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Abstract: For forest sustainability and vulnerability assessment, the landscape scale is considered
to be more and more relevant as the stand level approaches its known limitations. This review,
which describes the main forest landscape simulation tools used in the 20 European case studies
of the European project “Future-oriented integrated management of European forest landscapes”
(INTEGRAL), gives an update on existing decision support tools to run landscape simulation from
Mediterranean to boreal ecosystems. The main growth models and software available in Europe
are described, and the strengths and weaknesses of different approaches are discussed. Trades-offs
between input efforts and output are illustrated. Recommendations for the selection of a forest
landscape simulator are given. The paper concludes by describing the need to have tools that are able
to cope with climate change and the need to build more robust indicators for assessment of forest
landscape sustainability and vulnerability.

Keywords: decision support system; forest landscape; indicators; sustainability; wood resource;
risk evaluation; storm; fire; diseases; forest management; forest owner behaviour

1. Introduction

For forest sustainability assessment and land use planning, landscape approaches are considered
to be more and more relevant [1]. For the most part, the management unit level is only partially
informative when evaluating ecosystem services and ecosystem processes that can be affected on a
larger scale [2]; therefore, there is a need for tools that can cope with landscape heterogeneity and
varied forest management. The temporal succession of wood harvesting from one stand to another in
a highly fragmented [3] forest landscape generates heterogeneity in ages and structure that cannot
be easily extrapolated from the observation of a single stand. These temporal dynamics can affect
a large set of parameters, from the wood production per year (affecting market and industry) to
the biodiversity of these landscapes. In addition, sustainability monitoring requires a large set of
indicators [4] which comprise economic, social and ecological components. Tools exist to monitor
these factors at a stand level, but many of them, such as Shannon diversity [5], recreation [6] or the
employment index [7] make sense only when large areas are taken into account.

These considerations lead to the development of a land use planning concertation process and
an increasing demand for landscape foresight studies. Because forest is a significant part of forest
landscapes [4] in many regions, the selection of the most appropriate tools to model the evolution
of various landscape parameters associated to forests over time, under many types of constraints,
is highly relevant. The EU project, INTEGRAL [8], involving 21 research groups from 13 European
countries, assessed how different policies influence forest manager silviculture, and how these policies
would influence the provision of ecosystem services in a 30–50-year time frame. In order to do this,
forest landscape evolution was modelled using one or two large representative case study areas per
country, where, in a thus far unprecedented collaboration by social and natural scientists, sets of policy
scenarios have been developed and translated into forest owner specific management. An important
part of the research was to identify each region’s most relevant forest ecosystem service and to design
and/or implement appropriate quantitative indicators for benchmarking ecosystem service provision
in the forest growth scenarios using the most appropriate and up-to date growth models and decision
support tools.
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Considering that the INTEGRAL project case studies cover a representative set of socio-economical
and forest contexts in Europe [9], the project offers an excellent overview of all the technical options
for carrying out such simulations that were available in 2015 throughout Europe. Rather than
presenting the results of each case study [10–13], or comparing the results of the landscape simulation
qualitatively [9] throughout the regions, this paper focuses on the modelling tools and datasets used
during the INTEGRAL project to carry out simulations on a representative set of 20 European
forest landscapes so that we can illustrate the strengths and limits of various approaches and tools
available in Europe. It provides above all an overview of the characteristics of stand growth models
and decision support tools that can be used for such landscape simulations and can explain the
consequences of the choices in terms of portability from one region to the other. The detailed inputs
and outputs allow the reader to make appropriate choices when running similar simulations within
different contexts.

2. Descriptions of the Decision Support System (DSS) Used for Landscape Simulation within
INTEGRAL Case Studies

2.1. The Simulated Forest Management Programmes

In order to obtain a representative assessment of the potential consequences of political decisions
on forest landscapes, different forest management programmes were simulated under various political
scenarios during 30–97 year period [11] in the 20 INTEGRAL case studies (Figure 1): two in Sweden
(VIL and HEL), two in Lithuania (ZEM and SUV), two in Ireland (WES and NEW), one in The
Netherlands (SEV), two in Germany (UPP and MUN), two in Slovakia (KYS and POD), one in France
(PON), two in Bulgaria (TET and YUN), three in Italy (ASI, MOL and ETN) and three in Portugal
(SOU, LEI, CHA). Detailed descriptions about the case studies are available in [9] and Table 1 provides
basic information about these case study areas, such as: total area (from 600 to 697,000 ha), forest area
(from 501 to 330,000 ha), number of tree species in the area (from 5 to 29) and main trees species names.
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Table 1. Basic information about the case study areas covered by the INTEGRAL project. Countries
names are ordered alphabetically. Species codes are specified in the abbreviation list.

Country Case Study
Area (CSA)

CSA
Acronym

Forest
Region in

Europe
Latitude Longitude

Total
Area
(ha)

Forest
Area
(ha)

Number
of Trees
Species
in CSA

Main Tree
Species (>10%
of Volumes in

the Area)

Bulgaria Teteven TET E 42◦55′N 24◦25′E 69,700 47,812 29 (NFI) FASY, CAOR,
QUCE, PISY

Bulgaria Yundola YUN E 42◦01′N 23◦06′E 5211 4750 13 (NFI) ABAL, FASY

France Pontenx PON CW 44◦12′N 00◦55′W 101,000 86,000 8 PIPI, QUPY,
QURO

Germany Munich
South MUN CW 48◦08′N 11◦34′E 60,000 43,200 38 (NFI) PIAB, PISY,

FASY

Germany Upper
Palatinate UPP CW 49◦01′N 12◦05′E 300,000 159,000 36 (NFI) PIAB, FASY

Ireland Newmarket NEW NW 52◦12′N 09◦00′W 187,820 28,000 15

PISI, PIAB, PICO,
PISY, LADE,

LAKA, PSME,
QUPE, FASY

Ireland Western
Peatlands WES NW 53◦48′N 09◦31′W 1,060,000 116,000 16

PISI, PIAB, PICO,
PISY, LADE,

LAKA, PSME,
QUPE, FASY

Italy Asiago ASI S 45◦52′N 11◦31′E 103,000 2350 3 PIAB, ABAL,
FASY

Italy Etna ETN S 37◦45′N 14◦59′E 25,300 19,500 3 ABAL, QUCE,
Fagus spp.

