representing world. Equivalently, objects of the representing world express information
about the world they represent in a structurally-preserving way [159]. According to
representationalism, also known as indirect realism or epistemological dualism, the
world we see in conscious experience is not the real world itself, but merely a miniature
virtual-reality replica of that world in an internal representation. Representationalism
is often disregarded due to it causing infinite regress fallacies such as the homunculus
fallacy [116]: mental representations of the world are themselves symbols and thus they
require interpretation. Although, it is the only alternative that is consistent with the
facts of perception, that seem to suggest that our experience is limited by our senses
and that senses may differ from the world itself, due to dreams and hallucinations.

Contemporary forms of representationalism escape the infinite regression fallacies by
deploying self-interpreting representations, using computers and their programming
languages as a powerful analogy. Fodor brings this analogy forth in his The Language
of Thought [78]. Computers use at least two languages—i.e., two abstraction levels
with regards to representation: one (the high-level language) to communicate with
the environment and the other (the machine-level language) to communicate with
themselves, using a compiler as the mediator. A program written in the high-level
language is a representation for a solution to a problem in the real world which is
being represented. Then, the compiler establishes the relation between the represented
high-level abstraction and the representing machine-level program. The machine-level
language does not need further representation because it is self-interpreted: each of its
instructions correspond directly to computationally relevant states and operations of
the machine. In other words, the machine-level language is understood by the computer
without further compilation, stopping the regression.

This dissertation deals with this analogy and its implications. Language is a vehicle
of thought and programming languages are vehicles used to model problems and
solutions of the real world. The way we think of programs and the way we write them
are deeply connected. What if we bring this analogy one step further and try to model
problems and solutions of the development of programming languages by introducing
an additional layer of representation? How does modeling programming languages
and their commonalities in a systematic way affect the way we develop them? Let
us discuss the dimensions of variability modeling or, in other words, the design of
software and language product lines.
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1
Introduction

Modular software development is taken for granted. Modular programming dates back
to the 1970s [170] and is a technique that emphasizes the need to separate different
concerns of a software system into an independent module, so that the module itself
contains all that is needed to express its concern with the least possible amount of
dependencies to other concerns. Modules usually represent an interface that can be
used by other modules to access the implementation of a concern without requiring any
actual knowledge on the implementation details. Each programming language brings
forth its own flavour of modularization to empower developers with better abstractions
and an increased ability to reuse existing assets in a different context. Some languages
may even provide several modularization techniques to further support reusability at
different levels of granularity. The choice of a modularization technique is a primary
decision with regards to the design of a programming language and it is often deeply
connected to the programming paradigm and the intended development approach in
general. As a result, the concept of modular programming lacks a set definition and
it is more generally used to refer to the process of decomposing a complex software
systems into smaller and simpler pieces.

Object-oriented programming has probably been the most commonly adopted
programming paradigm in recent decades, due to the popularity of languages such as
C++1, Java2 and Python3. In object-oriented programming, code modularization and
reuse is based on the concept of objects, which contain both data and code in the form
of fields and methods respectively. Most object-oriented programming languages adopt
a manyfold modularity structure that entails the concept of classes as the primary unit
of code organization, but also modules (in Python), namespaces (in C++), or other
similar concepts. Java supports packages that are akin to modules in other languages,
although a new module concept was introduced since Java 9 to describe collections
of packages with enhanced access control, including how they can be discovered and
loaded.

Functional programming is a programming paradigm in which programs are the
result of the definition and composition of functions. Functions are treated as first-
class citizens that can be bound to identifiers and passed as arguments to manage
the execution flow of a program, for instance by using the continuation approach. As
such, functions are the primary unit of reuse in functional programming languages

1https://isocpp.org/
2https://www.java.com/
3https://www.python.org/
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1 Introduction

and they are often grouped into modules. Functional programming languages such as
OCaml4 allow for the dynamic definition of modules through the usage of functors—i.e.,
modules that are parametrized by another module, just like functions are parametrized
by their arguments. Functors are commonly used to customize the behavior of a
module with regards to a specific abstract data type, for instance by turning a module
for generic set operations into a module for operations on set of strings.

Actor-based programming is a model for concurrent computation in which each
individual concurrent process is an actor that can make local decisions and communi-
cate with other actors by means of messages. A normal actor-based program can be
made of several hundreds of small actors running concurrently and thus actors are
the primary unit of reuse. Among the most well-known actor-based programming
languages, Erlang5 and Elixir6 adopt a hybrid paradigm mixing actor-based and func-
tional programming and leverage the power of the BEAM virtual machine to deploy
lightweight concurrent actors.

This draw towards hybridity is shared amongst all modern languages. Language
designers are constantly looking for ways to extend and enrich programming languages
with new constructs and abstractions to close the gap between human thought and
machine behaviour. Languages that were born as purely object-oriented, now include
functional constructs, such as the functional interface introduced in Java 8, and vice-
versa. When a paradigm is not supported by the base language, the community
comes in to produce language extensions towards their support. For instance, AspectJ7

is a seamless aspect-oriented extension to the Java programming language used to
model crosscutting concerns such as logging and error-checking whereas Akka8 is
an API for the development of actor-based distributed systems in Java and Scala9.
As a result of this trend, programming languages are nowadays complex software
systems that tend to contaminate one another. Despite their similarities, programming
language implementations often lack any modularization and hardly share any code:
programming language development is still a top-down monolithic activity in which
extensibility is a mere afterthought. More recently, the trend has shifted towards the
development of programming languages targeting a specific application domain. For
the users to be able to speak their mind, programming languages must be designed so
that they do not get in the way of their thought. Domain-specific languages (DSLs)
try to answer to this need by supposedly limiting comprehensiveness in favor of
comprehensibility. The goals are to decrease the development time and to improve
the quality of the final product by overcoming the communication barrier between the
domain experts and the developers: many of the failures in the development of software
projects are caused by the difficulty of translating requirements into specifications and
specifications into implementations, due to the lack of a common vocabulary. Instead,

4https://ocaml.org/
5https://www.erlang.org/
6https://elixir-lang.org/
7https://www.eclipse.org/aspectj/
8https://akka.io/
9https://www.scala-lang.org/
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DSLs employ terms and concepts that are specific to an application domain, so that
domain experts can participate in the development activity by validating specifications
written by others or even by expressing new ones themselves: this makes it easier to
communicate with domain experts, providing both a description and a solution for
the problem [81]. Moreover, due to the simplicity of DSLs, it is generally considered
much easier and faster to train the developers on how to use a DSL rather than a
general-purpose programming language (GPL). Finally, DSLs enforce the adoption of
shared code style, development conventions and best practices across the whole team
by means of the compiler. DSLs are often designed as an extension to a general-purpose
base language. In this case, the GPL is called host and embeds the guest DSL. DSLs come
in two main forms: internal and external [81]. An internal DSL is a particular style of
API, often referred to as fluent interface [79], in which API calls are designed to be easily
readable. Instead, an external DSL is a language that is parsed separately from the host
language.

This shift in the requirements of language development calls for a shift in the pro-
gramming paradigm. A paradigm in which software is built around a set of DSLs;
rather than solving problems using a GPL, the system is first split into its application
domains according to such problems and then a DSL is implemented for each domain.
Finally, each problem is assigned the most suitable application domain and is solved
by using the corresponding DSL. In other words, a language-oriented programming
paradigm. The term language-oriented programming was firstly introduced by Martin
Ward in 1994 [223] following the Unix tradition of little languages [20], but such a style of
development was ultimately deemed unsuccessful due to the complexity of computer
languages and their ecosystems. Programming languages are integrated across an
ecosystem of different applications that are usually modelled separately. This ecosystem
includes not only the language compiler or interpreter but also an integrated devel-
opment environment comprehensive of syntax highlighting, code completion, error
recovery and a debugger. Moreover, changes to the language may render the entire
application ecosystem obsolete, thus requiring each component to be updated. More
recently, there has been an attempt to support language-oriented programming through
a new breed of tools, by easing the development of programming languages and their
ecosystems in a modular way; following the seminal work of Martin Fowler [80], we
dub such a breed of tools language workbenches. While the original definition focused
on projectional editing [80, 219], research on language workbenches is currently focus-
ing on their promise of supporting the efficient definition, reuse and composition of
languages and their IDEs. Modern language workbenches evolved according to many
different design philosophies, but they all share the same goal: to assist the creation as
well as the usage of programming languages in a unified environment. Language work-
benches typically offer meta-languages and abstraction that facilitate the development
of languages and the reuse of software artifacts. A key aspect of language workbenches
is their ability to support modular language development—i.e., the development of
languages in a componentized way. Composition can be modelled according to several
different reuse models, like inheritance [154] and superimposition [139].

Language workbenches benefit from the application of a feature-oriented program-
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1 Introduction

ming approach to the development of DSLs. Firstly introduced as part of the FODA
method [114], feature-oriented programming is an approach in which software systems
are described in terms of the features they provide—i.e. product characteristics that a
customer would feel are important in describing the product itself [7]. Such software
systems are then modelled using formalisms such as the feature model (FM). The main
goal is to achieve separation of concerns—i.e., features are implemented separately.
However, feature-oriented programming and feature models also fit an engineering
approach that is a staple in industrial production: product line engineering. A product
line is a family of similar products, whose members are differentiated by their features.
Similarly, a software product line (SPL) is a product line of software products. More
recently, researchers gained interest in applying software product line engineering
principles to the development of programming languages, thus originating the con-
cept of language product lines (LPL)—i.e., SPLs in which the software product is a
programming language interpreter or a compiler, together with its ecosystem. The mo-
tivations behind SPLs and LPLs are both qualitative and economic. From a qualitative
standpoint, complex software systems are hard to develop, maintain and comprehend:
SPL engineering tries to control such a complexity with high-level design techniques.
From an economics standpoint, the developers are able to amortize the costs of building
variants of a program to satisfy several different customers.

This dissertation focuses on several design aspects of SPLs, with a particular attention
given to the topic of LPLs. Most of the discussion will be based on the Neverlang
language workbench, as an example used throughout this work to present the LPL
engineering approach, its challenges and solutions. Neverlang was originally born to
explore feature-oriented modularization in language design and implementation [37, 35]
and was later overhauled to support a highly-dynamic componentized approach to
language development framework [38, 209]. More recently, Neverlang has evolved into
a full-fledged language workbench with integrated development environment services
support [131]. The goal of our research was to complement such a collection of tools
and techniques with a proper design methodology. The goal is to drive the development
of LPLs so that their quality can be assessed at any moment, to ensure a truly modular
structure of language-oriented software systems and ultimately to maximize reuse of
syntactic and semantic assets across several language definitions.

Contribution. Our contribution with this work involves several design aspects of
LPLs and SPLs in general and includes:

1. an approach to the realization of SPLs based entirely on design patterns without
the support of any external tool, so that the developers can produce software
features using abstractions they are used to;

2. an LPL design methodology that encompasses an engineering process to de-
termine the order in which decisions are made, an integrated development
environment for LPL designers, the properties of a well-structured language
decomposition and the metrics for assessing the quality of a language decomposi-
tion;

6



3. the characterization of the language mutation problem and a framework based
on LPLs for its resolution, to enable the quality assessment of test suites for
programming languages through mutation testing, but without encompassing
re-compilation.

Outline. This work is structured as follows. Chapter 2 introduces any concepts and
terminology that are relevant throughout this work. From Chapter 3 onward we will
discuss several design aspects of software and language product lines. Chapter 3

discusses the design of SPL at large by overviewing a design pattern for their imple-
mentation. The proposed pattern answers some of the limitations of annotative and
composition approaches traditionally used for their definition and tries to solve the
problem of conservation of complexity in SPLs. Then, we will deviate from the topic of
SPLs in general to focus specifically on LPLs and their design methodology. Chapter 4

takes on the works of Parnas, Briand and Coleman on design methodologies for object-
oriented systems and adapts their contribution to the topic of LPLs to solve the problem
of design quality in LPLs. A design methodology for LPLs should improve the quality of
language decompositions and, in turn, the reusability of language assets. Chapter 5

tries to solve the problem of quality in test suites for programming languages: it defines and
tackles the language mutation problem using LPLs and language workbenches as a
tool to improve mutation testing approaches on programming languages. Chapter 6

discusses any related work with regards to the SPL and LPL design aspects discussed
throughout chapters 3, 4 and 5, including works that try to solve similar problems
with a different technique or that use similar techniques to solve different problems.
Finally, in Chapter 7 we will draw our conclusions on this work and outline some
future directions with regards to the research on the design of SPLs and LPLs.

7





2
Background

This work builds on top of the existing literature on SPLs, language workbenches and
LPLs. To better discuss our contribution, we provide any background information,
including definitions, terminology and concepts that will be referred to throughout
this dissertation. First, in Sect. 2.1, we provide an overview on the field of software
product line engineering, as well as the concept of features, their variability and feature-
oriented programming. Then, in Sect. 2.2, we introduce DSLs as the main building
blocks of language-oriented software systems. In Sect. 2.3, we combine the concepts
of SPLs and DSLs to introduce the field of language product line engineering. Finally,
in Sect. 2.4, we will overview the topic of language workbenches and discuss some
concrete implementations with regards to their approaches to modularization and
language composition.

2.1 Software Product Line Engineering

Variability of products is very common in industrial production. Take a car factory as
an example: the base car model can be optionally customized with different colors, a
navigation system, a cooling system and parking sensors. Such a kind of industrial
production, called variability-rich production, is a problem that has been dealt with in
classical engineering environments through the creation of product lines. Software
product line engineering (SPLE) [214, 213] tries to apply the same ideas and concepts
to the scope of variability-rich software, following the dream of massive software reuse.
The main goal of such an extensive reuse effort is to leverage the similarities among
software products pertaining the same domain. Eventually, SPLE should capture these
similarities to minimize the costs of deploying similar products that suit the needs of
several different customers or to ease the evolution of a single product. As a result,
SPL is a paradigm to create a design for families of programs [15]: all members of
the software family will share a set of commonalities called core features, whereas any
non-core features will determine the differences between two members of the family,
which will be called variants. A tempting approach to the creation of software variants is
to clone-and-own [185]: the cost of making copies of software source code is close to zero,
hence one may be lead to slightly change a duplicated piece of code to create a variant
of the original implementation in which the functionality is slightly modified according
to the customer’s requirements. However, clone-and-own quickly leads to maintenance
hell, since any update applied over any of the variants also has to be applied to the

9



2 Background

duplicated code of all other variants. Therefore, researchers and practitioners struggle
to improve the theory behind feature reuse and always try to provide new technology
to drive software variability management and deployment of software variants with
minimal code duplication.

Whether SPLs are developed by means of clone-and-own or through more sophisti-
cated techniques, SPLE follows one of three different approaches [128]:

– the proactive approach, in which the SPL is created from scratch;
– the extractive approach, in which an existing code base with different software

products sharing some commonalities is converted into an SPL;
– the reactive approach, in which the development starts from an initial set of core

features and then the SPL is developed incrementally by adding more features to
the initial set.

In each of the three approaches, the development of an SPL is generally divided into four
phases [7]: domain analysis, requirement analysis, domain implementation and product
derivation. Domain analysis and requirement analysis pertain the problem space of the
SPL whereas domain implementation and product derivation pertain its solution space.
During the domain analysis phase, the goal is to capture the scope of the application
domain and to derive its description—usually in terms of a model representing its
features. The requirements analysis phase is concerned with the assessment of the
concrete requirements of the customers and the definition of the relevant product
variants. The domain implementation phase turns desired functionalities into concrete
implementations, by mapping features from the domain to reusable software artifacts.
Finally, the product derivation phase joins the requirements collected during the second
phase with the software artifacts developed during the third phase to yield a member
of the software family. This process is usually performed automatically by a software
called composer.

2.1.1 Features and Variability Modeling

SPLs rely on the notion of features and are often developed using a feature-oriented
programming (FOP) paradigm. Each feature represents some (either functional or non-
functional) characteristics of a subset of the members of the software family. However,
there is still no commonly accepted formal definition of software features. Instead, a
feature is informally described as an increment [15]—i.e, a characteristic or end-user-
visible behavior of a software system [7]. Given this informal definition, an SPL can
be viewed as the collection of all the available features whereas a product configuration
is a valid subset of the SPL; each configuration always corresponds to a member of
the software family. While many approaches to express SPLs exist in literature, feature
models (FM) are considered the de facto standard for variability modeling [57].

A FM is usually represented as a hierarchical tree structure called feature diagram
that contains all possible features that exist in an SPL uniquely identified by a name,
as well as any dependencies between each other. For the purpose of simplicity, in this
dissertation we will refer to both the representation and the underlying model with the
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Figure 2.1: FM of a family of neural networks used to encode the MNIST1dataset, taken from [21].

term FM, even though the two concepts are technically different. An example for a FM
is shown in Fig. 2.1.

Given a FM and a valid configuration for that model, any feature that belongs to the
defined subset of features is said to be active for that configuration; all other features
of the FM are inactive. The validity of a configuration is based on the dependencies
between features that the FM declares. The FM structure can implicitly imply fea-
ture dependencies using specific types of features. For instance, a FM can contain
abstract features—such as Reducer and Prepare in Fig. 2.1—and concrete features—such
as Logging and Umap in Fig. 2.1. Abstract features are structural features that are used to
collect groups of child features under the same abstraction, but have no implementation
associated to them. Concrete features are actual features with an implementation that
can be composed into a software product as part of the product derivation process.
Features are mandatory—such as Strategy in Fig. 2.1—if they must always be selected
if the parent feature is selected in the same configuration. All non-mandatory features
are called optional. Multiple features that share the same parent feature can also express
additional constraint with one another. Or groups—such as the children of the Logging

feature in Fig. 2.1—manifest the intent that, if the parent feature is active, then one or
more of the children must also be active in the same configuration. Similarly, alternative
groups—such as the children of the Dimensions feature in Fig. 2.1—manifest the intent
that, if the parent feature is active, then exactly one of the children must also be active
in the same configuration.

1http://yann.lecun.com/exdb/mnist/
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In addition, dependencies can be defined explicitly using cross-tree constraints, in-
cluded in the form of logical formulas whose terms are features from the FM; each
term is set to true if the corresponding feature is active in the current configuration
and false otherwise. Cross-tree constraints support general Boolean operators such as
AND, OR, NOT, IMPLIES and IFF with the traditional meaning. The expressiveness
of cross-tree constraints is used to enable the definition of constraints that span the
entire feature model instead of being limited to the relation between parent and child
features. If the truth value of any cross-tree constraint is false for a configuration then
that configuration is invalid. Both implicit and explicit feature dependencies may result
in dead features (that can never be active), false-optional features (that are marked as
optional but are mandatory), and atomic sets—i.e., sets of features such that all features
are active in the same configuration, or none is. The quality of SPLs can be improved
by performing static analysis of FMs for the detection of such anomalies. This is an
active research area and includes structural [19] and behavioral [18] approaches.

2.1.2 Software Product Line Development with FeatureIDE

FeatureIDE2 [203, 151, 150] is an SPL development environment that copes with all
aspects of the development of SPLs. It supports the FM construction, the management
of software artifacts, the products configuration and their derivation. SPL engineering
support in FeatureIDE encompasses:

1. the Feature Model Editor for the creation, visualization and tracing of FMs, concrete
and abstract features, feature dependencies and cross-tree constraints;

2. the Configuration Editor for the creation, modification, and validation of feature
configurations [173];

3. various Composers—which can be customized and extended through dedicated
insertion points—for the derivation of product variants from a given valid feature
configuration.

As an example, Fig. 2.1 represents a FM as shown by the Feature Model Editor of
FeatureIDE. FeatureIDE maintains consistency between all the different views during all
phases of the development process. This includes all the editors as well as the Feature
Model Outline which provides basic information and metrics about the FM and the
variability space of the SPL. The Configuration Editor guides the development of valid
configurations by checking their validity by translating the feature diagram and its
cross-tree constraints to a propositional formula, so that a satisfiability solver can be
used to reason about it. Finally, the chosen composer generates the final product variant
for a given configuration by combining the active features from that configuration.

2https://featureide.github.io/
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2.2 Domain-Specific Languages

A domain-specific language (DSL) is a computer programming language of limited expres-
siveness focused on a particular domain [81]. Albeit general, this definition by Martin
Fowler includes all the key elements of DSLs. DSLs are tailored to a particular applica-
tion domain and are therefore also referred to as application-oriented, special purpose,
specialized, task-specific, or application languages in literature [155]; regardless of
naming conventions, DSLs offer appropriate notions and abstractions to express solu-
tions with respect to the problems of a particular application domain [64]. Using DSLs
intuitively brings several advantages to the development of complex systems:

– encapsulation—DSLs hide implementation details behind proper abstractions;
– productivity—powerful abstractions smooth the coding phase;
– communication—domain experts can read, understand and validate code, or even

participate in its development;
– quality—DSLs provide a natural mapping between specification documents and

their implementation.
It is apparent that the main focus of this discussion has been abstraction. In fact, a library
or a framework are no different from a DSL since they both share the same purpose,
but libraries are usually interacted with through an application programming interface
(API) whereas DSLs provide a style of manipulation that may be more appropriate for a
non-programmers, by using natural languages instead of function calls and parameters.
A library can even be designed as a internal DSL, as we will discuss in the next section.

2.2.1 Internal and External DSLs

There are two main types of DSLs: internal (or embedded [81]) and external. Internal
DSLs are embedded into an existing language called host language and can only operate
within its boundaries. The main advantage of internal DSLs is their ease of development,
since they can be developed as an easily-readable fluent interface. On the other hand,
developers have to face reduced flexibility, since an internal DSL is limited to the
constraints of the host language, including programming paradigm, type system,
tooling, or more generally both its syntax and semantics. While semantics limitations
may not effect the expressiveness of the DSL, since the host language is usually a GPL,
syntactic limitations may limit the usefulness of an internal DSL due to the inability
to express terms and idioms of a particular domain within the boundaries of the
host language. Some prominent examples of host languages that are suited to the
development of internal DSLs are Lisp with its macros [80], Ruby [81] and Scala [10].

On the contrary, creating an external DSL involves the construction of a new lan-
guage from scratch. This process includes writing a complete specification for the DSL
discussing the needed abstractions, the language syntax and its semantics. External
DSLs are usually more suitable for the involvement of domain experts in the devel-
opment activity since they can be customized according to the syntax used in that
particular domain but are also hard to develop since they require a custom compiler.
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While grammar-based compilers and interpreters are the most common pattern for
the development of external DSLs [123], developers sometime rely on existing tools
and their syntax (such as, XML, JSON an other configuration and serialization lan-
guages [81]) to create an external DSL while avoiding the need for a custom grammar.
Some prominent examples of external DSLs are SQL for querying databases, LaTeX for
typesetting documents and Make for build automation.

2.2.2 The Implementation Dimensions of DSLs

DSLs are usually defined with regards to three different dimensions: abstract syntax,
concrete syntax and semantics.

The abstract syntax defines the language constructs that are used to represent the
application domain. To enable further processing by means of an interpreter or a
compiler, parsing tools convert a source file into a representation called abstract syntax
tree (AST) based on the abstract syntax of the language. The abstract syntax can
be defined by means of a grammar comprised of production rules [3] or through a
meta-model. The most commonly used grammars for the definition of programming
languages are context free grammars. A context-free grammar is a tuple G = (Σ, N, P, S)
where Σ is an alphabet of terminal symbols, N is an alphabet of nonterminal symbols,
P is a set of production rules (or productions, for simplicity) and S ∈ N is the start
symbol. A production is written as A → ω where A ∈ N, and ω ∈ (Σ ∪ N)∗, with
(Σ∪ N)∗ being the transitive closure of set (Σ∪ N) with respect to symbol juxtaposition.
The generated language L(G) of a grammar is the set of all the words that can be
derived from a grammar G. A language for a grammar G is said to be empty if
L(G) = ∅ and, conversely, non-empty when |L(G)| > 0. A meta-model is generally used
in model-driven engineering and represents a given domain in terms of its concepts, its
properties and their relations [60]. Although meta-models can be used for the definition
of DSLs, we will not discuss meta-model-based DSL implementation in this work.

The concrete syntax represents the AST as it is viewed and manipulated by the
user [60]. The most common representation of the concrete syntax is in textual form,
although purely graphical representations are possible. Finally, a mixed representation
of textual and graphical concrete syntax of a language is also possible by means of
projectional editing [219].

The semantics of a DSL are necessary to attach a meaning to language constructs.
Semantics can either be static if they cannot be attached to the abstract syntax such as the
concepts of scope, variables and exceptions. Dynamic semantics can be attached to the
AST and express the runtime behavior of the language. One way to associate dynamic
semantics to the abstract syntax of a language is the syntax directed translation [3]
technique, based on attribute grammars [121]. Intuitively, a syntax-directed definition can
attach attributes to the grammar symbols representing the construct. This is done by
program fragments embedded within production rules and called semantic actions.
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2.3 Language Product Line Engineering

The idea of applying SPL concepts to the creation of families of programming languages
and DSLs in particular has gained popularity among researchers and practitioners [86,
132, 35], thus introducing language product lines (LPLs) [211, 130, 129]. To enable the
development of an LPL, a modular structure of the members of the family in the
form of language components (or language modules) is necessary. As discussed in
Sect. 2.2.2 a DSL and all its language components must be defined with regards of
the three implementation dimensions of abstract syntax, concrete syntax and semantic
descriptions. The definition of any of these three elements may cause dependencies to
other components, limiting the reusability of the same component across all members
of the language family. Just as for SPLs, a main aspect of LPL engineering (LPLE)
is to capture commonalities and differences among members of the language family,
by defining the variation points and the granularity of language components, as well
as any composition mechanism. To be applicable to the development of DSLs and
programming languages in general, LPLE must encompass several design aspects,
including proper tooling and methodologies.

2.4 Language Workbenches

The LPL approach may prove useful to the creation of variants of a domain-specific
language [55, 207, 210] and dialects of a general-purpose programming language [34].
LPLE benefits from the creation of sectional compilers that support the development of
language features separately, including their syntax, their semantics and meta-data
for reusable IDE specifications. Most recent language workbenches [71] embrace this
philosophy to improve reusability and maintainability of language assets. The term
language workbench was firstly introduced by Fowler [80] to describe tools suited to the
language-oriented programming paradigm [223], in which complex software systems are
built around a set of domain-specific languages to properly express domain problems
and their solutions. While the original definition focused on projectional editing [80],
research on language workbenches is currently focusing on their promise of supporting
the efficient definition, reuse and composition of languages and their IDEs. Current
language workbenches evolved according to many different design philosophies, but
they all share the same goal: to facilitate the development of languages and the reuse
of software artifacts through better abstractions.

Following the feature-oriented programming paradigm, a reusable piece of a lan-
guage specification is called language feature. A language feature is formed by a syntactic
asset and a semantic asset and represents a language construct together with its be-
havior. A language feature can omit the semantic asset or the syntactic asset; these
corner cases represent a language construct without semantics and semantics that are
not associated to any syntax respectively. For instance, comments can be implemented
as a language feature in which the semantic asset is omitted. Languages and their
features can be composed to form new language variants according to five forms of
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language composition: language extension, language restriction, language unification,
self-extension, and extension composition [70]. The goal of a language workbench is to
support all five forms of language composition through dedicated abstractions.

Language workbenches have been developed for various technological spaces. The
rest of this section presents an incomplete summary on current language workbenches
in no particular order. For a complete overview and comparison of language work-
benches, their capabilities, and their support to LPLE, please refer to the works of Erd-
weg et al. [71] and Méndez-Acuña et al. [153]. Instead, we discuss Neverlang (Sect. 2.4.10)
in particular detail, since most of the research discussed in this dissertation will use
Neverlang as a running example.

2.4.1 Xtext

Xtext [22] is a DSL development framework developed by the Eclipse Foundation and
intended to be used with the Eclipse IDE. The grammar for the DSL is written using the
Xtext language, that is then translated into a ANTLR-based parser, an Eclipse Modeling
Framework (EMF) [199] and eventually into Java classes, each representing an AST
node type. Xtext is fully integrated with Eclipse and can generate a plugin for the
language being developed. Semantics are defined using Xtend, a Java-like language, or
the Xsemantics [22] language for formal semantics specifications. Despite this premise,
Xtext flexibility options are limited, since ANTLR requires the entire grammar of the
language to be defined and compiled at the same time.

2.4.2 LISA

LISA [157] is an interactive environment for the development of programming lan-
guages developed at the University of Maribor. LISA leverages concepts derived from
object-oriented programming, such as templates and multiple attribute grammar inher-
itance [156] to overcome the limitations of ordinary attribute grammars. LISA consists
of several tools, both textual and graphical, to ease the development of programming
languages and their ecosystems. Several language-based tools can be derived from a
language specification [97]: editors, inspectors, evaluators and a graphical algorithm
animator and program visualizer, to improve the user ability to understand the meaning
of the source program that is being processed.

2.4.3 Melange

Melange [61] is a language workbench developed by the DiverSE research team at
the Institut National de Recherche en Informatique et en Automatique (INRIA). The
main design goal is the modular development of DSLs. Melange is based on various
tools from the Eclipse Modeling Framework (EMF). The Ecore modeling language is used
to define the language abstract syntax, Xtext to define textual concrete syntax and
Sirius [220] to define graphical concrete syntax. Semantics are attached to the syntax
in an aspect-oriented fashion using Kermeta 3 [107] aspects. These components are
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put together using a Melange specification file that declares which elements have to be
composed and how. Other composition mechanisms include language extension and
language merging. The resulting composition is translated into an Eclipse plugin by the
Melange compiler. Melange answers three design needs [60]:

– the introduction of a language interface to hide the complexity of language imple-
mentations by exposing only meaningful information;

– the usage of polymorphism to provide a model-based type system;
– language implementation reuse through extension and composition of existing

operators.
Melange supports some flexibility in the composition of assets by allowing for the
redefinition of Ecore elements, such as packages and classes, but with no support
towards composition of incompatible concrete syntax elements.

2.4.4 Meta Programming System

Meta Programming System (MPS) [217] is a language workbench developed by the
JetBrains3 company, which has become very popular due to their high-quality IDE tools.
MPS is not designed for the development of textual DSLs and rather it provides tools for
the developer to directly interact with the AST of a program. Such an approach is called
projectional editing [219]. Projectional editing was the main focus of Martin Fowler’s
essay «Language Workbenches: The Killer-App for Domain Specific Languages?» [80],
which helped bringing language workbenches and language-oriented programming to
a mainstream audience. According to Fowler, projectional editing was one of the key
factors in the definition of language workbenches. Although this requirement relaxed
over time, leading to a more diverse plethora of language workbenches with different
design philosophies, projectional editing remains one of the most interesting approaches
to the development of DSLs that are suitable to be used by non-programmers. In MPS,
projectional editing is based on views over the AST called editors. Each user can interact
with the program though any compatible editor, while all the available views are kept
up to date through serialization of the underlying AST. The building blocks of the AST
data structure are called concepts whereas their semantics are implemented by means
of attachable components called behaviors. Behaviors and concepts can be extended
through simple and multiple inheritance to achieve some degree of flexibility over
language implementation.

2.4.5 JastAdd

JastAdd [68] is a modular compiler construction system developed at the Computer
Science department of the Lund University. Language development in JastAdd revolves
around the modeling of the AST as an object-oriented class hierarchy, whose semantics
are implemented in an aspect-oriented fashion, using methods and aspects. The JastAdd
compiler translates input to Java source files, building a Java class for each AST node.

3https://www.jetbrains.com/
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The compiler instruments those classes with the proper methods based on its aspects.
JastAdd does not support concrete syntax definition, but it can be added by means of
an external Java-based parser generator such as ANTLR4 and JavaCC5. Additional tools,
such as JastAddParser6 and Concrete [88] fill the gap of any additional language tooling
support. Flexibility in the composition of language components is limited by them
needing the same signature.

2.4.6 MontiCore

MontiCore [126] is a language workbench developed by the Software Engineering group
at the RWTH Aachen University. MontiCore uses a unique DSL for the definition of both
abstract and concrete syntax, that are then translated into Java classes by the compiler.
Each Java class represents either a node type of the AST or an ANTLR-based parser.
Semantics are implemented as visitors [82] that define the actions to be taken when
each node type is encountered during the AST visit (either preorder or postorder).
Attribute access is granted by means of getter and setter methods generated by the
compiler. While this eases the generation and type checking aspect of the attribute
grammar, it also limits its flexibility, since new attributes cannot be added to an existing
grammar at a later time.

2.4.7 Rascal

Rascal [120] is a language for the development of language processing tools. Rascal
is developed by the Software Analysis and Transformation (SWAT) research group at
the Centrum Wiskunde & Informatica (CWI) in Amsterdam. It provides context-free
grammar primitives, Algebraic Data Types and templates in a unified language [119].
The abstract syntax is expressed with abstract data types, each with its constructors
that are used by the parse library to transform textual input into an AST. However, the
usage of constructors limits the flexibility of the tools, since constructors for a given
abstract data type must match across apparently unrelated modules.

2.4.8 Spoofax

Spoofax [115] is a language workbench developed at the Delft University of Technology.
Spoofax combines several DSLs into a unique Eclipse-based solution. It includes Syntax
Definition Formalism (SDF3) for grammar specifications and Stratego to perform
transformations over the AST through tree rewriting rules and strategies. Tree rewriting
rules define a transformation from a term to another based on pattern matching. If
the input AST matches the pattern, then the tree is transformed according to the rule,
otherwise no change is performed over the input. Strategies define a way to apply rules
to the terms of a tree, without manually specifying the visit algorithm, leaving it to

4http://www.antlr.org/
5https://javacc.org/
6http://jastadd.org/web/tool-support/jastaddparser.php
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be defined by the strategy itself. Some examples are innermost, which applies a rule
to all the nodes in a tree starting from the leafs, all, which applies it to all the direct
children of the root and one, which applies it to the first one for which a matching
pattern is found. Such an approach provides a lot of flexibility, since semantic reuse
can be achieved through tree rewriting and the application of rules is limited only by
their arity.

