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Abstract: Earth’s climate is undergoing adverse global changes as an unequivocal result of anthro-
pogenic activity. The occurring environmental changes are slowly shaping the balance between plant
growth and related fungal diseases. Climate (temperature, available water, and light quality/quantity;
as well as extreme drought, desertification, and fluctuations of humid/dry cycles) represents the
most important agroecosystem factor influencing the life cycle stages of fungi and their ability to
colonize crops, survive, and produce toxins. The ability of mycotoxigenic fungi to respond to Climate
Change (CC) may induce a shift in their geographical distribution and in the pattern of mycotoxin
occurrence. The present review examines the available evidence on the impact of CC factors on
growth and mycotoxin production by the key mycotoxigenic fungi belonging to the genera Aspergillus,
Penicillium, and Fusarium, which include several species producing mycotoxins of the greatest concern
worldwide: aflatoxins (AFs), ochratoxins, and fumonisins (FUMs).

Keywords: climate change; distribution; effects; molds; mycotoxins

Key Contribution: This review provides an overview on the relationships and the effects of climate
change on mycotoxins production by fungi (belonging to the genera Aspergillus, Penicillium,
and Fusarium).

1. Introduction

According to the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change, Earth’s climate is undergoing adverse global changes as an unequivocal result of
anthropogenic activity. The planet’s climate has been going through a period of significant
changes since the mid-twentieth century, as demonstrated by the rise in global air and
ocean temperatures, the increase in sea level, and the shrinking ice sheets [1]. It is very
likely that human activities, especially the large-scale clearing of forests and emission of
greenhouse gasses (GHGs) and particulate matter, have been the driver of the observed
climate change (CC). Carbon dioxide emissions into the atmosphere due mainly to the
burning of fossil fuels are increasing more than 250 times faster than they did from natural
sources, leading to an increase in the Earth’s average surface temperature of about 1.18 ◦C
since the late 19th century. As a consequence of this current warming trend, Antarctica
lost about 148 billion tons of ice per year between 1993 and 2019, the global sea level rose
about 20 cm, and the ocean showed a warming of more than 0.33 ◦C [2]. Based on scientific
evidence, global climate change is projected to continue with a temperature rise of about
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1.4 to 5.5 ◦C over the next century and atmospheric concentrations of CO2 are expected to
double or triple (from 350–400 to 800–1200 ppb) in the next 25–50 years [1].

In a future in which GHG emissions continue to grow, scientists forecast longer lasting
frost-free and growing seasons, increased heavy precipitation events, more intense heat
waves, and reduced soil moisture, which in turn might have a profound impact on agricul-
ture. Cultivations are highly sensitive to CC, which could directly affect crop and livestock
productivity as well as food security [3]. The occurring environmental changes are slowly
shaping the balance between plant growth and related fungal diseases. Climate (tempera-
ture, available water, and light quality/quantity; as well as extreme drought, desertification,
and fluctuations of humid/dry cycles) represents the most important agroecosystem factor
influencing the life cycle stages of fungi and their ability to colonize crops, survive, and
produce toxins [4]. Considering the significant implications mycotoxins have for human
and animal health, there has been a recent focus on the effect of interactions between
environmental factors; however, obtaining a clear picture of the exact effect of the current
and future global change in fungal ecology is difficult. The ability of mycotoxigenic fungi
to respond to CC may induce a shift in their geographical distribution and in the pattern of
mycotoxin occurrence. Indeed, global warming will not only increase the number of crops
damaged by insects and, therefore, render them more susceptible to mold infection, but
it also might alter the diversity of diseases invading crops; certain fungi could disappear
from an environment and appear in new regions previously considered safe, along with
the consequent economic and social implications.

Many of the current predictions and hypotheses on the influence of CC on fungal
growth and mycotoxin production are based on predictive models using historical or
current climatic condition datasets that predominantly consider two-way interactions
(temperature X water activity). Very little information is available on the effect of three-way
interactions (temperature, water activity (aw), and CO2). The results of the analysis of these
models must be interpreted carefully; they should not be considered precise predictions of
the future, since they do not consider all of the CC-related abiotic factors and are limited
only to certain regions. Furthermore, models developed by various authors are based on
in vitro trials and interactions between fungi and input variables [5–12], but they need
to be calibrated since in vitro experiments may differ considerably from field conditions
where the host plant and the fungi are equally exposed to complex ecological factors [13].
However, Shaw and colleagues demonstrated that the limitations of these models can
be overcome by using long-term data sets [14]. In addition, molecular methods have
been used to examine the impact of CC, such as the microarray and qPCR approaches,
which allow for a better understanding of the relationship between environmental stressors
and the expression of specific mycotoxin biosynthetic genes, elucidating the biological
and biochemical processes regulating mycotoxin production and the ability of fungi to
adapt to environmental stresses. The PCR analysis of the genes encoding mycotoxins by
using plant herbarium samples may be another useful approach for identifying trends and
factors that affect mycotoxin prevalence over time [15]. There is a need for integrated and
interdisciplinary approaches involving agronomists, mycologists, and climate scientists in
order to transfer the approaches described above to a global level and support strategies to
reduce risk areas and improve public and animal health under predicted future scenarios.