Italy Molise MOL S 41◦40′N 14◦15′E 600 501 3

QUPU, QUIL,
PINI plantations,

ABAL native
forests

Lithuania Suvalkija SUV E 54◦45′N 23◦30′E 66,000 36,785 15
PISY, PIAB,

BEPU, BEVE,
ALGL

Lithuania Zemaitija ZEM E 55◦59′N 22◦15′E 37,900 13,674 16 PISY, PIAB,
BEPU, BEVE

The
Netherlands

South East
Veluwe SEV W 52◦13′N 5◦58′E 8000 6000 23 FASY, PISY,

PSME, QURO

Portugal Chamusca CHA S 39◦21′N 8◦29′W 74,600 21,978 4 EUGL, PIPI,
PIPIN, QUSU

Portugal Leiria LEI S 39◦45′N 8◦48′W 75,200 10,768 1 PIPI

Portugal Sousa SOU S 41◦04′N 8◦15′W 48,900 14,832 3 EUGL, PIPI

Slovakia Kysuce KYS E 49◦22′N 18◦44′E 98,222 55,609 5
PIAB, FASY,

ABAL, Quercus
spp., PISY

Slovakia Podpol’anie POD E 48◦34′N 19◦30′E 21,255 10,627 5
PIAB, FASY,

ABAL, Quercus
spp., PISY

Sweden Helgeå HEL N 56◦25′N 15◦42′E 120,000 96,000 5 PIAB, PISY

Sweden Vilhelmina VIL N 64◦55′N 16◦35′E 850,000 330,000 5 PISY, PIAB

Species names are coded using the first two letters of species and genus names (except for Pinus pinea L. (PIPIN)).
It includes Abies alba Mill. (ABAL); Acer pseudoplatanus L. (ACPS); Alnus glutinosa (L.) Gaertn (ALGL); Alnus incana
(L.) Moench (ALIN); Betula pubescens Ehrh. (BEPU); Betula pendula Roth. (BEPE); Carpinus betulus L. (CABE); Carpinus
orientalis Mill. (CAOR); Castanea sativa Mill. (CASA); Eucalyptus globulus Labill. (EUGL); Fagus sylvatica L. (FASY);
Fraxinus excelsior L. (FREX); Ilex aquifolium L. (ILAQ); Juniperus communis L. (JUCO); Larix decidua Mill. (LADE);
Larix kaempferi (Lamb.) Carrière (LAKA); Picea abies (L.) H.Karst. (PIAB); Picea sitchensis (Bong.) Carrière (PISI);
Pinus contorta Douglas ex Loudon (PICO); Pinus nigra J.F.Arnold (PINI); Pinus pinaster Aiton (PIPI); Pinus sylvestris L.
(PISY); Populus tremula L. (POTR); Pseudotsuga menziesii (Mirb.) Franco (PSME); Quercus cerris L. (QUCE); Quercus
ilex L. (QUIL); Quercus petraea (Matt.) Liebl. (QUPE); Quercus pubescens Willd. (QUPU); Quercus pyrenaica Willd.
(QUPY); Quercus robur L. (QURO); Quercus rubra L. (QURU); Quercus suber L. (QUSU); Robinia pseudoacacia L. (ROPS);
Salix caprea L. (SACA); Sorbus aucuparia L. (SOAU); Tilia cordata Mill. (TICO).

Various forest management schemes were implemented in the diverse forest stands of the case
studies, as some of the political scenarios supposed massive changes in priorities, like, for example,
an increase in wood for biomass and a reduction in wood production for timber at horizon 2050. All the
forest management options are detailed in the project WIKI [14] and classified according to four types
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in Biber P. et al. [9]: the business as usual, the near business as usual, the less intensive and the more
intensive scenarios. For each of them, the species, the silvicultural practices and the thinning regimes
are specified. In each case study, between 3 and 7 forest management schemes were simulated for at
least 30 years.

2.2. The Evolution Engines and Landscape Simulation Tools

Assuming future changes in forest management occur at the stand level—given that it is the forest
owner who decides how to manage his property—the challenge is to assess the evolution of ecosystem
services and risk indicators on the landscape scale, timber production in particular, while combining
all the different types of behaviour. Thus, the first constraint was to identify tools able to quantify
wood production in forest stands [15] that are similar to those present in the studied areas.

The second constraint was to be able to use these tools throughout large zones made up of
thousands of different stands. Therefore, the INTEGRAL partners selected the most appropriate
solutions already existing within the forest domain to evaluate timber and biomass production over
time (shown in Tables 2 and 3 and described hereunder). In order to perform such analyses on a
landscape scale, both growth models (stand level—Table 3) and landscape simulation tools (Table 2)
(which can be embedded in the same software) were used in each case study.
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Table 2. Species and landscape simulation tools (Decision Support System (DSS)) and growth models used by each INTEGRAL case study area (CSA). Species codes
are specified in the abbreviation list.

CSA Acronym Species Simulated
Growth Model (GM)

Name/Number of
GM Used

DSS for Pooling
Results at the

Landscape Level
Modelled Area (ha) Spatially Explicit

(Map of Stands)

Landscape Level Tools (e.g.,
Constrains, Additional

Rules, Optimisation, etc.)

TET FASY, PISY SIBIYLA/1 SIBYLA [16] 10,148 (2671 stands) sampling plots map
Felling volume per stand is
optimized (not to exceed the
natural growth)

YUN ABAL, FASY SIBYLA/1 SIBYLA 3733 (861 stands) sampling plots map
Felling volume per stand is
optimized (not to exceed the
natural growth)

PON PIPI, QURO Lemoine [17];
Fagacées [18]/2

SIMMEM in Capsis
[19,20] 66,700 (17,792 stands) yes

Total harvested area per year
(10%). Allocate suitable sites
for specific for FMP

MUN

ABAL, FASY, LADE, PIAB, PISY,
PSME, QUPE/QURO, ALGL;
Grouped Species: ACPS, FREX,
TICO; PISY

SILVA/1 SILVA [21] 40,000 (746 strata) no no

UPP

ABAL, FASY, LADE, PIAB, PISY,
PSME, QUPE/QURO, ALGL;
Grouped Species: ACPS, FREX,
TICO; PISY

SILVA/1 SILVA 160,000 (927 strata) no no

NEW PISI, PIAB, PICO, PISY, LADE,
LAKA, PSME, QUPE, FASY British Yield tables/9 REMSOFT Woodstock

[22] 165,000 yes Exogenous landscape
optimisation

WES PISI, PIAB, PICO, PISY, LADE,
LAKA, PSME, QUPE, FASY British Yield tables/10 REMSOFT

Woodstock 116,000 yes Landscape optimisation

ASI PIAB, ABAL, FASY EFISCEN [23,24]/1 Excel 2350 (230 plots, 160 stands) no no

ETN ABAL, QUCE, Fagus spp. EFISCEN/1 Excel 19,000 (35 plots, 15 stands) no no

MOL QUPU, QUIL, PINI plantations,
ABAL native forests EFISCEN/1 Excel 501 (50 plots, 30 stands) no no

SUV PISY, PIAB, BEPU, POTR, ALGL,
ALIN, QURO, FREX Kupolis/1

Kupolis [25] in
combination with
ArcGIS

36,785 (18,574 stands) yes (strata from
sampling plots)

Final felling budget per
owner is optimized

ZEM PISY, PIAB, BEPU, POTR, ALGL,
ALIN, QURO, FREX Kupolis/1

Kupolis in
combination with
ArcGIS

13,674 (7745 stands) yes (strata from
sampling plots)

Final felling budget per
owner is optimized

SEV

ABAL, ACPS, BEPE, CABE, CASA,
FASY, ILAQ, JUCO, LADE, PIAB,
PISI, PINI, PISY, PRAV, PSME,
QUPE, QURO, QURU, FRAL,
ROPS, SACA, SOAU, TICO

LandClim logistic
curves/23 LandClim [26,27] 6000 (30 × 30 m pixels,

27,000 cohorts) Yes
Including spatial interactions
due to disturbances,
management, dispersal
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Table 2. Cont.