2.4.9 Racket

Racket is presented as a “programmable programming language” [73] designed to
explore the emerging trend of language-oriented programming. Racket empowers
programmers with the ability to create new languages and to add them to a codebase,
so that extra-linguistic mechanisms are turned into linguistic constructs [73]. Language
extension is supported through several mechanisms such as syntactic abstractions
and syntactic extensions [77]. Some tasks require only a small extension to the core
language, while other benefit from the introduction of an entire new DSL. The definition
of a language goes through the definition of its syntax, its static semantics and its
dynamic semantics, usually by mapping new syntactic constructs to elements of the
host language via a foreign-function interface. Racket also ensures that the invariants of
each language in the multilingual system are respected. Each language implemented
in Racket extend the Racket ecosystem, effectively bridging the gap between libraries
and extra-linguistic mechanisms. Nonetheless, Racket has some limitations such as,
for instance, with regards to type checking: it is currently implemented as a complete
recursive descent algorithm, whereas developers want to attach type-checking rules to
linguistic constructs.

2.4.10 Neverlang

Neverlang [31, 39, 209] is a language workbench for the modular development of
programming languages developed at the University of Milan. Language components,
called slices, embody the concept of language features and are developed as separate
units that can be independently compiled, tested, and distributed, enabling developers
to share and reuse the same units across different language implementations. The
basic development unit is introduced by the keyword module. A module may contain
a reference syntax definition with one or more productions and/or roles. Each role,
introduced by the keyword role, defines a compilation phase by declaring semantic
actions that should be executed when some syntax is recognized, as prescribed by
the syntax-directed translation technique [3]. Semantic actions are also responsible for
the definition and evaluation of the attributes characteristics of the attribute grammar:
attributes to which semantic actions perform an assignment are inherited or synthesized
depending on how they are defined. Henceforth we will refer to both inherited and
synthesized attributes as provided attributes for brevity, whereas required attributes
are those whose values can be accessed during the evaluation of a semantic action.
Both required and provided attributes—i.e., any attributes that are referenced in a
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1 module Backup {
2 reference syntax {
3 provides { Backup: backup, statement; Cmd: statement; }
4 requires { String; }
5 Backup ^ "backup" String String;
6 Cmd ^ Backup;
7 categories : Keyword = { "backup" };
8 in-buckets : $1 ^ { Files }, $2 ^ { Files };
9 out-buckets : $1 _ { Files }, $2 _ { Files };

10 }
11 role(execution) {
12 0 .{
13 String src = $1.string, dest = $2.string;
14 $$FileOp.backup(src, dest);
15 }.
16 }
17 }
18 slice BackupSlice {
19 concrete syntax from Backup
20 module Backup with role execution
21 module BackupPermCheck with role permissions
22 }

24 language LogLang {
25 slices BackupSlice RemoveSlice RenameSlice
26 MergeSlice Task Main LogLangTypes
27 endemic slices FileOpEndemic PermEndemic
28 roles syntax < terminal-evaluation < permissions : execution
29 }

Listing 2.1: Syntax and semantics for the backup task.

semantic action—are source of dependencies between modules, since their value will
be generated or accessed respectively by different modules. Syntactic definitions and
semantic roles are tied together using slices.

Listing 2.1 illustrates the implementation of the Backup feature of the LogLang DSL, a
language for log rotating tools similar to the logrotate Unix utility. The Backup module
declares a reference syntax for the backup task (lines 2-10). The reference syntax of
a module also piggybacks [131] information for basic IDE services, such as syntax
highlighting (line 7) and code-completion (lines 8-9), to automatically provide IDE
support for languages in which they are included. Semantic actions are attached to non-
terminals of the productions (lines 12-15) by referring to their position in the grammar:
numbering starts with 0 and grows from the top left to the bottom right.7 Thus, the
Backup nonterminal on line 5 is referred to as $0 and the two String nonterminals on
the right-hand side of the production as $1 and $2, respectively. Attributes are accessed
from nonterminals using the same criterion by dot notation as in line 13. In contrast,

7Neverlang also provides a labeling mechanism for productions, so that nonterminals are referred via an
offset from such a label, e.g., $BKP[1] is the first nonterminal from the right-hand side of the BKP
production.
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the BackupSlice (lines 18-22) declares that it will promote the reference syntax from
the Backup module to concrete syntax for our language (line 19) and combine it with
the semantics actions from two separate roles of two different modules (lines 20-21).
Finally, the language descriptor (lines 24-29) indicates which slices should be composed
to generate the language interpreter and the IDE (lines 25-26). Therefore, composition
in Neverlang is twofold:

1. between modules, which yields slices;
2. between slices, which yields a language implementation.

Composition is also supported through bundles that behave just as languages, except
for the fact that they can be embedded in other languages. The grammars are merged
to generate the complete language parser. Any gaps in the grammar can be filled by
using the rename mechanism: any nonterminal can be renamed to match a nonterminal
provided by another production in the grammar. Semantic actions are performed
with respect to the parse tree of the input program; roles are executed in sequence
and traversal options specified in the roles clause (line 28) of the language descriptor,
e.g., permission is executed after parsing and terminal-evaluation. Besides, the
language clause can declare endemic slices whose instances are shared across multiple
compilation phases (line 27). Please see [209] for a full Neverlang overview.

Neverlang supports LPL engineering thanks to AiDE [211, 210]. AiDE is a variability
management tool tailored for the development of LPLs. It extracts information provided
by Neverlang modules (lines 3-4 of Listing 2.1) to determine the language features
and their dependencies and synthesizes the corresponding FM for a given language
family [209]. Through its graphical user interface, the user can explore the FM, choose
language features and create language configurations. Moreover, AiDE tracks all
unresolved dependencies—i.e., all open nonterminals in the current configuration—
and guides the renaming mechanism to bind them to other nonterminals already in
the current configuration. Based on the current configuration, AiDE generates the
corresponding language descriptor automatically to ease the deployment phase.

2.4.11 Summary

Table 2.1 summarizes the contents of this section. For each of the discussed language
workbenches, we report the key elements of each language workbench, including
the composition mechanisms being used, their granularity and any IDE support. In
particular, a language workbench marked with  provides native IDE generation
support, whereas # indicates that automatic IDE generation is not supported. Melange
provides IDE generation support, but only through a third party tool (EMF). Finally,
for each language workbench, Table 2.1 reports any relevant notes with regards to the
flexibility of the composition mechanisms and techniques that can be used to bridge
the gap between incompatible language components.
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Workbench Composition Granularity IDE generation Notes

Xtext Rule overriding Syntax rule  
Only supports single
grammar inheritance

LISA
Multiple gram-
mar inheritance
and templates

Any syntactic and
semantic elements

 

Due to templates, seman-
tic rules are independent
from grammar produc-
tions

Melange Renaming
Ecore classes and
aspects

EMF-based
Supports renaming of
Ecore elements

MPS
Multiple inheri-
tance

Concepts and be-
haviors

 
Behavior methods can
compose incompatible
concepts

JastAdd
Matching data
structures

AST node with
concrete syntax

#
Composing syntax and se-
mantics requires the same
signatures

MontiCore
Overriding and
delegation

Grammar rule  
Supports multiple gram-
mar inheritance but cannot
add attributes

Rascal
Multiple module
inheritance

Any syntactic and
semantic elements

 
Identifiers must match
across unrelated modules

Spoofax
Rewrite rules and
strategies

Any syntactic and
semantic elements

 
Parse tree rewriting can
compose incompatible
strategies

Racket Language macros
Any syntactic and
semantic elements

 
Macros are rules that
rewrite custom syntax into
Racket expressions

Neverlang Slices
Reference syntax
and semantic ac-
tion

 
Renames and mappings
can compose incompatible
modules

Table 2.1: Comparison among language workbenches capabilities.
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3
Reconciling Object-Oriented and

Feature-Oriented Software Design

Software product lines can be implemented with many different ways. However,
most implementations can be classified into the same common underlying design
philosophies: compositional and annotative. The annotative approach uses macros such
as the #ifdef macro in C to highlight portions of a system intended to implement
a software feature. The compositional approach uses variability-aware preprocessors
called composers to generate a program variant from a set of features and a configuration.
Both approaches have disadvantages. Most notably, these approaches are usually not
supported by the base language; for instance Java is one of the most commonly used
languages among researchers in the context of FOP, but it does not support macros
and rather it relies on the C preprocessor or a custom one to translate macros into
actual Java code. As a result, developers must struggle to keep up with the evolution
of the base language, hindering the general applicability of SPL engineering. Moreover,
to effectively evolve a software configuration and its features, their location must
be known. The problem of recording and maintaining traceability information is
considered expensive and error-prone and it is once again handled externally through
dedicated modeling languages and tools.

One possibility to properly convey the FOP paradigm is to treat software features
as first-class citizens using concepts that are proper to the host language, so that the
variability can be expressed and analyzed with the same tools used to develop any
other software in the same language. In this chapter, we overview a design pattern-
based approach that fits these requirements without loss of generality. The proposed
design pattern—dubbed devise pattern—can be used to express feature behaviors and
constraints with a light-weight syntax similar to #ifdef macros. The same abstraction
can be used to express both the modeling code and the implementation code and
therefore suits both the domain analysis and at domain implementation activities.

3.1 The Problem of Conservation of Complexity in SPLs

Ideally, software product line engineering (SPLE) should provide variability mecha-
nisms to accommodate the introduction and removal of crosscutting and non-crosscutting
features, as well as their transformation without invasive changes and ripple effects.
State-of-the-art SPL development environments—such as FeatureIDE [203, 150]—can
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cope with all the aspects of the development of an SPL, including construction, man-
agement of software artifacts, configuration and product derivation. However, such
tools and techniques are not natively supported by the base language and thus the
developers have to struggle to keep up with the evolution of the base language—for in-
stance, Java has a 6-month release cycle since March 2021. Moreover, there is no general
consensus on how the composition mechanism should be performed, thus the source
code of the core application and its features are structured differently depending on the
chosen composer tool. Composer tools are preprocessors that translate feature-oriented
code into Java code with regards to a chosen configuration. Possible composers are
(among others) FeatureHouse [203], AHEAD [17], Antenna1 and AspectJ [158]. However,
it is usually possible to avoid using preprocessors thanks to the Java Virtual Machine
(JVM) abstractions [76]. To change a composer is usually unfeasible as the SPL has
to be rewritten. The tool chain may not support the new composer so the developers
have to learn new syntax, tools and a specific development environment. A closely
related problem is that of feature traceability: recording and maintaining the potentially
scattered locations of features in the software artifacts for evolution and maintenance
purposes is tedious and error-prone [1] especially when changes to the specification
cause changes to the implementation and vice versa. While several feature location and
variability mining strategies have been proposed [65, 183, 56] and evaluated [147] in
the literature, they must be complemented by ad-hoc refactoring strategies to evolve
software into a variability-aware SPL. These problems may obstacle the adoption of
SPLs as a more wide-spread engineering technique [102] and solving them requires
dealing with their inherent complexity. SPLE involves aspects of domain analysis and
implementation, requirements analysis and product derivation; the possible configura-
tions are exponential in the number of features and SPLs, e.g., the Linux kernel [194] has
several thousands of features whereas the Neverlang.JS implementation of Javascript [33]
has hundreds of language features.

As Larry Tesler stated in an interview for Dan Saffer [186]’s «Designing for Interac-
tion» book: «Systems have an inherent amount of complexity that cannot be reduced».
This is known as the law of conservation of complexity and leaves one question open with
regards to complexity: if it cannot be reduced or hidden, then who should be exposed
to such a complexity?

We present an approach in which managing the complexity of highly-variable
software systems is a matter of design rather than a matter of tooling, in contrast
to the typical approaches that largely focus on composer tools and preprocessors. In
this approach, software features are modeled through concepts the software developers
are familiar with, such as composition, inheritance and design patterns. Feature
development and their recording are the same development activity, so that tracing is
done with the same tools used to analyze normal code: Eclipse and JetBrains’ IntelliJ
IDEA, as well as most other modern Java IDEs support finding usages of classes
and methods, and class hierarchy inspection and refactoring—including any external
dependencies. Most developers are already familiar with these tools: using the same

1http://antenna.sourceforge.net
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abstractions to implement both features and normal classes makes their expertise
applicable to FOP at no additional cost. Should the development environment be
changed, the same code can be reused with no changes. The same approach can
be used as a refactoring framework to complement variability mining techniques
or to avoid the feature location activity by explicitly declaring the variability points
when an SPL is developed from scratch. To show how this change of perspective
can impact the development of SPLs, we present a design pattern for FOP—dubbed
devise pattern—and a variability-aware MNIST-encoder developed based according to a
concrete implementation of this pattern.

3.2 Devise Pattern

To properly design SPL features as first-class citizens in traditional object-oriented
software systems, we went back to Prehofer’s seminal work [180, 181] and to the origin
of FOP. According to Prehofer, FOP is a model for object-oriented programming which
generalizes inheritance. Instead of using a rigid class structure, features are similar to
mixins [24] and implement services that can be used by other objects. Therefore, objects
behaviors are implemented by leveraging the aggregation of several features whereas
more modern software composition tools such as FeatureHouse [9] give up aggregation
in favor of superimposition—i.e., the process of composing software artifacts by merging
their substructures. In order to be able to design software features without any need for
external tools and preprocessors, we stick to the original vision of FOP and take a more
naïve approach, in which classes are the result of feature aggregation. This process is
eased by changes recently introduced in object-oriented programming languages—such
as lambdas in Java 8. We propose the devise pattern, to hopefully achieve the following
FOP design goals:

– separation of concerns—the modeling code is separated from the implementation
code;

– light on the domain analyst—the modeling code of a feature and of the FM is
minimal, it contains no semantics and can be automatically generated if another
representation of the FM is already available;

– light on the developers—the implementation code of a feature takes little to no
boilerplate code (the same magnitude of a #ifdef macro in C);

– flexibility—the implementation code of feature behavior can either be embedded
in the application or separated from it to support information hiding and reuse;

– statically-checked—both the modeling code and the implementation code are
checked by the stock language compiler.

We discuss the devise pattern, including its participants and its application, following
Gamma et al.’s work on design patterns. Therefore, this section follows the same
structure used in the book «Design Patterns: Elements of Reusable Object-Oriented
Software» [82]. The devise pattern is not the first attempt at developing SPLs using
a design pattern-based approach. The variability modules in Java architectural pat-
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tern [192] is based on variability modules and delta-oriented programming [187]: each
feature is implemented using the Java modules and decorators [82] applied over the
base feature. Seidl et al. [191] presented a generative SPL development method using
variability-aware versions of the observer, strategy, template method and composite [82]
patterns and introduced the Family Role Model as a notation to capture constraints
on the variable application. In Apel et al.’s book «Feature-Oriented Software Product
Lines» [8] an entire chapter is dedicated to «Classic, Language-Based Variability Mech-
anisms», ranging from traditional if statements to more sophisticated and flexible
programming patterns to support variability. However, compared to other existing
works, the devise pattern expresses variability in a standardized manner whereas other
approaches the must be tailored to solve specific problems.

3.2.1 Purpose and Scope

The devise pattern is a class behavioral pattern [82]. It deals with the relationship among
classes implementing crosscutting concerns (features) and with how these classes and
their instances (feature actions) interact and set responsibility.

3.2.2 Intent

Explicitly express the variability points of an algorithm at source level so that they
can later be traced and refactored. Keep the FM and its implementation aligned by
means of the compiler. Plan the feature semantics ahead and defer their execution until
they are ensured to be active in a valid configuration. Untangle feature-specific code
from the main application. Render the main application unaware of the underlying
configuration.

3.2.3 Motivation

Consider a variability-aware machine learning application in which two different
loss functions can be used: Triplets [189] and InfoNCE [165]2. These two specific loss
functions are not interchangeable and choosing one over the other in a configuration
affects the preparation of the training set and the graph of the model to be trained.
In both cases, the code is scattered across the main application. The loss function is
then a crosscutting concern and can be modeled as a feature. Different features may
have constraints with each other: no loss function is needed if the model is restored
from memory. Otherwise, either one of them must be active, but not both in the same
configuration. At each point of the execution in which a configuration choice is relevant,
the main application must explicitly declare a variability point and any dependencies
among features which the variability point is concerned with. To summarize, to solve
the problem of the variability of loss functions it means to solve four sub-problems:

1. features declaration—to declare the cross-cutting concerns;

2Please refer to Sect. 3.3.1 for additional background information on neural networks and loss functions.
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2. variability points declaration—to declare a variability point in the application;
3. constraints declaration—to declare constraints among features;
4. configuration management—to configure product variants.

A solution to the features declaration problem is to separate the class hierarchy of
the main application from the feature hierarchy, so that class instances (objects) and
feature instances (feature actions) can be combined at will through aggregation. With
this structure, cross-cutting concerns can be identified simply by inspecting the class
hierarchy. In our example, each of the two loss functions will inherit from the same
Feature abstract class. Any other class that does not inherit from Feature will not
be identified as a cross-cutting concern. A common solution to the variability points
declaration problem is the usage of conditional compilation with #ifdef macros [138].
While this solution is extremely simple, it is usually considered error-prone due to the
low level of abstraction. To maintain the benefits of an #ifdef while improving the
abstraction, a solution would be to separate the declaration of a variability point from
its implementation. For example, both Triplets and InfoNCE are implemented in their
own classes and the main method only declares the variability point in which one of the
two must be chosen in a configuration. A common problem with constraints declaration
is that feature constraints are usually declared at FM level, so it is hard to ensure that
dependencies expressed in the source code align with those declared in the FM. A
solution to this issue would be to declare the feature constraints directly at source level:
the alignment between the representation at FM level and the implementation can then
be checked automatically. For instance, the alternative nature between Triplets and
InfoNCE that we discussed earlier should be expressed both at FM level and at source
level. Any inconsistencies can be revealed by analyzing the source code against the
FM. To solve the configuration management problem, the application needs an activation
mechanism that handles the execution of each feature: feature actions must be executed
if and only if the corresponding feature is active in the current configuration. In this
example, the main application is a client for two possible services provided by the
alternative Triplets and InfoNCE features. The service that is actually provided when the
application is run is determined by a configuration, whose validity is checked against
the FM.

3.2.4 Applicability

The devise pattern should be used to manage the variability of SPLs without preproces-
sors, as discussed in the motivational example above. In particular, the devise pattern
can explicitly declare variability points in an application and untangle code from dif-
ferent concerns by refactoring them into features. The scattered locations of features
implemented with the devise pattern can be retrieved automatically with common tools
such as an IDE. The devise pattern can also be used to defer the execution of a block of
code until the validity of a configuration is checked. Finally, the devise pattern offers a
viable solution whenever configuration choices are subject to complex constraints.
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Figure 3.1: Minimal class diagram of the devise pattern containing only its key elements without any
additional abstraction.
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3.2.5 Structure and Participants

Fig. 3.1 shows the class diagram of an essential implementation of the devise pattern,
representing the hierarchy of the feature classes. Each feature class is used by a client
application (not shown in the diagram). There are five main participants to the devise
pattern.

– Feature: the root of the feature hierarchy. Classes in the feature hierarchy represent
the modeling code of the SPL whereas instances of those classes represent its
implementation. The semantics of a feature action are devised using the does

method and stored in a body field. The does method also returns the feature
action to allow method call chains. The execution is deferred until the doit

method is called.
– Abstract and Concrete Features: sub-classes of the Feature class determine the

FM of the SPL. Each direct subclass of Feature (RootFeature in Fig. 3.1) is
the root of a FM. The complete FM is equivalent to the sub-hierarchy of
RootFeature, with abstract classes being abstract features and concrete classes
being concrete features. Each feature can be enriched with feature-specific at-
tributes (such as FeatureSpecificAttribute in Fig. 3.1) and operations (such as
FeatureSpecificOperation1 in Fig. 3.1). Notice that feature attributes are used
to support the extended FM formalism and not as a means to implement any
feature semantics since the feature hierarchy is only used as modeling code.

– Configuration: declares an interface to determine if features are active or inactive,
i.e., whether their devised action should be executed when its doit method is
called.

– ConcreteConfiguration: implements the isActive interface. It stores the activation
status of features, checks the validity of a variant and preempts the execution of
inactive features.

– Variant (or main application): implements feature actions by creating instances of
the feature classes, defines the variability points and the dependencies between
feature actions.

3.2.6 Collaborations

Fig. 3.2 shows the sequence diagram of an exemplary variability-aware application
implemented with the devise pattern. The participants are the same as in Fig. 3.1, with
the addition of the Variant main application and a PreMain. The main method stored
in the Variant is unaware of the current configuration which is set by the PreMain.
In this example, ConcreteFeature1 is inactive and ConcreteFeature2 is active. Then,
the PreMain launches the actual Variant main. The Variant declares two variability
points, one for each of the two concrete features. In the case of ConcreteFeature1,
the execution is devised and deferred to a later time whereas a feature action for
ConcreteFeature2 is devised and executed sequentially by calling the does and doit

methods respectively. When the doit method is called, each feature action messages the
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PreMain

PreMain

Variant

Variant

ConcreteFeature1

ConcreteFeature1

ConcreteFeature2

ConcreteFeature2

Configurat ion

Configurat ion

ConcreteFeature2 is active

main()

new ConcreteFeature1(attr).does(action)

return instance C1

new ConcreteFeature2().does(action).doit()

is ConcreteFeature2 active?

ConcreteFeature2 is active

run the devised action() semantics

C1.doit()

is ConcreteFeature1 active?

ConcreteFeature1 is not active

do nothing

Figure 3.2: Sequence diagram of an exemplary variability-aware application devising two feature actions:
one instance of ConcreteFeature1 (which is inactive) and one of ConcreteFeature2
(which is active). In both cases, the execution is deferred until the doit method is called.
Configuration preempts the execution of inactive feature actions (ConcreteFeature1
in this example).

Configuration to check if it is active. In this example, only ConcreteFeature2 is active
and therefore executed, whereas ConcreteFeature1 is not executed. Notice that the
Variant only has to devise the semantics of ConcreteFeature1 and ConcreteFeature2

whereas their execution or preemption is entirely handled by the Configuration.

3.2.7 Consequences

The devise pattern has the following benefits (+) and drawbacks (-).

+ It leads to an inverted control structure referred to as the Hollywood principle [201]:
the Configuration handles the execution of the Variant and preempts the execu-
tion of inactive features and invalid configurations.

+ It makes the variability points of the application explicit: given a configuration,
an active feature action could be replaced with its body without changing the
semantics.

+ Feature actions are predictable and their body is a function that cannot cause side
effects over variables in the scope.

+ Devising feature actions eliminates the need for conditional statements because
alternative behaviors are selected based on the configuration; for instance, an
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1 new Hello().does(() ->
2 System.out.println("Hello"))
3 .implies(new World().does(() ->
4 System.out.println(" World")))
5 .doit();

Listing 3.1: Declaring constraints among feature actions.

alternative group is equivalent to a switch statement with a break on each case.
For this reason, there is no need for constant flags in source code to control the
execution flow.

+ Moves feature-specific attributes and methods from the classes’ source code to
the features’ source code.

- Features increase the number of classes in an application: each feature is an addi-
tional class and the body of each feature action is translated into an anonymous
class by the Java compiler.

- The code of the feature action’s body is embedded in the main application, thus
the resulting code may be hard to comprehend and analyze. As we will show
later in this section, refactoring the implementation of a feature action out of the
main application requires additional abstractions.

3.2.8 Implementation and Sample Code

The base pattern shown so far can be adapted to fit application-specific requirements
by changing the interface described in Fig. 3.1 accordingly. We hereby discuss some
implementation details that can improve the applicability of the devise pattern, as well
as the corresponding changes made to the base model, as shown in Fig. 3.3.

Constraints among software features. In our implementation, we chose to enrich the
Feature class with one method for each of the most commonly used Boolean relations,
which are often used to define the propositional formulas that declare FM cross-tree
constraints: and, or, not, implies, xor. An example of usage of this API is shown in
Listing 3.1. In this example, if the Hello feature is active, then the World feature must
also be active. This constraint can be expressed by using the implies method. To render
this constraint possible, the devise pattern leverages the Java functional interface to
defer the execution of all feature actions until the doit method is called (on line 5).
Calling the doit method checks the validity of the current configuration with respect
to the declared constraints before executing any of the semantics.

Embedded code and refactored code. In most cases it is beneficial to decouple
the declaration of the variability point and its implementation, otherwise the devise
pattern acts identically to #ifdef macros. In our implementation, we chose to provide
an @Action annotation and an isFeature method that returns false if the class is
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Figure 3.3: Extended class diagram of the devise pattern, including part of the FM of a concrete
variability-aware application.
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1 void main() {
2 new Hello.does(() ->
3 System.out.println("Hello")
4 ).implies(
5 new WorldAction()
6 ).doit();
7 }
8 @Action
9 public class WorldAction extends World {

10 public WorldAction() {
11 this.does(() -> System.out.println(" World"))
12 }
13 }

Listing 3.2: Embedded and refactored feature actions.

annotated, so that annotated classes are not considered as part of the FM and instead
their activation status is determined based on their super-class. Consider refactoring
Listing 3.1 so that the implementation of the World feature action is decoupled from
the variability point declaration. The result of the refactoring is shown in Listing 3.2, in
which the embedded feature action for the World feature was moved to the WorldAction

annotated class. Thanks to this refactoring, the main method is unaware of the World

feature implementation and the refactored WorldAction can also be reused in different
parts of the application without code duplication. This was not possible in Listing 3.1.

Feature-specific class fields. A common application of feature-oriented programming
is to add or to remove feature-specific fields from classes based on the product con-
figuration. For instance, a product usually needs a logger only if the Log feature is
active. It is usually impossible to remove fields from a class without using conditional
compilation, although the devise pattern can be used to move feature-specific fields
outside of the main application and within the most pertinent feature classes. Such an
example is shown in Listing 3.3. The initial application (lines 1-14) does not use the
devise pattern. Instead it contains a PrintStream field used to store the output channel
for the logger and a boolean flag to determine whether any logging activity should
be performed or not. The second application (lines 16-36) was refactored using the
devise pattern. The PrintStream field was moved from the main application to the Log

feature. The channel is then set and used in two separate feature actions (lines 25 and
32 respectively). The boolean flag is no longer needed since it is encapsulated in the
configuration logic of the devise pattern.

Extended features parametrization. To implement extended features and their pa-
rameters, consider using configuration methods instead of constructors: non-default
constructors must be overridden by child classes, causing unnecessary overhead for the
domain analyst writing the model. In Listing 3.4, Hello1 and Hello2 are devised with
the same semantics, but the second one does not require sub-classes to override the
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1 //Base application
2 public class Main {
3 private PrintStream channel;
4 public static final boolean LOG = true;
5 public Main() {
6 if(LOG) channel = System.out;
7 //More initialization
8 }
9 public void routine() {

10 //DO STUFF
11 if(LOG) channel.println("Logging message");
12 //DO STUFF
13 }
14 }

16 //Application using the devise pattern
17 public class Log extends Feature {
18 public PrintStream channel;

20 }
21 public class Main {
22 private final Log logger = new Log();
23 public Main() {
24 logger.does(() ->
25 logger.channel = System.out
26 ).doit();
27 //More initialization
28 }
29 public void routine() {
30 //DO STUFF
31 logger.does(() ->
32 channel.println("Logging message")
33 ).doit();
34 //DO STUFF
35 }
36 }

Listing 3.3: Moving feature-specific fields outside of the main application using the devise pattern.

non-default constructor.

Non-void feature actions. Listing 3.1, 3.2, 3.3 and 3.4 show void feature actions,
implemented using the Runnable interface. A more flexible implementation may
allow feature actions to return values. In our implementation, the body of a feature
action returns an Optional type. Feature actions can be devised by providing either a
Supplier (with return value) or a Runnable (without return value) to the overloaded
does method (see Fig. 3.3). In the latter case, executing the feature action will return an
Optional.empty() value.

Passing the context to refactored feature actions. Code pertaining a specific feature
may need some contextual information to be executed. Java’s Supplier and Runnable
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1 void main() {
2 new Hello1(42).doit();
3 new Hello2().config(42).doit();
4 }

6 public class Hello1 extends Feature {
7 private int param;
8 public Hello1(int param) { //Must be overridden by subclasses!
9 this.param = param;

10 this.does(() ->
11 System.out.println(param + " is the answer")
12 );
13 }
14 }

16 public class Hello2 extends Feature {
17 private int param;
18 public Hello2 config(int param) { //No need to override
19 this.param = param;
20 return this.does(() ->
21 System.out.println(param + " is the answer")
22 );
23 }
24 }

Listing 3.4: Configuring extended features.

functional interfaces have access to the scope they are defined, i.e., this object, its fields,
its methods and any other variable in scope. Such an example is shown in Listing 3.5, in
which the original application (lines 1-10) that uses a boolean flag to log the coordinates
of a point is refactored using the devise pattern (lines 11-22), with a very similar syntax.
However, this and any other contextual information is not accessible if the feature
action is refactored outside of the main application with the @Action annotation. In
these cases any contextual information that is relevant for the execution of the feature
action should be passed to its constructor, as shown in the third version of the same
application in Listing 3.5, lines 23-40. Such a refactoring does not only decouple the
feature-specific code from the main application, but also allows the developers to tweak
the amount of information that should be provided to a feature action.

3.2.9 Related Patterns

A builder [82] can greatly benefit from using the devise pattern to configure the creation
of complex object variants. The doit method of the Feature class is structured as a
template method [82]. The separation between the feature abstractions and their
implementation through a Runnable or a Supplier functional interface is akin to a
bridge pattern [82]. The enforcement of the same configuration across all features
and the main application can be achieved with a singleton object [82]. The devise
pattern can be used in conjunction with decorators [82] to implement the delta-oriented
programming paradigm [187].
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1 //Base application
2 public record Point3D(int x, int y, int z) {
3 public Canvas canvas;
4 public static final boolean LOG = true;
5 public void plot() {
6 canvas.plot(this);
7 if(LOG) System.out.printf(
8 "Point position: (%d, %d, %d)\n", this.x, this.y, this.z);
9 }

10 }
11 //Application using the devise pattern
12 public class Log extends Feature {}
13 public record Point3D(int x, int y, int z) {
14 public Canvas canvas;
15 public void plot() {
16 canvas.plot(this);
17 new Log().does(() ->
18 System.out.printf(
19 "Point position: (%d, %d, %d)\n", this.x, this.y, this.z)
20 ).doit();
21 }
22 }
23 //Application using the devise pattern and @Action annotations
24 public class Log extends Feature {}
25 @Action
26 public class LogPointPosition extends Log {
27 public LogPointPosition(Point point) {
28 this.does(() ->
29 System.out.printf(
30 "Point position: (%d, %d, %d)\n", point.x, point.y, point.z)
31 );
32 }
33 }
34 public record Point3D(int x, int y, int z) {
35 public Canvas canvas;
36 public void plot() {
37 canvas.plot(this);
38 new LogPointPosition(this).doit();
39 }
40 }

Listing 3.5: Three different implementations of a logger for points in 3D.

3.3 Case Study: MNIST-encoder

In this section, we will discuss a case study that compares three different implementa-
tions of a MNIST-encoder in which the variability is handled at source level without
using external preprocessors: using JSON configuration files, the Variability Modules
in Java (VMJ) [192] architectural pattern, and the devise pattern. Sect. 3.3.1 contains
any relevant background information with regards to this case study.
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Figure 3.4: A sample of 100 images taken from the MNIST dataset.

3.3.1 Neural Networks and the MNIST Dataset

Neural Networks (NNs) are computational graphs with trainable parameters designed
to solve specific tasks. When trained, these parameters are optimized so that a loss
function is minimized. By minimizing the loss, the NN can learn specific patterns that
are useful to solve the intended task. NNs are highly-customizable software systems:
the type of the architecture and of the loss function, as well as the number of trainable
parameters, are all factors that can substantially affect the NN performance. NNs
learn hidden internal representations of the data on which they are trained. These
representations can be explicitly trained to satisfy certain properties. For example,
contrastive learning [43] is a technique in which a NN is trained so that semantically
similar data points have close hidden representations. This can be achieved by means
of a well-designed loss function. Contrastive learning can be both supervised and
self-supervised. In the first case, semantically close data points are known in advance
and the NN is trained so that their hidden representation is also close. For example,
data points with the same label are trained to be close to each other, whereas data points
with different labels are trained to be far apart. In the latter case, semantically close
data points are not known beforehand and are instead generated using augmentation
pipelines. These kinds of architectures are usually referred to as encoders.

We trained a set of NN encoders using contrastive learning on the popular MNIST
dataset [136]. It contains 60, 000 gray scale images of 28 × 28 pixels. Each image
represents a numerical digit from 0 to 9, as shown in Fig. 3.4. For this reason, we called
this application MNIST-encoder. Figure 3.5 schematizes an execution of the model,
in which an image from the MNIST dataset is fed to a convolutional neural network
(CNN) model to obtain an embedding in the output space.
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Figure 3.5: Process for turning an image from the MNIST dataset into an encoding in the output space.
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(b) Convolutional neural network, supervised, UMAP.
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(c) Convolutional neural network, self-supervised, t-SNE.
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(d) Convolutional neural network, self-supervised, UMAP.
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(e) Multi layer perceptron, supervised, t-SNE.
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(f) Multi layer perceptron, supervised, UMAP.
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(g) Multi layer perceptron, self-supervised, t-SNE.
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(h) Multi layer perceptron, self-supervised, UMAP.