The present review examines the available evidence regarding the impact of CC
factors on growth and mycotoxin production (Table 1) by the key mycotoxigenic fungi
belonging to the genera Aspergillus, Penicillium, and Fusarium, which include several species
producing mycotoxins of greatest concern worldwide: aflatoxins (AFs), ochratoxins, and
fumonisins (FUMs).
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Table 1. Effect of temperature and/or water activity on mycotoxin production by Aspergillus, Penicillium,
and Fusarium species.

Fungal Species Mycotoxin Temperature ◦C aw Time (Days) µg/g Reference

A. carbonarius OTA 28 0.94 15 0.0314 [16]
0.96 15 0.126 “
0.98 15 0.862 “

25 0.94 15 0.122 “
0.96 15 0.326 “
0.98 15 2 “

20 0.94 15 0.324 “
0.96 15 1.028 “
0.98 15 2.743 “

A. flavus AFB1 40 - 21 0 [17]
0.90 9 0 [9]

37 - 3 0.7 [18]
- 5 0.4 “
- 7 0.3 “

0.90 9 3.96 [9]
0.95 9 2.68 “
0.99 9 2.42 “

35 - 21 0.001 [17]
0.90 5 0.0046 [19]

34 - 3 29 [18]
- 5 36 “
- 7 18 “

30 - 21 0.02 [17]
0.95 5 3.016 [19]
0.99 5 2.758 “

32 - 3 633 [18]
- 5 760 “
- 7 760 “

28 - 2 184 “
- 4 760 “
- 7 760 “

25 - 21 0.060 [17]
0.90 5 0.0036 [19]
0.95 5 0.830 “
0.99 5 1.957 “

- 4 304 [18]
- 5 507 “
- 7 449 “

20 - 21 0.062 [17]
18 - 6 34 [18]

- 9 124 “
15 - 8 0.3 “

- 14 0.9 “
- 21 2 “
- 21 0.028 [17]

10 - 21 0.006 “
11 - 14 <0.01 [18]

- 21 0.1 “
8 - 21 <0.01 “

AFB2 37 - 3 ND “
- 5 ND “
- 7 ND “

34 - 3 0.8 “
- 5 3 “
- 7 2 “
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Table 1. Cont.

Fungal Species Mycotoxin Temperature ◦C aw Time (Days) µg/g Reference

32 - 3 166 “
- 5 133 “
- 7 125 “

28 - 2 20 “
- 4 167 “
- 7 111 “

25 - 4 53 “
- 5 80 “
- 7 85 “

18 - 6 4 “
- 9 19 “

15 - 8 0.02 “
- 14 0.1 “
- 21 0.2 “

11 - 14 <0.01 “
- 21 ND “

8 - 21 ND “

AFG1 37 - 3 0.01 “
- 5 ND “
- 7 ND “

34 - 3 0.6 “
- 5 0.2 “
- 7 <0.2 “

32 - 3 71 “
- 5 64 “
- 7 46 “

28 - 2 64 “
- 4 458 “
- 7 180 “

25 - 4 198 “
- 5 256 “
- 7 235 “

18 - 6 37 “
- 9 160 “

15 - 8 0.06 “
- 14 1 “
- 21 3 “

11 - 14 <0.01 “
- 21 0.09 “

8 - 21 <0.01 “

AFG2 37 - 3 ND “
- 5 ND “
- 7 ND “

34 - 3 <0.01 “
- 5 <0.01 “
- 7 <0.01 “

32 - 3 11 “
- 5 10 “
- 7 5 “

28 - 2 10 “
- 4 56 “
- 7 25 “

25 - 4 25 “
- 5 31 “
- 7 32 “

18 - 6 3 “
- 9 12 “
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Table 1. Cont.

