
ADD-based Spectral Analysis of Probing Security

Maria Chiara Molteni

Department of Computer Science,

Università degli Studi di Milano, Italy

maria.molteni@unimi.it

Vittorio Zaccaria

Department of Electronics,

Information and Bioengineering

Politecnico di Milano, Italy

vittorio.zaccaria@polimi.it

Valentina Ciriani

Department of Computer Science,

Università degli Studi di Milano, Italy

valentina.ciriani@unimi.it

Abstract—In this paper, we introduce a novel exact verification
methodology for non-interference properties of cryptographic
circuits. The methodology exploits the Algebraic Decision Diagram
representation of the Walsh spectrum to overcome the potential
slow down associated with its exact verification against non-
interference constraints. Benchmarked against a standard set of
use cases, the methodology speeds-up 1.88x the median verification
time over the existing state-of-the art tools for exact verification.

Index Terms—Probing security, non-interference, Walsh spec-
trum

I. INTRODUCTION

Probing a circuit, i.e., measuring the power consumption or

EM emissions from a subset of nodes of a circuit, is a useful

technique through which an attacker can derive information

correlated with the secret manipulated by a cryptographic

circuit. A circuit is d-probing secure if, given d probes, it

is impossible to derive information about the secret values

encoded in the masks/shares. Probing security is the branch of

research that tries to devise models, tools and countermeasures

against this type of attacks [1]. Proving the security for small

circuits (gadgets) requires typically a small effort, but reasoning

about their composition is still not trivial. In fact, one of

the main problems addressed is the composability of security

properties, i.e., determining, given two probing secure gadgets

f, g, if their functional composition g◦f is probing secure itself.

Preserving security across composition might be ensured

through refreshing, i.e., keeping the secret’s shares into a

uniformly random state [2] and on the strong-non-interference

properties [3] of the circuit itself. The latter ensures that the

probabilistic distribution of the probed values does not depend

on all of the secret’s shares, but it varies only with the number

of internal probes [3]. Putting non-interference to work in proof

mechanization has been the goal of several works in the recent

past [3]–[5] while later developments concerned the realistic

application to circuits that might leak even through transient

glitches on the circuit’s internal nodes [6], [7].

In this paper, we address the problem of tooling needed for

the verification of non-interference properties. To contextualize

our work, note that existing heuristic tools such as maskVerif

[8] can be helpful in verifying if a fixed configuration instance

of a gadget is d-probing secure or d strong-non-interferent

(d-SNI). Notwithstanding the efficiency of maskVerif, its de-

velopers argue that more precise approaches remain impor-

tant, when verification with more efficient methods fail [8].

Therefore, the importance of studying exact techniques is quite

evident. A few other approaches have been proposed in the

past to address this verification problem through some kind of

approximation [9], [10], while existing exact approaches either

suffer from size and exponential time complexity [11] or have

not been tested on d > 3 [12].

In this paper, we introduce an Algebraic Decision Diagram

(ADD)-based [13] methodology for the exact validation of

circuits against required strong non-interference properties. To

our knowledge, the methodology is faster than the state of

the art exact methods proposed in the literature and builds on

decades of work on BDD/ADD libraries. Benchmarked against

a standard set of use cases (taken from the maskVerif [8]

repository), we show that the proposed exact tool is able to

compete with heuristic methods as well.

The organization of this paper has the following structure.

Section II presents the theoretical background and the state

of the art of the problem at hand while Section III presents

the proposed methodology. Finally, Section IV compares our

approach with existing methods (exact and heuristic) while

Section V concludes by highlighting the future work.

II. BACKGROUND AND STATE OF THE ART

Let us consider a generic vector Boolean function:

φ(x1, . . . , xn) : F
n
2 → F

m
2

where some of the values xi are sensitive (i.e., they have been

computed using a secret). A side-channel attack consists of

measuring the power consumption of internal nodes of the

circuit (e.g., through probes) and recovering, through some kind

of correlation analysis, some or all the sensitive values that

could have produced such measure.