CSA Acronym Species Simulated
Growth Model (GM)

Name/Number of
GM Used

DSS for Pooling
Results at the

Landscape Level
Modelled Area (ha) Spatially Explicit

(Map of Stands)

Landscape Level Tools (e.g.,
Constrains, Additional

Rules, Optimisation, etc.)

CHA EUGL, PIPI, PIPIN, QUSU
Globulus 3.0, GYMMA,
Pinaster, PBIRROL,
PINEA, SUBER/6

SUBER is a separate
software.
Other GM in
StandsSIM in
SADfLOR [28–30]

19,526 (5681 stands) No no

LEI PIPI MLN model/1 Separate software 7097 (404 stands) No no

SOU EUGL, PIPI, CASA
Globulus 3.0, GYMMA,
Pinaster, PBIRROL,
PINEA, CASTANEA/5

Chesnut: yield tables
in a different platform
Other GM in
StandsSIM in
SADfLOR

14,388 (1972 stands) No no

KYS

ABAL; FASY; PIAB; PISY; Quercus
sp. Other species are modelled on
the basis of similarity to some of
the main tree species.

SIBYLA/1 SIBYLA 56,609 (315 stands) strata from sampling
plots no

POD

ABAL; FASY; PIAB; PISY; Quercus
sp. Other species are modelled on
the basis of similarity to some of
the main tree species.

SIBYLA/1 SIBYLA 10,627 (378 stands) strata from sampling
plots no

HEL PIAB, PISY, Betula spp. Heureka [31]/1
DSS (including
individual tree
models)

96,000 ha No no

VIL PISY, PIAB, Betula spp., POTR,
PICO Heureka/1 DSS with

optimization 330,000 (36,114 stands) No Stands classified on different
management groups

Includes Abies alba Mill. (ABAL); Acer pseudoplatanus L. (ACPS); Alnus glutinosa (L.) Gaertn (ALGL); Alnus incana (L.) Moench (ALIN); Betula pubescens Ehrh. (BEPU); Betula pendula Roth.
(BEPE); Carpinus betulus L. (CABE); Carpinus orientalis Mill. (CAOR); Castanea sativa Mill. (CASA); Eucalyptus globulus Labill. (EUGL); Fagus sylvatica L. (FASY); Fraxinus excelsior L. (FREX);
Ilex aquifolium L. (ILAQ); Juniperus communis L. (JUCO); Larix decidua Mill. (LADE); Larix kaempferi (Lamb.) Carrière (LAKA); Picea abies (L.) H.Karst. (PIAB); Picea sitchensis (Bong.) Carrière
(PISI); Pinus contorta Douglas ex Loudon (PICO); Pinus nigra J.F.Arnold (PINI); Pinus pinaster Aiton (PIPI); Pinus pinea L. (PIPIN); Pinus sylvestris L. (PISY); Populus tremula L. (POTR); Prunus
avium L. (PRAV); Pseudotsuga menziesii (Mirb.) Franco (PSME); Quercus cerris L. (QUCE); Quercus ilex L. (QUIL); Quercus petraea (Matt.) Liebl. (QUPE); Quercus pubescens Willd. (QUPU);
Quercus pyrenaica Willd. (QUPY); Quercus robur L. (QURO); Quercus rubra L. (QURU); Quercus suber L. (QUSU); Frangula alnus L. (FRAL); Robinia pseudoacacia L. (ROPS); Salix caprea L.
(SACA); Sorbus aucuparia L. (SOAU); Tilia cordata Mill. (TICO).
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Table 3. Growth models used by the INTEGRAL case study areas. Species codes are specified in the abbreviation list.

Growth Model
(GM) Name/DSS

GM Spatial
Structure (Basic

Spatial Unit)
GM Type Distance

Dependence
Time
Step Stochasiticity Stand

Composition Stand Form Species (GM Calibrated) Mortality Hazards Global
Change Optimisation

SIBYLA/SIBYLA
software individual empirical yes 1 yes mixed uneven-aged ABAL, FASY, PIAB, PISY, QUPE,

QURO yes yes yes no

Fagacées/SIMMEM
in Capsis individual empirical yes 3 no pure even-aged QUPE yes no no no

Lemoine Model-
PP1/SIMMEM in
Capsis

stand empirical no 1 no pure even-aged PIPI no no no no

SILVA individual empirical yes 1–5 yes mixed even- and
uneven-aged

ABAL, FASY, LADE, PIAB, PISY,
PSME, QUPE, QURO, ALGL;
Grouped Species: ACPS, FREX, TICO

yes no yes no

Remsoft Woodstock stand yield table no 1 no pure even-aged PISI, PIAB, PICO, PISY, LADE, LAKA,
PSME, QUPE, FASY yes no no yes

EFISCEN stand matrix model no 5 no pure
even-aged
and coppice
forests

PIAB, ABAL, FASY, ABAL, QUCE,
QUPU, QUIL, PINI, ABAL, Fagus spp. yes yes no no

Kupolis stand empirical no 5 no mixed uneven-aged PISY, PIAB, BEPU, BEVE, POTR,
ALGL, ALIN, QURO, FREX yes no no yes

ForClim in
LandClim stand process based no 10 yes mixed uneven-aged

ABAL, ACPS, BEPE, CABE, CASA,
FASY, ILAQ, JUCO, LADE, PIAB,
PISI, PINI, PISY, PRAV, PSME, QUPE,
QURO, QURU, FRAL, ROPS, SACA,
SOAU, TICO

yes yes yes no

Heureka individual empirical yes 5 no mixed even- and
uneven-aged

PIAB, PISY, Betula spp., Quercus spp.,
Fagus spp. yes yes yes yes
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Table 3. Cont.