Fungal Species Mycotoxin Temperature ◦C aw Time (Days) µg/g Reference

15 - 8 <0.01 “
- 14 <0.01 “
- 21 0.3 “

11 - 14 <0.01 “
- 21 ND “

8 - 21 ND “

Fusarium verticilloides FBs 40 - 21 0 [17]
35 - 21 0.157 “
30 - 21 0.02 “
25 - 21 0.199 “
20 - 21 0.258 “
15 - 21 0.03 “
10 - 21 0 “

P. verrucosum OTA 25 0.95 56 3.6 [20]
0.99 56 0.15 “

15 0.95 56 1.8 “
0.99 56 3 “

P. verrucosum+
F. culmorum OTA 25 0.95 56 0 “

0.99 56 0 “
15 0.95 56 0.01 “

0.99 56 0 “

P. verrucosum + F. poae OTA 25 0.95 56 0 “
0.99 56 0 “

15 0.95 56 0.2 “
0.99 56 0.06 “

ND = Not detected.

2. Effect of Climate Change on Fungal Distribution

Increased temperatures will observe an overall increase in mycotoxigenic fungi suited
to higher temperatures, such as aflatoxin-producing Aspergillus species, which represent
an important hazard to human and animal health. In fact, since their discovery, while
Penicillium spp. (OTA and PAT producers) grow and produce mycotoxins mainly in temperate
climatic regions, Aspergillus spp. (AFs and OTA producers) have been shown to occupy
primarily tropical/subtropical regions growing at high temperatures and lowered aw.

Developing crops are frequently very resistant to infection by A. flavus and subsequent
AFs contamination unless environmental conditions favor fungal growth and crop suscep-
tibility. Battilani et al. [21] predicted that, within the next century, in a scenario based on
+2 ◦C and +5 ◦C temperature increase, A. flavus will become a food safety issue in maize in
central/southern Spain, South Italy, Greece, north/southeast Portugal, Bulgaria, Albania,
Cyprus, and Turkey. Paterson et al. [22] predicted that, over the course of the next 100 years,
A. flavus may outcompete A. carbonarius, becoming a greater risk than ochratoxin A (OTA).
Furthermore, García-Cela et al. [23] indicated that in hotter climatic scenarios A. niger
may also gain more prevalence over A. carbonarius, as the former is better adapted to high
temperatures and drier conditions [24] than the latter.

Changes in mycotoxigenic fungi due to CC are already observed. Examples of mod-
ified weather regimes impacting mycotoxins were demonstrated by the 2003, 2004, and
2012 summer seasons in Italy, where dry and hot weather (>35 ◦C) contributed to an out-
break of A. flavus on crops, previously uncommon, by outcompeting the more common
Fusarium species and fumonisins contamination and causing an increase in AFB1 [25,26].
Similarly, in France in 2015, an exceptionally hot and dry year, A. flavus was isolated from
maize samples, with a percentage equal to 69% [27]. Climatic changes are also expected
to modulate the prevalence of mycotoxigenic fungal species in coffee cultivation, with a
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decline in Penicillium species and an increase in AFs-producing Aspergillus species [28].
Overall, concerning coffee cultivation, predictions suggest that CC will negatively affect
coffee production in terms of both an increase in mycotoxin contamination and the loss of
suitable growing areas, which could decrease by about 50% by 2050 [29].

In a study performed by Bellí et al. [30] on the fungi associated with 40 vineyards
sampled from four wine-making regions of Spain at three different growth stages in
2002–2003, the highest levels of contamination of black aspergilli were found in grapes from
2003 and from Costers del Segre, the warmest year and the warmest region, respectively.
Interestingly, while a positive correlation has been established between the presence of
black aspergilli and temperature, no significant correlation has been established with other
meteorological factors, such as relative humidity and rainfall. Likewise, Monda et al. [31]
recorded a higher occurrence of A. flavus in soils from the eastern region of Kenya, char-
acterized by hotter and drier conditions compared to the western region. These findings
are consistent with other studies that reported a higher prevalence of Aspergillus spp. in
drier areas of Makueni compared to humid regions [32]. On the contrary, Baazeem [33]
did not obtain significant differences in relative growth rates of A. flavus between existing
(30 ◦C, 400 ppm CO2, and no drought stress) and future (34 ◦C, 1000 ppm CO2, and drought
stress) climate-related factors either in vitro on the pistachio nut agar (PNA) medium or in
situ when colonizing raw pistachio nuts.