Mitigation against a side-channel attack are designed by

splitting each sensitive value xi into d values ai = {ai,j}j∈1...d

such that
∑

j ai,j = xi; these d values are called shares.

In principle, this is done by using d − 1 auxiliary random

values (aka masks) and, all d shares ai,j are obtained, the

correlation of each share with the sensitive value xi is null

[1]. The implementation of φ must convert in order to produce

the output with a set of shares much like the original sensitive

values. The computation of each output φi is thus split into a

set of d vector functions fi = {fi,j}j∈1...d such that

φ(x1, . . . , xn) =
∑

j

fj(A1, . . . , An), Ai ⊆ {ai,1, . . . ai,d}

where each fj is called an output share of φ and it must be

impossible to derive the value of φ unless one obtains all d

output shares.

In the probing-security attack model, aside from regular

output shares fi, attackers can observe a group of the internal

probed values of the circuit; we model these as additional out-

puts P = {p1, . . . , p|P |} where each pi is a function of the input

shares. A mitigation against a probing attack ensures that none

of the pi are correlated with the original sensitive values. To

design such countermeasures designers introduce randomness,

i.e., an additional group of inputs R = {r1 . . . r|R|} which are

uniformly random summed to the internally computed values

of the function so as to make each p and f not correlated with

the sensitive values. The resulting correlation between each

f and p with any a and r is critical to determine whether

the circuit is probing secure. It has been shown that this data

is derivable exactly from the Walsh matrix of the combined

vectorial function of each f and p [14], [15].

Given a vectorial Boolean function f : Fn
2 → F

m
2 , we define

its Walsh transform as a 2m×2n matrix f̂ whose elements are:

f̂ω,α =
∑

x∈F
n

2

(−1)ω
⊺f(x)⊕α⊺x (1)

where ω ∈ F
m
2 , α ∈ F

n
2 being the binary encoding of the row

and column indices, called spectral coordinates (or sometimes

masks).

These matrices encode the correlation information between

input variables’ XOR-combinations and the corresponding out-

put ones, which can be readily computed [16]: Wf = 2−nf̂ .

Most importantly, a function is d-probing secure if its corre-

lation matrix presents null values in correspondence of any

sensitive value and the combination of up to d probes and

regular outputs.

A. Composition

When functions f, g at hand fall into certain classes, it is

also possible to reason about the d-probing security of their

functional composition g ◦ f .

A function f is d-non interferent (abbreviated as d-NI) if,

when given a total of s outputs and internal probes, s ≤ d

implies a dependency with maximum s input shares. A function

f is strongly d-non interferent (d-SNI) if s ≤ d implies a

dependency with maximum i input shares, where i is the

number of internal probes, among those placed [4]. In general,

a d-NI or d-SNI is a d-probing secure function but not vice

versa. Besides d-NI and d-SNI do not always compose into a

d-NI function but it is possible to show that, if f is d-SNI and

g is d-NI (d-SNI) then the composition is d-NI (d-SNI).

1) Example of composition: Figure 5 shows the structure of

the composition of two functions f and g where f is d-NI and

g is d-SNI; f refreshes its input a with two random bits rf :

of (a0, a1, a2, r0, r1) = [a0 ⊕ r0 ⊕ r1, a1 ⊕ r0, a2 ⊕ r1]

and has a probe at location pf = a0 ⊕ r0. On the other hand,

g(a, b, rg) is the ISW multiplication [1] consuming 3 random

bits rg to refresh its outputs and has a single probe pg = a2∧b1.

g f aog

rf

pf

rg

pg

of

Fig. 1: The composition pattern of f (d-NI) and g (d-SNI)

derived from [2].