Growth Model
(GM) Name/DSS

GM Spatial
Structure (Basic

Spatial Unit)
GM Type Distance

Dependence
Time
Step Stochasiticity Stand

Composition Stand Form Species (GM Calibrated) Mortality Hazards Global
Change Optimisation

Globulus
3.0/StandsSIM in
SADfLOR

stand empirical no 1 no pure even-aged Eucalyptus spp. yes no no no

GYMMA/StandsSIM
in SADfLOR stand empirical no 1 no pure uneven-aged Eucalyptus spp. yes no no no

Pinaster/StandsSIM
in SADfLOR stand empirical no 1 no pure even-aged PIPI yes no no no

PBIRROL/StandsSIM
in SADfLOR stand empirical no 1 no pure uneven-aged PIPI yes no no no

PINEA/StandsSIM
in SADfLOR stand yield table no 1 no pure even-aged PIPIN yes no no no

SUBER/StandsSIM
in SADfLOR stand empirical no 1 no pure even- and

uneven-aged QUSU yes no no no

MNLmodel stand empirical no 1 no pure even-aged PIPI yes no no no

CASTANEA stand yield table no 5 no pure even-aged CASA yes no no no

Includes Abies alba Mill. (ABAL); Acer pseudoplatanus L. (ACPS); Alnus glutinosa (L.) Gaertn (ALGL); Alnus incana (L.) Moench (ALIN); Betula pubescens Ehrh. (BEPU); Betula pendula Roth.
(BEPE); Carpinus betulus L. (CABE); Carpinus orientalis Mill. (CAOR); Castanea sativa Mill. (CASA); Eucalyptus globulus Labill. (EUGL); Fagus sylvatica L. (FASY); Fraxinus excelsior L. (FREX);
Ilex aquifolium L. (ILAQ); Juniperus communis L. (JUCO); Larix decidua Mill. (LADE); Larix kaempferi (Lamb.) Carrière (LAKA); Picea abies (L.) H.Karst. (PIAB); Picea sitchensis (Bong.) Carrière
(PISI); Pinus contorta Douglas ex Loudon (PICO); Pinus nigra J.F.Arnold (PINI); Pinus pinaster Aiton (PIPI); Pinus pinea L. (PIPIN); Pinus sylvestris L. (PISY); Populus tremula L. (POTR); Prunus
avium L. (PRAV); Pseudotsuga menziesii (Mirb.) Franco (PSME); Quercus cerris L. (QUCE); Quercus ilex L. (QUIL); Quercus petraea (Matt.) Liebl. (QUPE); Quercus pubescens Willd. (QUPU);
Quercus pyrenaica Willd. (QUPY); Quercus robur L. (QURO); Quercus rubra L. (QURU); Quercus suber L. (QUSU); Frangula alnus L. (FRAL); Robinia pseudoacacia L. (ROPS); Salix caprea L.
(SACA); Sorbus aucuparia L. (SOAU); Tilia cordata Mill. (TICO).
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2.3. Forests Growth Models: The Key Evolution Engines

The information in Table 3 shows that landscape simulations can be based on all types of growth
models [32,33]:

• The yield tables (included in REMSOFT, PINEA and CASTANEA models) are derived from
equations, from data collection in the field or from stem analysis. These tables provide
year-by-year growing stock value and harvested volumes for a given thinning regime. The number
of yield tables needed depends on a combination of site index and thinning regime in a given area.
This tool is robust and appropriate for a very standard management scheme and for homogenous
sites with low fertility variation.

• The stand empirical growth models (Fagacées, Lemoine, EFISCEN, Kupolis) and matrix models
(EFISCEN) comprise equations providing evolution of height and basal area (or biomass) over
time for a forest stand. They can be used to compare the impact of various thinning regimes.

• The individual tree growth models can cope with a large diversity of thinning regimes providing
outputs related to growth and tree shape. These models are either tree distance independent
(Heureka, Pinaster, PBIRROL, SUBER and MNL) or tree distance dependent (SIBYLA, SILVA).
Therefore, in the former case, the models will provide the same result whatever the shape of the
parcel or the tree distribution within the stand; whereas in the latter uneven aged stands and
differences based on initial stand structure or parcel shapes can be simulated.

• The latest developments in modelling allow a combination of growth models and process based
(LandClim) models to be used. These can theoretically simulate the evolution of a stand whatever
thinning regime is applied, based on the competition between trees, climate and site characteristics.
Recent empirical growth models, such as SIBYLA, can also take climate change into account
by adjusting the site index according to climatic variables, rather than describing the light and
water processes.

2.4. Specific Growth Model Characteristics Required for Certain Scenarios

The models listed in Table 3 have some specific parameters that improved the simulations for each
region. However, while some of them are able to integrate parameters to make accurate predictions,
others only function with basic rules.

2.4.1. Mortality

Most of the models integrate tree mortality, which is observed in any stand when the competition
between trees is too high, producing more realistic simulations of stands, especially when some of
the management schemes result in unmanaged stands or very high stocking. However, one model,
Lemoine does not provide mortality. This is due to the fact that it was developed for maritime pine
(Pinus pinaster Aiton) stands in a region with very intensive management for which thinning practices
extract unhealthy trees faster than natural mortality can, making it impossible to use National Forest
Inventory (NFI) data to set up realistic self-thinning curves [34]. Therefore, for Lemoine, a workaround
was found to define a thinning regime in unmanaged stands similar to natural mortality, based on
self-thinning curves from Portugal [35].

2.4.2. Hazards

Only three models (SIBYLA, EFISCEN and LandClim) used for landscape simulations integrate
hazards such as fire, snow and windstorm. Table 3 reveals that in a list of 17 growth models, only
four are able to simulate damages in a realistic way. Some of these tools include a ratio of damages in
mortality (Heureka) assuming that some of the dead trees result from competition and some, from
other damaging agents. Risks can be integrated using a non-deterministic tool if the same scenarios
are run many times under a certain probability of damages [36]. This implies that for a given initial
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state, many simulations are needed to obtain a good approximation of the potential future status of
forest, adding complexity to the exercise of landscape simulation.

2.4.3. Global Change in Models

Only four models are able to consider global change impact on forest growth (SIBYLA, SILVA,
ForClim and Heureka). This functionality is extremely relevant for foresight studies that assess
landscape evolution over decades, given the significant changes in climate that are expected in the next
30 years. Climate studies show that while the mean temperature of the earth is expected to increase
significantly, uncertainty at local level [37] remains very high; thus the accuracy of prediction of the
stand evolution induced by the climate change is partially lost due to imprecise climate forecasting
on a period of 30–50 years. Moreover, if only past data are used (as for cases studies MUN and UPP),
the benefit of having a climate responsive model is low, but the improvement in accuracy of regional
weather data projections in the coming years will mean that these models will become increasingly
useful, even with the additional layer of complexity induced by climate datasets.

2.5. The DSS: The Integrative Tools to Run Simulation at Landscape Level

2.5.1. The Need for an Integrative Tool

In many cases, a unique software includes many growth models and can handle the aggregation
of stands such as SIBYLA (used for Bulgaria and Slovakia), SILVA (used in Germany) and Kupolis
(in Lithuania). In other cases, specific software is needed to make stand simulations and the DSS
aggregates stand data on a landscape level; for example, Capsis, thanks to the SIMMEM add-in piloted
Lemoine and Fagacées stand growth models in the Aquitaine region (France) and REMSOFT was
used to integrate all the yield tables needed for the Irish case study. In all cases, the landscape is only
a juxtaposition of virtual stands with no interactions, considering no edge effect and no contagions.