3. Effect of Climate Change on Mycotoxin Contamination
3.1. Aflatoxins

Aflatoxins are one of the most toxic mycotoxins known. The dominant aflatoxin
produced (AFB1) is the most powerful naturally occurring carcinogen, classified as group I
by the International Agency for Research in Cancer [34]. Hence, it is of particular impor-
tance to understand how levels of this mycotoxin may shift with the CC that agriculture
will experience.

Aflatoxins are produced in different crops by several species of Aspergillus, predomi-
nantly A. flavus and A. parasiticus, both characterized by the ability to persist in the most
extreme climate warming conditions, as highlighted by their high optimum tempera-
ture [22]. Klich [35] reported that the optimum temperature for AFs production by A. flavus
varies between 24 and 30 ◦C. A higher optimum temperature (32 ◦C) was reported by
Sorenson et al. [18] on rice grains. A positive correlation between Afs contamination and
rain has been shown by Jaime-Garcia and Cotty [36]. In particular, the authors revealed that
higher precipitation in the Coastal Bend and the Upper Coast than in the Rio Grande Valley
in South Texas from 1997 to 2001 resulted in a more frequent AFs contamination in the
first ones, while the Rio Grande Valley showed consistently low AFs levels. A continuous
increase in AFs production with increasing aw in the range of 0.82–0.92 was observed by
Mousa et al. [10] in inoculated brown and polished rice. To examine the impact of aw on
AFs production, Zhang et al. [37] used a transcriptomic approach; the authors observed an
extensive transcriptomic response during aw variation between freely available water and
water stress, reporting increased AFB1 biosynthesis at 0.99 rather than 0.93 aw.

With the aim of deeply understanding how these environmental fluctuations affect
mycotoxin production, a transcriptomic approach has been used by several researchers
who revealed that increased global temperatures, drought stress, and CO2 levels have
a measurable impact on molecular events in A. flavus [38–40]. Studies in vitro and on
stored maize grain showed that AFB1 production was significantly stimulated under the
three-way interacting CC-related factors compared to existing conditions (30 vs. 37 ◦C;
350–400 vs. 1000 ppm CO2; 0.99 vs. 0.93 aw), as demonstrated by the increase in the
relative expression levels of structural and regulatory biosynthetic genes involved in AFs
production [39,40]. Further transcriptomic analysis corroborated these findings, showing
important regulatory shifts for some of the identified secondary metabolite gene clusters
(AFs and cyclopiazonic acid), regulators, sugar transporters, and other stress-related gene
clusters under CC-related conditions [38,39]. In contrast, O’Brian et al. [41] reported a
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reduction in AF production-related genes at 37 ◦C. Likewise, in a study performed by
Schmidt-Heydt et al. [19], two regulatory genes aflR and aflS were expressed at lower
levels at temperatures above 37 ◦C, resulting in the inhibition of AF synthesis. This is
supported by the work of Yu et al. [42], who used RNA-Seq technology to evaluate the
expression of genes involved in AF production at 30 ◦C and 37 ◦C. They reported an almost
total suppression of AF production at 37 ◦C, with a 50% increase in the expression of AF
biosynthesis genes at 30 ◦C compared to 37 ◦C. Moreover, in another study, the effect of
temperature (35 ◦C vs. 37 ◦C), water stress (0.93–0.98 aw), and CO2 (400 vs. 1000 ppm) on
AFB1 production was evaluated and stimulation was obtained at 35 ◦C, 1000 ppm, and
0.98 aw, while at 37 ◦C, AFB1 production mostly decreased. However, differential effects
were observed, depending on the interacting conditions of the three abiotic factors [33].

While AF contamination until 2004 was mainly confined to imported foods, with
only a small percentage of food and feed samples presenting AFB1 concentrations above
the regulatory limits [43]; more recently, there has been a widespread incidence of AF
contamination in countries not previously considered at risk resulting from persistent
drought conditions and rising temperatures [44,45]. In particular, a survey conducted by
the European Food Safety Authority (EFSA) established the emerging issue of potential
AF contamination in areas of Southern Europe in maize, wheat, and rice linked to the
subtropical climate and the numerous hot and dry seasons that have occurred in the last
years [46]. In addition, a shift in traditional occurrence areas of AFs is expected. Based on
the predictive AFLA-maize and AFLA-wheat models developed by Battilani et al. [21], in a
future +2 ◦C CC scenario, the risk of AF contamination in maize could significantly increase,
mainly in areas such as Eastern Europe, the Balkan Peninsula, and the Mediterranean
regions, whereas the predicted impact of contamination in wheat was negligible. As a
result of maize’s increased AFB1 contamination, Van der Fels-Klerx et al. [47] suggested an
increase (up to 50%) of AFM1 occurrence in milk by 2030. Indeed, when AFB1 occurs in
feed and is consumed by dairy cattle, it is converted into AFM1, which is excreted in dairy
products, such as milk, posing a serious risk to human health [48,49].