0 0 0 0 0 0 0 0 0 0 . . . ρg

0 0 0 0 1 1 1 1 2 2 . . . ρf

0 1 2 3 0 1 2 3 0 1 . . . α

πf πg ωg

0 0 0 1

0 0 1

0 0 2

0 0 3 1 1

0 1 0 1 1 1 1 1 1 1

0 1 1

0 1 2

0 1 3 1 1 1 1 1 1 1 1 1 1

1 0 0 1

1 0 1

1 0 2

1 0 3 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1

1 1 2

1 1 3 1 1 1 1 1 1 1 1 1 1

Fig. 2: Compact representation of the correlation matrix of

the example (greek letters indicate the spectral coordinate

associated with each variable, i.e., α is the spectral coordinate

associated with variable a and so on). White areas indicate

where the composition g • f must have zero values to meet

d-NI hypotheses. Circled black 1 indicates the witness of this

construction being not d-NI.

Figure 2 shows the compact representation of a correlation

matrix of the composition (g ◦ f) with the specified two

probes where a 1 indicates a non-null correlation between a

specific combination of outputs and inputs, zero otherwise (for

a definition of compact representation of correlation matrix see

[11]). We note that there is a non-null correlation between row

[1, 1, 0] and column [0, 0, 3] which indicates that one needs only

two probed values to get three shares; h is thus not 2-NI.

B. Tooling

There are a number of automated approaches for verifying

security of masked implementations. maskVerif [8] is an

approach based on probabilistic information flow for proving

security of shared (or masked) implementations. It applies

semantic-preserving simplifications to the symbolic represen-

tation of the leakages, until it does not depend on secrets or it

fails. The algorithm is sound and complete for linear systems

but does not completely eliminate false negatives for non-linear

circuits. In [9] Bloem et Al. propose an approximated method

based on Fourier coefficients. Their tool primarily applies

to the first-order circuits and does not consider strong non-

interference. An attempt to exactly model the joint probability

distributions through ROBDDs has been proposed in [12] with

the tool named SILVER, but it is not clear how much this

approach scales for d > 3. Authors of [11] try to overcome

this limit by arguing for an exact automated approach based

on Walsh transforms; in particular they propose an approach to

represent Walsh matrices as list of lists which, however, gives

exponentially higher analysis times. In this paper, we show that

Binary Decision Diagrams (BDDs) [17] and Algebraic Decision

Diagrams [13] can be used to improve the performance issues

of exact, correlation-based approaches and provide a natural

way to express the queries related to non-interference.

C. Binary Decision Diagrams

In this section we briefly review two data structures based on

decision diagrams. We first give some definitions and properties

of standard Binary Decision Diagrams (BDDs) and then we

describe their generalization to Algebraic Decision Diagrams

(ADDs).

A Binary Decision Diagram (BDD) [17] on a set of Boolean

variables {x1, . . . , xn} is a rooted, connected direct acyclic

graph, where each internal node N is labeled by a Boolean

variable xi and it has two outgoing edges, the 0-edge and the

1-edge, pointing to two nodes, i.e., the 0-child and the 1-child

of node N , respectively. Terminal nodes (or leaves) are labeled

with a constant value 0 or 1. Usually, binary decision diagrams

are exploited to represent Boolean functions.

A BDD is ordered (OBDD) if there exists a total order <

over the set of variables such that if an internal node is labeled

by xi, and its 0-child and 1-child have labels xi0 and xi1 ,

respectively, then xi < xi0 and xi < xi1 . The choice of the

variable order can have a dramatic impact on the size of the

BDD. A OBDD is reduced if there exist no nodes whose 1-

child is equal to the 0-child and there do not exist two distinct

nodes that are roots of isomorphic subgraphs. A reduced and

ordered BDD is called ROBDD. Note that, usually, the term

BDD is used instead of the correct term ROBDD.

Many operations on Boolean functions can be efficiently im-

plemented by ROBDD’s manipulations. For example Boolean

operations (AND, OR, EXOR, etc.) between two ROBDDs g1
and g2 have complexity O(|g1| · |g2|), and the negation of a

function f has constant complexity O(1).
Note that the representation of Boolean functions with ROB-

DDs allows to perform operations that do not depend on the

number of inputs that are equal to 1 or 0; for this reason,

algorithms based on ROBDDs are usually defined implicit

algorithms. For functions with logical structure, a BDD rep-

resentation can be exponentially smaller than the explicit one.