Figure 3.7: Embeddings obtained by eight variants of the MNIST-encoder using the InfoNCE loss. The
legend reported in Fig. 3.7a maps each color to the label of the 10,000 data points.
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3.3.2 Application Overview

The design of deep learning applications often offers huge challenges in terms of
variability. Several aspects of NNs, including architecture, training procedure and
dataset, can be modeled differently to achieve different results. SPLE represents a
valuable asset to model the variability of this kind of applications and to produce
a family of related but different NNs. In this work, we embraced this approach to
develop a family of MNIST-encoders. First, we analyzed the application domain and
produced the FM previously shown in Fig. 2.1. Hereby, we report a version of the
same FM highlighting the several variability concerns of the MNIST-encoder SPL, each
represented by a different color.

– Logging (orange): tweak the output information that is provided to the user
during training, including the value of debug variables, the loss and the model
checkpoints; logging can also optionally plot the resulting encodings.

– NN architecture (yellow): we consider three kinds of architectures. The multi-layer
perceptron (MLP) [87], the convolutional neural network (CNN) [87] and the MLP
mixer [206]. All these NNs can be trained according to different loss functions.
We consider only the Triplets [189] and the InfoNCE [165] loss functions.

– Supervised or self-supervised learning (pink): depending on the approach, a different
dataset has to be generated.

– Loss function (red): the model creation and its training differ based on the chosen
loss function.

– Dimensionality reduction techniques (green): usually, hidden NN representations
are high dimensional vectors. To visualize these vectors in 2D scatter plots, it is
necessary to project them into a low-dimensional space. This can be achieved
with various techniques such as t-SNE [143] and UMAP [149]. Instead, when
the hidden representation is already low dimensional, it can directly be plotted
without projection.

– Training mode (blue): determines whether the model is loaded from memory or
trained from scratch.

Overall, the FM contains 34 features, 15 of which are extended features that can be
parameterized, allowing for additional customization options. We considered and
evaluated 8 out of the total 55,296 valid configurations. Each variant was trained and
used to produce the encodings of 10,000 data points from the MNIST dataset. We chose
eight specific variants for a better comparison: we kept a shared base configuration and
only changed a few features to better showcase the effect that each feature has on the
results. The results are shown in Fig. 3.7. Each color represents a data point labeled
with a different digit (from 0 to 9). All variants learned a meaningful representation:
data points with the same label are generally clustered together. The first two rows
are NN variants using the CNN architecture; the last two rows are NN variants using
the MLP architecture. Odd rows use a dataset for supervised learning whereas even
rows use a dataset for self-supervised learning. The left column shows NN variants in
which dimensionality reduction is performed using t-SNE. On the right column those
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in which dimensionality reduction is performed using UMAP. Notice that the CNN
variants show better clustering on average.

3.3.3 Variability-aware Encoders

In this section, we overview the three approaches that we chose to turn the base MNIST-
encoder implementation into an SPL that is aware of the variability concerns discussed
earlier. Since we are focusing on approaches that do not require external tools, the
configuration is performed manually by the developer in all these implementations.
However, consider that the generation of configuration files can be automated with
additional tooling.

JSON. The Javascript object notation (JSON) is commonly used for serialization and
deserialization of objects; it is also used as a format for configuration files. In this version
of the MNIST-encoder, the JSON configuration files are deserialized into factories [82].
The MNIST-encoder can be customized by editing one or more of the configuration
files: a different JSON configuration will instantiate a different factory and eventually a
different variant.

VMJ Pattern. VMJ [192] is an architectural pattern for the generation of SPLs. VMJ
is based on the DOP paradigm in which features are expressed as deltas over a core
module. Each delta is implemented as a decorator [82]. In VMJ a product is expressed
using factories that instantiate a core module and all the required deltas depending on
the configuration. Feature selection happens in a module declaration that lists all its
requirements. Configurations are expressed as different main methods in which the
core modules are configured by applying all the necessary deltas. Please refer to [192]
for a complete overview.

Devise Pattern. The MNIST-encoder implementation based on the devise pattern
follows the framework discussed in Sect. 3.2. Each feature in the FM from Fig. 3.6
is a Java class that directly or indirectly inherits from Feature. The effects that the
activation of each feature has on a variant are expressed as feature actions—i.e., instances
of feature classes—whose semantics are devised by passing executable code to the
does method. For instance, Listing 3.6 shows two features: Restore and Train, which
are part of an alternative group—only one of them can be active at the same time. If
both are active or both are inactive, the configuration is considered invalid. This is
expressed at source level using the xor method. When Train is active the differentiation
engine is created as a clear instance. Instead, when Restore is active the differentiation
engine is instantiated by loading a previously saved model. In this case, the semantics
are devised using Java method references. In the comments on lines 2, 4 and 6 of
Listing 3.6, the preprocessor annotations that would be used to achieve the same result
without using the devise pattern. Instead, with the devise pattern, creating a new
configuration should be as effortless and reusable as possible. The MNIST-encoder uses
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1 SameDiff engine =
2 new Restore<>().does( // #ifdef RESTORE
3 Model::load
4 ).xor(new Train<>().does( // #elif defined(TRAIN)
5 SameDiff::create
6 )).doit(); // #endif

Listing 3.6: Restore and Train are alternative features.

1 public class DerivedConfiguration extends BaseConfiguration {
2 public DerivedConfiguration() {
3 super();
4 this.activate(
5 InfoNCELoss.class,
6 InfoNCEDataset.class,
7 InfoNCEModel.class,
8 Reduction2D.class,
9 Tsne.class,

10 InfoNCEMLP.class,
11 InfoNCESupervised.class);
12 }
13 }

Listing 3.7: Creating a DerivedConfiguration is eased by extending the BaseConfiguration.

a BaseConfiguration class as a template for all eight aforementioned NN variants and
leverages inheritance to minimize the required changes. For instance, Listing 3.7 shows
a DerivedConfiguration which is obtained by activating seven additional features over
the BaseConfiguration. The effort of creating a new configuration is minimized by
sticking to a declarative approach in which active and inactive features are simply listed
with no mention of the control flow of the application. This implementation is based
on the extended version of the devise pattern interface shown in Fig. 3.3, supporting all
the modeling techniques provided by mainstream feature modeling tools:

– cross-tree constraints are expressed using Boolean operators over feature actions
(and, or, not, xor and implies methods);

– alternative (xor) groups are expressed by an @AlternativeGroup annotation as a
feature class modifier;

– or groups are expressed by an @OrGroup annotation as a feature class modifier;
– mandatory features are expressed by a @Mandatory annotation as a feature class

modifier.

The BaseConfiguration class collects all this information with regards to each feature
class in the feature hierarchy and evaluates its validity before running the main appli-
cation. The execution is preempted if the configuration is invalid with respect to the
FM. The full implementation of the devise pattern and its application is available at
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Zenodo3.

Summary. In JSON the variability is handled using configuration files and factories. In
VMJ the variability is handled by applying different decorators over the base component
class. In the devise pattern the variability is handled by declaring variability points and
devising feature actions and managed by a configuration class.

3.3.4 Comparison: Non-Functional Properties

The semantics of each of the eight considered variants of the MNIST-encoder do not
change depending on the mechanism used to express the variability: JSON, VMJ
or devise pattern. However, the three approaches are substantially different with
regards to their non-functional properties. In this evaluation, we identified 13 non-
functional properties supported by at least one of the approaches. Then, we classified
each non-functional property into one of four categories. The feature dependencies
category collects all properties dealing with the expressiveness with regards to the
base FM formalism: alternative groups, or groups, mandatory features and cross-tree
constraints. The implementation extension category collects the properties dealing with
the capability of changing the behavior of an existing class [192]: adding and removing
fields and methods. The Other FM formalisms category collects properties dealing with
the expressiveness with regards to variants of the base FM formalism: the extended
FM formalism and the multi-dimensional FM. The Quality of life category collects all
other properties that can improve the usability of the approach by providing support
to the verification and maintenance of SPLs: static checking capabilities, configuration
inheritance, traceability of feature location, separation between modeling code and
implementation code, and compatibility with other approaches. This section discusses
each of the 13 properties. Table 3.1 summarizes this discussion.

Feature Dependencies. In most common variability modeling frameworks, such as
FeatureIDE, the FM formalism can be properly expressed by enriching features with
additional information—i.e., if features are either optional or mandatory and if siblings
are part of an alternative group or an or group. JSON cannot express any of these feature
dependencies. VMJ can properly support mandatory features by combining module
requirements and well-designed factories. However, to the best of our knowledge, it
is not possible to declare different deltas as part of an or group or an alternative group,
because each delta is modeled as a decorator over the same base component class. In
our implementation of the devise pattern, mandatory features, alternative groups and or
groups are expressed as simple annotations and checked by the configuration abstraction.
Instead, the devise pattern supports cross-tree constraints only partially, because feature
dependencies are expressed at source level and evaluated when the feature action is
instantiated; therefore any invalidity with regards to cross-tree constraints is captured,

3https://doi.org/10.5281/zenodo.6624848
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Property JSON VMJ Devise

Alternative groups # #  
Or groups # #  
Mandatory features #   

Feature dependencies

Cross-tree constraints # # H#

Add fields & methods #  H#
Implementation extension

Remove fields & methods #  #

Extended features    
FM formalisms

Multi-SPL H#  H#

Statically checked # H#  
Configuration inheritance # H#  
Traceability support #   
Model and implementation independence # #  

Quality of life

Intercompatibility    

Table 3.1: Support to VM modeling in different approaches.
#: not supported, H#: partially supported,  : fully supported.

but only at runtime. Statically detecting cross-tree constraints would require an external
control flow analysis tool.

Extension of a Base Implementation. The VMJ approach natively supports addition
and removal of both fields and methods. Addition is simply performed by decorators.
Removal of methods is done by throwing a runtime exception in the overridden method.
Similarly, removal of fields is done by overriding their getters and setters. Notice that
this is possible only if the removed fields are private and never accessed through
reflection. The devise pattern can emulate the addition of fields and methods through
aggregation (as shown in Listing 3.3) and does not support fields and methods removal.
However, according to the additive universe conjecture «every FM that uses subtractive
features can be transformed to a new FM that uses only additive features; the two FMs
share the same set of products» [15]. The additive universe conjecture was later proved
with the goal of achieving monotonic reasoning on delta-oriented software product
lines [58]. JSON does not support any of the above functionalities.

Other FM Formalisms. All three approaches fully or partially support the variants
of the base FM formalism: extended feature model and multi-product lines. The
parameters of extended features are implemented as fields but are handled differently
depending on the approach: in JSON, the fields are simply added to the factories
and are deserialized when the configuration is loaded; in VMJ, the parameters are
added as fields of the decorator classes and then set by the factory methods called
by the main; in the devise pattern, parameters are static fields of the classes from the
feature hierarchy. Multi-product lines can be partially achieved in JSON by nesting
configurations and in the devise pattern by using multiple configuration classes in the
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Modeling effort JSON VMJ Devise

Variability 597 1528 1066

Configuration (1 configuration) 43 112 109

Configuration (8 configurations) 344 896 293

Table 3.2: Modeling effort in terms of LoC required to turn a core implementation into a variability-aware
one using different approaches. Also the effort to create the first configuration and all the
eight configurations from Fig. 3.7.

same product which are combined through aggregation; only VMJ directly addresses
the problem of multi-product lines and it is designed to fully support the formalism.

Quality of Life. Finally, we consider the aspect of quality of life for variability model-
ing. This includes the capability of statically checking SPLs and their configurations, the
support to the extension of existing configurations, the traceability of feature implemen-
tations and the compatibility with other approaches. In the devise pattern all elements
of variability are statically checked: mandatory features, or and alternative groups; all
product variants coexist and are checked by the compiler, including any return types
of the feature actions. VMJ can only check the validity of mandatory features using
modules. However, decorators over the base module are applied using reflection that
can fail at runtime if types mismatch. Similarly, access to removed fields and methods
raise runtime exceptions that can cause failures if not properly handled. Both the
devise pattern and VMJ support the extension of existing configurations. However,
this can be achieved natively with the devise pattern using the Configuration class,
whereas changing a configuration in VMJ requires refactoring of the existing prod-
uct. Most notably, removing a delta may not be feasible depending on the ability to
remove decorators from a component. Finally, in both VMJ and the devise pattern the
feature traceability issue is trivialized by mapping features and their implementations
to language-specific abstractions which usages can be easily traced by any commonly
used IDE. However, only the devise pattern can properly separate the model from
its implementation, whereas in VMJ the deltas are expressed in the decorator classes
together with their implementation. None of the above quality of life improvements
are directly supported in JSON. However, it should be noted that the three approaches
to variability modeling are not mutually incompatible and can be combined at will
depending on the scenario to stem and complement their issues. We argue that this
point represents the main advantage of using an in-language approach to variability
modeling over external preprocessors: software artifacts that can be handled by a
specific preprocessor are usually incompatible other preprocessors, therefore migration
between different preprocessors can be hard or unfeasible.
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3.3.5 Comparison: Modeling Effort

For each of the three implementations of the MNIST-encoder, we analyzed the effort—in
terms of lines of code (LoC)—required to model the variability and generate new
products. All implementations depend on a variability-unaware core application of
2236 LoC. Table 3.2 reports the results of our analysis.

– Modeling the variability in JSON required the factory classes discussed earlier,
for a total of 597 LoC; then each configuration can be written in JSON for a total
of 43 LoC for each configuration. Deploying the eight configurations from Fig. 3.7
costs 344 LoC.

– Modeling the variability in VMJ required adding the component and decorator
classes, as well as the same factories used by JSON, for a total of 1528 LoC; then
each configuration can be written in a Java main class for a total of 112 LoC for
each configuration. Deploying the eight configurations shown in Fig. 3.7 costs
896 LoC.

– Modeling the variability using the devise pattern required adding one class for
each feature of the FM and a variability-aware main class, for a total of 1066 LoC;
writing the first configuration requires creating the BaseConfiguration abstract
class (86 LoC) and a concrete configuration subclass (23 LoC), for a total of
109 LoC. Deploying the remaining 7 configurations shown in Fig. 3.7 costs 23

additional LoC for each configuration: the total configuration effort is 293 LoC.

The modeling effort among the three approaches is fairly similar: JSON has a slight
advantage in terms of both variability modeling and configuration modeling, but it
should be noted that the JSON approach does not express the FM formalism and its
constraints. Conversely, VMJ and the devise pattern face an initial overhead to introduce
the variability with the advantage of expressing feature constraints. Between the two,
each feature written in the devise pattern takes slightly less LoC than the respective
feature in VMJ, for a total of 1066 LoC vs 1528 LoC. Finally, configuration inheritance
in the devise pattern introduces an initial overhead on the first configuration but then
the first configuration can be reused to model subsequent configurations, reducing the
configuration effort substantially in the long run.

3.3.6 Threats to Validity

The validity of our results may be threatened by our lack of expertise with the VMJ
architectural pattern; our implementation was not reviewed by the original authors [192]
and we may have applied the pattern incorrectly, which may lead to different results in
Table 3.2. To stem this issue we applied the same black-box approach to the usage of the
devise pattern: the implementation of the devise pattern library and its usage for the
development of the MNIST-encoder were performed separately by different contributors
of this work. To the best of our knowledge the three variability-aware implementations
of the MNIST-encoder should be semantically equivalent, but this is hard to properly
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verify due to the random nature of the learning process in DeepLearning4J4—different
runs may result in different NNs. In this regard, we separated the core library that
implements most of the functionalities used by each implementation, so that each
approach is only concerned with the variability modeling aspect. Our implementation
of the devise pattern is written in Java and may not be applicable to other languages.
However, the pattern should at least be applicable to any object-oriented language, as
we tested by developing minimal implementations in Scala and Kotlin5. We do not
compare against composers and preprocessors from the literature—they may provide
better abstractions for variability modeling. However, a direct comparison may not
be applicable because the two approaches to variability modeling tackle different
problems.

3.4 Summary of Chapter 3

In this chapter, we discussed the design and implementation of feature-oriented SPLs
and introduced the devise pattern as a technique for modeling and implementing SPLs.
The devise pattern can express all aspects of the extended FM formalism using tools
that are familiar to software developers and with a syntax similar to the #ifdef macros
in C. Feature actions can also be refactored using dedicated abstractions to avoid the
#ifdef hell problem and code duplication. The devise pattern prevents the need for
feature location techniques because variability points are explicitly declared in the
application and can be used to complement variability mining techniques. The pattern
is described following Gamma et al.’s template. We demonstrated its applicability
on the development of a variability-aware MNIST-encoder application. Finally, we
compared this application to other two variability-aware alternatives implemented
using JSON configurations and VMJ decorators respectively. Our contribution resulted
more expressive and can model all aspects of the FM formalism; the validity of the
configurations can be checked statically and deploying multiple configurations is
eased. When compared to traditional annotative and compositional approaches to the
development of SPLs, the devise pattern does not require any additional tools nor
expertise and can therefore ease the adoption of SPLs in the industry by reducing the
barrier to enter associated with the complexity of dedicated tools and environments.

In the following chapters we will deviate from the topic of traditional SPLs and focus
on the niche of LPLs. Although many design and implementation aspects overlap,
we will see that LPLs have to face very different problems from standard SPLs; most
aspects of the design methodology will need to be adapted to be applicable to the
context of compilers and interpreters.

4https://deeplearning4j.konduit.ai/
5The Scala and Kotlin implementations are not discussed in this dissertation.
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4
A Design Methodology for Language

Product Lines

LPLs and language workbenches enable a flexible approach to language develop-
ment, in which monolithic implementations are replaced by reusable language assets.
Nonetheless, language development remains a complex activity and design or imple-
mentation flaws can easily waste the efforts of decomposing a language specification
into language features. Poorly designed language decompositions result in highly
inter-dependent components, reducing the variability space of the LPL system and
its maintainability. One should detect and fix the design flaws posthaste to prevent
these risks while minimizing the development overhead. Therefore, various aspects of
the quality of a language decomposition should be quantitatively measurable through
adequate metrics. The evaluation, analysis and feedback of these measures should be a
primary part of the engineering process of an LPL. In this chapter, we try to capture
these aspects by discussing a design methodology for LPLs. We define the properties
of a good language decomposition and the metrics that can be used to assess these
properties with regards to language components, as well as the engineering process
and the tools supporting the development of LPLs.

4.1 The Problem of Design Quality in LPLs

In LPL engineering, language features are implemented independently and in separate
modules as a result of a language decomposition combined into a compiler or interpreter
through a configuration mechanism and finally used by application domain experts in a
tight feedback loop [72]. Each product of an LPL is a compiler or interpreter for a DSL
and the collection of all the DSLs produced by an LPL is a language family. To serve
the purpose of several users, LPLs become complex systems with possibly hundreds of
features and an exponential number of valid configurations. Nonetheless, LPLs should
provide both flexibility and ease of use by ensuring the validity of products without
limiting the variability space of the language family.

Successful product line engineering requires the definition of highly cohesive features
with low coupling as any other kind of software engineering [169, 208, 144, 74, 134].
Researchers are focusing on the development of integrated development environments
(IDEs) which provide tools supporting LPLs system designer, the systematic derivation
of sound language definitions and implementations [216] and the automatic generation
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of IDE services and debugging [28, 131, 72]. Modern language workbenches do not
directly address a formal specification for the quality in the design of language features,
especially with respect to their modularity flaws. Despite not causing any errors from
a user perspective, modularity flaws may result in highly inter-dependent modules and
crosscutting features which are known to reduce the flexibility and maintainability of
program families [52]. In language engineering, separate constructs should be either
independent or implemented as a unique feature. Yet, we argue that such a specification
could be defined with minimal effort thanks to the amount of meaningful information
that a full-fledged language workbench with LPL support accesses at compile time.
State-of-the-art language workbenches could help improve the quality of the design
of language decompositions and of DSLs overall, by framing such information in well
defined metrics and providing them to the language designer.

For each aspect we show how it can be tackled with the Neverlang language workbench
and the Neverlang-based LPL engineering (LPLE) framework AiDE 2. In this context,
we define the qualities of a good language decomposition developed following that
process. The output of this work is the definition of the properties that a well designed
language decomposition in Neverlang modules should have and a set of metrics for the
measurement of those properties. Last but not least important, we also show how this
evaluation can be easily integrated in an LPL engineering process to guide the design
of language decompositions.

The contribution presented in this chapter is validated by answering the following
research questions:

RQ4.1 What are the properties of a language decomposition in Neverlang?
RQ4.2 How can errors in design decisions be detected in Neverlang LPLs?

To answer these research questions we perform an empirical evaluation on 26 Neverlang
LPLs without applying any changes to either Neverlang or AiDE 2 but rather accessing
compile-time information already available in any Neverlang LPL.

4.2 LPL Design Methodology in “Five” Steps

We hereby describe the concepts that enable the development and evaluation of well
designed Neverlang-based language families. This topic deals with several design
aspects:

1. the bottom-up LPL engineering process;
2. the properties of a well designed language decomposition;
3. the metrics to measure the quality of LPLs;
4. a design methodology that encompasses all other aspects, as well as a dedicated

IDE, under a unified vision by following Parnas’ steps.
According to Parnas [169], a design methodology for any software system should
account for five design aspects of that system:

1. the order in which decisions are made;
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2. what constitutes good structure for a system;
3. methods of detecting errors in design decisions;
4. specification techniques;
5. tools for system designers.

Notice that the system (points 2 and 5) is an LPL in our case. Point 1 can be addressed by
an engineering process. Point 5 is addressed by a suitable LPL engineering environment.
We address point 2 by introducing a set of desired properties for LPLs and their
language components and point 3 by introducing metrics for the evaluation of LPLs
and investigating any ideal and threshold values for those metrics. In this dissertation,
we do not discuss the topic of specification techniques (point 4) for Neverlang LPLs,
which should be tackled on with a different approach in future works.

All points of the design methodology are deeply interconnected. In fact, the methods
for detecting errors in design decision are based on the properties of a well structured
system and should be able to determine whether the system achieves these properties or
not. Any detected errors affect the order in which decisions are made: the engineering
process should be able to adapt so that the errors are corrected before propagating to
other elements of the system. Finally, all other points must be supported by the proper
tools to be applicable in any real use case.

In this section, we tackle each one of these points: first we show the bottom-up
LPL engineering process (Sect. 4.2.1), followed by the LPL engineering environment
(Sect. 4.2.2), the properties of a well designed language decomposition (Sect. 4.2.3) and
finally the metrics for the detection of design errors in LPLs (Sect. 4.2.4).

4.2.1 The LPL Engineering Process—Point 1

The LPL engineering process establishes the order in which decisions are made—i.e.,
point 1 of Parnas’ vision. Although the general SPL engineering process presented
in [177] and illustrated in [150] also applies for LPLs, it is still too coarse-grained to
disclose the relevant users and views of an LPL. Similarly, the LPL development process,
described in [129], is not detailed enough as it neglects the language user. The Business
Process Model and Notation (BPMN) model1 [48] in Fig. 4.1 illustrates the proposed LPL
engineering process by showcasing the activity of the three different roles. Each role is
involved in either the design, development, deployment or usage of languages from
a language family. Moreover, it shows the artifacts created or refined by each task.
Distributing the engineering process over several areas of responsibility allows for the
concurrent development of LPLs while minimizing conflicts. Here, only the language
components, the FM and the language variants are highlighted, because they are shared
between several tasks of different roles, therefore they must be kept consistent between
the views of the three roles.

The process tries to grant continuous flexibility and responsiveness in the devel-
opment and extension of LPLs while maximizing the separation of concerns among

1BPMN is a standard graphical notation for the specification of business processes based on flowcharts
and activity diagrams.
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Figure 4.1: BPMN model describing the language product line engineering process.

the three roles of language developer, language deployer and language user. In the BPMN,
each role is represented as a separate swim lane whose overlap may be minimal or
none to highlight the differences in their skills. The language developer has notions of
language development and feature-oriented programming. The language deployer is a
domain expert with expertise on the specific concepts of the domain at hand without
any knowledge in language development. Finally, the language user is the final user that
can use any language variants and deploy programs without necessarily knowing any
low level language implementation details. The three roles use different artifacts, thus
improving the applicability of the process in a distributed environment by minimizing
conflicts when using a versioning control system. For instance, the language user can
deploy programs using a language variant while the language developer is refactoring a
language feature used in the same variant without causing any conflicts since the two
roles do not share any artifacts.
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Language Development. The process starts following the initial request of an un-
specified stakeholder—which may or may not coincide with the language user—asking
for an interpreter or a compiler for a given language. The language developer (first
layer) performs the initial phase of analysis of that language, either against a language
specification or an existing monolithic implementation. The result is a language de-
composition into language features, i.e., language concepts or constructs with minimal
dependency with other features. Language features should be developed and tested
separately from each other, possibly by several programmers guided by the same
designer with minimal interaction to grant a good language decomposition. Applying
the bottom-up approach [129], the language decomposition triggers the generation of a
description of the variability space of the system, which is typically a FM. The FM is
the only artifact subject of both the language developer and the language deployer activities
and should be shared—e.g., by a commit to a central repository.

Language Deployment. The language deployer (second layer) is notified about the latest
FM to choose and pick [130] language features from the FM, thus creating or revising a
language configuration. The deployer incrementally generates language variants and tests
their viability, i.e., whether it includes the desired language constructs and concepts. In
addition, the configuration for a language variant should also refer to the compilation
phases of the target compiler. Finally, variability in programming languages has to
cope with additional problems such as the ripple effect [224], i.e., adding or removing
a language feature may provoke the addition or removal of several language features
in cascade if no strategy to resolve unfulfilled dependencies on a syntactic level is
provided. This usually results in the creation of atomic sets of features. The language
deployer reports back to the language developer requesting to update a set of language
features when a language configuration is not viable; either because required language
features are missing, are too coarse grained or do not compose. Otherwise, the language
deployer deploys the language variant from the respective configuration together with
its IDE services [131], e.g., an editor with syntax highlighting, code completion and a
debugger, making them available to the language users.

Language Usage. Once a language variant is deployed and committed, language users
(third layer) can choose any of the available variants in the language family to write and
run code in such a language variant. They can report back to the deployer if any issue is
found either on the syntactic or the semantic level. The language deployer then repeats
all steps of the configuration process (possibly including their requests for updates
to the developer) to accommodate the user request. The result of this process can be
either the update of the corresponding variant or the creation of a new one. From the
user perspective each language variant is an isolated programming language providing
some declared capabilities, including an IDE. The language deployer has knowledge of
all the variants and of the configurations used to generate them. The language developer
knows all the language features that constitute the LPL and their implementation.
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Figure 4.2: Agile LPL development applying the engineering process on each sprint.

Agile LPL Development. The LPLE process is designed to allow iterative evolution
of language families: when supported by effective modular design in the early stages
of development, the three layers can proceed independently and concurrently. In the
BPMN model in Fig. 4.1 only the language components, the FM and the language
variants are highlighted, because they are the only artifacts shared between more
than one role. Moreover, it should be noticed that by using a language workbench
that supports separate compilations such as Neverlang the overlap in the usage of
language components is limited since neither the source nor the binaries of the language
components are required to compile a language unit. Instead, the deployer only needs
access to the latest FM to generate and compile a valid language, regardless of how the
individual language features are implemented. Nonetheless, all language components
binaries must be available when the language compiler is finally used. The interactions
between roles are limited to:

1. requests from language user to language deployer and from language deployer to
language developer when the BPMN model is traversed from bottom to top;

2. update notifications from language developer to language deployer and from language
deployer to language user when the BPMN model is traversed from top to bottom.

Due to its iterative nature, the engineering process presented in this section is suited to
be part of an agile language product line development process, as shown in Fig. 4.2.
We will not discuss all aspects of agile development frameworks in this dissertation,

54



4.2 LPL Design Methodology in “Five” Steps

although, each iteration of the engineering process as detailed in Fig. 4.1 can be viewed
as the sprint of an agile framework such as SCRUM2. Following this approach, the
development team can set a language variant as the sprint goal of the current sprint,
so that each iteration releases a new interpreter or a compiler. The result is an LPL
comprised of all the language variants released on each sprint.

The proposed LPLE process, both in its base version and in agile context, outlines
the activity of all the roles involved in the development of LPLs and the order in which
decisions are made and thus satisfies point 1 of Parnas’ vision.

4.2.2 The LPL Engineering Environment—Point 5

Each role of the engineering process presented in Sect. 4.2.1 requires very different
views and services that must be provided by a proper LPL development environment.
Granted, it may be challenging to implement all these views in one development
environment, yet this enables distributed, incremental development of LPLs with tight
feedback loops and rapid deployment, whereas the LPL development environment
maintains the consistency between the shared artifacts, i.e., the language components,
the FM, and language variants. With tooling support, the engineering process can
address any conflicts in the requirements: requests from different language users can
be balanced by configuring additional language variants, while feature conflicts are
translated into FM constraints by the environment. To summarize, each and every
phase of the engineering process must be supported by a dedicated tool for system
designers, according to point 5 of Parnas’ vision.

Our approach is based on the combination of the state-of-the-art in SPL and LPL
engineering. Instead of implementing the tools for system designers from scratch,
we opted to create the novel AiDE 2 LPL development environment by marrying two
established frameworks: Neverlang and AiDE for LPL development and FeatureIDE
for feature-oriented SPL development. Using the same environment for the design,
development, deployment and usage of languages reduces the implementation efforts
for dedicated IDEs for each language variant while ensuring a quick feedback loop and
rapid deployment. Neverlang embraces this process by providing a full loop in which the
tools used to deploy the Neverlang ecosystem are the same used to deploy the ecosystem
for any Neverlang-based product. For instance, Neverlang itself is bootstrapped and its
IDE is generated within AiDE 2 using categories, in-buckets and out-buckets as in
Listing 2.1.

Integrating AiDE into FeatureIDE. FeatureIDE and AiDE are standalone development
environments for the development of product lines. AiDE 2 is an integrated LPL
development environment born by marrying them. The FeatureIDE core library was
used to implement the layered language feature model as an extension of the default
FeatureIDE FM class and a set of additional abstractions to represent the different
syntactic and semantic features of an LPL, as well as the cross-tree constraints. The IDE

2https://www.scrum.org/
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was implemented as an Eclipse plugin and provides several extension to FeatureIDE and
to the native Eclipse environment:

1. the AiDE project nature for LPL projects;
2. a Neverlang incremental builder for the AiDE project nature;
3. the AiDE composer for the creation of language artifacts from configuration files;
4. wizards for the creation of new LPL projects and language variants extending the

New Feature Project Wizard and the New Configuration Wizard respectively;
5. the Neverlang Configuration Editor extending the FeatureIDE Configuration Editor for

the deployment of language variants.
In addition, we updated the Neverlang Editor introduced in [131] to support automatic
and dynamic reloading of language variants and their editors.

AiDE 2. The bottom-up generation of a FM from the source code of language compo-
nents is based on the algorithm presented in [130]. The novel AiDE 2 algorithm extends
the original algorithm to expand the FM one level deeper; the goal is distinguishing
between syntactic and semantic language features. Algorithm 1 accepts the FM gener-
ated by the original AiDE algorithm from [130] as an input. First, only abstract features
are present, then our extension creates the corresponding syntactic features as leaves.
Finally, all semantic actions, attached to a syntactic feature are added as their leaves.
This enables a more fine-grained customization of languages, as it enlarges the variant
space. For instance, it is possible to generate a syntax checker with no semantics by
only selecting syntactic features from the FM during the configuration process.
Fig. 4.3 shows the FM for LogLang generated by AiDE 2. It contains abstract features
generated from the tags defined in modules (Listing 2.1 lines 3-4) and two layers of
concrete features. The first holds the syntactic features of the LPL, whereas the second
contains the corresponding compatible semantic features. To seamlessly support the
LPL engineering process, the AiDE FM generation algorithm has been integrated with

Algorithm 1: ExpandFeatureModel (FM: Feature Model)
begin

P := {p | p is a node in FM};
for p ∈ P do

S := { f | f ∈ syntactic_features(p)};
for f ∈ S do

generate concrete syntactic node n for f ;
children(n) := ∅;
R := { f ′ | f ′is a semantic feature compatible with f };
for f ′ ∈ R do

generate concrete semantic node n′ for f ′;
children(n) := children(n) ∪ {n′};

end
children(p) := children(p) ∪ {n};

end
end
return FM;

end
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Figure 4.3: FM of the LogLang language family based on the code presented in Listing 2.1 and generated
using AiDE 2 and Algorithm 1.

the Eclipse build process. Whenever a module is added, deleted or changed in the
workspace, the incremental Neverlang compiler compiles the most recent version of the
file and triggers an update of the FM, according to the latest pool of available language
features.

Neverlang Editor. The Neverlang Editor (Fig. 4.4, language developer and language
user layers) is an LPL-driven editor for the development of language features, intro-
duced in [131]. It collects and integrates IDE services specified in modules to deploy a
tailored editor for language variants.

Since the Neverlang compiler is bootstrapped, the Neverlang Editor serves as an
environment for both the development of language components and the usage of
language variants. Furthermore, it provides syntax highlighting and code-completion
services by cross-referencing the IDE specifications within the language components in
language variants, e.g., categories hold stylistic information for a grammar fragment,
out-buckets are fed with text from a terminal or nonterminal symbol and can be
retrieved to provide suggestions for code-completions using the in-buckets directive
(Listing 2.1 lines 7-9). This work contributes to the Neverlang Editor by integrating
dynamic reloading of language implementations within the same Eclipse running
instance to better suit the LPL engineering process and the incremental development of
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Figure 4.4: Overview on the Neverlang LPL development environment highlighting the views provided
to each role, according to the engineering process presented in Sect. 4.2.1.

multiple language variants.