Table 2 clearly shows that in most INTEGRAL project case studies the simulations could not cover
the whole forest area, especially when it was very large. However, on average, 92% (sd = 16%) of the
forest area was modelled; meaning that the tools used were able to work with the different landscape
sizes studied in all case studies. As the objective of the project was not to make a resource assessment,
but to compare the evolution of forest landscape on the forest case study area through many indicators
of sustainability, it was not mandatory to address 100% of the forested area in the case study. Different
strategies underlay this figure, but the main reason for having some parts of landscape excluded from
simulations include (i) lack of data; (ii) highly heterogeneous or fragmented areas; (iii) areas with forest
structure or ownership structure having limited chance to change in the future. In addition, running
simulations on a limited but representative part of the landscape is also a way to cope with a limited
computing capacity as some software (especially when connected to GIS) may require computer to
have a huge memory and calculation capacity not available in all organisations.

As landscape modelling is based on growth models which take into account stands or
a homogenous group of stands under the same management regime (strata), each forest area is
divided into homogenous groups of trees which are associated with one another to be considered as a
virtual stand. Thus, decision support tools, as defined in this paper, are software able to handle a large
set of forest stand data and model their evolution on the landscape level providing stand year after
year (every 3, 5 or 10 years depending on which growth model was run; see Table 3). The number of
stands used when running the simulations was very variable depending on the case study.

The number of stand descriptions and the forest areas were represented on the same graph
(Figure 2), in order to illustrate the heterogeneity of the case studies, as well as the diverse strategies
which have taken into account forest landscape size, the modelling tools used and the stand parameters
available. The stand descriptions came from National Forest Inventory plots, remote sensing
information and management plans, while the real case study areas came from maps. To illustrate
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the distance between the real information and the virtual forest run by the DSS the number of virtual
stands and the modelled area in the computer system was added to Figure 2.
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Figure 2. Distance between real area and real stand descriptions (in the field �); and virtual stands and
modelled area (in silico ), for all case study areas of the INTEGRAL project.

As already mentioned, due to the modelled areas being close to real forest areas, most of the
lines are horizontal except for NEW, where a large afforestation programme was simulated, and TET,
where only part of the forest could be simulated in a realistic way.

For many of the case studies, the data available define the number of virtual stands and capture
the heterogeneity of the landscape in the DSS. This is the case for YUN, UPP, MUN, SOU, CHA, PON,
ZEM and SUV, and is often related to spatially explicit DSS. In the other case studies, the trend is
to have less virtual stands than area inputs (ETN, MOL, ASI, KYS, POD, LEY, NEW). This can be
explained by the tool used in Italy (EFISCEN) or the one used in Ireland based on strata (LandClim),
which group stands with similar characteristics, significantly reducing the amount of virtual stands
compared to the amount of initial plots described. On the contrary, the case study (SEV) uses a tool
based on raster images and requires interpolation between plots, generating a number of virtual stands
higher than the ones described.

Most of the case studies involve a level of effort in terms of sampling intensity and modelling
comprising between 1 over 1 hectare and 1 over 100 hectares. The sampling intensity for ETN, HEL,
UPP VIL were the highest and that for NEW was the lowest, thus showing that sampling intensity can
be independent of landscape size.

Similar tools were used with data of varying accuracy. For example, the Bulgarian (TET and YUN)
and Slovakian (KYS and POD) case study areas both used SIBYLA DSS, but appear very differently on
Figure 2.

Therefore, the accuracy of simulations depends more on the availability of information about
specific areas and landscape heterogeneity, than on the modelling tool itself.

2.5.2. Constraints Rules at the Landscape Level

In certain case studies, specific rules were applied in order to make the simulations on the
landscape scale more realistic.
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In France (PON-using Capsis with the SIMMEM module), a harvest constraint was applied,
assuming that the forest sector is not able to mobilise more than 10% of the area.

The ForClim process-based model (for SEV in The Netherlands), directly fitted to a landscape,
is the unique tool which accounts for spatial interactions due to disturbances, management and
dispersal. Other especially explicit decision support tools (10) do not have neighbouring interaction.

Some of the DSS also allow to define a specific objective to reach (ratio of biomass, minimum
water pollutant, max habitat suitability, etc.) and can run optimisation such as linear programming to
optimise at the landscape level management options allowing to reach this goal (StandsSIM, REMSOFT,
Heureka).

Despite the high simulation capacity depicted by the long list of tools in Tables 2 and 3, the very
high heterogeneity of large forest landscapes is always simplified. Examples of the simplifications
carried out to use the existing modelling tools are described as strategies implemented to simulate
varied tree species composition and varied forest stand structures.

3. The Strategies to Cope with the Tree Species Issue

Table 1 shows that there were between one and nine major tree species (representing more than
10% of the forest cover) depending on the case study area. In many cases, the project partners were
willing to simulate this species diversity: out of the twenty case studies (Table 2), more species than the
major tree species were simulated ten times, the same number of species eight times, and less species
than the major species were simulated twice.

In order to account for tree diversity, different strategies were applied by the DSS used; two trends
can be observed: (i) by combining the growth model and the landscape simulators in one tool (SIBYLA,
SILVA, Kupolis), they simulate a variety of species mixture within the stand; (ii) when the landscape
simulator is only an aggregator of different growth models, several monospecific growth models or
yield tables are associated into the simulator allowing a diversity of species only at the landscape scale,
through a mosaic of various monospecific stands. The second option is the one chosen for Fagacées
and Lemoine in Capsis (using the SIMMEM module) in the French case studies, the yields tables in
REMSOFT in Ireland, EFISCEN in Excel for Italy; (iii) In Portugal mixed stands have been simulated
overlapping the results of model made for pure stands in the same area, matching with the tree density
of each species.

The first option (i) is also typical of the process-based model (LandClim in The Netherlands).
When specific models were lacking for a particular species, it was possible to use equations

developed for another similar species in the same area; for example, the model Fagacées was developed
for Quercus petraea, but was also used for Quercus robur in the Aquitaine region (France), and in
Lithuania (with Kupolis) and Slovakia (with SIBYLA), secondary tree species were modelled on the
basis of similarity with the main tree species.

4. The Stand Structure and Alternative Management Option Issues

Another issue faced when selecting a DSS and/or associated models is its ability to take all
the management options into account in the simulations. In a foresight study such as INTEGRAL,
the numerous scenarios and stakeholder consultations [11] result in a broad range of management
options, from unmanaged forest to short term biomass rotation, close-to-nature forestry conversions or
even the development of a previously inexistent stand mixture. Bearing this in mind, and that most
growth models were designed to provide an accurate estimate of timber production under a “classical”
management regime (Table 4), the range of validity of some models (i.e., context where the results
remain valid) can be questioned.