An Algebraic Decision Diagram (ADD) [13] can be de-

scribed as a BDD with a generalized set of constant values.

Therefore, an ADDs is the representation of a function f :
{0, 1}n → S, where S is an arbitrary set. When S is {0, 1} the

ADD is a classical BDD. Due to the implicit nature of BDDs

!"#$!%

*$+%

,$+%

-$+%

.$+/

01+22131
!

+

.

01+22131
!

+

.

4

5

5

4

5

4

Fig. 3: The DOM-1 multiplication circuit.

and ADDs, in this paper we exploit these data structures for

representing sparse matrices.

Several packages exist for efficiently manipulating decision

diagrams. In this paper we use the package CUDD [18], which

supports both BDD and ADD representation.

III. METHODOLOGY

The overarching goal of this paper is to present a new

methodology that facilitates the analysis of a circuit description,

in order to provide a proof that it is strongly d-non interferent

(d-SNI), i.e., given s outputs as long as s ≤ d implies a

dependency with maximum i input shares, where i is the

number of internal probes [4].

From a high level point of view (see Figure 5), the first step

of the proposed methodology is a reading phase of a gate-level

circuit description, which is annotated with sensitive variables,

sensitive outputs, and their corresponding shares. The descrip-

tion is then "unfolded" to produce all the intermediate probes

that can be derived. Moreover, an overall Walsh transform is

computed for any combination of either outputs/probes (1).

Then, the derived Walsh transform is compressed into a com-

pact representation exploiting Algebraic Decision Diagrams (2).

To perform the interference check, the latter is then multiplied

by a relation vector, which has non-null values only in the

regions where the Walsh transform must be zero (3, see also

Figure 2). If the resulting value is not zero then it means

that the function is not d-SNI; otherwise we pass to the next

output/probe combination. The following paragraphs show a

detailed description of the above steps.

A. Reading and "unfolding" the circuit description

The tool reads-in a standard intermediate language (ILANG)

format as produced by YOSYS tool [19]; Figure 4 shows part

an example annotation for the Domain Oriented Masking AND

[20] protected at the first order (whose circuit is shown in

Figure 3).

The description is extended with a Maskverif compliant

set of annotations for identifying sensitive inputs (e.g., XxDI),

outputs (e.g., QxD0) and additional random bit (ZxDI). Being

an implementation protected at the second order, each sensitive

value (e.g., XxDI) is encoded in two shares.

"Unfolding" the circuit means deriving the expression of all

the possible intermediate nodes in the circuit. This is of course

Fig. 4: Annotated ILANG file

1

Circuit description
(ILANG)

3

Relation matrix
(ADD)

2

WALSH
TRANSFORM

4

INTERFERENCE
CHECK

Fig. 5: The methodology proposed in this paper.

a potentially exponential operation whose time increases with

the levels of the circuit. Practically, at least for the considered

benchmarks, see Section IV, the complexity is still manageable.

This part produces a C++ file which builds the BDDs for

all the outputs/probes that have been found (by exploiting

the C++ bindings of the CUDD library). The idea is that

the corresponding manager will be able to build an internal

representation exploiting common subexpressions, especially

when these correspond to actual factors and co-factors of

another function already parsed.

B. Computing the Walsh Spectrum and the corresponding

relation matrix

The Walsh transform of each base output/probe is computed

through the Fujita Walsh transform [21]; the algorithm works

on the BDD representation of the function and returns an

ADD whose variables are the bits associated with the spectral

coordinates. In principle, one could use this transform to work

on any combination of output/probes. However, we have found

the performance of the algorithm suboptimal with respect to

a simpler computation which exploits the known fact that

the row of the correlation matrix associated with multiple

base output/probes is proportional to the convolution of the

source rows when these are represented in suitable associative

container data types. While state of the art solutions are based

on list of lists [11], in this paper we propose to adopt hash-based

containers (in C++ parlance these are called unordered maps).