Language Configuration Editor. Language features can be combined into a language
configuration using the Neverlang language construct. AiDE supports the automatic
generation of language and slice files through the Neverlang Language Configuration
Editor (Fig. 4.4, language deployer layer). It extends the default FeatureIDE Configuration
Editor to support the creation of language variants. The variability space of an LPL
can be further expanded with regards to its SPL equivalent by allowing for language
restrictions that would normally lead to invalid configurations. Due to the domino effect,
removing a language feature requires all features dependent on it to be removed as
well. In case of language grammars, this is often due to open nonterminals. Neverlang
permits renaming to stop the domino effect, i.e., an open nonterminal can be renamed
to a provided nonterminal to fill the gap and obtain a viable language variant although
the feature configuration is invalid. The Neverlang Language Configuration Editor adds a
Renames tab (Fig. 4.4, language deployer layer, right side) to incorporate this functional-
ity into FeatureIDE. In addition, the compilation phases for the interpreter/compiler
can be specified in the Roles tab by defining the succession and traversal of semantic
actions. The source generation process is triggered whenever changes are saved. This
will automatically generate all slices by collecting the selected syntactic and semantic
features and compile the corresponding language variant. The generated code for
the language variant can be inspected in the Neverlang source tab. Since the Neverlang
compiler translates language files into Java classes, the language variant’s interpreter
can be immediately tested within Eclipse by running the generated Java class as a Java
application.
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Deployment of a Language Product. FeatureIDE can deploy languages and language
families using the AiDE 2 library and Gradle. Upon creation of an LPL project, AiDE 2
optionally generates a build.gradle file with a distribution task, which can be
used to generate a Java archive containing the required project binaries and their
dependencies. Binaries of language variants can be registered by referring to either
binary project folders or jar archives and specifying the fully-qualified name of the
language class file within the Neverlang config.json file.

Once a language is registered, the Neverlang Editor can load its basic IDE services.
Programs compliant with any registered language variant can be executed inside the
Eclipse console (Fig. 4.4, language user layer, bottom part) by producing a Neverlang
run configuration for that file specifying the desired language variant.

Consistency Preservation. AiDE 2 preserves consistency between the LPL artifacts by
orchestrating the Neverlang compiler, the AiDE algorithm and FeatureIDE. Any change to
a Neverlang source file (language components) in the workspace triggers the Neverlang
compiler. The compiler is responsible for both the translation of Neverlang into the
target language (Java by default) and the synchronization of an environment holding
all the language features relevant to the FM creation. AiDE 2 issues the regeneration
of the FM according to Algorithm 1 whenever the Neverlang source update causes an
update to the environment. The language developer reviews the updated version of
the FM inside the FM Editor and decides to either discard or accept the changes by
canceling or performing the save operation. Finally, the language developer commits
the LPL. Upon checking out the latest FM, FeatureIDE notifies the language deployer by
applying a warning on any inconsistent configuration with regards to the current FM.
The language deployer reviews the language configurations, to solve any inconsistency
in the FM, and commits any change. The Neverlang Language Configuration Editor
automatically reestablishes a consistent language configuration whenever the FM
change is not substantial—i.e., no concrete features are renamed or removed. In this
way FeatureIDE supports the incremental development of LPLs with little to no side
effects.

Summary. Neverlang and AiDE 2 can support all phases of the language developer
activity, whereas AiDE, FeatureIDE and Gradle all the phases of the language deployer
activity. Finally, Neverlang supports the usage of language variants. This toolchain
constitutes a set of tools for system designers in support of the LPL engineering process.
All elements of the toolchain coexist in the same development environment to allow for
an iterative and agile development process with a tight feedback loop.

4.2.3 Properties of a Well Designed Language Decomposition—Point 2

We now introduce the properties that a well designed language decomposition should
have to tackle point 2 of Parnas’ design methodology. The properties we introduce
and the corresponding metrics (discussed in Sect. 4.2.4) are based on the works of
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Briand et al. [26] and Coleman et al. [50], which we adapt to the framework of Neverlang-
based LPLs. LPLE encompasses both domain engineering and application engineering
aspects. The quality assessment of LPLs must therefore cope with both these aspects.
We address the quality in the design of the variability space of an LPL and then of its
language components in this order. Notice that language component is synonymous of
module in Neverlang; henceforth the two terms will be used interchangeably.

Properties of a well designed variability space. The main concern of SPL and
LPL engineering is improving the reusability of software artifacts. A key factor in
determining the value from reuse opportunities in LPLs is scoping. If the scope is too
large, the investment may be wasted on assets that will never be reused. If the scope
is chosen too narrow, components may be designed in a way that does not support
reuse across enough relevant products [188]. Moreover, if the number of products
in a product family grows too large, for the user it is impractical to find the correct
product and to specify a valid configuration by keeping track of all the features during
the configuration process [173]. Since the number of configurations is exponential
in the number of features, LPLs should apply techniques to reduce the number of
configurations to be monitored [117] or split complex LPLs into smaller LPLs towards
a multi-LPL approach [184]. Dealing with smaller LPLs also stems the problem of
increased connectivity associated to programmers using information they should not
possess about other modules [169]. Therefore a well designed LPL should find the
correct scope by establishing a trade-off in the number of products it provides. To
summarize, we are interested in the following qualitative properties of the variability
space:

– self-descriptiveness—property of a system or component containing enough infor-
mation to explain its objectives and properties [104].

– encapsulation— concept that access to the names, meanings, and values of the
responsibilities of a class is entirely separated from access to their realization [104].

Moreover, we are interested in the following quantitative properties of the design of the
variability space:

– adaptability—degree to which a product or system can effectively and efficiently
be adapted for different or evolving hardware, software or other operational or
usage environments [104].

– complexity—degree to which a system’s design or code is difficult to understand
because of numerous components or relationships among components [104].

– modifiability—degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality [104].

In particular, an LPL is adaptable when its products can be used in several different
contexts and is modifiable when its structure and implementation can be changed
without affecting the quality of other features and existing products. A well designed
variability space meets the proper trade-off among these properties by decreasing
complexity and increasing adaptability while taming the decrease in modifiability.
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Notice that the list of properties discussed in this section might be incomplete, as it
represents the foundations of a design methodology for Neverlang LPLs that could later
be extended.

Properties of well designed language components. A well designed modularization
brings several benefits to the entire software system [170]: the development can proceed
in parallel with minimal communication, it is possible to change one module without
affecting the others and the system can be studied one module at a time. As a result of a
well designed modularization, the whole system should be better designed because it is
better understood by the developers [170]. This fits our view of a design methodology:
in bottom-up LPLE, the FM is the result of running the generation algorithm on a set
of language components. In our case, AiDE 2 takes a set of Neverlang modules and
generates the FM accordingly in a bottom-up fashion. For this reason, the design of
the variability space is tightly tied to the design of its modules. It is known that most
development efforts and funds go towards the testing and maintenance of software
products [148, 182, 59, 75] and that automated software maintainability analysis can be
used to guide software-related decision making [50]. Thus, the identification of modules
that are hard to test and maintain is a fundamental requirement in the development of
any software system. In turn, this requirement led to the definition of design properties
such as cohesion and coupling that are said to affect reusability, maintainability and
fault-proneness [26]. The correlation between those properties was supported by
empirical evidence [25, 30, 29]. Cohesion and coupling can be used to evaluate several
aspects of modules design. Coupling is strongly related to the probability of fault
detection [27]. On the other hand lack of cohesion—despite not being directly associated
to faults empirically—can hinder the design of the system. Parnas [170] stated that a
modularization is effective when there is no confusion in the intended interface with
other system modules. To this goal, each module should be a small manageable unit
that can be easily understood and well programmed. In feature-oriented programming,
low cohesion is an indicator of several concerns being merged into the same feature.
While not directly causing faults in software products, lack of cohesion in features
represents an opportunity for further decomposition. High coupling is an indicator
of the same concern being split into several features. A refactoring process should
compose coupled features into a single one. Increasing cohesion and reducing coupling
eventually improves development time, flexibility and comprehensibility [170]. To
summarize, we are interested in the following quantitative properties of the language
components:

– cohesion—degree to which the tasks performed by a single software module are
related to one another [104].

– coupling—degree of interdependence between software modules [104].
– complexity—degree to which a system or component has a design or implementa-

tion that is difficult to understand and verify [104].
– maintainability—degree with which a software system or component can be modi-

fied to change or add capabilities, correct faults or defects, improve performance
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or other attributes, or adapt to a changed environment [104].
In particular, a well designed language decomposition should provide modules with
high cohesion and maintainability but with low coupling and complexity. Notice that
the list of properties discussed in this section might be incomplete, as it represents the
foundations of a design methodology for Neverlang LPLs that could later be extended.

4.2.4 Metrics for the Detection of Design Errors in LPLs—Point 3

In this section, we propose a framework of quantifiable metrics that can be used to
measure the properties presented in Sect. 4.2.3. These metrics are evaluated through
static and/or dynamic quality assurance techniques that asses the level of quality of a
language decomposition. Eventually, this enables the language designers to determine
if the requirements for a well structured LPL are met. In this regard, the metrics
constitute a method for the detection of errors in design decisions and thus they
fulfill point 3 of Parnas’ vision of design methodologies. Both the LPL engineering
process presented in Sect. 4.2.1 and the LPL engineering environment presented in
Sect. 4.2.2 are designed to work in conjunction with the evaluation of these metrics.
More precisely, in Sect. 4.2.1 we stated that the language deployer can report to the
language developer to request a refactoring on a set of language features when they are
too coarse grained or do not compose. This step is streamlined by leveraging the usage
of metrics for assessing the level of granularity: the LPL engineering environment
provides tools for the evaluation of these metrics, thus enabling the detection of design
errors without requiring manual inspection by the language deployer. When an LPL
reaches the deployment phase, it should meet the quality standards imposed by the
stakeholders. This refactoring process is repeated iteratively until the results match the
requirements. In agile terms, the sprint goal can be achieved only when the product
meets the required quality standards in terms of the used metrics.

The framework we propose is based on metrics taken from the literature of object-
oriented systems. Our contribution is the definition of the same metrics in the context
of the Neverlang language workbench. This is done by mapping concepts of object-
orientation to the corresponding concepts of Neverlang. In the following paragraph
we will introduce the metrics for each of the quantitative properties we proposed in
Sect. 4.2.3. Our focus is on the metrics for the evaluation of language components since,
to the best of our knowledge there is no prior contribution in this regard. This proposal
will be supported by an empirical study (Sect. 4.4) to determine the relation among
these metrics and any ideal values.

Metrics for the evaluation of variability spaces. The FM is one of the most important
artifacts in SPL engineering since errors in the FM can propagate to subsequent SPL
phases [23]. The FM is a valuable tool during the design phase and the configuration
process thanks to the definition of optional and mandatory features, as well as of alter-
native sets. Therefore, all the metrics used to evaluate the variability space perform an
analysis of the FM. Qualitative properties are not measured by metrics. Encapsulation
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is the result of the engineering process: the activity of language developers is separated
from that of language deployers. The two roles do not share any artifacts thus the feature
implementation and their representation are separated. Self-descriptiveness requires
that a FM contains enough information to explain its domain while not containing
information pertaining several domains. This property can be qualitatively assessed
based on abstract features, that do not have any impact at the implementation level but
enable reasoning on language variants [204]. AiDE 2 maps features with no concerns
in common to separate FM sub-trees through abstract features. High arity near the
root of the FM is undesirable because it is a sign of an LPL dealing with several
different domains. High arity near the leaves indicates the presence of several variants
for the same feature, all dealing with the same domain. There is a large variety of
metrics can be perform the quality assessment of the FM in literature [69], therefore
a thorough evaluation of all the metrics proposed in literature will not be discussed
in this dissertation. Instead, this work focuses on a subset of the existing metrics to
show how literature fits our vision of an LPL design methodology. For each property
of the variability space from Sect. 4.2.3, the red boxes highlight the characteristics a
metrics should have to be considered viable. The yellow boxes show how each metric
fits the above property by respecting all characteristics. For instance, Metric 2.3 is
a valid metric for Property 2 because it matches the nonnegativity and nondecreasing
monotonicity requirements while having the same null value, worst value and ideal value.
Notice that some metrics (such as number of configurations) may satisfy the definition
of more than one property. If the ideal value does not match between the two properties,
ensuring that the variability space is well designed will require finding an acceptable
trade-off. For each metric, we also add a rationale explaining why the metric was
chosen to measure the corresponding property.

Property 1: Adaptability
• Nonnegativity. The adaptability of an LPL is nonnegative because an LPL cannot be adapted to a negative
number of different contexts.
• Nondecreasing monotonicity. The adaptability of the union of two disjoint LPLs is greater than or equal to
the adaptability of each individual LPL. The union of two LPLs is at least as adaptable as the union of the
respective contexts.
• Null value: 0. The adaptability of an empty LPL is 0 because an empty LPL can be adapted to 0 contexts.
• Worst value: 0. an LPL with 0 adaptability cannot be used in any context.
• Best value: ∞. The adaptability of an LPL can be increased arbitrarily. The higher the adaptability, the more
contexts it can be used in.

Metric 1.1: Number of configurations
• Rationale. Each configuration corresponds to a different product, i.e., a different context the LPL can be
adapted to.

• Nonnegativity. An FM cannot contain a negative number of configurations.
• Nondecreasing monotonicity. Adding features and constraints of an existing FM to a disjoint FM does not
decrease the number of valid configurations.
• Null value: 0. An empty FM has 0 valid configurations.
• Worst value: 0. an LPL can have 0 valid configuration if the language family does not contain any language.
• Ideal value: ∞. There is no upper bound (except for hardware and software limitations) to the number of
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configurations of a FM.

Property 2: Complexity
• Nonnegativity. The complexity of an LPL is nonnegative because it is impossible to understand an LPL with
negative effort.
• Nondecreasing monotonicity. The complexity of the union of two LPLs is greater than or equal to the
complexity of each individual LPL. The effort required to understand the union of two LPLs is at least as
much as the effort of understanding the most complex of the two LPLs.
• Null value: 0. The complexity of an empty LPL is 0 because an empty LPL can be understood with no effort.
• Worst value: ∞. The complexity of an LPL can increase arbitrarily. The higher the complexity, the more
difficult it is to understand.
• Ideal value: 0. The lower the complexity, the easier the LPL is to understand. An LPL with 0 complexity
requires no effort to be understood.

Metric 2.1: Number of configurations
• Rationale. Each configuration corresponds to a different product. Each product is a different element that
must be understood.

• Nonnegativity. An FM cannot contain a negative number of configurations.
• Nondecreasing monotonicity. Adding features and constraints of an existing FM to a disjoint FM does not
decrease the number of valid configurations.
• Null value: 0. An empty FM has 0 valid configurations.
• Worst value: ∞. Understanding an infinite amount of configurations requires infinite effort.
• Ideal value: 0. Understanding 0 configurations requires no effort.

Metric 2.2: Number of features
• Rationale. Each feature is a different component that must be understood.

• Nonnegativity. An FM cannot contain a negative number of features.
• Nondecreasing monotonicity. The union of two FMs has at least the same number of features as the most
complex of the two FMs.
• Null value: 0. An empty FM has 0 features.
• Worst value: ∞. Understanding an infinite amount of features requires infinite effort.
• Ideal value: 0. Understanding 0 features requires no effort.

Metric 2.3: Number of constraints
• Rationale. Each constraint is a different relationship among components that must be understood.

• Nonnegativity. An FM cannot contain a negative number of constraints.
• Nondecreasing monotonicity. The union of two FMs has at least the same number of constraints as the most
complex of the two FMs.
• Null value: 0. An empty FM has 0 constraints.
• Worst value: ∞. Understanding an infinite amount of constraints requires infinite effort.
• Ideal value: 0. Understanding 0 constraints requires no effort.

Metric 2.4: Number of atomic sets
• Rationale. Each atomic set represents a relationship among components that must be understood. According
to Mann and Rock [146] an atomic set represents a group of features that can be treated as a single unit during
the analysis. Atomic sets can therefore be refactored into a unique feature to reduce complexity.
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• Nonnegativity. An FM cannot contain a negative number of atomic sets.
• Nondecreasing monotonicity. The union of two FMs has at least the same number of atomic sets as the most
complex of the two FMs.
• Null value: 0. An empty FM has 0 atomic sets.
• Worst value: ∞. Understanding an infinite amount of atomic sets requires infinite effort.
• Ideal value: 0. Understanding 0 atomic sets requires no effort.

Modifiability can be hard to assess and thus we measure its opposite property (lack of
modifiability). If lack of modifiability is low then modifiability is high and vice versa.

Property 3: Lack of modifiability
• Nonnegativity. an LPL cannot be modified with negative efficiency.
• Non monotonicity. Modifying an LPL can both improve or reduce the efficiency of further modifications.
• No null value. The efficiency of modifying an empty LPL cannot be assessed.
• Worst value: 1 or 100%. an LPL with lack of modifiability equal to 1 cannot be modified efficiently because
any modification introduces defects or degrades existing product quality.
• Ideal value: 0. Modifying an LPL with 0 lack of modifiability requires no effort.

Metric 3.1: Relative number of features appearing in constraints
• Rationale. The relative number of features appearing in constraints highlights the degree of relation between
features and constraints in a FM. When the relative number of features appearing in constraints is high,
modifying or deleting a feature can affect the existing constraints and vice versa. Dependency preservation
algorithms and slicing techniques must take this into account when features are deleted [127].

• Nonnegativity. A constraint cannot contain a negative number of features.
• Non monotonicity. Modifying features, constraints and joining FMs can both increase and decrease the
relative number of features appearing in constraints.
• No null value. An empty FM has 0 features over 0 constraints. Therefore the number of features appearing in
constraints cannot be computed.
• Worst value: 1. If the relative number of features appearing in constraints is 1 each modification to a feature
affects at least another feature.
• Ideal value: 0. If the number of features appearing in constraints is 0 then it means that there are no
constraints and modifying a feature do not affect any other feature.

Metrics for the evaluation of language components. Cohesion and coupling were
originally defined for the evaluation of object-oriented classes. Yet, they were success-
fully applied to other fields, such as procedural software [98]. In this work we attempt
a similar approach by mapping concepts from object orientation to the corresponding
Neverlang concepts to assess the cohesion and coupling of language modules. This
mapping requires three concepts to be redefined:

1. classes are mapped to Neverlang modules;
2. methods are mapped to semantic actions;
3. class fields are mapped to grammar attributes.

Table 4.1 contains the formal definition and description of the used metrics based on
these definitions along with the original object-oriented counterpart that inspired them.
Following the original framework, we measure the opposite of cohesion—i.e., lack of
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Metric Description OO equivalent

LCOA1
(lack of cohesion
in actions)

The number of pairs of actions in the mod-
ule that do no reference any attributes in
common on the same nonterminal symbols.

LCOM1 [45]
(lack of cohesion
in methods)

LCOA2 The number of pairs of actions in the mod-
ule that do no reference any attributes in
common on the same nonterminal symbols
minus the number of pairs of actions that
do. If this difference is negative, LCOA2 is
set to zero.

LCOM2 [46]

LCOA3 Let G be an undirected graph where the
vertices are the actions of a module and
there is an edge between two vertices if the
corresponding actions reference at least one
attribute in common on the same nontermi-
nal symbols. LCOA3 is then defined as the
number of connected components of G.

LCOM3 [100]

Co
(connectivity)

Let |V| be the number of vertices in the
graph G from LCOA3, and |E| the number
of edges. Then

Co = 2
|E| − (|V| − 1)

(|V| − 1) (|V| − 2)
.

Co or C [26, 100]
(connectivity)

LCOA5 Let S = {s1, . . . , sn} be the set of actions
of a module which reference the attributes
A = {a1, . . . , am}. Let

Mj =
{

s ∈ S | s references aj
}

and µj = |Mj| then

LCOA5 =

1
m

(
m
∑

j=1
µj

)
− n

1 − n

LCOM5 [26]

Coh
(cohesion)

Given n, m and µj as in LCOA5,

Coh =

m
∑

j=1
µj

nm

is a normalized representation of individual
references to attributes in actions.

Coh [27]
(cohesion)

CBM
(coupling
between
modules)

A module is coupled with another if actions
in either module reference attributes which
are also referenced by the other module on
the same nonterminal symbols. CBM for a
module is then defined as the number of
other modules to which it is coupled.

CBO [46]
(coupling
between objects)

Table 4.1: Cohesion and coupling metrics for language product lines.
66



4.2 LPL Design Methodology in “Five” Steps

cohesion in modules. Lack of cohesion occurs when a module contains several semantic
actions that do not refer any attributes in common. Coupling is caused by semantic
actions from different modules referencing the same attributes. Notice that cohesion
and coupling are conflicting factors in the design of language modules, which is in
line with previous definitions of these metrics [174]. Now we contextualize the metrics
from Table 4.1 with regards to the definitions of cohesion and coupling. The approach
is the same we used to justify the metrics used on the FM.

Property 1: Lack of cohesion
• Nonnegativity. The lack of cohesion of a module is nonnegative because semantic actions cannot be negatively
related to one another.
• Nonincreasing monotonicity. The lack of cohesion of a module does not increase if relationships are added
between semantic actions.
• Null value: 0. The lack of cohesion of a module which no semantic actions is 0.
• Worst value: ∞. The lack of cohesion of a module can increase arbitrarily. The higher the lack of cohesion,
the less semantic actions in that module belong to the same module. A module with ∞ lack of cohesion only
contains semantic actions that have no relationships with one another.
• Ideal value: 0. The lower the lack of cohesion, the more semantic actions in a module belong to the same
module. If lack of cohesion is 0 then all semantic actions are related.

Metric 1.1: LCOA1
• Rationale. If a semantic action does not use any attributes that are also used by another semantic action
then the execution of either does not affect the other. The two actions are unrelated because they operate on
different parts of the grammar or implement a different semantic concern/role.

• Nonnegativity. A module contains a non negative number of pairs of actions.
• Nonincreasing monotonicity. Adding a reference to an attribute in a semantic actions does not increase the
number of pairs of semantic actions that do not refer any attribute in common.
• Null value: 0. A module with no semantic actions contains 0 pairs of semantic actions.
• Worst value: ∞. A module with LCOA1 = ∞ contains an infinite number of pairs of actions, an infinite
number of which refer no attributes in common.
• Ideal value: 0. In a module with LCOA1 = 0, taken any pair of actions from that module, the two semantic
actions refer at least one attribute in common. A module with one or less semantic action also has LCOA1 = 0.

Metric 1.2: LCOA2
• Rationale. LCOA2 is similar to LCOA1. However, while pairs of semantic actions that do not refer any
attribute in common reduce cohesion, pairs that do increase cohesion.

• Nonnegativity. LCOA2 is nonnegative by definition (see Table 4.1).
• Nonincreasing monotonicity. Adding a reference to an attribute in a semantic actions does not increase the
number of pairs of semantic actions that do not refer any attribute in common and can increase the number of
pairs of semantic actions that refer attributes in common.
• Null value: 0. A module with no semantic actions contains 0 pairs of semantic actions.
• Worst value: ∞. A module with LCOA2 = ∞ contains an infinite number of pairs of actions, an infinite
number of which refer no attributes in common. Moreover, the number of pairs of semantic actions that refer
attributes in common is lower than the number of pairs that do not.
• Ideal value: 0. In a module with LCOA2 = 0, for each pair of actions that do not refer any attribute
in common, there is at least another pair that do. A module with one or less semantic action also has LCOA2 = 0.
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Metric 1.3: LCOA3
• Rationale. Each connected component of graph G (see Table 4.1) is a group of actions that are related—i.e.
they refer the same attributes. Two different connected components in G represent semantic actions that are
unrelated to one another: each connected component should be refactored in a separate module.

• Nonnegativity. G contains a non negative number of connected components.
• Nonincreasing monotonicity. Adding a reference to an attribute in a semantic actions does not decrease the
edges of G and therefore cannot decrease the number of connected components.
• Null value: 0. Graph G for a module with no semantic actions contains 0 vertices and therefore 0 connected
components.
• Worst value: ∞. A module with LCOA3 = ∞ is described by a graph G with an infinite number of connected
components.
• Ideal value: 0. A module with no semantic actions has LCOA3 = 0 and. In this instance the ideal value is a
corner case because a module with LCOA3 = 0 has no semantic capability. The ideal value for a module
that contains at least one semantic action is LCOA3 = 1, because all the semantic actions belong to the same
connected component.

Metric 1.3b: Co
• Rationale. Co adds information to LCOA3 and can be measured only when LCOA3 = 1. Lack of cohesion is
minimum when G only has one connected component. However, the topology of G can affect cohesion: a
clique is more cohesive than a chain. Co measures this relationship within a connected component. Co is
maximum in a clique and minimum in a chain. Therefore, the higher Co, the better.

Metric 1.4: LCOA5
• Rationale. LCOA5 measures the number of distinct attributes referred by semantic actions in a module.
LCOA5 differs from the other metrics because it is normalized; the worst value is LCOA5 = 1, that represents
a module in which each action refers a different attribute. Instead, LCOA5 is 0 if all semantic actions refer all
attributes which means the module is very cohesive.

• Nonnegativity. LCOA5 < 0 if ∑m
j=1 µj > nm which is impossible because ∀j, µj ≤ n. In particular, µj = n if

attribute aj is referred by all semantic actions in S.
• Nonincreasing monotonicity. Adding a reference to an attribute in a semantic actions increases ∑m

j=1 µj and
decreases LCOA5 as a result.
• Null value: 0. We do not measure LCOA5 for modules with no semantic actions. However, we can say that in
a module with no semantic actions (and no referred attributes) all semantic actions refer all attributes.
• Worst value: 1. In a module with LCOA5 = 1, each attribute is referred by only one semantic action.
• Ideal value: 0. If LCOA5 = 1, ∑m

j=1 µj = nm, thus all attributes are referred by all semantic actions.

Metric 1.4b: Coh
• Rationale. Coh is just a variation on LCOA5. Coh measures the fraction of attributes that are referred by all
semantic actions. Therefore the two metrics are similar and we will not discuss Coh in detail. However Coh
measures cohesion instead of lack of cohesion. The higher Coh, the better.

Property 2: Coupling
• Nonnegativity. The coupling of a module is nonnegative because modules cannot have a negative degree of
interdependence to one another.
• Nondecreasing monotonicity. The coupling between modules does not decrease if relationships are added
between modules.
• Null value: 0. The lack of coupling of a module with no semantic actions is 0.
• Worst value: ∞. The coupling of a module can increase arbitrarily. The higher the coupling, the more
semantic actions in that module depend from semantic actions in another module. A module with ∞ coupling
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depends from an infinite number of other modules.
• Ideal value: 0. The lower the coupling, the less semantic actions in a module depend from semantic actions in
other modules. If coupling is 0 then all semantic actions are independent from other modules.

Metric 2.1: CBM
• Rationale. If a semantic action uses any attributes that are also used by another semantic action in a different
module then the execution of either affects the other. The two actions (and the corresponding modules) are
coupled because they operate on the same part of the attribute grammar and implement an overlapping
semantic concern/role.

• Nonnegativity. A module cannot refer the same attributes as a negative number of other modules.
• Nondecreasing monotonicity. Adding a reference to an attribute in a semantic actions does not decrease the
number of semantic actions in different modules that refer attributes in common.
• Null value: 0. A module with no semantic actions contains 0 semantic actions and can be paired with no
other modules.
• Worst value: ∞. A module with CBM = ∞ contains references to attributes that are also referred in an infinite
number of other semantic actions in different modules.
• Ideal value: 0. A module with CBM = 0 has no degree of interdependence with other modules and their
semantic action do not refer any attribute in common.

With regards to complexity and maintainability, we do not introduce any new metric.
For this reason we do not provide a rationale for all the metrics as we did above and
instead define the concept of operator and operand in Neverlang and apply metrics
from literature. We apply several metrics to measure the complexity of Neverlang
modules: lines of code (LoC), McCabe’s cyclomatic complexity (CC) [148], Halstead’s
complexity metrics [90]—volume (V), difficulty (D), effort (E), development time (T)
and delivered bugs (B). Moreover we measure the maintainability of modules through
the Coleman’s maintainability index (MI) [49] and the normalized derivative used in
Visual Studio (VS) [41]. We define the cyclomatic complexity of a Neverlang module as
the sum of the cyclomatic complexities of the semantic actions in that module—thus a
module with no actions will have a cyclomatic complexity of 0. Halstead’s complexity
measures are calculated upon the vocabulary—i.e., the number of operands and oper-
ators. Neverlang operators are module, imports, reference syntax, :, ^, categories,
in-buckets, out-buckets, role, []. Identifiers as module names, labels, offsets, ter-
minal and nonterminal symbols, attribute and role names are instead operands. We
define the set of operators in a module—both total (N1) and distinct (η1)—as the union
of Neverlang operators and Java operators in each semantic action. The same applies to
operands—total (N2) and distinct (η2). Given this distinction, Halstead’s complexity
metrics and the maintainability index are then used with their original meaning and
computed with the conventional formulas. Please refer to the reported works for a full
overview of the complexity and maintainability metrics.
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4.3 Case Study: Javascript Language Family

This section demonstrates the applicability of the design methodology, with a focus
on the iterative engineering process presented in Sect. 4.2.1. We will discuss how each
of the three roles involved in the LPL engineering process interact with the tools for
systems designers provided by AiDE 2. The demonstration case study is replication of
the gradually teaching programming experiment presented in [129]. The experiment
was undertaken in a distributed environment and versioned using git3. The repository
has 3 different contributors, each one embodying one of the three roles: language
developer, language deployer, and language user; the changes made by each author can be
reviewed by inspecting the commit history and highlights the underlying distributed,
incremental LPL engineering process.

4.3.1 Family of Javascript-based Languages

As a case study, we employed and refactored the LPL for the family of Javascript-based
languages introduced in [209] and used for a language evolution experiment in [34]—
neverlang.JS. Although Javascript provides a realistic level of complexity and variety of
language features, its base implementation only amounts to 3599 lines of code (LoC) in 79

slices, 83 modules, and 3 endemic slices and support classes. The base implementation
was later extended with additional modules and classes, but those extensions are not
discussed in this experiment. The neverlang.JS interpreter mostly conforms to the
ECMAScript 3 Language Specification (ECMA-262), except for any built-in functions that
were not re-implemented in Neverlang. Despite its limited size, the FM generated by
AiDE, as partially depicted in Fig. 4.5, comprises 234 language features (including 43

abstract features) and 162 cross-tree constraints 4. Notably, some of them are redundant,
this, however, results from the individual generation of cross-tree constraints. As such,
the FM represents a language family of at least 139713 valid feature configurations—i.e.,
fulfilling all tree and cross-tree constraints—and corresponding language variants—
estimated via FeatureIDE’s number of products analysis. Note that this number is a
lower bound to the actual number of configurations because the Neverlang renaming
mechanism could still be used to derive a viable language variant from an invalid
feature configuration. Unfortunately, neither FeatureIDE nor AiDE 2 can provide a more
accurate estimate on the number of viable language configurations5 and thus the actual
viability of a renaming depends on the language implementation.

3The repository is available at:https://cazzola.di.unimi.it/aide/neverlangjs-lpl.git.tgz. To setup
a copy of the repository on your machine please download it, extract it, switch to the new directory
and run: git clone .git neverlangjs-lpl.

4The full feature model is available: https://cazzola.di.unimi.it/aide/neverlangJS-fullfm.png.
5The number of possible configurations is exponential with regards to the number of features in the FM,

thus most IDE tools impose a timeout over the estimation. This limitation improves the user experience
by avoiding delays and actually provides useful information with regards to the variability space, as
will be discussed in Sect. 4.4.

70

https://cazzola.di.unimi.it/aide/neverlangjs-lpl.git.tgz
https://cazzola.di.unimi.it/aide/neverlangJS-fullfm.png


4.3 Case Study: Javascript Language Family

javascript

expression

boolean

numbers

variables 2
incr decr

SYNTAX JSArithmeticAssignmentExpression

unordered
SYNTAX JSUnorderedMultiplicativeExpression

SYNTAX JSUnorderedAdditiveExpression

sum
SYNTAX JSAdditiveExpression

SYNTAX JSOptimizedAdditiveExpression

mul
SYNTAX JSOptimizedMultiplicativeExpression

SYNTAX JSMultiplicativeExpression

SYNTAX JSUnaryMathExpression

literal
SYNTAX JSNumericLiteral

SYNTAX JSNumericLiteralProds
objects

bitwise

primary

functions 2

restrictions

SYNTAX PrimaryExprRestriction

SYNTAX AddExprRestriction

SYNTAX UnaryExprLiteralRestriction

SYNTAX RelExprRestriction
unary

no in

SYNTAX JSExpression

SYNTAX JSAssignmentExpression

SYNTAX JSExpressionStatement

SYNTAX EmptyAction

statement

statement sat

interrupts

exception handling

SYNTAX JSEmptyStatement

SYNTAX JSVariableStatement

SYNTAX JSBlockStatement

boolean 2
switch

SYNTAX JSIfStatement
SYNTAX JSStatement

SYNTAX Pause

SYNTAX JSLabelledStatement

cflow

for

SYNTAX JSWhileStatement

SYNTAX JSLoopStatements

SYNTAX JSBlockComponent

endemics

functions

SYNTAX JSMain
JSMain ROLE evaluation

JSMainAnalysis ROLE analysis

SYNTAX JSStatementList

SYNTAX JSComments

variables

32
4

1

1

1

1

1

1

1

1

1

1
27

17

18

9

1

1

1

1

9

6

1

3

2

1

9

5

2

2

1

6

2
1

2

1

6

2

1

1

4

7

1

4

Legend:

Abstract Feature

Concrete Feature

Selected Feature

Optional

1 Collapsed Nodes

Figure 4.5: FM generated by AiDE 2 for the Javascript family.