For example, a growth model not able to simulate mortality induced by high stocking and natural
regeneration should not be used for the modelling of unmanaged stands (this is the case of the Lemoine
model). In practice, this problem has been fixed using a specific thinning regime based on self-thinning



Sustainability 2017, 9, 599 14 of 31

curves designed for maritime pine in Portugal [35] in unmanaged stands, where the thinned trees were
counted as dead trees.

Another management option of interest for foresight studies is to evaluate the impact of change
on stand structure, turning a part of the even-aged stands into uneven-aged stands, or the opposite.
In the case studies, growth models, which take into account irregular stands, can also be used for
regular ones, with the exception of the Portuguese models for Eucalyptus and Pinus pinaster, for which
separate versions were developed for even-aged and uneven-aged stands. In other case studies, when
no references were available, it was considered too hazardous to simulate irregular stands: Table 3
shows that only 37% of the growth models are able to account for irregular stands and that 90% of the
case studies consider this option in their management choices.

A last management option of interest for the stakeholders was the installation of short rotation
coppice for biomass. When such practices where not implemented, the use of empirical growth models
to assess the production of very short rotation with high stocking is hazardous.

5. The Input and Output Data Sets Required to Run Landscape Simulations or Expected from
the DSS

5.1. Input Data Required by the DSS

The amount of input data required varies depending on the DSS taken into consideration (Table 5),
but the following three types of information are always required.

First, the initial forest landscape must be described. The applied growth models are initially
designed to assess wood production; therefore, the standard parameters, which define a stand (Table 4)
are species composition, basal areas or stocking, age and height. Depending on the type of growth
model embedded in the DSS, these data can be required at the stand or at the tree level.

Second, site productivity must be defined. Depending on the tool, productivity can be fixed for the
whole simulation or it can vary according to the climate (process based models [38] or empirical growth
models dealing with climate). The required productivity can be provided directly as a combination of
tree height and tree diameter at a certain age, or as the site productivity in cubic meters per hectare
per year. More user-friendly approaches will compute this productivity using other variables such as
soil type (or soil nutrient content and water capacity), topography (slope, upslope, aspect, elevation)
distance to water course, and forest type. Some empirical growth models which take climatic impact
into account, such as SIBYLA, will not deal with a constant site index, but will estimate the yearly
yield depending on the climate variables provided.

A third input always required by landscape DSS is the management of each stand, usually
by defining the thinning regime. According to the project strategy, a thinning regime is attributed
to a given stand (taking into account the type of forest manager associated with this stand) at the
beginning of the simulation and is maintained throughout the whole simulation period. The differences
observed between various simulated scenarios resulted mainly from the ratios of different thinning
regimes allocated to the different stands. Due to growth model characteristics (Table 4), all the thinning
regimes require the classical features, such as the thinning periodicity and, in the case of even-aged
stands, plantation density, and target age or target size. Yet we could observe different manners to
define the thinning regimes:

• The more classical definition of the thinning regime is a calendar listing operations at a given age
or the periodicity of operations. This leads to a very low flexibility depending on the heterogeneity
of the environment,

• Other thinning regimes are driven by dendrometric thresholds that trigger certain actions:
with SIMMEM, relative density triggers thinning and max diameter clear-cut, with ForClim,
total biomass or diameter trigger thinning,

• Some of the models were also able to carry out specific optimisation by adjusting the thinning
regime stand by stand to optimise a species composition or a net value depending on the site.
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Table 4. Growth models used by the INTEGRAL case study areas. Variables codes are specified in the abbreviation list and are ordered alphabetically.

Growth Model (GM) Name/DSS Modeled Variables Derived Variables Included in the Simulation Tool Forest Management Action (FMA)
Considered during Simulation Site Data Required by GM

SIBYLA/SIBYLA software T_H, T_DBH

S_AGB, S_BA, S_BB, S_C, S_HTvol, S_LB, S_Dmean,
S_Hmean, S_MR, S_N/ha, S_RB, S_SInd, S_Sp, S_Sp%,
S_StemBAB, S_StemWB, S_Struct, S_TB, S_Age%,
S_MAI, S_Dq, S_Tvol/T_AGB, T_BB, T_Coord., T_CD,
T_CR, T_CL, T_DBH, T_H, T_ID, T_LB, T_LifeSta,
T_RB, T_StemBAB, T_StemWB, T_TB,
T_VolUB(stump), T_TBA, T_N_content (N,P,K,Ca,Mg)

Thinning regimes defined by calendar
and tree target diameter

CO2, NOx, relative soil nutrient status, length of
vegetation period, T ◦C mean in vegetation
period, yearly T ◦C amplitude, amount of
precipitation, soil relative moisture soil and
index of site aridity/humidity

Fagacées/SIMMEM in Capsis S_Hdom, S_Dq S_Ddom, S_Hdom, S_N/ha, S_BA, S_Tvol, S_Tyield
Thinning regimes defined by relative
density index and diameter. Clear-cut
defined by max diameter

Hdom and age couple to assess site index

Lemoine Model-PP1/SIMMEM in
Capsis S_Hdom, S_Dq S_Ddom, S_Hdom, S_N/ha, S_BA, S_Tvol, S_Tyield

Thinning regimes defined by relative
density index and diameter. Clear-cut
defined by max diameter

PP1: Hdom at age 40

SILVA T_DBH, T_H, T_CR, T_CL,
T_LifeSta.

S_Tvol, S_MAI, S_BA, S_N/ha, S_Ht, S_Hdom, etc.
S_StandingVal, S_TValProd, S_MAIVal, etc. ShInd, the
Species Profile Index, the Clark and Evens index, pair-
and mark-correlation functions and others.

Thinning regimes defined by kind,
strength and frequency in time

Nutrient availability, water supply and
temperature related variables

Remsoft Woodstock S_Age%, S_Sp%, S_Tyield,
S_Stocking, S_ThinVol S_DBHmean, S_Ht, S_Tvol, S_Stocking

Different FMA prescriptions are
permitted/restricted in spatially
determined zones

Water sedimentation risk factors (i.e., distance to
watercourse, soil type, upslope contributing area
and land use), soil type, elevation range

EFISCEN S_Age%, S_Stocking, S_HTvol,
S_MAI S_Age%, S_Stocking, S_HTvol, S_MAI

Management plan defined by calendar:
selective thinning, thinning, resprouting,
clear-cut, preparatory cuts, seed cuts,
sparse thinning, no activity

Productivity: m3/ha/year

Kupolis

S_D%, S_Stocking,
S_StandingVol, S_Age%,
S_DBHmean, S_ThinVol, S_MR,
S_ProdCosts, S_Tyield, S_Struct

S_Age%, S_D%, S_N/ha, S_Dmean, S_Hmean,
S_Stocking, S_StandingVol, S_DBHmean, S_ThinVol,
S_HTvol, S_MR, S_ProdCosts, S_Tyield, etc.