Operations on such containers are O(1) on average and allow

fast insertion/update times of the result of the convolution. The

data is then converted back in an ADD for further processing.

C. Interference check

The machinery associated with BDD/ADDs allows to

quickly prove predicates over the data itself; in particular,

one can express and solve existentially quantified predicates,

over the convolution W computed above, and have the ADD

manager work out the result. The interference check can be

defined as a suitable predicate of this form:

∃α.T (α, ρ) ∧W (α, ρ) ∧ (ρ = 0)

where α and ρ are the spectral coordinates of sensitive values

and refresh values, T (α, ρ) is a predicate matrix which is

equal to 1 only where the convolution W is expected to be

0 (essentially the white areas in Figure 2). If the predicate

evaluates to true, then it means that the function is not d-SNI.

If the predicate is false then it means that, for this particular

combination of output/probes, no vulnerability has been found.

However, the search must continue for combinations of up

to d among outputs and probes for determining whether the

function is d-SNI. To speed up the search it has already

been noted [8] that it is useful to start from combinations

of the maximum size and evaluate simpler combinations if

those are not found vulnerable; this is because there is a

low probability that multiple output/probes mask out single

output/probe vulnerabilities.

IV. EXPERIMENTAL RESULTS

This experimental result section has a threefold goal; i) to

compare the performance of the proposed methodology with the

state of the art exact method in [11], ii) to compare alternative

implementations of the proposed methodology with varying

degree adoption of BDD/ADD, and iii) to show a comparison

with other current state of the art approaches.

The experiments are based on the benchmarks from the

maskVerif repository [8]; these benchmarks are a set of prim-

itive cryptographic gadgets implemented to prevent probing

attacks. In particular, for the first level of security, we test the

Threshold Implementation algorithm (ti-1 in Tables I and II)

[22], Trichina (trichina-1) [23] and ISW multiplication (isw-1)

[1]; DOM (dom-*) [20] is tested from the first to the fourth

level, while the implementation of probing-protected Keccak

algorithm (keccak-*) [24] from the first to the third. We run our

experiments on a single core Intel Celeron N3150 at 1.601GHz.

First we compare the performance of our methodology with the

implementation proposed in [11], where the authors exploited

a lists of lists (LIL) data structure to store the Walsh spectrum

and compute both the convolution and the verification over

such lists. Table I, shows a comparison between LIL and our

method (maps improved or MAPI). The first column refers to

the tested security level, while the names of gadgets are listed

in the second column; third and fourth columns report the

time taken for the implementation with LIL and with MAPI

respectively; the last column shows the speed-up of MAPI,

computed as the ratio between the two previous columns. The

overall execution time and the breakout of the convolution and

10
0

10
2

10
4

10
6

10
8

10
10

d
o
m

−
1

d
o
m

−
2

d
o
m

−
3

d
o
m

−
4

is
w

−
1

k
e
c
c
a
k
−

1

k
e
c
c
a
k
−

2

k
e
c
c
a
k
−

3

ti
−

1

tr
ic

h
in

a
−

1

benchmark

lo
g
1
0
(o

v
e
ra

ll
ti
m

e
 [

m
s
])

type

LIL

MAPI

10
0

10
2

10
4

10
6

10
8

10
10

d
o
m

−
1

d
o
m

−
2

d
o
m

−
3

d
o
m

−
4

is
w

−
1

k
e
c
c
a
k
−

1

k
e
c
c
a
k
−

2

k
e
c
c
a
k
−

3

ti
−

1

tr
ic

h
in

a
−

1

benchmark

lo
g
1
0
(c

o
n
v
o
lu

ti
o
n
 t

im
e
 [

m
s
])

type

LIL

MAPI

10
0

10
2

10
4

10
6

10
8

10
10

d
o
m

−
1

d
o
m

−
2

d
o
m

−
3

d
o
m

−
4

is
w

−
1

k
e
c
c
a
k
−

1

k
e
c
c
a
k
−

2

k
e
c
c
a
k
−

3

ti
−

1

tr
ic

h
in

a
−

1

benchmark

lo
g
1
0
(v

e
ri

fi
c
a
ti
o
n
 t

im
e
 [

m
s
])

type

LIL

MAPI

Fig. 6: Comparison of overall (left), convolution (middle) and verification (right) times between the method proposed in [11]