4.3.2 Incrementally Teaching a Language

For our demonstration case study, we adapted the teaching schedule, proposed in [34],
for gradually teaching programming to students. Fig. 4.6 highlights the 14 language
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Figure 4.6: Course schedule and language products for teaching Javascript, adapted from [34].

variants (circles) which gradually introduce new language features over the duration
of the programming course. In particular, we included three additional language
variants. The first, Variant 5b, is a language specialization that only permits Boolean
expressions and the declaration of Boolean variables. It mirrors Variant 5, yet focuses
on propositional logical formulas. In contrast, Variant 8 and Variant 8b were introduced
to teach recursion or lack thereof. While the former permits function calls yet prohibits
recursion, the latter supports recursive function calls yet removes loops from the
language variant. Henceforth, we will take the perspective of the teacher as the
language deployer tasked to configure and deploy the 14 language variants to students
that act the role of language users.

4.3.3 Growing Javascript Variants—The Deployer’s Perspective

To create the increasingly complex language variants, the language deployer clones
the neverlang.JS git project provided by the language developer and opens it within
AiDE 2. Then the deployer uses the Neverlang Language Configuration wizard to create a
new language configuration and opens it in the Neverlang Language Configuration Editor.
Initially the configuration is empty and the desired language features must be selected
from the Configuration tab, as in the second layer of Fig. 4.4. Henceforth, we use a
dot-notation to denote the path to a feature from the root of the FM, shown in Fig. 4.5.

In our case, we started with Variant 2, a language variant only allowing numer-
ical expressions. For this example, Fig. 4.5 highlights the relevant features with
a yellow background. The language deployer starts by selecting the desired lan-
guage features for this language specialization found under expression.numbers,
i.e., sum.JSAdditiveExpression and literal.JSNumbericLiteral. The corresponding
evaluation semantic features are also selected. The configuration editor automatically
selects endemics.JSMathEndemic but yields an invalid configuration due to unsatisfied
cross-tree constraints. However, it suggests to select mul.JSMultiplicativeExpression
and literal.JSNumeric and literal.LiteralProd from the expression.numbers sub-
tree. Although this yields a valid configuration, the resulting language variant is still
empty, as the selected productions are never reached. The language deployer can
now select the language features leading from the start symbol (Program by conven-
tion) to the numerical expressions to make them reachable. Such features include
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JSMain and statement.JSStatement (top of Fig. 4.5) and JSExpressionStatement and
JSPrimaryExpressions (from the expression subtree). At this point, the configuration
editor suggests the JSExpression feature which cascades into additional dependencies
that the language variant should not include. In fact, at this point the deployer requests
help from the language developer who, in turn, assesses that in this case renaming is
not enough to solve the dependencies and introduces two alternative language compo-
nents, i.e., AddExprRestriction and UnaryExprLiteralRestriction, that introduce the
missing productions needed to make this language variant viable. Immediately, after
adding the new language components the FM is regenerated. The language developer
can now commit the newly created Neverlang modules and the changes to the FM file to
the repository. The language deployer pulls the latest changes which cause FeatureIDE
to automatically reload the Neverlang Language Configuration Editor, i.e., publishing the
corresponding language features within the expression.restrictions subtree. Finally,
the configuration is valid and the deployer only needs to declare the sequence of the
semantic actions and corresponding traversal, i.e., evaluation with preorder, in the Roles
tab. Once the configuration is saved, the language variant is automatically generated
and ready to be published to the repo for testing. To do so, the language user can simply
update the repository and run the generated Java program within the gencode.aide

package in the gen-src folder as a Java application. This starts an interactive interpreter
of the language variant in the Console. After evaluating that the language variant
correctly parses and evaluates the desired numerical expressions, they can proceed to
package the language variant via gradle and registering it to Neverlang selecting a unique
file extension, e.g., js02. As a result, language users can now use the Neverlang Editor to
edit all js02 files with the correct syntax highlighting and code-completion. They can
also run the files using the Neverlang run configuration with the corresponding language
variant, i.e., Variant 2 and file path, as showcased in [131]. Fig. 4.4 (language user layer)
showcases the editors for the first four language variants with syntax highlighting and
code-completion, and the execution of the factorial.js04 program with the fourth
language variant.

Building on these language variants, the language deployer can reuse previous
language configurations to derive the other language variants. Moreover, with feedback
from the language developer they can also derive language variants, which require
renaming, such as, Variant 4 to exclude assignments and Variant 5b to exclude bitwise
operations and relations, or diverging semantics, such as, Variant 1 requiring language
components violating the precedence rules and Variant 8 which prohibits recursive
function calls. Henceforth, we change the perspective to the language developer
detailing how Variant 5b and 8b were facilitated.

4.3.4 Refactoring the neverlang.JS LPL—The Developer’s Perspective

Variant 5b was derived restricting variant 5 by removing support for numerical
values, strings and arrays to allow the language deployer to configure a language
variant of only Boolean assignments and expressions. Introducing the new vari-
ant in the LPL highlighted a refactoring opportunity. Listing 4.1 showcases the
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implementation of assignments before the refactoring process. The syntax defini-
tion for the JSAssignmentExpression module was too coarse-grained and required
the AssignOperator nonterminal to be defined leading to invalid language configura-
tions when numerical values and arithmetic assignment operators are not present in
the variant. To fix this we refactored the JSAssignmentExpression into two modules

(cf. Listing 4.2) to distinguish standard assignments from arithmetic assignments, e.g.,
+=. In total, the added JSArithmeticAssignmentExpression amounts to 61 additional
LoC. After completing the refactoring process, the LPL development environment
automatically compiles all changed language components and regenerates the FM.
Then, the language developer only needs to review and save the FM via the FM Editor.
As previously outlined, this change is propagated to all Language Configuration Editors.
Additionally, all variants 5–13 that were using the modified JSAssignmentExpression

feature are marked with a warning indicating that they need to be reviewed by the
language deployer.

A similar refactoring process was required to derive Variant 8 from Variant 8b to
introduce functions. Recall, Variant 8 adds functions with loops but prohibits recursive
calls whereas Variant 8b permits recursive functions but lacks loops. For the former, this
required selectively changing the language semantics. Hence, the language developer
opted for preceding the evaluation with an additional semantic role, i.e., the analysis

role. This role was added to JSFunctionDeclaration, JSFunctionCalls, and JSMain to
retrieve the static call graph from the parsed program and prevent its evaluation when
a cycle is detected.

Listing 4.3 shows the implementation of the semantic actions added to function
declarations and function calls. The former uses a stack to keep track of the current
function in scope whereas the latter adds call edges from the current function to the
called function. Excluding the employed third-party graph library, this extension only
introduced 52 new LoC. The impact of this refactoring on the FM is limited to the added
language features without changing its structure. Thus no other language configuration
was affected by the change. Hence, to configure Variant 8, the language deployer only
needs to pull the FM with the new features, add those features to the configuration,
select the corresponding analysis role and list it as preceding the evaluation phase in
the Roles tab.

1 module neverlang.js.variables.JSAssignmentExpression {
2 reference syntax {
3 provides { AssignExpr: expression, variables; }
4 requires { LeftHandSideExpr; AssignOperator; }
5 AssignExpr ^ LeftHandSideExpr "=" AssignExpr;
6 AssignExpr ^ LeftHandSideExpr AssignOperator AssignExpr;
7 }
8 role (evaluation) {/*...*/}
9 }

Listing 4.1: Too coarse-grained module defining assignment.
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1 module neverlang.js.variables.JSAssignmentExpression {
2 reference syntax {
3 provides { AssignExpr: expression, variables; }
4 requires { LeftHandSideExpr; }
5 AssignExpr ^ LeftHandSideExpr "=" AssignExpr;
6 }
7 role (evaluation) {/*...*/}
8 }
9 module neverlang.js.variables.JSArithmeticAssignmentExpression {

10 reference syntax {
11 provides {
12 AssignExpr: expression, variables, numbers, strings;
13 AssignOperator: ..., operators;
14 }
15 requires { LeftHandSideExpr; AssignExpr; }
16 AssignExpr ^ LeftHandSideExpr AssignOperator AssignExpr;
17 AssignOperator ^ "+="; // other rules for *= /= %= -=
18 }
19 role (evaluation) {/*...*/}
20 }

Listing 4.2: Assignment split into separate modules.

Variant Description Roles Features Renames LoC

1 Numeric expressions and operators (without precedence) evaluation 37 (11) - 330 (80)
2 Numeric expressions and operators (correct precedence) evaluation 42 (5) - 354 (82)
3 Booleans and relational operators evaluation 70 (5) - 780 (215)
4 Strings, arrays and their operators evaluation 76 (5) 1 866 (229)
5 Variables and assignments evaluation 53 (3) - 1356 (350)

5b Only Boolean assignments and expressions evaluation 106 (3) 3 641 (154)
6 Conditional statements (e.g., if, else, switch) evaluation 145 (0) - 2010 (571)
7 Loop statements (e.g., while & for) evaluation 162 (0) - 2479 (821)
8 Loops and functions without recursion analysis, evaluation 171 (10) - 2727 (877)

8b Functions with recursion, but without loops evaluation 183 (3) - 2470 (739)
9 Functions and lambda expressions evaluation 181 (3) - 2766 (884)

10 Objects and Methods evaluation 186 (3) - 2937 (974)
11 Exception Handling evaluation 193 (3) - 2990 (984)
12 Constructors and prototype model evaluation 208 (3) - 3224 (1054)

Complete Variant conforming to ECMAScript 3 debug, evaluation 234 (0) - 3599 (1194)

Table 4.2: Overview on the 15 NeverlangJS language variants highlighting the selected features in-
cluding features for language specialization in brackets as well as total lines of code (LoC)
including Java code in brackets.

To recap, these cases illustrate the benefits of a tight feedback loop from the language
variant’s deployer to the LPL developer in a distributed environment, such that the
language developer only needs to make small changes to the LPL to gradually make
more of the language deployer’s language variants viable.

4.3.5 Comparison of the 15 Language Variants

During the course of this case study, we incrementally created 15 distinct language
variants of increasing complexity including the 14 variants for the teaching schedule
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1 module neverlang.js.analysis.JSFunctionDeclarationAnalysis {
2 reference syntax from
3 neverlang.js.functions.JSFunctionDeclaration
4 role(analysis) {
5 func_decl: .{
6 String foo = $func_decl[1].toTerminalString();
7 String args = $func_decl[2].toTerminalString();
8 $$CallStackBuilder.declare(foo, args.split(","));
9 eval $func_decl[3]

10 $$CallStackBuilder.pop();
11 }.
12 }
13 }
14 module neverlang.js.analysis.JSFunctionCallsAnalysis {
15 reference syntax from
16 neverlang.js.expression.JSFunctionCalls
17 role (analysis) {
18 c_expr: .{
19 String foo = $c_expr[1].toTerminalString();
20 String args = $c_expr[2].toTerminalString();
21 $$CallStackBuilder.call(foo, argsString.split(","));
22 }.
23 }
24 }

Listing 4.3: Semantic actions for creating the call graph.

and the full-fledged version of Javascript while refactoring the underlying neverlang.JS
LPL according to need. Table 4.2 provides an overview on the 15 created language
variants. For each language variant Table 4.2 highlights its semantic roles, as well as,
it indicates the total number of selected (abstract and concrete) features; in brackets,
the number of features introduced and selected for language specialization. The
four newly introduced features were needed for all the variants except 6, 7 and
the full-fledged Javascript whereas variants 2, 3 and 4 needed two specializations
each. UnaryExprLiteralRestriction was used eleven times, RelExprRestriction was
used twice and the remaining two slices were used once. The addition of language
components for specialization was mainly needed to deal with the domino effect, but in
case of Variants 4 and 5 the renaming mechanism sufficed for its resolution, as indicated
in the Renames column in Table 4.2. In these two cases, the automatic feature selection
was disabled. Consequently, all but these two language configurations are considered
valid by FeatureIDE, yet all 15 configurations produce viable language variants. To
sum up, there were a total of eight language features that caused the domino effect, four
of which were solved by adding dedicated features to the LPL and four by means of
nonterminal renaming.

From our experience, we observed that the distributed, incremental development,
rapid testing and deployment significantly reduced the effort to create new and provi-
sion language variants. Due to the power of FeatureIDE’s feature configuration with
automatic feature selection and feature suggestion, the creation of viable language

76



4.4 Evaluation

variants was significantly reduced when compared to manually writing Neverlang
language files. Additionally, the total number of LoC required to build each language
variant from scratch is shown in the last column whereas the lines of included Java
code is shown in brackets. Granted, this assumes that each language variant would
have been built from scratch using Neverlang, still it illustrates how the LPL engineering
process could speed up the creation of language variants and improve reuse among
members of a family of languages. Last but not least, with this case study we could
illustrate the suitability of our LPL development environment for the teaching case, as
it simplified the teacher’s task to create viable language variants. AiDE 2 is applicable
for the distributed, incremental development, configuration and deployment of LPLs,
as it directly supports the LPL engineering process. This section shows how AiDE 2
is a suitable collection of tools for systems designers, as it provides all the views and
services required/expected by language developers, deployers, and users involved in
the engineering process.

4.4 Evaluation

In addition to the demonstration case study, we setup an experiment assessing the
quality in the design of LPLs with respect to the properties defined in Sect. 4.2.3, by
measuring the metrics presented in Sect. 4.2.4. The experiment tries to answer RQ4.1 by
applying the proposed metrics against a wide range of LPLs and RQ4.2 by comparing
the effects of different design strategies on the experimental results. On the basis
of the collected data, we will also try to define some best practices that should be
applied when designing a language decomposition with the goal of improving the
maintainability of LPLs and their reuse.

4.4.1 Experimental Setup

Hardware setup. All experiments were run on an 64 bits Arch Linux machine with an
Intel Core i7-1065G7 3.9GHz processor and a 16 GB RAM. The hardware setup affects
the measurement of the valid configurations lower bound estimation.

Software setup. Metrics were extracted from both Neverlang source code implemen-
tations and compiled binaries using the Neverlang 2.1.2 runtime in combination with
the development environment discussed in Sect. 4.2.2, comprised of AiDE 2.0.1 and
FeatureIDE 3.6.1.

Data setup. The subject for this empirical evaluation is a collection of Neverlang LPLs,
including Neverlang itself. Each LPL is composed of a collection of Neverlang source files
implementing the language features and a FM in XML format compliant with FeatureIDE.
The considered LPLs can be logically classified into three groups:

1. legacy LPLs created before the introduction of the design methodology;
2. sub-languages LPLs created applying the design methodology;
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Category Project From LoC (actions) Modules Features (semantic) Constraints Configs

legacy

Neverlang [209] 1650 (349) 40 81 (41) 18 231935†
LogLang [35] 284 (38) 15 28 (18) 19 104532

Javascript [34] 4199 (1399) 108 262 (121) 162 172169†
State Machines [211] 948 (247) 24 64 (37) 36 271356†
Tyllegacy – 4981 (2335) 78 190 (123) 186 185459†
Java [129] 5488 (1233) 113 307 (169) 180 155522†
Java Role Extension [129] 202 (36) 5 19 (10) 0 3156

Object Teams [129] 1036 (222) 16 55 (46) 10 288678†
PowerJava [129] 300 (77) 7 26 (14) 3 49193

Rava [129] 309 (76) 5 20 (10) 1 2866

Java Relations [129] 1026 (284) 17 61 (34) 11 284600†
Rumer [129] 1630 (466) 30 101 (60) 20 222048†

sub-languages

Types – 686 (107) 44 44 (26) 0 274388†
Expressions – 2471 (911) 84 113 (54) 1 206616†
Variables – 493 (135) 18 44 (25) 12 283325†
Errors – 0 (0) 0 2 (1) 0 2

Compilation Unit – 24 (4) 2 3 (1) 0 3

Arrays – 391 (113) 12 32 (19) 3 328545†
Statements – 149 (20) 6 16 (8) 2 770

Control Flow – 385 (50) 12 29 (16) 0 333033†
Functions – 321 (74) 7 27 (16) 7 83457

refactored

Desk [209] 63 (8) 3 8 (4) 2 15

Lambda – 107 (20) 4 10 (6) 0 150

Tylrefactored – 241 (64) 4 15 (9) 1 522

JS + Slicing – 5 (0) 1 2 (0) 0 2

Java + SM – 5 (0) 1 2 (0) 0 2

overall – – 27398 (8268) 656 1561 (868) 674 –

Table 4.3: Feature model information for Neverlang LPLs considered in this experiment. Values marked
with a † represent a lower bound in the number of valid configurations. Note that “(actions)”
represents the absolute frequency of LoC in semantic actions out of the total LoC and

“(semantic)” represents the absolute frequency of semantic features out of the total number of
features.

3. refactored LPLs—i.e., LPLs redesigned to maximize the reuse of language assets
from other LPLs.

This classification provides a first broad subdivision of the LPLs based on the differences
in their development process: comparing the results of legacy LPLs with those of sub-
languages we can evaluate how the design methodology affects the results. All the
considered LPLs are shown in Table 4.3 along with some of the metrics and general
project information. For each LPL, Table 4.3 also reports the work in which it was
originally introduced, if any. The codebase contains a wide variety of different LPL
projects. Below, a brief description of each of the considered LPLs.

• Neverlang is a legacy LPL. Neverlang implements the translator from Neverlang source
to Java. Neverlang is an LPL applying the bootstrapping technique [39].

• LogLang is a legacy LPL. It implements a family of languages for scripting the tasks
of log maintenance in compliance with the logrotate Linux tool.

• Javascript is a legacy LPL. This LPL is a family of Javascript-based language
interpreters compliant to the ECMAScript 3 specification.

• State Machines is a legacy LPL. The State Machines LPL defines a DSL for the
description of state machines that are then translated into Java code.
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• Tyllegacy is a legacy LPL. Products of the Tyllegacy LPL are DSLs for enterprise
resource planning (ERP) that translate the source code to different, more refined
semantics by feeding it to different language variants—with the same syntax and
different semantics—in succession: a Java main class first calls the import language
variant—which accepts a list of Tyl source files and builds the symbol table for all
the declared Tyl modules—and then the translation language variant that uses the
information collected by the import language variant to type check the program and
finally transpile to Java. Tyllegacy includes a QueryDSL that could be refactored out and
distributed as a standalone LPL extension. Notice that a refactored version of Tyl is also
present.

• Java is a legacy LPL. The Neverlang implementation of Java is a Java-to-Java source
code translator.

• Java Role Extension, Object Teams, PowerJava, Rava, Java Relations, and Rumer are
legacy LPLs. Each of these LPLs implements a different language extension based on
Java that embrace the role-based programming paradigm [132] to distinguish between
classes and role types.

• Types is a sub-languages LPL. Types contains the definition of all Java primitive
types (including numeric separators) with heavy emphasis on modularization.

• Expressions is a sub-languages LPL. This LPL defines all the most used operators in
infix, prefix and postfix version with customizable operator priority.

• Variables is a sub-languages LPL. This sub-language contains a portable definition of
identifiers, of a symbol table, as well as the concept of block and scope.

• Errors is a sub-languages LPL. Errors in this LPL leverage Neverlang endemic slices to
build an error report at compilation phase. This LPL is a corner case of our evaluation
because it is totally composed of endemic slices. This will be our running example
to show how the metrics we introduced are currently not suited to evaluate endemic
slices.

• Compilation Unit is a sub-languages LPL. This LPL provides an entry point for the
parser of any language and the semantics for the generation of a Java class using the
syntax-directed translation technique [3] regardless of the underlying syntax used for
the compilation unit.

• Arrays is a sub-languages LPL. The Arrays LPL implements arrays with a Python-like
syntax, as well as the slicing operator.

• Statements is a sub-languages LPL. The Statements sub-language contains the glue
code to hook other sub-languages to statements and blocks of imperative programming
languages.

• Control Flow is a sub-languages LPL. While, do-while, for loops, switches and if
statements are part of the Control Flow sub-language.

• Functions is a sub-languages LPL. This LPL defines a function table as well as the
syntax and the semantics for the declaration and usage of functions.

• Desk is a refactored LPL. This implementation of the Desk DSL performs heavy reuse
of the Types, Expressions and Variables sub-languages.

• Lambda is a refactored LPL. Lambda applies a multi-phase strategy (similar to
Tyllegacy) to resolve any lambda expression by running a second interpreter that performs
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1 public class Bar {
2 void foo(int arg) {
3 StateMachine sm = state machine Door {
4 state Opened
5 state Closed
6 transition from Opened to Closed: Close
7 transition from Closed to Opened: Open
8 };
9 }

10 }

Listing 4.4: Accepted Java+SM syntax.

the evaluation of the expressions. This interpreter is run only on a sub-tree of the
abstract syntax tree (AST).

• Tylrefactored is a refactored LPL. This version of Tyl reimplements some of the variants
of Tyllegacy while maximizing reuse of assets from sub-languages LPLs.

• JS+Slicing is a refactored LPL. JS+Slicing is defined as an LPL which depends on
Javascript and Arrays and combines them to allow the use of the array slicing operator
in Javascript.

• Java+SM is a refactored LPL. Java+SM combines Java and State Machines so that
state machine definitions are accepted as valid Java expressions (as in Listing 4.4).

The codebase above contains a wide variety of different projects. Notice that legacy
LPLs are obtained by the decomposition of a well-defined language. Instead, sub-
languages LPLs are not decompositions of any programming language per se, but rather
describe the variability of a family of sub-languages. As introduced in [32], every
sub-language contains a subset of language features from a so-called host language to
support a well-defined programming aspect of that language. Therefore, a sub-languages
LPL describes the variability of a family of sub-languages: the features of a sub-languages
LPL are those supporting the same programming aspect across several host languages.
Each product of a sub-languages LPL is a sub-language and cannot be used alone;
instead they rely on the presence of other language features provided by other sub-
languages [32]. Most LPLs are implemented either as families of interpreters or as
families of translators with Java back-end; most of the sub-languages LPLs implement
both interpreters and translators. The considered LPLs substantially differ in scope,
including minimal projects with just a small set of available language components as
well as language families with hundreds of language features and possibly millions of
variants. The dataset and the used scripts for running the experiment are available at
Zenodo6.

Process. Neverlang was used to access source code information (lines of code, number
of modules, semantic actions and roles), FeatureIDE was used for any information
regarding the LPLs variability space (number of features, number of constraints, and
number of configurations), whereas AiDE 2 was used to compute cohesion, coupling,

6https://doi.org/10.5281/zenodo.5236547

80

https://doi.org/10.5281/zenodo.5236547


4.4 Evaluation

complexity and maintainability metrics. All test results were stored in CSV format for
further elaboration. The data collection was automated by using a custom AiDE 2
wrapper without bringing any changes to the Neverlang framework. As already dis-
cussed, legacy and sub-languages projects apply completely different design strategies
in their language decompositions. Most notably, sub-languages were developed using
AiDE 2 and applying the design methodology introduced in this chapter whereas
legacy projects were developed prior to the introduction of AiDE 2 and of the design
methodology. Legacy projects can therefore be used as a control group to compare the
evaluation results between projects that apply the design methodology against those
that do not and to detect whether the methodology brings any improvement in the
quality of LPLs. The results of this comparison will be discussed in Sect. 4.4.5.

4.4.2 Results

General experiment statistics. We evaluated 26 LPLs: 12 legacy, 9 sub-languages, and
5 refactored. Among the several millions of valid configurations, we explicitly defined
53 languages: for each language, we performed the configuration process to deploy
a language variant; each of the 53 languages was tested to ensure its syntactic and
semantic validity. Table 4.3 summarizes the basic information of each LPL and the
overall results. The codebase amounts to a total of 656 modules and 27398 lines of
Neverlang code—8268 of which represent code in semantic actions and the remaining
19130 represent syntactic definitions and other Neverlang constructs (mainly declaration,
imports and roles). The Neverlang modules implement 2447 semantic actions—3.73

actions per module on average. Each LPL project is described by a FM generated by
AiDE 2 for a total 1561 language features and 674 constraints; 868 of the total language
features are semantic features—2.82 semantic actions per language feature on average.

As seen in Sect. 2.4.10, Neverlang semantic actions are implemented in Java by default,
hence they can instantiate and use external Java classes. Similarly, endemic slices
declare instances of Java objects which will be globally accessible by any semantic
action. These classes are not considered in the experiment since they are used as black-
boxes and their cohesion, coupling, complexity and maintainability can be measured by
traditional metrics for object-oriented systems. These concepts are meaningful only on
Neverlang modules where all the syntax and semantics of a language are implemented.
Slices, bundles, and languages are the main constructs for feature composition and
their evaluation only affect the amount of glue code needed in language definitions.

Feature model metrics. FeatureIDE limits to one hour the computation of any metrics
on the FM. Formally, the upper bound in valid configurations for a FM with n
features, depth 2, and no cross-tree constraints is 2n; due to the properties of FMs
introduced in Sect. 2.1, the upper bound lowers when the depth of the FM or the
number of constraints increases. This means that the number of valid configurations
increases exponentially with the number of features [16] and that computing the
exact number of valid configurations is just not feasible for large projects. Table 4.3
highlights whether the reported number of configurations is an exact value or a lower

81



4 A Design Methodology for Language Product Lines

bound. The results show that FeatureIDE can compute the exact number of valid
configurations on FMs with 28 features at most. Using better hardware and more
efficient methods for counting the number of valid configurations may reveal a closer
approximation. However, we are not interested in an exact result for the purposes of the
engineering process. Finding the language variant that meets the user’s requirements
in an LPL with several hundreds of thousands of valid configuration is hard regardless
of how close the approximation is [173]. It should also be considered that a high
number of configurations affects the viability of solutions to NP-hard problems such as
slicing [127]. Therefore, spending several hours and computational effort during the
daily development process of LPLs to determine an exact number of configurations
(or a better approximation) may be not worth it depending on the application. In
our use case, the number of features suffices as an indicator of the growing size of
the LPL: a high number of features hints at the possibility of splitting the LPL in a
multi-dimensional variability modeling approach [184]. Still, there might be other
use cases in which an exact number of configurations is required. If that is the case,
different product line verification approaches based on #SAT [200] and Binary Decision
Diagrams (BDDs) [54] should be considered. On a side note, recall that renames—i.e.,
the Neverlang mechanism used to stop the ripple (or domino) effect—are not expressed
in the FM and cannot be considered when computing valid configurations. An invalid
configuration from the FM perspective could still generate a valid language variant if
the correct renames are defined. As a result, the variability space of the language family
is further widened by renames. The effects of renames on the size of the variability
space will be part of a future work: the satisfiability solver used by the configuration
editor should be updated to exclude some of the constraints during resolution, based
on the available renames.

We evaluated the presence of atomic sets in each LPL: being either all active or all
inactive in a given configuration, they behave as a single feature and thus represent
points of interest with regards to refactoring opportunities. Language components in
atomic sets should be either merged into a unique feature or refactored to eliminate the
dependency. Atomic sets were present in only three legacy projects thus we list them
explicitly instead of showing them in Table 4.3 for brevity reasons:

– Javascript has 2 atomic sets of 2 features each (both associated to assignment
expressions);

– Java has 1 atomic set of 13 features (including all the mathematical expressions);
– Tyllegacy has 1 atomic set of 3 features (including variable declarations and assign-

ments) and 1 atomic set of 7 features (including all the mathematical expressions).

AiDE FMs contain an average of 0.21 constraints per feature. However, only 30 con-
straints come from sub-languages and refactored LPLs whereas legacy LPLs contain 0.36

constraints per feature. The Pearson correlation coefficient [172] (PCC) between number
of features and number of constraints is 0.94 for legacy LPLs and 0.09 for sub-languages
LPLs. This relation is reported in Fig. 4.7. The result highlights a linear increase in the
number of constraints with respect to the size in legacy projects. We can conclude that
LPLs developed without applying our design methodology result in FMs with more
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Figure 4.7: Number of constraints in Neverlang LPLs with respect to their number of features.

constraints and a high relative number of features appearing in constraints: the asso-
ciation between these metrics and quality aspects such as low modifiability and high
complexity is discussed in this work (see Sect. 4.2.4) and evaluated in literature [69].
For the same reasons, the results presented in this paragraph are not used to answer
RQ4.1 and RQ4.2. Instead, the remainder of this section will focus on the properties of
language components introduced in Sect. 4.2.3 and their evaluation.

Cohesion and coupling. We assessed each of the LPLs with respect to each of the
metrics introduced in Table 4.1. First we can observe that some of these metrics are
not applicable to all modules. Co applies only to modules with an LCOA3 value of
1—i.e., completely interconnected actions dependency graph—and with at least three
semantic actions. Co was applied to only 68 (10.57%) modules since Neverlang modules
tend to be very small. LCOA5 was applied to modules that refer at least one grammar
attribute and defining two semantic actions (438 modules or 66.77% of the total). Coh
was applied to modules referencing at least one grammar attribute and defining one
semantic action (560 modules or 85.37% of the total). Similarly, results are not available
for the Errors LPL because it does not define any Neverlang module but just endemic
slices for the definition and collection of compilation errors. We mentioned above that
our metrics do not apply to the evaluation of endemic slices and thus we report the
results only for the sake of completeness. Table 4.4 summarizes the results for each LPL
whereas Table 4.5 compares legacy and sub-languages LPLs. Refactored LPLs do not yield
significant results because—being specifically designed with the goal of maximizing
reuse—they mostly focus on glue code and contain a minimal set of features. Table 4.5
shows how sub-languages consistently perform better on all metrics and highlights how
applying a design methodology can improve the quality of language modules.
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Project LCOA1 LCOA2 LCOA3 Co LCOA5 Coh CBM

JS + Slicing 0.00 0.00 0.00 – – – 1.00
Java + SM 0.00 0.00 0.00 – – – 1.00
Compilation Unit 0.00 0.00 0.50 – – – 1.00
LogLang 0.20 0.20 1.07 – 1.00 0.95 11.53
Types 0.27 0.27 1.00 1.00 0.54 0.87 2.73
Desk 0.33 0.33 1.00 – 1.00 0.75 1.67
Expressions 0.35 0.11 2.63 1.00 0.28 0.90 3.12
Variables 0.39 0.39 1.11 – 0.77 0.80 2.33
Statements 0.50 0.50 1.17 – 0.50 0.87 1.00
Lambda 0.50 0.25 1.00 – 0.47 0.73 2.00
Javascript 1.40 0.70 2.41 – 0.23 0.89 13.94
Arrays 1.42 1.17 1.67 – 0.82 0.61 2.17
Control Flow 1.67 1.50 2.08 – 0.57 0.76 1.83
Functions 2.29 2.14 2.29 – 0.93 0.51 2.71
State Machines 3.29 0.92 2.25 1.00 0.65 0.69 4.92
PowerJava 4.57 2.86 3.57 – 0.76 0.51 4.71
Rava 4.80 3.40 5.00 – 0.58 0.53 3.80
Neverlang 5.05 2.62 3.02 – 0.68 0.66 7.35
Tylrefactored 9.00 6.00 2.50 – 0.65 0.66 2.50
Tyllegacy 9.24 5.42 1.45 0.76 0.28 0.80 8.97
Java Role Extension 11.20 7.80 5.20 – 0.71 0.49 1.00
Rumer 13.57 9.00 6.00 – 0.67 0.48 6.47
Java 23.41 13.88 2.50 0.92 0.54 0.64 17.90
Java Relations 25.65 17.06 7.12 – 0.64 0.50 6.65
Object Teams 90.19 81.81 9.12 – 0.61 0.55 4.38
Errors – – – – – – –

Table 4.4: Cohesion and coupling on Neverlang modules for each LPL sorted by increasing LCOA1.

Metric
Overall Legacy Sub-languages

Mean Median σ Mean Median σ Mean Median σ

Features 60.04 28.50 77.21 101.17 62.50 93.99 34.44 29.00 31.32
Constraints 35.92 2.50 54.98 53.83 18.50 71.34 2.78 1.00 3.91
LCOA1 9.67 0.00 49.39 13.53 0.50 58.67 0.56 0.00 1.45
LCOA2 6.47 0.00 39.40 9.04 0.00 46.90 0.42 0.00 1.12
LCOA3 2.65 2.00 3.29 2.99 2.00 3.62 1.91 1.00 2.16
Co 0.85 1.00 0.29 0.84 1.00 0.29 1.00 1.00 0.00
LCOA5 0.48 0.60 0.37 0.48 0.60 0.35 0.48 0.50 0.45
Coh 0.74 0.70 0.27 0.71 0.62 0.27 0.83 1.00 0.24
CBM 8.80 5.00 9.46 11.46 9.00 10.14 2.70 2.00 2.13

Table 4.5: Comparison between sub-languages and legacy LPLs.
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Figure 4.8: Cohesion (a-c) and coupling (d) with respect to the number of actions per module.

Figures 4.8a, 4.8b, and 4.8c show the increase in lack of cohesion when the number
of semantic actions (or pairs of semantic actions) in a module increases. In particular,
we applied the PCC between LCOA1 and the number of pairs of actions7 in a module
and observed a strong linear correlation of 0.97 highlighting the fact that the lack of
cohesion scales quadratically in the number of semantic actions. Conversely, there is no
apparent relation between the number of actions in a module and CBM (Fig. 4.8d). We
can conclude that reducing the size of a module in terms of its semantic actions can
increase cohesion but instead increasing the size of a module does not reduce coupling.