The first confirmation of the predicted risk increase in AF occurrence came from
Italy and Serbia, where high levels of AFs were found in maize for feed in 2003–2016
as a result of extreme climatic conditions, such as a serious drought and hot summer
temperatures [50–52]. In a study aimed at assessing post-harvest mycotoxin contamination
in Romania in 2012–2015, Gagiu et al. [53] found major contamination in the dry years of
2012 and 2013, with a higher incidence of AFs in the dry areas of Moldavia, the Southern
Plain, and Dobrogea, while the incidence was sporadic in the cold and humid areas
of Transylvania and in the Southern Hilly Area, where the agroclimatic conditions are
less favorable to AF production. However, pluvial precipitation may play a key role in
mycotoxin contamination. Higher rainfall resulted in high levels of AFB1 in Southeast,
East, and Central Asia in 2017, as well as in India in 2006–2007 [54,55].

3.2. Ochratoxin A

Ochratoxin A (OTA) is produced by Penicillium verrucosum and several Aspergillus
species, including A. ochraceus, A. alliaceus, A. carbonarius, and A. niger. This mycotoxin
has been found on a variety of crops, such as barley, grapes, rye, wheat, and coffee [56].
An essential condition for OTA production is the availability of water. An aw > 0.95 is
considered too humid and can favor other fungi, including yeast, which may limit OTA-
producing fungi colonization; an aw < 0.80 is considered too dry and OTA-producing fungi
are unable to produce the mycotoxin. In a study on maize grains, at 30 ◦C, the production
of OTA by A. ochraceus was significantly higher at 0.95 than at 0.99 aw [57]. Alternatively,
on barley grains, the optimal growth and toxin production were registered at 30 ◦C and
0.99 aw [58]. High humidity has been shown to favor OTA production also at lower
temperatures. In vines and grapes, OTA production increased at temperate temperatures
(20 ◦C) and 0.96–0.98 aw [16,59,60]. In green coffee, Pardo et al. [61] reported that growth and
OTA production from A. ochraceus were influenced by temperature and aw; a temperature
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of 30 ◦C and aw of 0.95–0.99 constitute ideal growth conditions for this species, while the
maximum production of OTA was observed at 20 ◦C and 0.99 aw. Similarly, maximum OTA
production by A. carbonarius isolates from wine grapes in Greece was observed at 15–20 ◦C
and 0.93–0.96 aw [62].

Currently, OTA is the most commonly reported mycotoxin in coffee, occurring at
variable levels while AFs and other mycotoxins occur less frequently [63,64]. In tropical
conditions, where coffee cultivation is widespread, A. ochraceus is the major source of
OTA, with optimum temperatures for production between 25 and 30 ◦C. P. verrucosum
grows optimally at lower temperatures and produces OTA at 25 ◦C [65]. Considering that
temperatures in coffee-producing municipalities have risen by about 0.25 ◦C per decade
since 1974, it is likely that P. verrucosum will become less prominent in the future climate
scenario [66]. Based on the Index of Dominance developed by Magan et al. [20], the
predicted climate shifts will also be unsuited for OTA production by A. ochraceus while
A. flavus will be well suited to cope with future conditions, which could mean that AFs may
become the most dominant mycotoxin.

Furthermore, OTA is an important threat in wine. Its presence in grapes is strongly
influenced by climatic conditions and, in this regard, several studies have been performed to
elucidate the effect of different conditions such as water availability, temperature, and CO2
levels on mycotoxin production. Cervini et al. [67,68] showed that A. carbonarius growth
rate and OTA production were higher at temperature condition simulations (18/31 ◦C)
compared to the climate change scenarios (20/37 ◦C). In correlation to the higher mycotoxin
production, an overall upregulation of the genes involved in OTA biosynthesis was also
observed at 18/31 ◦C. Moreover, in support of this, Oueslati et al. [69] showed that the
growth of A. carbonarius strains isolated from Tunisian grapes was significantly enhanced
at 20/30 ◦C compared with growth at 20/37 ◦C and it was even slower at 25/42 ◦C. A
reduction in A. ochraceus and A. carbonarius growth rates and OTA production following
an increase in temperature was also evidenced by Garcia-Cela et al. [70]. Based on these
studies, the possible predicted increase in the temperatures may result in a reduction in
A. carbonarius and OTA production in grapes. However, temperatures will become more
suitable for the thermotolerant aspergilli and OTA might be superseded by more dangerous
mycotoxins, such as AFs [26]. Contrary results were obtained by Akbar et al. [71], who
demonstrated that OTA production was stimulated by CC-related interacting factors for
A. westerdijkiae, both in vitro and in situ.