(LIL) and the proposed method (MAPI)

TABLE I: Results of the comparison between our methodology

and lists of lists implementation. Values in third and fourth

columns are in seconds.

sec. lev. gadget LIL MAPI speed-up

1

ti-1 0.00367 0.00194 1.89

trichina-1 0.00248 0.00129 1.93

isw-1 0.00276 0.00157 1.76

dom-1 0.00272 0.00145 1.87

Keccak-1 0.05506 0.02633 2.09

2
dom-2 0.02478 0.02731 0.91

Keccak-2 106.60330 2.39039 44.6

3
dom-3 2.38042 3.29725 0.72

Keccak-3 1482378.91197 351.71293 4214.74

4 dom-4 756.00070 740.17401 1.02

median 1.88

verification operations is presented in Figure 6. Note that the y

axis is logarithmic so the breakout is not meant to be additive

as one can intuitively think. Numerically, we can note:

• On convolution, the methods are comparable with a slight

advantage for MAPI, given perhaps the faster average

access time.

• On verification, the use of ADDs by MAPI allows a

significant speedup which benefits the overall execution

time.

• On the overall median, MAPI can provide a speedup of

1.88x with respect.

• Whenever the speedup is lesser than one (in only two over

ten cases) the difference is less than 30%.

• For Keccak, which is a benchmark of greater complexity

with respect the other ones, MAPI shows a speedup of at

least 3 orders of magnitude.

One could think that applying ADDs also for convolution

would imply a better performance. To answer this question

we evaluate our methodology with two variants, one in which

both computation and verification is done only with hash maps1

(MAP) and the case in which both convolution and verification

is done with ADDs (FUJITA, using the Fujita method [21]).

1https://en.cppreference.com/w/cpp/container/unordered_map

TABLE II: Evaluation of different implementation choices.

Values from third to sixth columns are in seconds.

sec. lev. gadget LIL FUJITA MAP best method

1

ti-1 1.89 6.70 1.94 1.89

trichina-1 1.93 10.83 1.96 1.93

isw-1 1.76 9.08 1.79 1.76

dom-1 1.87 9.74 1.84 1.84

Keccak-1 2.09 1.37 2.10 1.37

2
dom-2 0.91 2.44 0.84 0.84

Keccak-2 44.6 5.19 30.89 5.19

3
dom-3 0.72 1.75 0.57 0.57

Keccak-3 4214.74 34.76 1629.05 34.76

4 dom-4 1.02 1.43 0.56 0.56

median 1.88 5.94 1.89 1.80

Table II reports the speed-ups of our method (MAPI) with

respect to all the others (LIL, MAP, FUJITA) while the absolute

execution times are shown in Figure 7. Overall MAPI’s mixing

of hash maps and ADDs improves with respect to all other

methods (median 1.8x), except for the DOM benchmark. We

suppose that this behaviour is due to Walsh matrices being very

sparse and thus not requiring a significant effort in verification.

We conclude by giving in Table III a comparison of MAPI

with other state-of-art tools, and in particular maskVerif [8],

the approximate technique proposed by Bloem et Al. in [9]

(called Bloem’s in the Table) and SILVER [12]. Being exact,

MAPI implies obviously more computation time respect the

first two heuristic methods, but not so much more, especially

for Keccak-3. Instead, the comparison with SILVER is diffi-

cult, due to the different choice of benchmarks; in this case,

for DOM algorithm, SILVER and MAPI seem to need close

processing time. Note that some results in Bloem’s column are

marked by a *, because the benchmarks provided for their tool

in [9] only concern the verification of one secret instead of

all 5 secrets of elaborated by the gadget; also, their technique

verifies probing security and not the strong non-interference.

