
Operational State Complexity under Parikh
Equivalence?

(Extended Abstract)

Giovanna J. Lavado1, Giovanni Pighizzini1, and Shinnosuke Seki2,3

1 Dipartimento di Informatica, Università degli Studi di Milano, Italy
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Abstract. We investigate, under Parikh equivalence, the state complex-
ity of some language operations which preserve regularity. For union,
concatenation, Kleene star, complement, intersection, shuffle, and rever-
sal, we obtain a polynomial state complexity over any fixed alphabet, in
contrast to the intrinsic exponential state complexity of some of these
operations in the classical version. For projection we prove a superpoly-
nomial state complexity, which is lower than the exponential one of the
corresponding classical operation. We also prove that for each two de-
terministic automata A and B it is possible to obtain a deterministic
automaton with a polynomial number of states whose accepted language
has as Parikh image the intersection of the Parikh images of the lan-
guages accepted by A and B.

1 Introduction

The investigation of the state complexity of regular languages and their oper-
ations is extensively reported in the literature (e.g., [11,14,15]). In a previous
work [9], we proposed to extend that investigation by considering the classical
notion of Parikh equivalence [10], which has been extensively studied in the liter-
ature (e.g., [1,6]) even for the connections with semilinear sets [7] and with other
fields such as Presburger Arithmetics [5], Petri Nets [3], logical formulas [13], and
formal verification [12]. We remind the reader that two words over a same alpha-
bet Σ are Parikh equivalent if and only if they are equal up to a permutation
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of their symbols or, equivalently, for each letter a ∈ Σ, the number of occur-
rences of a in the two words is the same (the vector ψ(w) consisting of these
numbers is also called Parikh image of a word w ∈ Σ∗). This notion extends
in a natural way to languages (two languages L1 and L2 are Parikh equivalent,
that is ψ(L1) = ψ(L2), when for each word in L1 there is a Parikh equivalent
word in L2 and vice versa) and to formal systems which are used to specify lan-
guages as, for instance, grammars and automata. A well-known result by Parikh
states that context-free and regular languages are indistinguishable under Parikh
equivalence [10]. More precisely, the Parikh image of a context-free language is a
semilinear set and from each semilinear set a Parikh equivalent automaton can
be immediately obtained.

In particular, in [9] we treated the conversion of one-way nondeterministic
finite automata (nfas) into Parikh equivalent one-way deterministic finite au-
tomata (dfas). We proved that the state cost of this conversion is smaller than
the exponential cost of the classical conversion. In fact, we showed that from

each n-state nfa we can build a Parikh equivalent dfa with eO(
√
n·lnn) states.

Furthermore, this cost is tight. Quite surprisingly, this cost is due to the unary
words in the language, i.e., to the words consisting only of occurrences of a same
symbol. In fact, if the given nfa accepts only words containing at least two
different letters then the cost reduces to a polynomial.

Motivated by the interest in regular languages, here we continue the same
line of research by considering basic operations on regular languages and on
dfas. We reformulate under Parikh equivalence some classical questions on the
state complexity of operations as, for instance, the following: given two arbitrary
dfas A and B of n1 and n2 states, respectively, how many states are sufficient
and necessary in the worst case (as a function of n1 and n2) for a dfa to accept
the concatenation of the languages accepted by A and B? For this question
an exponential cost is known [15]. Using our above mentioned bound on the
conversion of nfas into Parikh equivalent dfas, this exponential bound can be
reduced, under Parikh equivalence, to a superpolynomial upper bound. In this
paper we further reduce it to a polynomial, namely we show that there exists a
dfa with a number of states polynomial in n1 and n2 accepting a language that
is Parikh equivalent to the concatenation of the languages accepted by A and B.
We obtain a similar result for the Kleene star operation while, for the union, the
cost is polynomial even in the classical case. We also present results for other
operations as intersection, complement, reversal, shuffle and projection.

Concerning intersection and complement, we observe that these operations
do not commute with Parikh image, e.g., the Parikh image of the complement of
a language L does not necessarily coincide with the complement of the Parikh
image of L. However, semilinear sets are closed under intersection and comple-
ment [4]. Hence, we can formulate state complexity questions about intersections
and complements of Parikh images of languages accepted by given dfas. We
solve the question for the intersection by proving, in a constructive way, that for
each two dfas there exists a dfa of polynomial size accepting a language whose
Parikh image is the intersection of the Parikh images of the languages accepted
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by the two given dfas, while the analogous question for the complement will be
the subject of future investigations.

2 Regular Operations under Parikh Equivalence

In this section, we consider problems in the following general form:

Problem 1. For dfas A and B of n1 and n2 states, respectively, solve the follow-
ing problems:

1. For a unary operation f , how small can we make a dfa M that is Parikh
equivalent to f(L(A))?

2. For a binary operation g, how small can we make a dfa M that is Parikh
equivalent to g(L(A), L(B))?

Inspecting various regular operations we obtain the following results.