Code complexity and maintainability. Table 4.6 contains the results of the evaluation
of complexity and maintainability metrics on each LPL. McCabe’s CC validity is often
discussed due to its theoretical weakness [67]; the initial proposed limit of 7 ± 2 CC has
been relaxed over time and the belief is that CC is no more useful than a LoC metric. In
fact, Table 4.6 shows that average CC tends to be higher for projects in which average
LoC is also high. Nonetheless CC is widely used for fault prediction in industrial
production and can be applied to the evaluation of other metrics such as MI. All the

7The number of pairs of actions in a module with n actions is
(

n
2

)
=

n(n − 1)
2

.
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Project CC LoC V D E T B MI VS

JS+Slicing 0.00 5.00 5.00 4.00 172.08 9.56 0.01 125.37 73.31
Java+SM 0.00 5.00 5.00 4.00 172.08 9.56 0.01 125.37 73.31
Compilation Unit 1.00 12.00 12.00 7.00 863.91 47.99 0.03 104.45 61.08
Types 0.98 15.59 15.59 4.66 1090.56 60.59 0.03 98.59 57.66
LogLang 1.80 18.93 18.93 6.53 1925.15 106.95 0.05 93.64 54.76
Desk 1.00 21.00 21.00 8.33 2782.56 154.59 0.06 90.92 53.17
Statements 1.67 24.83 24.83 8.17 3334.29 185.24 0.07 87.96 51.44
Lambda 1.75 26.75 26.75 9.75 7093.58 394.09 0.11 84.10 49.18
Variables 2.44 27.39 27.39 8.61 8589.59 477.20 0.11 83.61 48.89
Control Flow 2.50 32.08 32.08 6.92 2954.60 164.14 0.06 83.01 48.54
Expressions 3.27 29.42 29.42 14.27 24029.29 1334.96 0.21 79.94 46.75
Neverlang 3.85 41.35 41.35 9.72 12058.23 669.90 0.15 74.35 43.48
Arrays 3.00 32.58 32.58 8.92 8136.50 452.03 0.12 79.77 46.65
State Machines 3.96 39.50 39.50 11.33 10387.41 577.08 0.13 76.64 44.82
Javascript 4.69 38.88 38.88 14.41 21270.55 1181.70 0.20 75.05 43.89
Java Role Extension 5.20 40.40 40.40 17.60 20477.80 1137.66 0.24 73.75 43.13
Functions 3.29 45.86 45.86 11.14 11165.46 620.30 0.15 72.57 42.44
PowerJava 4.57 42.86 42.86 14.00 21421.32 1190.07 0.23 72.09 42.16
Java 7.36 48.57 48.57 15.06 35645.70 1980.32 0.26 69.22 40.48
Rumer 7.80 54.33 54.33 21.57 49047.38 2724.85 0.37 66.17 38.70
Tylrefactored 4.00 60.25 60.25 10.25 21061.02 1170.06 0.22 65.48 38.29
Rava 5.40 61.80 61.80 20.80 48978.01 2721.00 0.41 63.50 37.13
Java Relations 7.65 60.35 60.35 21.94 57099.55 3172.20 0.43 63.50 37.13
Tyllegacy 8.45 63.86 63.86 17.73 50014.63 2778.59 0.36 62.74 36.69
Object Teams 9.38 64.75 64.75 21.00 54806.41 3044.80 0.42 61.72 36.09
Errors – – – – – – – – –

Table 4.6: Summary of the result of complexity metrics on Neverlang LPLs sorted by decreasing MI.

considered LPL projects scored an average CC below 10, with the highest being Object
Teams at 9.38 and the lowest Types at 0.98. The average CC is 3.80. Both JS+Slicing
and Java+SM have an average CC of 0.00 because they do not implement any semantic
action and instead just perform syntax checking on source code.

Halstead’s complexity measure source code properties by comparing them to physical
matter properties such as volume; volume is also used for the computation of MI and
VS. For each Halstead metric the lower the result, the better. More abstract measures
such as volume, difficulty and effort are translated into concrete estimations: required
time to program and number of delivered bugs.

MI collects the data from CC, LoC and Halstead metrics to estimate the maintain-
ability of a software system. According to Coleman [49] a MI value above 85 (or the
corresponding VS=49.71) indicates that the software is highly maintainable, a value
between 85 and 65 (or the corresponding VS=38.01) suggests moderate maintainability,
and a value below 65 indicates that the system is difficult to maintain. Table 4.6 reports
the MI results: LPLs in green are highly maintainable, LPLs in yellow are moderately
maintainable and LPLs in red are difficult to maintain. Once again, sub-languages and
refactored LPLs apply the design methodology and show average to high maintainability.
All the LPLs that are difficult to maintain are part of the legacy project, on which the
design methodology was not applied.
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Figure 4.9: Results of the PCA performed on the subject systems and the considered metrics. Each
element on the x-axis is one of the principal components. On the y-axis, their respective
eigenvalue.

4.4.3 Principal Component Analysis

To answer RQ4.1 we performed a principal component analysis (PCA) on our results.
Thanks to the PCA we can extract the dimensions that have the most relevance on the
results to obtain the properties of Neverlang language decompositions. Each dimension
is represented by one of the metrics we evaluated on language components. Fig. 4.9
depicts the results of the PCA. To perform the PCA we discard any dimensions
containing null values, leaving 13 dimensions. We normalize the results and list the
principal components. Then, we discard the least relevant components according to
the Kaiser rule [112]: only the principal components with an eigenvalue above 1 are
kept. The rationale is that any principal component with an eigenvalue below 1 is less
relevant than the original dimensions. For each principal component we determine the
original dimensions that have the most impact by analyzing the covariance matrix. This
analysis reveals three principal components that describe 88.9% of the variance in the
dataset.

– PC1 (67.4% of the variance) is mainly determined by V, B, LoC, CC, E, T in order of
relevance. Other dimensions have lower impact. All the most relevant dimensions
described by PC1 are metrics used to evaluate complexity.

– PC2 (13.2% of the variance) is mainly determined by LCOA2, LCOA1 and LCOA3

in order of relevance. Other dimensions have much lower impact. All the most
relevant dimensions described by PC2 are metrics used to evaluate cohesion.

– PC3 (8.3% of the variance) is mainly determined by VS and MI in order of
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relevance. Other dimensions have much lower impact. All the most relevant
dimensions described by PC2 are metrics used to evaluate maintainability.

Notice that only three of the four properties of language decompositions that we
introduced in Sect. 4.2.3 are matched by a principal component. In fact, CBM is not
among the most relevant dimensions in any of the principal components. Instead,
the variance of CBM is described by other dimensions. We can conclude that we are
interested in only three properties of a language decomposition in Neverlang: complexity,
cohesion and maintainability. Coupling has a limited impact on the variance of the results
and is described by the other properties. This result is relevant because CBM is the
only metric among the considered ones that can only be evaluated on a set of language
components. In other words, we cannot evaluate CBM of a standalone language
component, but only the CBM of a language component within an LPL, which takes
more computation time and is less significant for small project. Instead, this result
shows that the evaluation of the coupling property can be avoided with regards to the
design methodology, since it does not have a big impact on the variance of the results.

4.4.4 Thresholds

To answer RQ4.2 we must determine a replicable method for the detection of design
errors in Neverlang LPLs. We use the metrics for the evaluation of language components:
a low score in any of these metrics will suggest a refactoring opportunity or the need
for a review of the design choices. For complexity and maintainability metrics we stick
to the quality thresholds defined in literature that we reported in Sect. 4.4.2. However,
cohesion and coupling metrics were first defined in Sect. 4.2.4 and therefore there is
no prior work that investigates any ideal value. For this reason, we perform a quartile
analysis on our dataset to determine the thresholds between well designed components
and components with average design and between components with average design
and poorly designed components. The results are reported in Fig. 4.10. We consider
any modules with a score in the interquartile range (IQR) to have average design.
Values below the first quartile (Q1) indicate good design and values above the third
quartile (Q3) indicate bad design. The only exception is Coh, for which values above Q3

indicate good design and values below Q1 indicate bad design. This analysis reveals
the following thresholds.

LoC (total)
good design: LoC ≤ 19

average design: 19 < LoC ≤ 50

bad design: LoC > 50

LoC (actions)
good design: LoC ≤ 2

average design: 2 < LoC ≤ 14

bad design: LoC > 14
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Figure 4.10: Evaluation results of several metrics and their quartiles. Some results are omitted for better
readability. Modules in the IQR is considered to have average design. Modules below Q1
are well designed and modules above Q3 are badly designed or vice versa depending on the
metric.

89



4 A Design Methodology for Language Product Lines

LCOA1
good design: LCOA1 ≤ 0

average design: 0 < LCOA1 ≤ 4

bad design: LCOA1 > 4

LCOA2
good design: LCOA2 ≤ 0

average design: 0 < LCOA2 ≤ 1

bad design: LCOA2 > 1

LCOA3

good design: LCOA3 ≤ 1

average design: 1 < LCOA3 ≤ 3

bad design: LCOA3 > 3

LCOA5

good design: LCOA5 ≤ 0

average design: 0 < LCOA5 ≤ 0.75

bad design: LCOA5 > 0.75

Coh
good design: Coh ≥ 1

average design: 0.5 ≤ Coh < 1

bad design: Coh < 0.5

CBM
good design: CBM ≤ 2

average design: 2 < CBM ≤ 13

bad design: CBM > 13

Notice how it is relatively easy to keep lack of cohesion to a minimum in most modules.
For this reason, any result below the optimal value is considered average design on
lack of cohesion metrics.

4.4.5 Discussion

The experimental results outline the amount of data concerning the design quality that
can be inferred from an LPL with relative ease. Now we summarize these results with
respect to our research questions.

RQ4.1. What are the properties of a language decomposition in Neverlang?

We answered this research question by performing a PCA on our dataset. The
design of Neverlang language components is determined by three different properties,
each represented by a principal component:

– cohesion—manner and degree to which the tasks performed by a single software
module are related to one another.

– complexity—degree to which a system or component has a design or implementa-
tion that is difficult to understand and verify.

– maintainability—ease with which a software system or component can be modified
to change or add capabilities, correct faults or defects, improve performance or
other attributes, or adapt to a changed environment.
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RQ4.2. How can errors in design decisions be detected in Neverlang LPLs?

Errors in the definition of the variability space can be detected by evaluating a
series of metrics on the FM. These metrics are widely used and discussed in
literature [69]. AiDE 2 FMs use the same formalism as the other FMs, thus the same
metrics can be used in their evaluation. Please refer to the literature for an overview
on how FM metrics can be used to detect errors in design decision. With regards to
language components metrics, we performed a quartile analysis to measure the quality
of 26 Neverlang-based LPLs. We determined the results a well designed language
component should score. A design error is detected whenever any of the following
results is obtained:

CC > 9 MI < 65 VS < 38.01 LoC (total) > 50

LoC (actions) > 14 LCOA1 > 4 LCOA2 > 1 LCOA3 > 3

LCOA5 > 0.75 Coh < 0.5 CBM > 13

Since each metric is associated to a different property of LPLs, the metric that highlighted
the design error also determines which property should be improved.

Moreover, our evaluation showed that the Neverlang LPLs on which we applied our
design methodology performed better on average on all metrics.

4.4.6 Lessons Learned

Now we provide an overview of the lessons learned from this evaluation and how the
design properties translate into best practices when programming Neverlang LPLs. In
this context, we also share show our opinion on how this contribution could be adapted
to other language workbenches.

Scope of a language family. We found that the best trade-off in the number of
configurations that can be computed with AiDE 2 is met at 28 features: Table 4.3 shows
that it was possible to provide an exact number of configurations for LogLang—which
contains 28 features—and for all the other LPLs with less than 28 features but we
only got a lower bound for Control Flow—which contains 29 features and for all the
other LPLs with more than 29 features. Of course this result is not objective and might
change based on several factors: machine performance, time limit provided by the tool,
development requirements, resolution algorithm and number of constraints. However,
as a general rule a manageable language decomposition should contain between 25

and 30 features to enable exhaustive approaches and a small degree of FM analysis in
AiDE 2. Larger LPLs should be rather be split into several LPLs, each describing the
variability of a family of micro-languages [32].

Taming the complexity of LPLs. Constraints are a useful tool for guiding the configu-
ration process in LPLs but they should be wisely and sparingly used to avoid limiting
the language family’s richness. In fact our evaluation shows that Javascript, Tyllegacy
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1 module BackupSyntax {
2 reference syntax {
3 provides { Backup: backup, statement; Cmd: statement; }
4 requires { BackupSource; BackupTarget; }
5 Backup ^ "backup" BackupSource BackupTarget;
6 Cmd ^ Backup;
7 }
8 }

10 language LogLang {
11 slices BackupSlice RemoveSlice
12 RenameSlice MergeSlice Task
13 Main LogLangTypes bundle(Expressions)
14 endemic slices FileOpEndemic PermEndemic
15 roles syntax < terminal-evaluation < permissions : execution
16 rename {
17 BackupSource _ String; BackupTarget _ Expression;
18 }
19 }

Listing 4.5: Refactoring Listing 2.1 to reduce CBM and the constraints introduced by AiDE 2.

and Java are both the LPLs with the highest number of constraints (162, 186 and 180

respectively) and the only LPLs containing any atomic sets, that we associated to lack
of modifiability in Sect. 4.2.4. In general, the design process should keep cross-tree
constraints to a minimum. Take LogLang as an example. It is an average size LPL with
28 features. At the same time, it shows a relatively high number of constraints: 19

constraints, with 78.50% of its features appearing at least once in a constraint which
is the highest out of all the considered LPLs. The high relative number of features
appearing in constraints is indeed a design flaw since it affects the configuration pro-
cess: when selecting a feature from the FM there is a high chance of causing the ripple
effect. This result is in fact empirically coupled with high CBM: Table 4.4 shows that
LogLang has an average CBM of 11.53, which is the third highest value. This result hints
that the design of the LogLang language decomposition could be improved to reduce
coupling, constraints and features appearing in constraints. This can be achieved with
a simple design practice. Take Listing 2.1 as an example: AiDE 2 defines a constraint
between the Backup feature and any feature providing the String nonterminal because
the Backup syntax directly depends on the String nonterminal. Given the FM from
Fig. 4.3, this translates into the constraint SYNTAX_Backup =⇒ SYNTAX_LogLangTypes.
Each LogLang configuration containing the SYNTAX_Backup feature must also contain
the SYNTAX_LogLangTypes feature. Let us assume we extend the DSL by adding the
expressions—i.e., the DSL must perform backup operations between files whose path
is not hardcoded in a string but is the result of an expression instead. The approach
would be to apply a rename to the LogLang language: String _ Expression. However
this rename changes all the String nonterminals in all productions of the language
to Expression nonterminals which may not be desirable and may cause unexpected
behavior or even syntax clashes. Instead, we propose the refactoring in Listing 4.5. It
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uses dummy nonterminals BackupSource and BackupTarget and delegates the hooking
of dummies with concrete nonterminals to the language unit and, in particular, to
the rename construct. This results in the SYNTAX_Backup =⇒ SYNTAX_LogLangTypes

constraint not being defined by AiDE 2, reduces coupling accordingly and enables
more variability in the LPL products. For instance, BackupTarget is the result of an
expression in Listing 4.5 whereas BackupSource behaves the same in both Listing 2.1
and Listing 4.5. A manual inspection of the LogLang FM shows that 7 out of the 19

constraints are of this kind thus applying this design practice whenever possible would
reduce the number of constraints to 12. We applied this design practice to all LPLs
created using our design methodology. As a result, the relative number of features
in constraints is 32.98% on average in legacy LPLs and only 12.28% in sub-languages
LPLs. The same applies to CBM: average CBM is 11.46 in legacy LPLs and 2.70 in
sub-languages. It is arguable that the refactoring from Listing 4.5 is more verbose and
reduces the readability of the system as a whole, but—as discussed in Sect. 4.2.4—a
well designed language decomposition can be studied one module at a time. Dummy
nonterminals can be declared without knowledge of other modules since BackupSource

and BackupTarget are not intended to be used by any other module. The original
implementation requires knowledge of at least two modules instead: the module requir-
ing the String nonterminal (Backup) and the module providing it (LogLangTypes). The
overhead of introducing dummy nonterminals is paid by the language deployer during
the configuration process since a viable language configuration requires all the dummy
nonterminals to be renamed to concrete nonterminals. This problem, however, can be
mitigated by using the AiDE 2 Language Configuration Editor that keeps track of all open
nonterminals and helps the language deployer figuring out if any additional renames are
needed [72].

Increasing the number of semantic actions in a module negatively impacts their lack
of cohesion: Fig. 4.8a shows that LCOA2 and LCOA1 in particular have a good fit for
a quadratic curve with respect to the number of semantic actions in a module; the
number of semantic actions is also an upper bound for LCOA3 by construction. Object
Teams has the highest lack of cohesion—90.13, 81.81 and 9.12 for LCOA1, LCOA2 and
LCOA3 respectively—associated to a high count of semantic actions per module—150

actions in 16 modules. Once again, applying the design methodology can improve
the results: sub-languages LPLs contain 2.02 actions per module—41.56 actions in 20.56

modules—and present lower lack of cohesion—0.56, 0.42 and 1.91 for LCOA1, LCOA2

and LCOA3 on average respectively as shown in Table 4.5. On the other hand, Fig. 4.8d
shows that increasing the number of semantic actions does not benefit CBM either,
despite the intuition that big modules should increase the likelihood of dependent
actions being in the same module. These results incentivize the development of small
Neverlang modules with a few semantic actions.

Low complexity and high maintainability are not always associated to low lack of
cohesion and coupling in modules. The most interesting case is LogLang: Table 4.4
shows high CBM while Table 4.6 highlights high MI. This is achieved by the usage
of endemic slices, as shown in Listing 2.1: referencing endemic instances in Neverlang
modules not only generates a variability point in which the behavior of a semantic

93



4 A Design Methodology for Language Product Lines

action can be changed by swapping endemic slices in a configuration but also delegates
the complexity of the algorithm to an external Java class, rendering the semantic action
easier to maintain as a result. Implementing different roles and therefore different
semantic actions in separate modules can also help decreasing average complexity of
the system since the CC of a module is the sum of the CC of its semantic actions. A
good language decomposition should then take advantage of endemic slices while
minimizing the number of referred attributes in semantic actions.

We expect all of the above design practices to improve the variability of the language
family and to ease the configuration process of language variants. Scaling to larger
language families should not be done by adding more features to the same FM,
but applying a multi-dimensional variability modeling approach [184] in which each
dimension describes the variability of a family of sub-languages instead. For instance,
we propose to improve the approach we propose in [72]—in which the configuration
process focuses on one LPL and the products of the LPL are language units—by using
the configuration editor to deploy bundle units from different LPLs and then combining
them into an interpreter or a compiler.

AiDE 2 can provide much information about the quality of language decomposition
without any change to the Neverlang compiler. All the data needed for this experiment
can be statically evaluated by accessing the Neverlang source code. Lack of cohesion,
complexity and maintainability metrics only need information about a single module
hence the overhead is negligible. Conversely, measuring CBM requires source-level
information from all the concrete features in an LPL and becomes more time-consuming
as the number of features increases. We limited the overhead thanks to AiDE 2 which
already stores a reference to each module into an environment object to build the FM.
Moreover, the PCA performed in Sect. 4.4.3 shows that CBM has low impact on the
variance of the results: the evaluation of CBM can be avoided altogether if the time
requirements become prohibitive.

A shared design methodology. This chapter discussed only the Neverlang language
workbench and the metrics defined in Sect. 4.2.4 are based on Neverlang-specific concepts.
However, other language workbenches could apply the same approach we propose
with minor changes. For instance, JastAdd aspects contain keywords for inherited
(inh) and synthesized (syn) attributes which can be used to evaluate coupling and
cohesion metrics. Similarly, in Melange the semantics are defined with Kermeta8 aspects:
if an aspect refers class attributes that were defined in a different aspect then the two
aspects are coupled. As long as the language workbench provides tools to extract
this information, our approach should be applicable with minimal effort. However,
we suggest performing a preliminary empirical study on a case by case basis before
applying our design methodology in production environments. For instance, the
metrics might need to be adapted to suit the specific quirks of the language workbench.
A major challenge in this regard is the level of granularity: Parnas’ work on design
methodologies emphasizes the concept of modularization [170]. In Neverlang, the

8http://diverse-project.github.io/k3/
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translation is natural because modules are a core concept in the development of
Neverlang LPLs, but each language workbench has a different approach to modularity.
In MPS [217] the user manipulates the AST directly and each AST node is an instance
of a Concept. In Melange the aforementioned Kermeta aspects are woven with Ecore9

meta-models into languages that can then be extended. Spoofax [221] is a collection
of meta-languages, each dealing with a different aspect of language development and
each with a different approach to modularization. Given this premise, it may be hard
to define a design methodology shared among all language workbenches since some
of the concepts may not translate well from one another. Instead, the research should
focus on the definition of a shared baseline that is then instantiated differently for each
language workbench.

4.4.7 Threats to Validity

Construct validity. Part of the metrics we propose are adaptations from object-oriented
metrics. It is debatable that the Neverlang modularity model fits that of object-oriented
programming, i.e., that the proposed metrics actually measure what they purport to
measure. Their definition was kept as close as possible to the original metrics to
limit the discrepancy. Intuitively Neverlang modules fit the parallel with classes from
object-orientation: classes are modules, methods are semantic actions, and attributes are
nonterminal attributes from the attribute grammar. The evaluation shows reasonable
results and the experiment was designed to include both projects attempting to optimize
those metrics and a control group of legacy projects to which we did not apply any
change before performing the evaluation. Most of the metrics lack normalization and
require comparison to assess anything about the quality of software while others are not
always applicable. In this work, we sticked as close as possible to the parallel between
language feature and class: any inapplicability was addressed in the evaluation and
should non impact the results. Finally, our framework focuses on modules and does not
address other components of the Neverlang development process, such as slices, endemic
slices, and Java source code. As previously stated, this should not influence the results
since slices are just glue code with no intrinsic dependency whereas endemic slices
and Java source are considered as black-box libraries on which we cannot improve. CC
theoretical validity is discussed [67] but CC is used in industrial production nonetheless
and its value is needed to compute MI which was applied in the past to the evaluation
of SPLs [5, 6]. We could measure only a lower bound in the number of configurations
thus one may question the validity of feature-oriented metrics—whose results also
highly depend on the application domain. However little can be done to improve this
since the number of configurations is known to scale exponentially with the number of
features. Instead we can leverage this limitation to suggest a refactoring opportunity
for LPLs by using a multi-LPL approach.

9https://wiki.eclipse.org.Ecore
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Internal validity. Using a single framework for both the development and the eval-
uation of software may indeed cause internal validity issues. As already stated, this
problem is mitigated by the presence of a control group and from the high variety of
different LPLs we present. Due to the focus on maximizing reusability, some of the
LPLs are extremely small and could be classified as libraries rather than LPLs but all
the reported results are always weighted with respect to the number of modules in the
project, hence outliers should not excessively impact the results. It should be noted that
most projects were created by the same group of developers and that legacy projects
were implemented in previous versions of Neverlang hence some changes were needed
to adapt those projects to the current standard and to generate a FM using AiDE 2. This
could cause some bias in the results but we always applied the minimum required
changes without affecting neither syntactic definitions nor semantic actions.

External validity. In this study, we only used LPLs created with the Neverlang language
workbench and the AiDE LPL framework. We focused on concepts which are specific
to Neverlang, such as, modules and semantic actions. Hence the same concepts may not
be applicable to other language workbenches. However we tried to stick to elements of
the attribute grammar formalism, which should be applicable to several other language
workbenches such as JastAdd [94], for the definition of cohesion and coupling metrics.
Instead, feature variability aspects of our evaluation are mostly shared among the
product line engineering. If the language family is described by a FM then the same
metrics can be applied with no changes. The time limit imposed by FeatureIDE on the
evaluation of the metrics may cause different results to be obtained with respect to the
number of configurations in subsequent experiments or in different research settings.
However, the improvement that a different research setting could bring are limited due
to the exponential nature of the quantity we are trying to measure. The same result
may change considerably also if renames were to be considered in the computations
of valid configurations in a future work, but renames can only increase the number
of valid configurations since no rename can turn a valid configuration invalid. The
number of configurations is a lower bound for most considered LPLs, thus it would still
hold true if renames were added. The thresholds we used to answer RQ4.2 are based
on a limited set of LPLs, which design quality is not determined independently from
the metrics by a domain expert. Therefore the results may not be generalizable to other
LPLs. To address this threat to validity we took Neverlang LPLs created by different
authors across several years without a shared vision or approach to language design.
This should ensure our sample is fairly representative of the real world population.

4.5 Summary of Chapter 4

This chapter presented a design methodology for LPLs. Four aspects of a design
methodology were discussed: the order in which decisions are made, the tools for system
designers, what constitutes good structure for a Neverlang LPL and methods of detecting errors
in design decisions. We validated our research by answering the research questions RQ4.1
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and RQ4.2 through an empirical study. The results show that AiDE 2 can be leveraged to
compute several metrics adapted from the literature and supports the early detection of
design flaws in language decompositions and their components. Fine-grained language
decompositions (through usage of better abstractions in their syntactic definitions)
show better cohesion, coupling, complexity and maintainability results. Limiting the
number of features in an LPL speeds up the continuous feedback loop required by
the design methodology, since it improves the execution time and the accuracy of FM
analysis tools. Moreover, it eases the configuration process of language variants. The
PCA revealed that only three out of four considered properties are relevant during the
design of Neverlang LPLs. Coupling is not a principal component in determining the
variance of the results and CBM is subsumed by other metrics.
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5
Mutation Testing based on Language

Product Lines

The correctness of both compilers and interpreters is fundamental to reliably execute
the semantics of any software developed by means of high-level languages. Testing is
one of the most important methods to detect errors in any software, including compilers
and interpreters. Among testing methods, mutation testing is an empirically effective
technique often used to evaluate and improve the quality of test suites. However,
mutation testing imposes severe demands in computing resources due to the large
number of mutants that need to be generated, compiled and executed. In this chapter,
we discuss the problem of performing mutation testing on language implementations
and introduce a mutation approach for programming languages that mitigates this
problem by leveraging the properties of language product lines, language workbenches
and separate compilations. In this approach, the base language is taken as a black-box
and mutated by means of mutation operators performed at language feature level to
create a family of mutants of the base language. Each variant of the mutant family is
created at runtime, without any access to the source code and without performing any
additional compilation.

5.1 The Problem of Quality in Languages Test Suites

Mutation testing is a fault-based testing technique widely used in research for evaluating
the quality of test suites. A mutation testing approach proceeds in three phases. First,
it creates several modified version of a program, called mutants. Second, it runs the test
suite against each mutant. A mutant is killed if the test suite detects a fault introduced
by this mutant, otherwise it is said to have survived. Finally, the test suite is given a
mutation score as the ratio of killed mutants over the total number of mutants. The
actual mutants are created by means of mutation operators—i.e., rules that are applied to
a program to modify its behavior, for instance by changing an operator with another
syntactically valid one or by deleting entire statements [164].

Despite its effectiveness, mutation testing is still struggling to become practical due
to a few reasons:

1. the cost of executing a large amount of mutants against a test suite is substantial;
2. the mutation operators must replace program tokens with valid alternatives and

the mutated program has to be recompiled every time;
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3. a mutation testing approach must deal with the human oracle problem and the
equivalent mutant problem [109].

Such problems still hold when the system under test (SUT) is the implementation of
a programming language interpreter or compiler. One might even argue that testing
interpreters is especially significant: the quality of an interpreter affects the correctness
of any software developed by its means [125]. While problem 3 draws the most attention
in research [171, 215, 118, 145], in this work we want to focus on problem 2 to avoid the
cost or recompiling a language implementation for every new mutant. Usually, this is
done by applying the mutation operators over an intermediate representation such as
LLVM or Java bytecode [93]. However, these approaches only partially solve problem 2

because while they save the recompilation time, the intermediate representation must
still be inspected to substitute tokens with valid alternatives. Moreover, handling
intermediate representations—e.g., through bytecode manipulation libraries—is usually
harder that handling source code.

This chapter discusses a strategy to cope with these issues by leveraging language
workbenches and properties that are specific to language implementations. Following
the contribution from Leduc et al. [137] on the language extension problem, we specify
and tackle the language mutation problem: a language implementation together with its
mutants can be treated as an LPL whose products are a family of language mutants
of the same base language. The mutation operators performed over the language
implementation produce modular language extensions—i.e., features of the LPL. In
this approach, the base language is compiled once and then taken as a black-box to
which the mutation operators are applied at runtime. The result is a family of language
mutants of the same base language.

As a case study, we use the Neverlang [209] language workbench to define six mutation
operators that can be applied at language feature level. We dub them sourceless mutation
operators because they adapt the parser [40] and the semantics [32] of the language
implementation without using any source code nor any intermediate representation.
Neither the code of the base language nor the code of the mutated language feature are
needed. Instead, the mutation approach relies on the introspection and intercession
capabilities provided by the Neverlang reflection API [36] to mutate either the language
syntax, semantics or both.

The contribution presented in this chapter is validated by answering the following
research questions:

RQ5.1 Which Neverlang sourceless mutation operators produce variants of the lan-
guage mutant family that are reasonably hard to discover and kill?

RQ5.2 Are mutation operators producing different language mutant variants? Can we
obtain similar results by reducing the number of classes?

To answer these research questions we perform an empirical evaluation in which a
family of mutants of an ECMAScript interpreter written in Neverlang are tested against
the Sputnik conformance test suite for the ECMA-262 specification.
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5.2 Mutation Testing Overview

Mutation testing is a fault-based testing technique that can be used to measure the
adequacy of a test suite in terms of a mutation adequacy score. The origin of mutation
testing can be traced back to 1971 in a student report by Lipton [140] and other works
from DeMillo et al. [62] and Hamlet [91] in the following years. The effectiveness of
mutation testing depends on its capability of finding real faults [85]. Since simulating
all possible faults is unfeasible, mutation testing only focuses on reasonable faults—
i.e., those that are caused by variants of a program that are syntactically close to the
correct program. This assumption is called the competent programmer hypothesis [62]
because we assume that any competent programmer would merely deliver small faults,
which can be corrected by a few syntactical changes. Given a set of mutation operators
F = { f1, . . . , fn} and a program p, the traditional mutation testing process [164]
generates a set of supposedly faulty programs P = { f1(p), . . . , fn(p)} called mutants.
Next, a test set T is supplied to the system. If the result of running mutant fi(p) is
different from the result of running p for any test case in T, then the mutant fi(p) is
said to be killed; otherwise, it is said to have survived. The mutation adequacy score (or
mutation score) is the ratio of the number of killed mutants over the total number of
mutants. The goal of the mutation testing is to improve T until the mutation score is 1.

5.3 The Language Extension Problem

To properly drive our research and to better express its constraints and challenges,
we specified the problem briefly introduced in Sect. 5.1 as an instance of the language
extension problem (LEP). LEP was introduced by Leduc et al. [137] as a paraphrase of the
classic expression problem coined by P. Wadler [222]. The goal of the LEP is to define a
family of languages in which a new language can be added by adding new syntax or
new semantics; the new semantics can be added over a new syntax or over an existing
one [137]. According to the characterization provided by the authors, the LEP is subject
to five different constraints that any candidate solution to the LEP should adhere to:

Extensibility in both dimensions. It should be possible to extend the syntax and adapt
existing semantics accordingly. Furthermore, it should be possible to introduce
new semantics on top of the existing syntax.

Strong static-type safety. All semantics should be defined for all syntax.
No modification or duplication. Existing language specifications and implementations

should neither be modified nor duplicated.
Separate compilation. Compiling a new language should not encompass re-compiling

the original syntax or semantics.
Independent extensibility. It should be possible to combine and use jointly language

extensions independently developed.
Complying to all five constraints is extremely challenging and relaxing one or more
of the constraints may be beneficial depending on the given context [137] to favor
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interesting design choices.

5.4 The Language Mutation Problem

In this section, we introduce an approach towards the support of mutation testing for
programming language implementations using LPLs. Such an approach encompasses:

1. a specification of the problem stated in Sect. 5.1, dubbed language mutation problem,
as a derivation of the LEP;

2. a meta-model for the resolution of the language mutation problem based on language
workbenches.

The meta-model will later be applied in Sect. 5.5 and Sect. 5.6 to showcase its appli-
cability with regards to the Neverlang language workbench. This section outlines also
outlines as the consequences, applicability and limitations of the resolution meta-model.

5.4.1 Problem Overview

The problem of language mutation can be seen as an instance of the language extension
problem (LEP) which we will dub as language mutation problem (LMP). The LEP lifts
the expression problem to the context of language engineering to provide a framework
for reasoning on language extension and to compare different language extension
approaches. Similarly, the LMP lifts the LEP to the context of mutation testing of
language implementations. This approach aims to provide a framework for reasoning
on language mutation, its challenges and for the comparison of different language
mutation approaches.

According to the characterization of the LEP discussed in Sect. 5.3, the LMP concerns:

The extension of a family of mutants of a base language through changes to
the syntax and/or the semantics of one of its members via the application of
mutation operators.

By extension, the constraints defined for the LEP are expressed in the LMP context as:
Mutability in both dimensions. It should be possible to mutate both the syntax and

the semantics. It should be possible to mutate the semantics according to a new
syntax. It should be possible to mutate the semantics of a un-mutated syntax.

No modification or duplication. Existing language specifications and implementations
should neither be modified nor duplicated. Mutation operators are functions that
produce mutated language features without changing nor duplicating the code of
the original language feature.

Separate compilation. Creating a new mutant should not encompass re-compiling the
syntax or semantics of the base language.

Independent mutability. It should be possible to use independent mutated language
features jointly. Mutated language features are independent when they are the
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result of the application of a mutation operator (either same or different) over
two different language features.

In the context of the LMP, it is worthwhile to relax the strong static-type safety constraint
of the LEP: a mutation approach for object-oriented systems needs to be able to
make changes to types and data structure declarations [142, 141]. The test suite for
a language interpreter should be able to detect any error in the type system and any
missing semantics. Therefore, introducing errors in the type system when generating
mutants may be beneficial to assess the mutation adequacy of a test suite.

To summarize, a language workbench can solve the LMP—i.e., it can reach its goal—
by satisfying each of the four constraints we introduced in this section: mutability in both
dimensions, no modification or duplication, separate compilation and independent mutability.