V. CONCLUSIONS

In this work, we propose a new methodology that allows to

exactly verify strong-non-interference properties of a gadget;

10
0

10
2

10
4

10
6

10
8

10
10

d
o
m

−
1

d
o
m

−
2

d
o
m

−
3

d
o
m

−
4

is
w

−
1

k
e
c
c
a
k
−

1

k
e
c
c
a
k
−

2

k
e
c
c
a
k
−

3

ti
−

1

tr
ic

h
in

a
−

1

benchmark

lo
g
1
0
(o

v
e
ra

ll
ti
m

e
 [

m
s
])

type

FUJITA

LIL

MAP

MAPI

Fig. 7: Comparison of overall computation times of the pro-

posed method (MAPI) and other implementations analysed in

the experimental results.

TABLE III: Comparison between MAPI and the state-of-art

tools: maskVerif [8], Bloem’s [9] and SILVER [12]. Values

from third to sixth columns are in seconds.

heuristic exact

sec. lev. gadget maskVerif Bloem’s SILVER MAPI

1

ti-1 0.01 ≤1 – 0.0019

trichina-1 0.01 ≤1 – 0.0013

isw-1 0.01 ≤1 – 0.0016

dom-1 0.01 ≤1 0.0 0.0015

Keccak-1 0.01 ≤1 – 0.0263

2
dom-2 0.01 ≤1 0.0 0.0273

Keccak-2 0.2 ≤10* – 2.3904

3
dom-3 0.04 ≤4 3.7 3.2972

Keccak-3 41 ≤240* – 351.7129

4 dom-4 0.34 ≤120 – 740.1740

our approach combines both hash maps and ADDs and pro-

vides, on a standard set of use cases, a median speed-up of

1.88x against other exact methods. Timing-wise, the results are

also not dramatically far from non-exact approaches appeared

in literature. We reserve for the future the more detailed

inspection about the improvement’s gap between Keccak and

DOM algorithms with MAPI method. Another possible future

work is the application of our tool to more complex gadgets,

with higher security levels and by exploiting parallelization.

Moreover, also we expect to include the verification of other

probing security properties (e.g., PINI [25]).

REFERENCES

[1] Y. Ishai, A. Sahai, and D. Wagner, “Private Circuits: Securing Hardware
against Probing Attacks,” in Advances in Cryptology — CRYPTO 2003,
ser. L.N. in C.S. Springer, 2003, pp. 463–481.

[2] J.-S. Coron, “Higher Order Masking of Look-Up Tables,” in Advances

in Cryptology — EUROCRYPT 2014, ser. L.N. in C.S. Springer, 2014,
pp. 441–458.

[3] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub,
and R. Zucchini, “Strong Non-Interference and Type-Directed Higher-
Order Masking,” in Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, ser. CCS ’16. New York,
NY, USA: ACM, 2016, pp. 116–129.

[4] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, and B. Grégoire,
“Compositional Verification of Higher-Order Masking: Application to a
Verifying Masking Compiler,” IACR Crypt. ePrint Arc., vol. 2015, p. 506,
2015.

[5] S. Belaïd, D. Goudarzi, and M. Rivain, “Tight Private Circuits: Achieving
Probing Security with the Least Refreshing,” IACR Crypt. ePrint Arc., no.
rn 439, 2018.

[6] G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, F.-X. Standaert, and P.-Y.
Strub, “Parallel implementations of masking schemes and the bounded
moment leakage model,” Lecture Notes in Computer Science, vol. 10210
LNCS, pp. 535–566, 2017.

[7] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F.-X. Standaert,
“Composable Masking Schemes in the Presence of Physical Defaults and
the Robust Probing Model,” IACR Crypt. ePrint Arc., no. rn 711, 2017.