Theorem 2. Let A and B be two dfas with n1 and n2 states, respectively.
Then:

1. There exist two dfas both with n1n2 states that accept languages (Parikh)
equivalent to L(A) ∪ L(B) and to L(A) ∩ L(B).

2. There exists a dfa with n1 states that accepts a language (Parikh) equivalent
to the complement of L(A).

3. There exists a dfa with a number of states polynomial in n1 and n2 accepting
a language Parikh equivalent to the concatenation and to the shuffle of L(A)
and L(B).

4. There exists a dfa with a number of states polynomial in n1 accepting a
language Parikh equivalent to L(A)∗.

5. There exists a dfa with n1 states that accepts a language Parikh equivalent
to the reversal of L(A).

6. There exists a dfa with eO(
√
n1·lnn1) states that accepts a language Parikh

equivalent to the projection PΣ′(L(A)) of L(A) over Σ′ ⊆ Σ.

All these bounds are asymptotically tight.

We shortly comment the above results.
The state complexity of union and intersection is in the low order n1n2 even

in the conventional sense over both unary and nonunary alphabets. Moreover, it
is known to be tight already over a unary alphabet [14]. Similar considerations
hold for the complement.

Unlike union or intersection, both concatenation and star are known to cost
an exponential number of states on dfas. In fact, the number of states which is
necessary and sufficient in the worst case for a dfa to accept the concatenation
of an n1-state dfa language and an n2-state dfa language over a binary alphabet
is (2n1 − 1)2n2−1 [15]; over a unary alphabet, the cost decreases to n1n2 [14].
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As for star of an n-state dfa language, the tight bound is 2n−1 + 2n−2 over a
binary alphabet, whereas it is (n− 1)2 + 1 over a unary alphabet [15].

For concatenation, we could first build an nfa with n1 + n2 states and then
according to the superpolynomial conversion of nfas into Parikh equivalent dfas
presented in [9] we could convert it into a Parikh equivalent dfa with a super-
polynomial numbers of states. However, we give an ad hoc construction which
produces a dfa with a polynomial number of states. We do the same for star.
In the conventional sense, shuffle involves the exponential cost 2n1n2−1 and this
bound is tight [2]. Since the Parikh image of the shuffle of two languages is equal
to that of their concatenation, the cost for the shuffle under Parikh equivalence
is the same as for concatenation.

Reversal is also expensive for dfas. In fact, the tight bound 2n is known
for reversal [15]. Under Parikh equivalence, however, nothing need be said since
Parikh image is invariant under this operation.

Given a word w ∈ Σ∗, the projection of w over an alphabet Σ′ ⊆ Σ, is the
word PΣ′(w) obtained by removing from w all the symbols which are not in Σ′.
We can extend this notion to languages in a standard way. It is easy to see
that projection preserves regularity. However, transforming a dfa A of n states
into a dfa for the projection can require a number of states that is exponential
in n [8]. Even in this case, the bound can be reduced if we want to obtain a Parikh
equivalent dfa: from A we can obtain an nfa of n states for the projection, and

then we can transform it into a Parikh equivalent dfa of eO(
√
n·lnn) states. By

using a projection over a unary alphabet we can show that this bound cannot
be reduced.

3 Intersection and Complement, Revisited

We consider one more time the intersection and the complement. In fact, the
noncommutativity of those operations with the Parikh mapping brings us a
second problem of interest. The noncommutativity in the case of intersection is
illustrated in the inequality ψ(a+b+∩b+a+) 6= ψ(a+b+)∩ψ(b+a+); the left-hand
side is the empty set, while the right-hand side is the linear set N × N. In the
case of complement the reader may consider the language (ab)∗.

Note that each of the other operations examined so far is either commutative
with the Parikh mapping (i.e., union and projection) or not defined naturally
over the set of nonnegative integer vectors (i.e., concatenation, star, shuffle, and
reversal). The problem of interest asks: given two dfas A and B of n1 and
n2 states, respectively, how small can we make a dfa whose Parikh image is
equal to ψ(L(A)) ∩ ψ(L(B))? We can formulate a similar problem in case of
the complement. The fact that the Parikh image of a language accepted by an
nfa is semilinear and the closure property of semilinear sets under intersection
and complement [4] makes these problems meaningful. We solve the problem for
intersection, leaving the one for complement for future investigations.

Over a unary alphabet, the problem is degenerated into the problem ad-
dressed in Theorem 2(1) because over such an alphabet, intersection commutes
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with the Parikh mapping. Therefore, in the following, we examine the problem
over a nonunary alphabet, and solve it by showing that a polynomial number of
states in n1 and n2 are sufficient. The proof consists of revisiting Ginsburg and
Spanier’s proof [4,7] of the closure property of semilinear sets under intersection
with a careful analysis of the size of the resulting semilinear set.

Theorem 3. Given two dfas A and B with n1 and n2 states, respectively, there
exists a dfa of a polynomial number of states in n1 and n2 whose Parikh image
is equal to ψ(L(A)) ∩ ψ(L(B)).
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