5.4.2 Resolution Meta-model

In this section we introduce a meta-model for the resolution of the LMP by tackling each
of the four constraints presented in Sect. 5.4.1. We discuss the actors of the software
architecture, how these actors interact and the properties that are needed in order to
solve the LMP.

Running example. To better drive the discussion, let us introduce a simple language

L = ( f1, f2, f3, f4)

comprised of four language features: number (integer and floating point values), variable
declaration, addition and (bounded) loop. Below, the Extended Backus-Naur Form (EBNF)
grammar of this language with start symbol <program>.

<program> ::= <statement>+
<statement> ::= <assignment>

| <loop>
<assignment> ::= identifier "=" <addition>

<addition> ::= <term> "+" <addition>
| <term>

<term> ::= <number>
| identifier

<number> ::= digit+ ["." digit+]
<loop> ::= "for" <addition> "{" <program> "}"

Listing 5.1 shows a program written using this language: the value of variable x is
initially set to 5 and it is then decremented by 1 by iterating the for loop x times. Notice
that the language does not support subtraction expressions. Several variants of L can
be obtained by performing language extension and language restriction over the base
language to obtain a family of language variants of L. Two examples are an extended
variant with the subtraction language feature
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1 x = 5
2 y = 0
3 for x {
4 x = y
5 y = y + 1
6 }

Listing 5.1: Exemplary program written in language L.

<addition> ::= <term> "+" <addition>
| <term> "-" <addition>
| <term>

and a restricted variant without loops

<statement> ::= <assignment>

Notice that Listing 5.1 is still a valid program for the former variant, but it is not for
the latter.

Architecture. The LMP resolution meta-model is schematized in Fig. 5.1, which
depicts both the software architecture and the mutation testing process by highlighting
the interactions among the involved actors. The software architecture is split into three
layers: the language implementation, the language workbench and the mutation testing
framework.

First, let us focus on the language implementation (blue box in Fig. 5.1) because
its modular structure drives the interaction among the three layers. Taking on the
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Figure 5.1: Language mutation problem resolution meta-model, including the process, its actors and
their interaction.
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Figure 5.2: Syntactic and semantic dimensions of a feature-oriented language implementation. Three
different mutation operators are performed over the language implementation and highlighted
with different patterns, depending on the dimensions they affect: over the semantic dimension
case (white stars), over the syntactic dimension (white stripes) and over both (black stripes).

previous running example, L is implemented in a modular way and it is comprised of
four language features. The modular approach used to implement L is schematized
in Fig. 5.2. Each language feature is made of a syntax and three semantic phases—
each being a traversal of the program’s abstract syntax tree (AST): initialization, type
checking and evaluation. The initialization semantic phase reads the terminal tokens
to establish their types and their values. The type checking phase uses these pieces
of information to check the validity of the program with regards to its types and
performs any conversion. For instance, an addition between an integer and a float
value promotes the integer to float. Finally, the evaluation phase runs each statement in
the script. Each color—i.e., each element along the Semantics axis—represents one of
the aforementioned evaluation phases. Each element along the Syntax axis represents a
syntactic asset—i.e., addition, number, loop and variable declaration; each syntactic asset
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can contain more than one grammar production, as represented by the rectangles in
Fig. 5.2. The intersection between the two dimensions represents a language feature,
comprised of a syntactic asset and its semantics. Implementing the language interpreter
according to this abstraction will be useful to solve the LMP. In fact, Fig. 5.2 also shows
exemplary mutation operators that can be performed over the language, as we will
discuss later in this section. Finally, Fig. 5.1 shows that L is implemented as an open
language interpreter [36] so that its structure can be reasoned about and modified to
affect its behavior. In the context of mutation testing, an open implementation can be
leveraged to change the language behavior by switching language features of the base
language with mutated language features without encompassing re-compilation of the
source code. In other words, an open language interpreter is compliant to the separate
compilation constraint of the LMP.

The remaining two layers of the resolution meta-model are more straightforward.
The language workbench (light green box in Fig. 5.1) is an abstraction over the language
implementation that provides primitives to interact with any language developed by
its means. This includes a compiler that translates the language source code into an
executable language interpreter, a runtime environment (not shown in Fig. 5.1) and a
reflection API (dark green box in Fig. 5.1) capable of gaining access to hidden aspects of
the implementation. To perform language mutation, the reflection API must support
two reflection mechanisms: introspection—i.e., the ability to reason about otherwise
implicit aspects of the implementation—and intercession—i.e., the ability to act upon
otherwise implicit aspects of the implementation [202].

Finally, the mutation testing framework (red in Fig. 5.1) is the most external layer
and has no initial knowledge of the base language (the SUT); the mutation testing
framework interacts with the language workbench’s reflection API to gain knowledge
of the SUT and to perform mutation operations. The mutation testing framework also
handles the execution of the test suite.

Process. Let L = ( f1, f2, f3, f4) be our running example language and T the test suite
for the verification of L. Now, we will overview how the three layers interact to evaluate
the mutation score of T according to the meta-model shown in Fig. 5.1.

First, the source code of the interpreter for L is given as an input to the language
workbench compiler (Fig. 5.1-❶). The workbench compiler outputs an executable open
language interpreter that will be the SUT, as well as the bottom layer of the meta-model.
As shown by the red dashed line in Fig. 5.1, the source code is no longer needed
throughout the rest of the process: this is fundamental for the meta-model to be able to
achieve better scalability by avoiding recompilation.

Next, the mutation testing framework starts the feature selection process: at first the
mutation testing framework has no knowledge of the language implementation, other
than an identifier1 provided by the user. To do so, the mutation testing framework
interacts with the language workbench layer’s reflection API to perform an introspection
over the language implementation (Fig 5.1-❷). The request is forwarded to the language

1The identifier for a language implementation can be, for instance, the class name when working in Java.
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implementation which returns a collection of all the language features (Fig. 5.1-❸).
In our example, the introspection mechanism will return ( f1, f2, f3, f4)—i.e., the four
features L is comprised of: addition, number, loop and variable declaration respectively.
Steps ❶ through ❸ are performed only once throughout the whole process regardless
the number of generated mutants.

Next, the mutation testing framework selects one feature fi among ( f1, f2, f3, f4) as
the subject of the mutation (Fig. 5.1-❹). The selection can be performed at random
or by means of heuristics. For example, let us assume that fi = f3—i.e., the loop
feature—was selected in this step. The mutation testing framework contains several
mutation operators (m1, . . . , mn) and chooses one mutation operator mj to apply over
fi to obtain a mutated feature f ′i (Fig.5.1-❺). For example, let us take f ′3 = mj( f3)
where f ′3 is the loop feature deprived of its semantics. The properties of the mutation
operators will be discussed in detail later in this section. The mutation operation can
be performed directly through intercession over fi or by generating and compiling the
new mutated feature separately. This step is critical and must be handled in a way
that does not violate neither the no modification or duplication nor the separate compilation
constraints. The mutation testing framework uses the intercession capabilities of the
language workbench’s reflection API to generate a new mutated language L′ in which
fi was substituted by f ′i (Fig. 5.1-❻). In our example, L′ = ( f1, f2, f ′3, f4) is an interpreter
that accepts the same programs L does, but in which loops have no semantics. For
instance, running Listing 5.1 on the interpreter for L′ raises no parsing error, but yields
a final value of x = 5 instead of x = 4, since the body of the loop is never executed. If
T is mutation adequate, L′ will be killed when executed against T. As an alternative
to intercession, step ❻ can leverage loose coupling between mutated features and the
base language using the black-box aggregation technique [176]. Regardless of the chosen
method, steps ❹ through ❻ are performed several times: once for each language mutant
that must be generated.

Finally, the mutation testing framework runs T against all the language mutants
generated in the preceding steps (Fig. 5.1-❼) and outputs the mutation score of T
(Fig. 5.1-❽).

Mutation Operators. To be compliant to the mutability in both dimensions constraint
it must be possible to mutate the syntax and the semantics separately. This allows
to properly express the variability of the mutants. Fig. 5.2 shows a modularization
approach compliant to this constraint and its interaction with mutation operators. As
discussed earlier, the language implementation shown in Fig. 5.2 was decomposed
over the two dimensions of syntax and semantics; in this case, the implementation is
comprised of four syntactic constructs and three semantic phases. To solve the LMP,
the mutation testing framework must provide at least three categories of mutation
operators:

– along the syntactic dimension;
– along the semantic dimension;
– along both dimensions.

107



5 Mutation Testing based on Language Product Lines

A language mutation operator is a function that takes a language feature as input
and returns a new language feature as output. The output is obtained by mutating
the original feature along one of the dimensions or both, depending on the category
of the mutation operator. Fig. 5.2 shows three different mutation operators that were
performed over three different dimensions of the base language. A mutation operator
over the semantic dimension (white stars) mutated all the semantics of the variable
declaration syntax. For instance a mutant may change the type of the variable before
it is assigned or increment its value. A mutation operator over the syntactic dimension
(white stripes) mutated the initialization semantic phase for all four syntactic constructs.
An example would be changing the grammar so that <addition> and <assignment>
are merged into the same nonterminal. This would affect the behavior of all features,
for instance by allowing nested assignments (x = y = 5) and assignments inside loop
bounds (for x = 5 {...}), both of which are not accepted by the base language L. A
mutation operator over both dimensions (black stripes) mutated the type checking and
evaluation semantic phases of the addition and number syntaxes—for instance a mutation
operator may change the type of numeric literals from integer to float and vice versa or
even increment their value whenever they are used in an addition.

The meta-model does not require a specific number of mutation operators, as long as
there is at least one for each of the three categories. For instance, as we will discuss in
Sect. 5.5, we used six mutation operators in our application of the meta-model.

The mutation operators should be designed to be compliant to the independent
mutability constraint: performing a mutation operation must not prevent the application
of further mutations to produce high-order mutants. Moreover, it should be possible
to perform two mutation operations over two language features. Then, it should be
possible to apply the two mutated language features over the base language either
jointly or independently. The language workbench must also provide API to generate,
compile and load additional mutated language features on demand. Alternatively,
the language workbench must provide API to mutate the already loaded language
implementation without generating additional source code.

Summary. The actors involved in the meta-model must address all four constraints of
the LMP:

– the mutability in both dimensions constraint is addressed by a modular implemen-
tation of the language interpreter and by a mutation testing framework that
provides mutation operators capable of targeting the syntactic and semantic
dimensions of such an implementation separately;

– the no modification or duplication constraint is addressed by the language work-
bench that does not change the source code directly and that instead performs
mutation operations at runtime through introspection and intercession over an
open language implementation;

– the separate compilation constraint is addressed by the language workbench, that
generates mutated language features at runtime to compile them separately;
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– the independent mutability constraint is addressed by the mutation testing frame-
work that defines the mutation operators ad applies them one at a time and
separately over the base language.

5.4.3 Consequences and Limitations

In this section, we discuss any implications that the LMP resolution meta-model has
over the design of interpreters and on the test suite execution. We will also discuss the
applicability and limitations of the meta-model with regards to the capabilities of the
language workbench.

Families of language mutants. According to the goal of the LMP, by modeling the
mutation testing approach in a way that is compliant to the meta-model discussed in
Sect. 5.4.2, a base language implementation is mutated to generate a family of language
mutants. In the context of language workbenches, a language mutant family can be
modeled as an LPL which variability is expressed in terms of its features. Such an LPL
contains two types of features:

1. the base features of the SUT (such as f1, . . . , fn in Fig. 5.1);
2. all the results of performing a mutation operation over a base feature (such as

f i′ = mj( fi) in Fig. 5.1).

The products of the LPL are the base language and its mutants. If the number of
members of the language family is finite then we say the language family is closed [137].
Otherwise, the language family is open [137]. Given an LPL with n features, the number
of members of the family is at most 2n. Therefore, if n is finite then the language family
is closed. In other words, if the number of possible mutated features is finite, then
the family of first-order language mutants2 is closed, otherwise it is open. Families of
high-order language mutants3 are always open. The rest of this chapter will mainly
focus on closed language mutant families, using only first-order operators.

Syntactic mutation operators. Among the three categories of mutation operators the
resolution meta-model is concerned with, mutation operators over performed over the
syntactic dimension have interesting consequences. In fact, performing mutation opera-
tions over the syntactic dimension usually changes the language grammar. Changing
the grammar of a language may render some test cases obsolete or cause the grammar
itself to become ambiguous. While this is generally against the goal we discussed
in Sect. 5.1, it may still be beneficial to generate some language mutants that can
potentially cause parsing errors. If running a test suite over a language mutant raises a
parsing error, then it means that there exists at least one test case that can capture the
inconsistency in the language grammar, causing the mutant to be killed. Otherwise, no

2A first-order language mutant is obtained can be obtained by performing a single mutation operation
over a base language feature.

3A high-order language mutant is obtained by performing any number of mutation operations in
succession.
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parsing error is risen and the test suite may not be mutation adequate. For example, a
mutation operation may change a keyword—such as repeat instead of for in our running
example language L. Similarly, renaming a nonterminal in the grammar may render
the <loop> nonterminal unreachable. In both cases, if the for keyword was never used
in any case of the test suite, then the test suite is not capable of killing the mutant.

Another possible effect of changing the grammar is increasing the family of programs
that the language accepts. We discussed such an example in Sect. 5.4.2: a syntax like x

= y = 5 is not accepted by L, but it is accepted by a mutant of L in which <addition>
and <assignment> are merged into the same nonterminal. A mutation adequate test
suite for L should be able to detect this inconsistency by killing the mutant.

The separate compilation constraint. Leduc et al. [137] relaxed the separate compilation
constraint in the context of the LEP in favor of non-functional properties such as
performance and readability. Instead, the separate compilation constraint cannot be
relaxed in the context of the LMP: in that case, all the mutants should be generated
and compiled in advance to avoid the cost of recompilation. This is not feasible for
any open mutant family. Depending on the size of variability space, this may not be
feasible for closed mutant families too.

Applicability and Limitations. While the LMP can be solved by instances of the
meta-model proposed in Sect. 5.4.2, this approach has some limitations that should
be considered. First, the language workbench capabilities required by this approach
are very strict. To the best of our knowledge, only the Neverlang language workbench
supports both separate compilation of language artifacts and runtime adaptation with
the intercession API. Therefore, while the meta-model is general, its applicability may
be limited unless a considerable implementation effort is made to extend the capabilities
of the used language workbench. Otherwise, a different solution to the LMP that is
compliant to the language workbench’s capabilities must be found.

Another limitation of the resolution meta-model is its generality: the mutation testing
framework has no initial knowledge of the language implementation and it cannot
make any general assumptions, neither on its syntax nor on its semantics. The only
requirement is for the language to be implemented in a modular fashion. Instead, all
the knowledge of the language is gained at runtime through introspection. Therefore,
the mutation operators may be hard to design in a way that is relevant to any SUT
and they will usually not be able to target specific parts of the language. A solution to
this issue would require switching to an hybrid approach in which such information is
provided by the language implementation itself by either declaring sensible parts of
the implementation or even the mutation operators directly. Then, the mutation testing
framework would access and use this knowledge through reflection. Such an hybrid
approach will be part of a future work.

Similarly, the meta-model leverages the modularity of the language implementation
to generate the language mutants. While the concept in itself is general, the modular-
ization approach differs wildly depending on the language workbench, therefore it is
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impossible to define a set of mutation operators that is valid for all language work-
benches. Instead, the meta-model is limited to the definition of the three categories of
mutation operators discussed earlier—syntactic, semantic and both—since the concepts
of syntax and semantics are shared by all language workbenches. The instantiation of
these categories into actual mutation operators will depend on the application scenario
and on the language workbench of choice.

5.5 Solving the Language Mutation Problem in Practice

In this section, we show the application of the conceptual meta-model proposed in
Sect. 5.4.2 to a concrete use case. This section is not meant to restrict the applicability
of the meta-model to a specific technological framework. There exist several language
workbenches with a different approach to modularization and instantiating the meta-
model to each existing language workbench is beyond the scope of this dissertation.
However, this section shows the applicability of the approach in for a concrete language
workbench. Moreover, we provide some hints on how to generalize the application of
the meta-model to other language workbenches.

5.5.1 Mutation Testing in Neverlang

In this section, we discuss how the modularization approach chosen by Neverlang
is compliant to the no modification or duplication, separate compilation and independent
mutability constraints of the LMP due to its composition mechanism and workbench
capabilities.

Notice that the output of the mutation testing process presented in Sect. 5.4.2 is
an LPL of language mutants and that Neverlang supports LPL engineering thanks to
AiDE, as discussed Chapter 4. In the context of the LMP, mutated language features are
handled by the AiDE algorithm to produce the FM of language mutant family, whereas
the AiDE composer generates variants of the language mutant family. Moreover, AiDE
tracks all unresolved dependencies and guides the language deployer throughout the
configuration mechanism.

While the LPL capabilities provided by AiDE are useful to support the generation and
deployment of language families, they do not directly address any of the constraints
of the LMP. Instead, in the following paragraphs we discuss each constraint and their
relation to the workbench capabilities of Neverlang. The mutability in both dimensions
constraint is closely related to the chosen mutation operators and will be discussed in
the following section.

No modification or duplication. Neverlang slices provide mechanisms to adapt exist-
ing and initially incompatible language assets to drive their composition into a language
feature without modifying the original code. For instance, the reference syntax of
a module can be adapted to an incompatible semantic asset using the mapping key-
word [209] which remaps the nonterminal references in a semantic action to a different
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nonterminal. Similarly, slices can attach and detach semantic roles from a language
feature using the with role keyword, as we discussed in Sect. 4.4.6. In both cases, the
semantics of a language feature are adapted to a different context without accessing
any of the original code and using glue code only—that of the slice compilation unit.
Neverlang languages can adapt language features too: the rename mechanism adapts in-
compatible grammar fragments by renaming nonterminals in their productions. These
composition mechanisms are intended to improve the reusability of language artifacts
in contexts that differ from what they were originally designed for, however they can be
leveraged to mutate the syntax and the semantics of a base language without modifying
the original code and thus they address the no modification or duplication constraint of
the LMP.

Separate compilation. The Neverlang compiler translates Neverlang modules and
other language artifacts into Java code that can then be compiled by the stock Java
compiler. However, given a Neverlang module, its reference syntax and each semantic
action declared in the module is translated into a different Java class [209] and has no
references to the other elements in the same module or in other modules. This approach
allows for Neverlang modules to be compiled only once and then to be referenced by
the glue code in slices and languages. Whenever a new language feature or a new
language are generated, only the binaries of the composed syntax and semantics are
needed, so no recompilation of modules or existing slices is encompassed. According
to the no modification or duplication constraint, each mutated feature is implemented as a
new slice and therefore creating a new mutant does not encompass re-compiling the
syntax nor the semantics of the base language.

Independent mutability. Each Neverlang slice is an independent artifact that embodies
a language feature. As it was shown in Listing 2.1 (lines 24-29) and later discussed as
a mechanism to create variants of the same LPL, the language construct handles the
composition among all the language features to generate a language implementation.
Instead, each slice is unaware of which languages it will be used in. Therefore, using
two independently mutated features jointly can be achieved by creating a new language
unit in which the two base features are substituted by the two mutated features. Notice
that the evaluation in Sect. 5.6 focuses on first-order mutants and therefore there will be
no instances in which two mutated features will be used jointly in the same language
mutant.

5.5.2 Neverlang Mutation Operators

In this section, we instantiate each of the three mutation operator categories discussed
in Sect. 5.4.2. The mutation operators are designed to satisfy the mutability in both
dimensions constraint by performing mutations either over the syntactic dimension, the
semantic dimension or both. The mutation operators are summarized in Table 5.1.
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Operator class Neverlang unit Category

Rename Language Syntax
Attribute Mapping Slice Semantics
Mapping Slice Semantics
Duplicate Role Slice Semantics
Remove Role Slice Semantics
Remove Slice Language Syntax+Semantics

Table 5.1: Mutation operators in Neverlang. For each operator we report the compilation unit that
is leveraged to perform the mutation without access to source code and which of the three
categories it pertains to.

Overview. As discussed in Sect. 5.4.2, the mutation operators are functions over
language features. In Neverlang, the focus is on slices: the mutation operators in this
section perform at slice level without modifying the composed modules. Other lan-
guage workbenches have different composition mechanisms and will require different
mutation operators. We exemplify six mutation operators, each belonging to one of
the three categories introduced before: along the dimensions of syntax, semantics or
both. All mutation operators can be applied independently at runtime, without any
duplication nor additional compilation thanks to the language workbench capabilities
discussed in Sect. 5.5.1.

For each mutation operator, we exemplify a mutation operation: while the source code
is never modified or even accessed, each example shows the change that the operation
would make if the mutation was performed at source-level. The goal is to show that
these mutation operators adhere to the competent programmer hypothesis: each fault
always affects only one line of code with small mistakes that a competent programmer
could reasonably make. We highlight in green any portion of code that would be added
and in red any portion of code that would be removed. For each mutation operator
we indicate between parenthesis its pertaining category: syntactic dimension (syntax),
semantic dimension (semantics) or both (syntax+semantics). Moreover, we show that
the family of first-order mutants generated by a mutation operator is always closed by
providing an upper bound to the number of possible operations that can be performed
with a single mutation operator.

Rename (syntax). This mutation operator takes a nonterminal of the language gram-
mar and renames it into any other nonterminal of the same grammar. A mutant
generated by a mutation operation of this type can cause several different changes to
the grammar, such as changing the priority among operators or their associativity, as
well as the type of recursion or the type of tokens accepted by a grammar fragment. A
grammar can even become ambiguous, which effects were discussed in Sect. 5.4.3. For
instance, in a standard term-factor grammar [2] renaming the <factor> nonterminal into
the <term> nonterminal causes addition and multiplication to have the same priority.

To generate a mutation operation for the Rename operator in a base language with
n nonterminals, it means to choose a source nonterminal among the n available, then
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to choose a target nonterminal among the n − 1 remaining ones. Therefore the upper
bound in the number of possible first-order mutants of this type is n(n − 1).

A Rename mutation operation would be implemented by using only glue code in
Neverlang as follows. In the example, the grammar of the Expressions language was
mutated on line 4 by adding a rename: all occurrences of the Factor nonterminal were
renamed to Term. The rest of the language implementation is unchanged.

1 language Expressions {
2 slices Addition Multiplication
3 roles syntax < evaluation
4 rename { Factor _ Term; }
5 }

Attribute Mapping (semantics). This mutation operator takes an attribute of the
attribute grammar and maps it to a different attribute in the context of a fragment
of the semantics. This can cause several faulty mutants in which the invalid state is
caused because a required attribute is missing or replaced by a different one. For
instance, mapping the value attribute to the name attribute in a fragment dedicated to
the evaluation of variables may cause the syntax-directed evaluation to forward the
name of the variable instead of its value, and eventually to hinder type inference.

To generate a mutation operation for the Attribute Mapping operator in a base lan-
guage, it means to choose an element of the EBNF grammar and then a pair of non-equal
attributes of the attribute grammar. The elements of the EBNF grammar are the list of
all terminal and nonterminal symbols appearing in all the productions of the grammar.
If the EBNF grammar element must be chosen among m elements and the pair of
attributes among n elements, the upper bound in the number of possible first-order
mutants of this type is mn(n − 1).

The attribute mapping would be implemented by using only glue code in Neverlang
as follows. In the example, the Variables slice is obtained by composing the VarSyntax
syntactic asset and the evaluation role of the VarSemantics semantic asset, however the
latter was mutated by remapping the value attribute for the nonterminal in position $1

to name by adding the mapping on line 4.

1 slice Variables {
2 concrete syntax from VarSyntax
3 module VarSemantics with role evaluation
4 mapping attributes { $1.value ⇒ name }
5 }

Mapping (semantics). This mutation operator makes a fragment of the semantics
reference a different nonterminal. This can cause all kinds of unpredictable behaviors,
such as swapping a dividend with a divisor in the context of a division.
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To generate a mutation operation for the Mapping operator in a base language with
n slices, it means to choose one of the n slices and then to perform a permutation of
the nonterminals present in its grammar fragment. Therefore, the upper bound in
the number of possible first-order mutants of this type is ∑n

i=1(mi !), where mi is the
number of nonterminals present in the grammar fragment of the i-th slice.

Mapping would be implemented by using only glue code in Neverlang as follows.
In the example, the Division slice is obtained by composing the DivSyntax syntactic
asset and the evaluation role of the DivSemantics semantic asset, however the latter
was mutated by performing a permutation over the references to the nonterminals
in the grammar. In this case, the nonterminal in position $1 was replaced with the
nonterminal in position $2 and vice-versa by adding the mapping on line 4.

1 slice Division {
2 concrete syntax from DivSyntax
3 module DivSemantics with role evaluation
4 mapping { 1 ⇒ 2, 2 ⇒ 1 }
5 }

Duplicate Role (semantics). This mutation operator takes a language feature and
duplicates (part of) its semantics—which are called roles in Neverlang—so that they are
executed twice. Since in attribute grammars the semantics are stateful and depend on
the abstract syntax tree visit order [2], this mutant may cause unpredictable behaviors.
For instance, freeing the same pointer twice in C is a reasonable mistake, but one that
can cause crashes and heap corruption.

To generate a mutation operation for the Duplicate Role operator in a base language
with n slices, it means to choose one of the n slices and then to choose which of its roles
must be duplicated. Therefore, the upper bound in the number of possible first-order
mutants of this type is ∑n

i=1 ri, where ri is the number of roles present in the i-th slice.
Role duplication would be implemented using only glue code in Neverlang as follows.

In the example, the Free slice is obtained by composing the FreeSyntax syntactic asset
with the type-checking and compile roles of the FreeSemantics semantic asset, however
the compile role was duplicated, as shown on line 4.

1 slice Free {
2 concrete syntax from FreeSyntax
3 module FreeSemantics with role
4 type-checking compile compile
5 }

Remove Role (semantics). This mutation operator takes a language feature and
removes (part of) its semantics. Removing a role can cause some of the grammar
attributes not to be properly inherited or synthesized or missing entire code fragments.
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Taking on the same example as before, not freeing a memory fragment allocated on the
heap is a very common mistake.

To generate a mutation operation for the Remove Role operator in a base language
with n slices, it means to choose one of the n slices and then to choose which of its roles
must be removed. Therefore, the upper bound in the number of possible first-order
mutants of this type is ∑n

i=1 ri, where n is the number of slices in the language and ri is
the number of roles present in the i-th slice.

Role removal would be implemented by using only glue code in Neverlang as follows.
In the example, the Free slice is obtained by composing the FreeSyntax syntactic asset
with the type-checking role of the FreeSemantics semantic asset. Instead, the compile role
was removed, as shown by the red box on line 4.

1 slice Free {
2 concrete syntax from FreeSyntax
3 module FreeSemantics with role
4 type-checking compile
5 }

Remove Slice (syntax+semantics). This mutation operator removes both the syntax
and the semantics of a language feature from the base language. This should usually
result in a parsing error for every source program that contains that language feature.
A fault of this type may seem more prominent then any of the others we introduced
so far. It should never remain unnoticed and the competent programmer should
never make such a mistake in the first place. However, this is not always the case
in real-world situations and some faults can be very subtle. Small mistakes in the
grammar definition of the language are enough to render entire portions of the grammar
unreachable. Moreover, failing to properly test more obscure language features and
less used operators—such as the shift operators in Java—is not uncommon: if the
test suite is not varied enough then the removed slice might never be tested and the
corresponding mutant might not be killed.

To generate a mutation operation for the Remove Slice operator in a base language
with n slices, it means to choose one of the n slices to be removed. Therefore, the upper
bound in the number of possible first-order mutants of this type is n.

Slice removal would be implemented by using only glue code in Neverlang as follows.
In the example, the base Expressions language is made of four language features.
However, the language was mutated by removing the RightShift slice from the language
as shown on line 5.
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Language workbench Syntax Semantics Syntax+Semantics

Spoofax SDF3 grammar specification Rules and strategies Strategies pattern matching
MPS Editor Behavior Concept extension + overriding
Melange Ecore metamodel Kermeta aspects Renaming + aspect extension
MontiCore Syntax tree node extension Attribute injection Associations
Rascal Abstract data type adapters Function wrappers Pattern-based dispatch mechanism

Table 5.2: Possible targets of a mutation operator class in several language workbenches.

1 language Expressions {
2 slices
3 Addition
4 Multiplication
5 RightShift
6 LeftShift
7 roles syntax < evaluation
8 }

Operators in other workbenches. Each language workbench has a different approach
to modularization and different workbench capabilities. Therefore, the mutation
operators discussed in this section cannot be used by different language workbenches
as they are, since some of the concepts are not shared among workbenches. However,
the general meta-model should be applicable as long as the workbench supports the
separate compilation of its artifacts. In fact, the only difference among two instances
of the meta-model applied over two language workbenches should be the chosen
mutation operators whereas the same mutation operator categories should always be
applicable: despite their differences, all language workbenches have their definition
of syntactic and semantic artifacts that can be the target of a mutation operation.
Therefore, each language workbench should leverage its own peculiarities to implement
the meta-model presented in Sect. 5.4.2 and to satisfy the four constraints of the
LMP presented in Sect. 5.4.1. This can be achieved by defining different mutation
operators that target syntactic artifacts, semantic artifacts or both. Table 5.2 hints at
some well-known language workbenches and the artifacts that could be targeted by the
mutation operators. However, to the best of our knowledge, no language workbench
was previously used to perform mutation testing over language implementations. This
list is not meant to be exhaustive and other language workbenches could provide a
different solution to the LMP.

5.6 Case Study: ECMAScript Conformance Test Suite

In this section, we assess the Neverlang implementation of the meta-model outlined
in Sect. 5.4.2 and detailed in Sect. 5.5, with the goal of answering RQ5.1 and RQ5.2.
The SUT will be a family of mutants of a Neverlang implementation of the ECMAScript
interpreter obtained by applying the mutation operators introduced in Sect. 5.5.2 on
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the language features of the base language. Then, we discuss any threats to the validity
of this evaluation and overview the lessons we learned by doing this experiment. This
section contributes to this dissertation by showing the applicability of the approach in a
concrete scenario and by assessing a set of mutation operators that are compliant to the
LMP resolution meta-model and that can be used to evaluate the mutation adequacy of
the test suites for Neverlang-based language interpreters.

To answer RQ5.1 we will determine if the mutation operators applied at language
feature level are viable: if killing a mutant is trivial, then the corresponding mutation
operator might not be significant for the quality assessment of a test suite in a real
scenario. The triviality will be measured in terms of the mutation score of the test
suite and in terms of the probability with which each test is capable of killing different
variants of the mutant family. To answer RQ5.2 we will determine how varied the
mutation operators are—i.e., if different mutation operations produce different faulty
language variants and therefore they are killed by different tests. Given the set of
tests that killed each variant of the family, the similarity between two variants can be
measured in terms of the Jaccard similarity between the two sets. A similar assumption
was made by Shin et al. when they introduced the distinguishing mutation adequacy
criterion [195] based on the idea that mutants can be distinguished from each other by
the set of tests that kills them.

5.6.1 Setup

Hardware setup. All experiments were run on a 64 bits Arch Linux machine with
an Intel Core i7-1065G7 3.9GHz processor and a 16 GB RAM. Please note that the
hardware setup does not effect this evaluation. However, re-compiling the ECMAScript
interpreter with Neverlang takes about 7 seconds on average on this machine. Thus,
avoiding to re-compile all the mutants by applying the mutation operators at runtime
saves about 7 seconds on each run, for a total of about 2 hours across all 1000 mutants.
Different hardware may yield different gains.

Software setup. All the experiments were run using a custom mutation testing
framework based on Neverlang 2.2.0 that handles the generation and application of
the sourceless mutation operators over the base ECMAScript implementation. The
experiment execution was automated using scripts written in GNU bash 5.1.16 and
Python 3.10.2.

Data Setup. The base language implementation on which the mutations are performed
is a Neverlang implementation of the ECMAScript interpreter [34]—which we did not
modify in any way. The data for the evaluation were obtained from the Sputnik ECMA-
262 specification conformance test suite4 used for testing the conformance of the V8
Javascript engine used in Google Chrome. The test suite contains 5538 tests. Since the
Neverlang implementation of ECMAScript does not provide any Javascript standard

4https://code.google.com/archive/p/sputniktests/
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library function, we filtered out all tests that were not compliant with the base language,
for a total of 2137 remaining tests.

Experimental Setup. For this evaluation, we generated a family of 1000 different
first-order language mutants of ECMAScript by applying a random instance of one of
the six mutation operator classes over the base language implementation. The mutants
were generated in 30 batches, each with a different random seed. For each mutant, we
ran the 2137 selected tests from the Sputnik test suite and stored the result. We also
kept track of the class of each mutant using additional meta-data5 . Finally, we loaded
the results into a 2137 × 1000 matrix, in which position (i, j) was set to 1 if the i-th
test killed the j-th mutant and 0 otherwise. All the results reported in Sect. 5.6.2 are
obtained by analyzing this matrix.

5.6.2 Results

Let us introduce a notation abuse we will use throughout this section for brevity and
better readability: whenever we use the term mutant class, we actually refer to the
class of first-order mutants generated by the corresponding mutation operators. For
instance, the Remove Slice mutant class is the class of first-order language mutants that
were obtained performing a Remove Slice mutation operation over the base ECMAScript
implementation. Notice that when we state that two mutants are similar or redundant,
we mean that they are likely to be killed by the same tests unless stated otherwise.

RQ5.1. A good mutation operator class should produce mutants that find a trade-off
in the number of tests capable of killing it. If the number of tests that kill the mutant
is too high, then the mutant could be trivial and therefore worthless to evaluate a
test suite. Conversely, if no test can kill the mutant then maybe the mutant did not
introduce any fault at all, as we introduced in Sect. 5.1 with the mutant equivalent
problem. Testing the mutation operators introduced in Sect. 5.5.2 against the Sputnik
conformance test suite, we expect the test suite to be able to kill all generated mutants.