[8] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-
X. Standaert, “maskVerif: Automated analysis of software and hardware
higher-order masked implementations,” IACR Crypt. ePrint Arc., no. rn
562, 2018.

[9] R. Bloem, H. Gross, R. Iusupov, B. Könighofer, S. Mangard, and
J. Winter, “Formal Verification of Masked Hardware Implementations
in the Presence of Glitches,” in Advances in Cryptology — EUROCRYPT

2018, ser. L.N. in C.S. Springer, 2018, pp. 321–353.
[10] L. D. Meyer, B. Bilgin, and O. Reparaz, “Consolidating Security Notions

in Hardware Masking,” IACR Transactions on Cryptographic Hardware

and Embedded Systems, pp. 119–147, May 2019.
[11] M. C. Molteni and V. Zaccaria, “On the spectral features of robust probing

security,” IACR Transactions on Cryptographic Hardware and Embedded

Systems, pp. 24–48, Aug. 2020.
[12] D. Knichel, P. Sasdrich, and A. Moradi, “Silver – statistical independence

and leakage verification,” in Advances in Cryptology – ASIACRYPT 2020.
Cham: Springer International Publishing, 2020, pp. 787–816.

[13] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, “Algebraic Decision Diagrams and Their Applications,”
Formal Methods Syst. Des., vol. 10, no. 2/3, pp. 171–206, 1997.

[14] G. Z. Xiao and J. L. Massey, “A spectral characterization of correlation-
immune combining functions,” IEEE Transactions on Information The-

ory, vol. 34, no. 3, pp. 569–571, May 1988.
[15] C. Carlet, “Vectorial Boolean Functions for Cryptography,” in Boolean

Models and Methods in Mathematics, C.S., and Engineering. Cambridge:
Cambridge University Press, 2010, pp. 398–470.

[16] J. Daemen, R. Govaerts, and J. Vandewalle, “Correlation matrices,” in
Fast Software Encryption, ser. L.N. in C.S. Springer, 1995, pp. 275–
285.

[17] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[18] F. Somenzi, “Cudd: Cu decision diagram package-release 2.4. 0,” Uni-

versity of Colorado at Boulder, 2012.
[19] C. Wolf, “Yosys open synthesis suite,” http://www.clifford.at/yosys/.
[20] H. Gross, S. Mangard, and T. Korak, “Domain-oriented masking: Com-

pact masked hardware implementations with arbitrary protection order,”
in Proceedings of the 2016 ACM Workshop on Theory of Implementation

Security, ser. TIS ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 3.

[21] M. Fujita, J. Chih-Yuan Yang, E. Clarke, Zudong Zhao, and P. McGeer,
“Fast spectrum computation for logic functions using binary decision
diagrams,” in Proceedings of IEEE International Symposium on Circuits

and Systems - ISCAS ’94, vol. 1. London, UK: IEEE, 1994, pp. 275–278.
[22] S. Nikova, V. Rijmen, and M. Schläffer, “Secure Hardware Implemen-

tation of Nonlinear Functions in the Presence of Glitches,” Journal of

Cryptology, vol. 24, no. 2, pp. 292–321, Apr. 2011.
[23] E. Trichina, T. Korkishko, and K. H. Lee, “Small size, low power,

side channel-immune aes coprocessor: Design and synthesis results,” in
Advanced Encryption Standard – AES. Berlin, Heidelberg: Springer,
2005, pp. 113–127.

[24] H. Gross, D. Schaffenrath, and S. Mangard, “Higher-order side-channel
protected implementations of keccak,” in 2017 Euromicro Conference on

Digital System Design (DSD), 2017, pp. 205–212.
[25] D. Goudarzi, T. Prest, M. Rivain, and D. Vergnaud, “Probing security

through input-output separation and revisited quasilinear masking,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2021, no. 3, p. 599–640, Jul. 2021. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8987