Thinning regime defined by the species
composition of target trees and stocking
level of the stand (thinning intensity
defined by user)

Slope, soil moisture and soil nutrient content

ForClim in LandClim S_D%, S_TB S_C, T_TB, S_TB, S_Struct
FMA defined by biomass or diameter
target. Spatial zoning of management can
be defined

T ◦C, precipitation, soil (available N, soil depth)
and topology (aspect, DEM, slope).

Heureka T_DBH, T_H, T_LifeSta S_RecVal, S_Cseq., S_Hab_Ind/S_HTvol,
S_HTvolAssort, S_ProdCosts, S_TimbVal

Pre-commercial thinning, thinning,
clear-cut, scarification, planting,
fertilization

Total and Productive Area, County Code,
Altitude, Latitude, SInd, Soil Moisture Code,
Vegetation Type

Globulus 3.0/StandsSIM in
SADfLOR

S_N/ha, S_Ddom, S_BA,
S_VolUB, S_VolUB(stump)

S_MTVol, S_BAC, S_BB, S_LB, S_RB, S_StemBAB,
S_StemWB, S_Dq, S_ThinVol, S_HTvol, S_C,
S_ProdCosts, S_W&S

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd
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Table 4. Cont.

Growth Model (GM) Name/DSS Modeled Variables Derived Variables Included in the Simulation Tool Forest Management Action (FMA)
Considered during Simulation Site Data Required by GM

GYMMA/StandsSIM in SADfLOR S_N/ha, S_Ddom, S_BA
S_MTVol, S_BAC, S_BB, S_LB, S_RB, S_StemBAB,
S_StemWB, S_Dq, S_ThinVol, S_HTvol, S_C,
S_ProdCosts, S_W&S

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd

Pinaster/StandsSIM in SADfLOR S_Sind, S_Hdom, S_MR,
S_Dmean, S_D%

S_N/ha, S_BA, S_Standing_Vol, S_MTVol, S_BB, S_LB,
S_RB, S_StemBAB, S_StemWB, S_Dq, S_ThinVol,
S_HTvol, S_C, S_ProdCosts, S_W&S

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd

PBIRROL/StandsSIM in SADfLOR S_ThinVol, S_DBHmean, S_MR
S_BA, S_N/ha, S_StandingVol, S_MTVol, S_BB, S_LB,
S_RB, S_StemBAB, S_StemWB, S_Dq, S_ThinVol,
S_HTvol, S_C, S_ProdCosts, S_W&S

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd

PINEA/StandsSIM in SADfLOR S_DBHmean, S_MR, S_D%
S_BA, S_N/ha, S_StandingVol, S_MTVol, S_BB, S_LB,
S_RB, S_StemBAB, S_StemWB, S_Dq, S_ThinVol,
S_HTvol, S_C, S_ProdCosts, S_W&S, S_Cones_yield

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd

SUBER/StandsSIM in SADfLOR S_DBHmean, S_Hmean,
S_Ckyield, S_MR, S_H%

S_BA, S_BAC, S_N/ha, S_StandingVol, S_BAC, S_BB,
S_LB, S_RB, S_StemBAB, S_StemWB, S_Dq, S_ThinVol,
S_C, S_ProdCosts, S_W&S, S_Ckyield, S_DBHmean,
S_Hmean,

Goal: pulp, wood, energy, cork or cone
production, except operations related to
wood extraction

Climatic data, S_SInd

MNLmodel S_N/ha, S_Hdom, S_BA S_StandingVol, S_AGB, S_Dq, S_ThinVol, S_HTvol,
S_C

Goal: pulp, wood, energy, cork or cone
production Climatic data, S_SInd

CASTANEA S_SInd, S_Hdom, S_N/ha
S_MTVol, S_Dq, S_BA, S_StandingVol, S_C, S_Cseq.,
S_ThinVol, S_HTvol, S_BB, S_LB, S_RB, S_StemBAB,
S_StemWB

Goal: pulp, wood, energy, cork or cone
production. FMA is characterized by:
densities, thinning, intensity and
periodicity, clear-cuts and number of
rotations in the case of eucalyptus

Climatic data, S_SInd

Variables codes use an ‘S’ for ‘Stand’ and ‘T’ for ‘Tree’: Area (A); Aboveground biomass (AGB); Age (Age%); Basal area (BA); Basal area (with bark) (BAC); Branches biomass (BB); Carbon
sequestration (Cseq.); Carbon stock (C); Cones yield (Cones_yield); Coordinates (Coord.); Cork yield (Ckyield); Crow ratio (CR); Crown diameter (CD); Crown length (CL); Diameter at
Breast Height (DBH); Diameter distribution (D%); Dominant diameter (Ddom); Dominant height (Hdom); Habitat suitability (Hab_Ind); Harvest timber volume (HTvol); Height (H);
Height distribution (H%); Identification (ID); Leaf biomass (LB); Life status (alive/dead) (LifeSta); Mean annual volume increment (MAI); MAI value (MAIVal); Mean DBH (DBHmean);
Mean diameter (Dmean); Mean height (Hmean); Merchantable volumes (MTVol); Mortality (MR); Number of trees per ha (N/ha); Nutrients (N, P, K, Ca, Mg) (N_content); Production costs
(ProdCosts); Quadratic mean diameter (Dq); Recreation values (RecVal); Root biomass (RB); Shannon Index (ShInd); Site index (SInd); Species (Sp); Species distribution (Sp%); Standing
timber value (StandingVal); Standing volumes (StandingVol); Stem bark biomass (StemBAB); Stem wood biomass (StemWB); Stocking (Stocking); Structure index (Struct); Thinned volume
(ThinVol); Timber value (TimbVal); Top height (Ht); Total biomass (TB); Total volume (Tvol); Total yield (Tyield); Volume harvested on assortments (HTvolAssort); Volume under bark
(VolUB); Volume under bark with stump (VolUB (stump)); Wages and salaries (W&S).
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Table 5. Input data required for the DSS in each INTEGRAL case study area. Variables codes are specified in the abbreviation list and are ordered alphabetically.