Fig. 5.3 summarizes the results of the evaluation. The first row depicts the number
of survived mutants with respect to the number of tests in the test suite. The second
row depicts the mutation adequacy score of the test suite with respect to the number
of tests in the test suite. The left column shows the results divided by mutant class,
whereas the right column contains the overall results. We expect the well-known
Sputnik test suite to be mutation adequate. In general, a test suite is considered to be
mutation adequate if the mutation score is 1; this requirement is relaxed when stubborn
mutants are present [197]. The results meets our expectations and the test suite scores
a mutation adequacy score of 1 when considering all the mutants and all the tests of
the test suite. However, in this study we are not interested in the evaluation of the test
suite, which we assume to be reliable. Instead, we evaluate the mutation operators:
the mutation score is used as an indicator of how much instances of a mutant class

5The dataset containing all the results is available at https://doi.org/10.5281/zenodo.7024829.
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Figure 5.3: Number of survived mutants and mutation score for each of the considered mutation
operators.

are hard to kill. The higher the mutation score, the easier the instances of a class are
to kill; a lower mutation score is desirable because it means that the mutant is harder
to kill. Therefore, Fig. 5.3 also shows the effect that reducing test suite size6 has over
the number of survived mutants and the corresponding mutation score. All classes
show similar results: the test suite is capable of consistently killing most of the mutants
and to achieve a mutation score of 1 when the number of tests is greater then 750—as
shown by the black dashed line in Fig. 5.3. The only exception is the Remove Slice class,
that can be killed consistently by a smaller test suite—with less than 300 tests, as shown
by the red dashed line in Fig. 5.3. When considering all classes, most mutants are killed
by a test suite of more than 700 tests overall and the mutation score is consistently 1 at
over 1500 tests.

Fig. 5.4 and Fig. 5.5 focus on different aspects of this evaluation. Fig. 5.4 highlights
the average probability with which each individual test was capable of discovering
and killing a mutant of each class. The brighter the color, the higher the probability.
There are tests that scored a very high probability on all mutant classes, as shown by
the clear vertical stripes in Fig. 5.4; these tests fall under DeMillo et al.’s definition
of coupling effect: «test data that distinguishes all programs differing from a correct
one by only simple errors is so sensitive that it also implicitly distinguishes more
complex errors» [62]. Fig. 5.4 visually confirms the results from Fig. 5.3: the Remove
Slice mutants are the easiest to kill and Rename are the hardest to kill, with the other
classes ranging in between. In Fig. 5.5, each box does not only represent the median
probability of killing a mutant of each class, but also the locality, spread and skewness
of the results. Again, Remove Slice has the highest median (0.44) and Rename has the
lowest one (0.00). The outliers for each class match with the tests with high killing

6For each test suite size on the x axis, the corresponding y value was calculated over 30 random runs.
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Figure 5.4: Probability with which each selected test kills a mutant of each class.
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Figure 5.5: Box plot representing the locality, spread and skewness of the results for each of the six
Neverlang sourceless language mutation operators.

probability from Fig. 5.4. Otherwise, an higher median probability is always matched
to higher quartile coefficient of dispersion for all classes. We do not report all these
results in a table to improve readability by avoiding redundancy: all these pieces of
information were directly obtained from Fig. 5.5 and add very little to this evaluation.
Please refer to the companion dataset9 for the results of all tests.

RQ5.2. Recall that each column of the 2137 × 1000 matrix we introduced in Sect. 5.6.1
is a binary array. In this context, each mutant can be seen as a set M whose indicator
function is the corresponding column of the matrix:

1M(t) =

{
1 if t killed M
0 otherwise.

By extension, given the test set T:

M = {t ∈ T | t killed M} .

Now, given the sets for two mutants M1 and M2 defined as above, the Jaccard similarity
coefficient (also known as Jaccard index) between the two sets is calculated as:

J(M1, M2) =
|M1 ∩ M2|
|M1 ∪ M2|

.

Fig. 5.6 graphically shows the Jaccard similarity coefficient between each pair of mutants,
divided by mutation operator class. The brighter the color, the higher the coefficient
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Figure 5.6: Average Jaccard similarity coefficient for all mutation operator classes.

and therefore the corresponding mutants obtained similar results—i.e., they were killed
by a similar set of tests. Notice that of course the matrix is symmetric and all the values
on the diagonal are equal to 1 by construction. Fig. 5.6 reports the mutation operator
classes on the two axes. The Remove Slice and Remove Role are the classes that show the
lowest similarity coefficient, both within the class and with instances of other classes.
The other classes have higher similarity with each other, but overall Fig. 5.6 shows that
the similarity between mutants of different classes is usually low despite the presence
of some clusters. Instead, Fig. 5.7 isolates each of the six classes by highlighting in large
detail the sub-matrices along the diagonal of Fig. 5.6 with the same color scale. Each
sub-matrix represents the similarity between mutants of the same class. In this case
the results show that the similarity coefficient within the Rename and Mapping classes
is high and that the different mutation operator instances from these classes might be
redundant with each other since they are killed by the same tests.

5.6.3 Discussion

RQ5.1. A viable mutation testing approach must produce mutants that can be tested
without being killed: if killing a mutant is too easy, then that mutant is not useful to
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Figure 5.7: Average Jaccard similarity coefficient for each mutation operator class.
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improve the quality of the test suite and artificially skews the mutation score towards
1. Fig. 5.4 shows that each test can kill most variants of the mutant family with a
probability below 10%—with the exception of those from the Remove Slice class. The
mutation operators could be refined in a future work to produce variants with subtler
faults, but this would require a different approach in which some initial knowledge
over the base language is available, a requirement that is not general enough to be able
to solve the LMP. The current approach already shows that non-trivial mutants can
be created using this general meta-model, without compiling source code, without an
intermediate representation and without initial knowledge over the SUT. Based on our
evaluation and according to Fig. 5.3, consistently killing a language mutant requires a
test suite of about 700 or more tests. The box below shows a concise answer to RQ5.1,
although it should be noted that this evaluation addresses RQ5.1 for one specific case
study and the results may differ in a different scenario.

RQ5.1 Which Neverlang sourceless mutation operators produce variants of the
language mutant family that are reasonably hard to discover and kill?

Rename, Duplicate Role, Attribute Mapping, Mapping and Remove Role mu-
tation operators produce mutants that are reasonably hard to discover and kill. Most
Remove Slice mutants can be easily killed and should be refined or substituted with
different operators.

RQ5.2. The Attribute Mapping, Duplicate Role, Remove Role and Remove Slice mutation
operators produce mutants that are discovered by set of tests with very low similarity.
The similarity within the Rename and Mapping mutant classes is very high according to
Fig. 5.7. Therefore two different mutation operator instances of the same class are very
likely to be redundant and hard to distinguish [195]. However, the similarity between a
Rename mutant and mutants of any other class is low. The same goes for the Mapping
class. To summarize, the classes of mutation operators we introduced in this work do
not form a partition: mutants whose similarity with other mutants of the same class
is low, usually also have low similarity with mutants in other classes and vice versa.
The box below shows a concise answer to RQ5.2, although it should be noted that this
evaluation addresses RQ5.2 for one specific case study and the results may differ in a
different scenario

RQ5.2 Are mutation operator classes from different categories producing different
mutants? Can we obtain similar results by reducing the number of classes?

The similarity between different classes is low as shown in Fig. 5.6: different
classes are usually killed by different tests, Therefore we cannot obtain similar results
by reducing the number of classes. However, the similarity within each class could be
reduced considerably, as shown in Fig. 5.7.
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5.6.4 Lessons Learned

By performing this evaluation, we learned that using a language workbench that is fully
compliant with the LEP eases the implementation of a mutation approach that solves the
LMP. In the context of Neverlang, we could implement six different mutation operator
classes using pre-existing API and then generate 1000 random mutants to create a
LPL of language mutants. The evaluation shows that non-trivial mutation operators
can be defined and assessed without changes to the original language workbench,
by leveraging existing composition mechanisms between language features. This
duality between language features and language mutation is made apparent by the
definition of the LMP as a derivation of the LEP: language extension and language
mutation are similar problems that can be tackled in a similar way. In this study, we
learned that designers should be concerned with the LMP during the early stages of
development to better drive the development of language workbenches. Due to the
relation between LMP and LEP, the same tools that are used to perform language
mutation can also be used to accommodate the composition between language features
and therefore to produce standard LPLs. This should in turn improve the reusability
of existing language features due to flexible composition mechanisms—i.e., through
well-designed custom mutations over the original feature. In fact, the main limitation of
the application of the resolution meta-model to Neverlang and of the overall evaluation
is the problem of granularity: most mutation testing approaches from literature work
at fine granularity (statement level). Instead, Neverlang composition mechanisms
work at a coarse granularity: that of language feature. Foreseeing the LMP during
the design of Neverlang would have allowed for the definition of more fine-grained
mutation operators. With this work, we learned that language workbenches should
strive to achieve the best of both worlds: both the LMP and the LEP should be solved
using composition mechanisms that work at feature level but that allow to tweak the
semantics at a fine granularity level. Otherwise, it may be still beneficial to combine
this approach with traditional mutation testing: our approach can be used first to
save on the recompilation time. Then, once the test suite is mutation adequate against
sourceless mutation operators, fine-grained traditional mutation operators can be used
to introduce subtler faults.

5.6.5 Threats to Validity

Internal Validity. To evaluate the mutation testing approach, we had to develop a
custom mutation testing framework for Neverlang: this may affect the results of the
evaluation. To stem this validity issue, our framework does not introduce any additional
API and it is only used to automate the generation of random mutants. This is done
with the Random class from the standard Java library. We also kept track of all the
seeds we used in each batch of experiments to ensure they could be replicated. The
seeds themselves were chosen randomly using the $RANDOM bash function. To avoid
any further internal validity issues we used a pre-existing ECMAScript implementation
that we did not modify in any way and the well-known Sputnik test suite. We did
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not inspect the source code of the test suite; instead the selection was performed
automatically by filtering any tests that were not compliant with the base language. In
Fig. 5.3, the selection of a subset of the test suite was also performed at random: we
performed 30 random runs for each test suite size and measured the average adequacy
score. Selecting only test suite subsets may have reduced the coverage of the test
suite, however, this work does not want to evaluate the test suite but rather test the
applicability of the approach. We think that the evaluation of a very complete and
mutation adequate test suite would yield way less information with regards to used
mutation operator classes. Rather, evaluating an incomplete test suite by means of the
mutation score is more representative of a real-world application of mutation testing in
which the evaluated test suite is the result of an ongoing development process.

External Validity. We implemented a mutation testing approach based on Neverlang
and using a specific set of mutation operator classes. Then, we evaluated this specific
implementation. The evaluation we performed may therefore not be applicable to
other research settings. To stem this threat to validity we specified the LMP without
reliance to any Neverlang-specific concepts. Instead, the LMP is an instance of the LEP,
which was a pre-established general problem defined by a third party. Moreover, all
four constraints of the LMP are general: they use concepts that are applicable to all
programming language implementations, such as syntax, semantics, source code and
compilation. Despite not being general to all programming language implementations,
the goal of the LMP is general to all LPL approaches since it only relies on the concept
of language family. Similarly, we outlined a resolution meta-model (Sect. 5.4.2) that is
based on the same concepts and not limited to Neverlang. The only limitation is that
the mutation operators are Neverlang-specific and cannot be used in other language
workbenches due to their differences in the modularization approach. Nonetheless
the implementation presented in Sect. 5.5 and the evaluation of Sect. 5.6 prove the
applicability of the meta-model to a real language workbench and show the mutation
testing process of a real language implementation in such a workbench. We also
detailed our evaluation process so that it can replicated for the evaluation of different
mutation operators in other language workbenches. Finally, we addressed the general
applicability in Table 5.2, which reports the concepts from other language workbenches
that could be used as a target for the mutation operators. Yet, the main threat to the
external applicability of our contribution is that, to the best of our knowledge, no other
language workbench fully supports separate compilation and runtime adaptability.
Similarly, not all language workbenches support LPLs explicitly, which is a primary
concern when considering that the goal of the LMP is to create an LPL of language
mutants. Therefore, most language workbenches may not be able to satisfy the separate
compilation and independent mutability constraints to solve the LMP. However, the
importance of these aspects was already discussed by Leduc et al. [137] in a context
more general than mutation testing. Therefore, any language workbench that wants
to solve the LEP must already satisfy these constraints regardless they also want to
solve the LMP or not. Moreover, we advised alternative solutions, such as generating
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the entire family of mutants in advance, a solution that is applicable—although not
advised—to closed mutant families.

5.7 Summary of Chapter 5

Mutation testing in the context of language implementations lacks the proper focus and
it is usually dedicated to the generation of test suites, rather than to their evaluation.
In this chapter, we specified this problem as a derivation of the language extension
problem [137], dubbed language mutation problem. Then, we proposed a solution based
on language product lines and language workbenches that satisfies four different
constraints of the language mutation problem, using Neverlang as a running example.
Finally, we performed an empirical evaluation to answer RQ5.1 and RQ5.2 and to
demonstrate the applicability of the approach. The results show that a set of non-
trivial mutation operators can be defined using existing technologies, although with
limitations related to the used language workbench and its capabilities with regards to
introspection, intercession and separate compilation.
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Related Work

SPLs and LPLs are an increasingly popular trend among researchers and practitioners
due to their promises of portability and mass customization. The SPL community has
devoted huge efforts towards the development of feature-oriented tools, techniques
and methodologies for SPLs and LPLs. The goal is achieving a significant improvement
in the quality of the products, avoiding the clone-and-own approach in favor of reuse of
carefully crafted software assets. Whether this result is actually achieved is debatable:
high levels of quality are the result of the application of a proper design methodology
and must be assessed through effective evaluation strategies. The main goal of this
dissertation is to outline the dimensions that concern the quality of SPLs and LPLs in
particular, including their construction and their evaluation. This work is founded on
the contributions brought by researchers in this field, as it was discussed in Chapter 2.
However, there are further contributions that, albeit not being directly referenced in this
dissertation, provide a related contribution, either because they use similar techniques
or because they try to solve similar problems. In this chapter, we provide a brief and
possibly non-exhaustive introduction to such works.

6.1 Design Patterns for the Definition of SPLs

Chapter 3 of this dissertation deals with the complexity of creating and managing SPLs,
as well as with the problem of compatibility among different approaches.

A huge variety of approaches to support the definition of SPLs have been proposed
by researchers [17, 158, 124]. However, all these approaches are based on preprocessors
and, to the best of our knowledge, there has been little research on design patterns
specifically suited to variability modeling and the implementation of SPLs. In Sect 3.3,
we discussed VMJ as a purely architectural pattern-based solution to describe variability
of SPLs through Java modules and delta-oriented programming [192]. In this approach,
each feature is implemented through decorators [82] over the base implementation.
Seidl et al. [191] presented a generative SPL development method using variability-
aware versions of the observer, strategy, template method and composite [82] patterns
and introduced the Family Role Model as a notation to capture constraints on the
variable application. Shatnawi and Cunningham [193] addressed the difficulty of
specifying and maintaining feature models due to the SPLE tools requiring specific
knowledge and skills and they proposed to encode FMs using JSON. Their contribution
shares with the devise pattern the design choice of using mainstream technologies
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rather then external composers to develop SPLs. On a similar note, Chimalakonda
and Lee [47] discussed the inconsistency and incompatibility of tools and methods in
SPLs and the need for the introduction of standards in their development. They argue
that the diversified range of tools and methods is one of the primary hindrances to
the adoption of SPLs in the industry, since artifacts developed with one suite are not
compatible nor reusable with other ones.

6.2 Language Product Lines Design Methodology

Chapter 5 of this dissertation deals with several quality aspects in the design of LPLs,
including the IDE support for their development and their evaluation.

LPL engineering with IDE support. Most recent language workbenches [71]—such
as, Spoofax [221], MPS [217], MontiCore [126], LISA [97] and Melange [61]—provide
tools for system designers by addressing the problem of IDE support for modular DSLs.
Some of these approaches generate an IDE using templates, thus neglecting feature
modularity and the specific characteristics of the DSL under development. EMF-based
tools [199] such as EMFText [95] support modular language implementation and IDE
generation for DSLs. EMFText is similar to Neverlang since it uses attribute grammars
to share IDE implementations through languages, however it does not explicitly con-
sider language variability for LPL development. Monticore, Spoofax and MPS directly
or indirectly provide LPL engineering capabilities. Monticore supports language em-
bedding and language inheritance for compositional development of language families.
Butting et al. [28] presented an approach to manage syntactic variability of extensible
LPLs using Monticore. Spoofax supports generation of a wide variety of IDE tools for
Eclipse and IntelliJ including syntax highlighting, code-completion and parse error re-
covery, but also the creation of language configurations. Liebig et al. [139] used Spoofax
alongside FeatureHouse for the representation and composition of language features.
Mendez-Acuña et al. presented several contributions to the topic of reuse in language
workbenches: in [108] the authors address the problems of programming languages
evolution and maintenance, as well as their verification and validation; in [152] they
introduce PUZZLE as a tool for the detection of duplicates in syntactic and semantic
definitions in Melange. Melange is also supported by GEMOC Studio [53], used by
language designers to build and compose DSLs and by domain designers to coordinate
their models. MPS offers full IDE support and customizable abstract syntax tree manip-
ulation. Most notably, mbeddr [218] is a project built on top of MPS, presented as a set
of integrated and extensible languages based on C for embedded software engineering
with an IDE and support for SPL development. MPS arguably represents the most fully
realized version of a development environment with support for the development of
language families. However, in most of these works LPLs are not directly addressed
but emerge from the development of language features, language variants and the tools
they provide for system designers. For instance, we could not find any work directly
addressing tool-supported LPL capabilities in JastAdd. Moreover, to the best of our
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knowledge, there is no contribution for a dedicated bottom-up LPL engineering process
supported by a development environment and covering all involved roles and all the
evolution phases of an incremental LPL, including creation, development of language
artifacts, configuration and deployment. Other works focus instead on one or a few of
said aspects and embrace LPL engineering in a top-down fashion.

Specification techniques. Thüm et al. [205] indirectly address point 4 of the design
methodology—i.e., a specification technique for SPL products—by proof decomposition
into features: all the features in a configuration are associated with a partial proof
in Coq, then the proof assistant checks if the composed proof is valid thus verifying
that the program variant is valid. Their work is complementary to ours since they
address an aspect of design methodologies that we postponed to future work. On the
same topic, CBS [160] provides an extensible library of reusable language specification
components based on fundamental programming constructs (funcons).

Design flaw detection. The topic of methods of detecting errors in design decisions is
one as old as software engineering itself and has been addressed in different ways
in the framework of SPLs. IncLing [4] and MoSo-PoLiTe [166] address the problem
of exponential increase in product configurations and apply pairwise testing to find
a minimal subset of configurations covering 100% pairwise interactions. Perrouin
et al. [175] apply automated generation of test products using the t-wise SPL test
adequacy criteria. Several works [11, 99, 212, 228] evaluate SPLs using structural or
service utilization metrics and Aldekoa et al. [5, 6] used the maintainability index to
evaluate the maintainability of SPLs.

However, to the best of our knowledge, no previous work performs a similar evalu-
ation on LPLs nor defines a design methodology for LPLs. Despite being tailored to
bottom-up LPLs and attribute grammars, our approach introduces the definition of a
design methodology for LPLs, comprehensive of the order in which decisions are made,
what constitutes good structure for a system, methods of detecting errors in design decisions
and tools for system designers.

6.3 Mutation Testing of Language Implementations

Chapter 5 of this dissertation deals with several different topics, including adaptable
languages, compiler testing and mutation testing.

Adaptable Languages. Cazzola et al. [32] used micro-languages to evolve an inter-
preter at runtime through a micro-dynamic adaptations (µDA) domain-specific language.
µDA adaptations are similar to the mutation operators introduced in Chapter 5. Kollár
and Forgáč [122] presented an adaptive approach to both program and language modi-
fication to support dynamic evolution. More recently, Jouneaux et al. [110] proposed the
concepts of self-adaptable languages and the L-MODA conceptual reference framework
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that abstract the design, execution and feedback loop of self-adaptable systems. Yet, to
the best of our knowledge adaptable languages were never used to avoid the cost of
recompilation in any mutation testing approaches.

Mutation Testing. Literature proposed mutation approaches that perform at low
levels of abstraction. In these approaches, mutations are usually applied at compiler
intermediate representation level. The goal is usually to provide multi-language tools,
as opposed to source level (language-specific) mutation approaches. The LLVM [135]
framework is usually the target of the mutation. Some examples are SRCIROR [92],
Mull [63] and the contributions from Sousa and Sen [198] and from Papadakis et al. [168].
Similarly, JAVALANCHE [190] and PIT [51] manipulate Java bytecode directly to avoid
the cost of recompilation. Mutation testing in the context of SPLs often relies on
model-based mutation operators [133, 96] rather than using the composer to create
mutated products as in our approach. To the best of our knowledge, none of these
approaches perform the mutation operators directly at runtime. Sect. 6.3.1 discusses
the state-of-the art of mutation testing in more detail, including a comparison between
the LMP resolution meta-model and other existing approaches.

Language Testing. Chen et al. [42] performed a survey of the field of compiler testing.
According to their classification, our approach falls under the non-semantics-preserving
mutation approaches category. The authors identified five different approaches in this
category. Nagai et al. [161], tested the validity of C compilers using randomly generated
programs under the assumption that longer expressions are more likely to induce
undefined behavior. Chen et al. [44] used Markov Chain Monte Carlo sampling to select
mutations with higher chance of triggering compiler bugs. Holler et al. [101] replace
random nonterminals in test cases with expansions of the same nonterminals according
to the language grammar. Garoche et al. [84] take a complete test suite as input and
mutate it to produce more failure-inducing programs. Groce et al. [89] propose a
similar approach, but with the added goal of achieving some desired property of the
mutated test suite, such as reducing its size while keeping the same coverage. It should
be noted that these approaches perform mutations over the test suite rather than on
the language implementation and are therefore suited to different use cases, such as
generating a test suite, improving coverage and detecting more faults. Instead, the LMP
resolution meta-model modifies the language implementation directly and is therefore
more suited to test suite quality assessment. Moreover, none of these contributions
involves LPLs to the best of our knowledge. Please refer to the aforementioned survey
for a full overview on the topic of language testing approaches, including those from
different categories.

6.3.1 Comparing the LMP with other Mutation Testing Techniques

Mutation testing is intuitively expensive because it requires to run many tests against
many mutants. Thus, we can distinguish between two kinds of approaches that try to
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Approach Type Benefits Limitations Compatibility

LMP meta-model
Mutant
execution

Avoids recompilation cost

Specific to language
interpreters and
requires paradigm
shift

–

Greedy
algorithms [106, 105]

Test suite
reduction

Improves recurring test
suite execution

All mutants must be
generated, compiled
and linked

✓

Test
prioritization [227, 226]

Test suite
reduction

Improves recurring test
suite execution

All mutants must be
generated, compiled
and linked

✓

Compiler
integration [111]

Mutant
execution

Nice trade-off between
source code and bytecode

All mutants must be
generated at the
same time

✗

Sufficient
operators [162, 12, 196]

Mutant
execution

Prevents the generation of
redundant and equivalent
mutants

Sufficient operators
must be defined for
each language on a
case-by-case basis

✓

Predictive mutation
testing [225]

Mutant
execution

Predicts mutation testing
results without executing
mutants

The effectiveness
depends on the
quality and the size
of the training set

✓

Second order
mutants [178]

Mutant
execution

Number of mutants is
almost halved

All mutants must be
generated at the
same time

✓

Evolutionary
algorithms [66]

Mutant
execution

Generation of effective
and hard to kill mutants

The entire test suite
must be executed
against all the
mutants

✓

Weak mutation
testing [103]

Mutant
execution

Much less test suite
execution is required

Less effective than
strong mutation
testing and not viable
for critical
applications

✓

Table 6.1: Comparison among mutation testing approaches. For each approach, the table summarizes its
benefits and limitations, as well as its capability to be used jointly with the LMP resolution
meta-model.

reduce the mutation testing cost:

1. approaches that save on the cost of running the test suite;
2. approaches that save on the cost of generating or executing mutants.

The meta-model discussed in Chapter 5 falls under the second category. In this section,
we discuss several approaches from each of the two categories and compare them with
our LMP resolution meta-model. This comparison is summarized in Table 6.1.
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Saving on test suite execution. For each mutant that cannot be killed, the entire
test suite is executed. For each mutant that can be killed, several tests are potentially
executed before running one that actually kills the mutant. The problem of minimizing
a test suite has been shown to be NP-hard [83], although there are approaches that try
to save on test suite execution with greedy algorithms [106, 105] and test prioritization
techniques [227, 226]. Compared to the LMP resolution meta-model, these techniques
have the drawback that performing a test selection still requires generating, compiling,
and linking all the mutants to execute them against the reduced test suite. However,
they are beneficial in the long run, since the reduced test suite can be used to perform
recurring builds.

Saving on mutant execution. Approaches that try to reduce the cost of generating,
compiling and executing several mutants are more numerous and diverse.

Compiler integrated mutation testing frameworks such as Major [111] directly modify
the program’s abstract syntax tree to avoid modification of the source code or of an
intermediate representation and to allow for specific optimizations. This trade-off gives
access to more semantic information while preventing the mutation of desugared code.
However, since the mutation is integrated in the compiler, all of the mutants have to be
generated at once to avoid the cost of recompilation.

Several contributions investigate selective mutation using sufficient mutation opera-
tors [162, 12, 196] to avoid the generation of redundant mutants and equivalent mutants.
Equivalent and subsumed mutants can also be prevented using refinement relations
over the model of two different mutants [13, 14]. This prevents wasting resources
and skewing the mutant adequacy score. In fact, research has shown that—even for a
random selection of the mutants—a 100 percent mutation adequacy for 10 percent of
the mutants is nearly adequate for a full mutation analysis [179]. This can be improved
upon using sufficient operators. However, the suitability of mutation operators might
depend on the programming language [179] and therefore a new set of sufficient
operators must be defined for each language.

Predictive mutation testing [225] reduces the effectiveness but improves the efficiency
of mutation testing by not executing the mutants at all. Instead, it uses machine learning
techniques to predict the mutation adequacy score: the first versions of a program and
its mutants are used as a training set, then the classification model is used to predict
whether any new mutant is killed or survived based on the same feature used to train
the model. The main limitation to this approach is its dependency to the training set: a
bigger training set can improve the effectiveness of this approach but it might reduce
its efficiency. Conversely, a smaller training set may cause excessive effectiveness loss.

Following a different approach [178], two sets of first-order mutants can be combined
to produce a set of second-order mutants to reduce the number of equivalent mutants,
which is usually relatively high for first-order mutants. Although the application of
mutation operators is not necessarily commutative, the same approach can be used to
almost halve the number of mutants in a set depending on the algorithm. However,
this technique requires that all of the first-order mutants are generated in advance and
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also the execution of an additional algorithm to produce the second-order mutants.
Evolutionary mutation testing [66] is a technique based on genetic algorithms that

measures the usefulness of a mutant according to a fitness function (the execution
matrix) to produce less but more effective mutants. The algorithm favors equivalent
and difficult to kill mutants and penalizes set of mutants that are killed by the same
tests. The problem with this approach is that the entire test suite must be executed on
all of the mutants on each generation to measure the fitness function even if a mutant
has already been killed.

Weak mutation testing [103] is a well-known technique to reduce the cost of mutation
testing. Using weak mutation testing, much less program execution is required, since
the result can be determined prior to the test completing its execution; instead, a mutant
can be killed as soon as it causes an internal state that differs from the internal state of
the base program. This technique is usually considered to be less effective than the tra-
ditional strong mutation testing (hence the term “weak”), although empirical evidence
shows that it can be used as an effective alternative of non-critical applications [163].
Moreover, it requires additional infrastructure to be able to inspect the execution state
at any time.

Compatibility with the LMP. Despite their differences, each of the approaches pre-
sented in this section work at different levels of abstractions and can often be used
jointly. Some works, such as [178], already discussed the compatibility between their
approach and other techniques in literature. In fact, the LMP resolution meta-model is
compatible with most of the presented approaches: using them in conjunction would
allow to leverage the strengths of both techniques to further improve on the cost re-
duction. Since the meta-model does not manipulate the test suite, it is compatible with
any test suite reduction technique: the main limitation of the latter is that all mutants
must be generated and compiled even for recurring execution of the test suite. This
limitation could be avoided combining test reduction techniques with the meta-model.
Any application of the LMP resolution meta-model would benefit by the definition of
sufficient operators to be used in the process depending on the language workbench.
Predictive mutation testing has no requirements over the underlying architecture and
could be used to predict the execution results of mutants generated using the LMP
resolution meta-model. However, it should be noted that the latter requires a shift in
the programming paradigm and therefore the predictive mutation testing technique
may not be applicable due to lack of a suitable training set. All the algorithms used to
generate second-order mutants discussed in [178] can be used over mutants generated
by our meta-model; a combination of the two approaches would even be more beneficial
since it prevents the necessity of generating all the mutants in advance. Evolutionary
algorithms could be combined with the LMP resolution meta-model to produce hard
to kill mutants; moreover, Domínguez-Jiménez et al.’s work [66] also uses a fitness
function based on a matrix that is very similar to the one we used to evaluate the LMP
(Sect. 5.6). Finally, weak mutation testing can be combined with the LMP resolution
meta-model thanks to the language workbenches capabilities of automatically generat-
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ing a debugger for any mutant [131]. The debugger can then be used to inspect the
internal execution state: if it differs from that of the base language then the test suite
execution is terminated. According to our comparison and as reported in Table 6.1,
the only approach that is not compatible with the LMP resolution meta-model is the
integration of mutation operators inside the compiler, because in the meta-model the
compiler is executed only once at the beginning of the process, whereas mutants are
generated later at runtime. However, it should be noted that the meta-model is based
on the capabilities of the language workbenches, that can be used to create language
interpreters and compilers with integrated mutation support.
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Conclusions

Language-oriented programming is a paradigm that can help bringing the develop-
ment activity to a wider audience, by involving domain experts through tailored and
more powerful abstractions to improve productivity and software quality. However,
language-oriented programming was ultimately deemed unsuccessful due to the innate
complexity of the language development activity. While modular development and
modern language workbenches can smooth the creation and maintenance of DSLs, we
argue that further improvement can be achieved by considering all the dimensions of
variability modeling.

In this dissertation, we discussed the dimensions we deem to be the most relevant
by presenting a design technique for SPLs in general and then focusing on LPLs in
particular to outline all the elements of a design methodology for language decompo-
sitions and language families. A primary concern when designing LPLs is asserting
the desired properties of all software assets. The assessment must consider both the
language features, whose design errors can be detected through the measurement of
specific metrics, and the test suites, whose adequacy can be evaluated using mutation
testing techniques. This cycle of continuous development and quality assessment
constitutes an iterative engineering process suited for the development of families of
DSLs in an agile context. Such an approach is enabled by meeting several requirements:
i) high degree of communication between the actors involved in the process (developer,
deployer and user), ii) low overlap in the artifacts that must be accessed concurrently
through separate compilation, iii) adequate tools for system designers and iv) a faster
mutation testing process that does not encompass re-compilation. In this dissertation,
we expressed and addressed these dimensions by means of our research questions
RQ4.1, RQ4.2, RQ5.1 and RQ5.2. By answering RQ4.1, we defined the properties of a
well-defined language decomposition—i.e., low complexity and high cohesion and
maintainability. By answering RQ4.2, we defined metrics to detect inconsistencies
between the desired properties of the language decomposition and the actual imple-
mentation of language components. By answering RQ5.1 and RQ5.2, we defined and
assessed mutation operators that can be used to evaluate the quality of the test suite
the language implementations are tested against. These results combined offer tools
and techniques to evaluate all phases of the development of an LPL, from conception
to implementation, testing and deployment.

Although this dissertation was limited to an overview of these dimensions, this
list is not exhaustive and several more dimensions should be considered in future
works. The devise pattern presented in Chapter 3 lacks support for multi-dimensional
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feature models and an empirical testing involving dynamic SPLs with model-based
dynamic software updating. The design methodology presented in Chapter 4 still lacks
dedicated specification techniques—i.e., point 4 of the design methodology according to
Parnas. The future work in this regard will involve the integration of theorem proving
techniques in the Neverlang LPLs, as well as a tool-supported language configuration
process that takes the usability of language features into account when suggesting
valid completions to the language deployer. The usability can be evaluated directly
by the language user and then used to update the FM based on this feedback, thus
increasing the amount of communication between the actors. We also plan on providing
further support for the evaluation of software artifacts during each iteration of the
engineering process by considering the well-definedness of the attribute grammar [113]
as a desirable property of the language decomposition. Moreover, the LPL development
environment should be improved with regards to usability and performance and it
should shift from being Eclipse-based to a platform-agnostic approach, for instance by
applying the language server protocol and the language server index format1.

Another dimension that can affect the quality of an LPL is that of the granularity
of language composition mechanisms. Current taxonomies focus on composition at
language level [70], but languages are too coarse grained to support language evolution
with a satisfying degree of reuse. Neverlang supports composition between modules to
yield slices and between slices to yield languages, but such composition mechanisms
lack a proper formal classification and can still be considered too coarse grained.
Based on a more refined taxonomy, the design methodology can be reviewed with a
new configuration process that takes all levels of granularity into account, so that the
variability space of the language family allows for even more valid variants.

The sentiment that drives all these future works and that was shared by this entire
dissertation is the need to support an ever-growing degree of flexibility and, eventually,
to satisfy the innate diversity of human needs while maintaining high levels of reuse,
productivity and software quality.

1https://microsoft.github.io/language-server-protocol/
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