3.3. Fumonisins

Fusarium is a genus that includes plant-pathogenic fungi responsible for a variety of
diseases on several different crops [72] and with known potentials in producing mycotoxins
capable of well-described adverse effects in humans and animals [73]. Fusarium species can
tolerate a wide range of temperatures and pH levels [74,75], require a relatively high aw for
growing, are usually well established in a crop before harvesting, and may cause problems
in grains following a late harvest after a rainy summer [76].

The change of climate until 2050 in the north of Europe, expected to be milder and more
humid, could influence Fusarium distribution [77,78], favoring, for example, an increase in
F. graminearum in central and north Europe [77].

Some studies have tried to mimic future growth conditions for mycotoxigenic fungi
such as Fusarium spp. in the case of weakly raised CO2 concentrations together with tem-
perature and water availability [14,79]. Elevated CO2 level seems to increase susceptibility
to F. verticillioides in maize, resulting in 2.5 times Fusarium biomass production in specific
conditions [80,81] with no impact on mycotoxin levels [80].

Fumonisins (FUMs) are mycotoxins produced in cereals by Fusarium verticillioides and
Fusarium proliferatum and related species [82]. FUMs contamination is strictly associated
with agroclimatic conditions [83] and is most evident in maize and maize sub-products if
compared with other grains and related derivatives [83].
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FUMs are 15 mycotoxins classified in four different groups, A, B, C, and P, and
fumonisin B1 (FB1) is considered the most toxic and abundant, together with fumonisin B2
(FB2) and B3 (FB3) [83].

In temperate and Mediterranean regions, FUMs are prevalent [83,84] and multiple
factors are involved and have an impact on FUMs production, such as agronomic, climatic,
and environmental factors, where aw and temperatures play an important role either on
the toxins or on Fusarium [17,84–86]. The growth of F. verticillioides occurs at a minimum
temperature of 4 ◦C and has a most favorable temperature of 25 ◦C [87], while FUMs
production occurs between 15 and 25 ◦C [88]. FUMs growth is strictly related to weather
conditions [86] where flowering and the pre-harvesting period are considered crucial [86],
and recent climate variability influences their distribution, as reported in Europe, with an
increase observed in Central Europe [89,90].

4. Conclusions

In the past century, the rates of CC have been registered; although comprehensive
and continuous updates have been provided on its potential effects, it is clear that there
is currently a significant knowledge gap and only generalizations can be made. Overall,
the evidence suggests that CC will negatively affect crops worldwide in terms of loss of
suitable cultivation areas and an increase in mycotoxin contamination. Global warming will
make growing crops in some areas impossible and, where growing crops will be possible,
plants will be subjected to suboptimal climatic conditions, resulting in increased suscepti-
bility to fungal contamination. Furthermore, warmer climates will favor thermotolerant
species, leading to the prevalence of Aspergillus over Penicillium species. Further studies
should also focus on the impact of the interacting environmental factors at an epigenetic
level, with the aim to integrate these findings with transcriptomic analysis, ecology, and
mycotoxin production. Finally, there is a need for conducting studies on other regulated
and non-regulated mycotoxins, as well as in other crops and countries to obtain a more
comprehensive view of the effects related to CC.
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90. Czembor, E.; Stępień, Ł.; Waśkiewicz, A. Effect of Environmental Factors on Fusarium Species and Associated Mycotoxins in
Maize Grain Grown in Poland. PLoS ONE 2015, 10, e0133644. [CrossRef]

http://doi.org/10.1016/j.ijfoodmicro.2013.03.012
http://www.ncbi.nlm.nih.gov/pubmed/23587708
http://doi.org/10.1094/PHYTO.1999.89.11.1028
http://doi.org/10.4315/0362-028X-68.5.1054
http://doi.org/10.1371/journal.pone.0133644

	Introduction 
	Effect of Climate Change on Fungal Distribution 
	Effect of Climate Change on Mycotoxin Contamination 
	Aflatoxins 
	Ochratoxin A 
	Fumonisins 

	Conclusions 
	References