CSA (Area) Data Required at
Landscape Level

Source Used to Provide
the Information

Method to Approximate
the Value

Bulgaria:
TET (69,700 ha)
YUN (4750 ha)

Site characteristics
Soil types National Forest Inventory (NFI) Data collection in the field

Climate conditions NFI Phytosociology

Stand characteristics Sp: mean diameter and height, stand
volume/ha, mean age, Sp% NFI Data collection in the field

Management
characteristics Thinning regime + rotation length

Cadastre + Forest Management
programs (FMP) + Forest
Owners (FO typology )

Cadastre + expert definition of a
% area per type

Additional inputs Climate evolution

France:
PON (101,000 ha)

Site characteristics Site index for pine (Hdom 40)/100 for
oak value (0–1)

Vegetation map derived from
Modis (comparison from 2000
to 2014)

Empirical table: correspondence
(vegetation type and Sind)

Stand characteristics
Tree species and density. Age IGN aerial photos Expert + field validation

Area Cadastre with FO’s ID number

Management
characteristics

Thinning regime + rotation length +
min #years between 2 thinning

FO typology + main stand type
+ Sind

Stratified random sampl. (forest
size and fertility)

Additional inputs Prices per diameter classes Public sale ‘Office National des
Forêts’ (ONF) 2013

Germany:
MUN (60,000 ha)
UPP (300,000 ha)

Site characteristics

Regional climate data (rainfall,
vegetation period, temperature), soil
characteristics (water + nutrient supply
via indices)

Long term climate data + data
from regional soil mappings

Stand characteristics Tree species, Mean DBH/sp and/or
layer, BA, Mean height NFI

Data collection in the field:
sample inventors for FM
planning

Management
characteristics Thinning regime FMP + inventory strata

characteristics
Expert definition of a % area per
strata (NFI data)
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Table 5. Cont.

CSA (Area) Data Required at
Landscape Level

Source Used to Provide
the Information

Method to Approximate
the Value

Ireland:
NEW (187,820 ha)
WES (1,060,000 ha)

Site characteristics

Upslope contributing area Elevation SRTM DEM (90 m
resolution)

Soil types Teagasc Irish soil survey

Distance to water course Geographic Information System
techniques

Land use Datasets recorded for statutory
subsidies

Environmentally designated zone Natura 2000 datasets and GIS
techniques

Stand characteristics

Tree species
NFI

National Forest Information
System (NFIS)Proportion of a tree species within a

stand in percent

Productivity NFI and productivity prediction
model

NFIS and mathematical
modelling from stand sampling

Age NFI NFIS

Management
characteristics

Thinning regime are included in yield
table selected UK forest service

Italy:
ASI (103,000 ha)
MOL (600 ha)
ETN (25,300 ha)

Site characteristics Productivity (m3/ha/an) Local FMPs

Stand Characteristics

Age class

Local FMPsVol/ha

Area

Management
characteristics Thinning regime Local FMPs
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Table 5. Cont.

CSA (Area) Data Required at
Landscape Level

Source Used to Provide
the Information

Method to Approximate
the Value

Lithuania:
SUV (66,000 ha)
ZEM (37,900 ha)

Site characteristics Soil types based on the slope, soil
moisture and nutrient content

Standwise NFI + State Forest
Cadastre

Stand Characteristics Sp%, Age, H, D, Vol, BA by tree sp. and
canopy layers and Area

Standwise NFI + State Forest
Cadastre

Orthophotos + Data collection
in the field

Management
characteristics

Ownership boundaries Real estate register + State
Forest Cadastre

Random sampl.(FO typology
mapped prior simulations)

Thinning regime + Final cuttings +
Rotation length

Forest managers, FMP, State
forest cadastre Expert judgement

Additional inputs Costs and incomes from forestry
activities

Economic statistics of local state
forest enterprises, stakeholders Experts’ opinions

The Netherlands:
SEV (8000 ha)

Site characteristics Soil and digital elevation model
characteristics Dutch Soil map

Stand Characteristics Age, biomass, stems per species per
pixel

Detailed NFI (from 1981),
projected to 2010 (checked
spin-up run)

Extrapolation at pixel level

Management
characteristics

D or biomass target/sp per
management area/regime

FMP from FS and municipalities
and discussions with
stakeholders

Experts’ opinions

Climate evolution
characteristics Monthly temperature and precipitation

Meteo from nearby station. For
CC scenario KNMI: dutch
Meteo station scenarios are used

Modelling

Slovakia:
POD (21,255 ha)
KYS (98,222 ha)

Site characteristics [39]

Bio-geo-climatic region

Map of Bio-ecological forest
regions and sub-regions of
Slovak Rep. incorporated in
SIBYLA

Altitude, Slope, Aspect, Calendar year,
Forest type

FMP database and FMP for
forest stands in Slovak Republic,
provided by the National Forest
Centre (NFC)

Search of the desired
characteristic in FMP database
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Table 5. Cont.

CSA (Area) Data Required at
Landscape Level

Source Used to Provide
the Information

Method to Approximate
the Value

Slovakia:
POD (21,255 ha)
KYS (98,222 ha)

Stand Characteristics
[39]

Representative species composition

FMP database and FMP for
forest stands in Slovak Republic
(NFC)

“Averaging” the information in
FMP databases

Site index
Carry out frequency analysis of
the information in FMP
databases

Stand characteristics (Dmean, Hmean,
stock vol/sp)

“Averaging” the information in
FMP databases + transfer of
desired information from
Growth tables

Management
characteristics

Management zones
FMP database and FMP for
forest stands in Slovak Republic
(NFC)

Search for the desired
characteristic in FMP database

Area distribution of 10 year age classes
Summing the information from
FMP and GIS cadastre
databases

Thinning regimes + Final cuttings +
Rotation length

Forest managers, Silviculture
experts and literature, FMP

Personal consultations +
Literature review

Climate evolution
characteristics

Change of mean temperature and
precipitation IPCC report [40] Modelling

Sweden:
HEL (120,000 ha)

Site characteristics
Total and Productive Area, County
Code, Altitude, Latitude, SInd, Soil
Moisture Code, Vegetation Type

Stand register produced by
combining NFI plot data and
RSD

Stand Characteristics SInd, Inventory Year, Mean Age, N/ha,
BA, Sp%

Stand register produced by
combining NFI plot data and
RSD

Sweden:
VIL (850,000 ha) Site characteristics

Mean site index of each strata

Site classification was based on
site height indices
(S_Hmean/age 100 yrs) per
NFI’s sp.

Interpolation

Mean climatic condition of each strata Mean of weather data from
maps Interpolation
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Table 5. Cont.

CSA (Area) Data Required at
Landscape Level

Source Used to Provide
the Information

Method to Approximate
the Value

Sweden:
VIL (850,000 ha)

Stand Characteristics

Mean composition in each strata Mean of the stand composition
given by NFI

Extrapolation from RSD and
plot inventory

Area of age classes of 10 years Deduced from domestic growth
and yield table

Spatial % of trees and dimensions (D,
H, CL, CD, stem quality, damage)

Mean of the stand composition
given by NFI

Extrapolation from RSD and
plot inventory

Management
characteristics

Forest categories Existing zones for
protection/production

5 classes of management purposes
traduced in thinning schedule Expert assessment and cadastre

5 classes of naturalness based on
species composition NFI

Portugal:
CHA (74,600 ha)
SOU (48,900 ha)

Site characteristics SInd, altitude, climatic variables for
each management unit (MU)

Cartography and meteorology
Institutes Models

Stand Characteristics MU area. Stand: sp, Struct, age, N/ha,
Hdom and BA. Tree: DBH, H, SInd NFI Extrapolation from RSD and

plot inventory

Management
characteristics

N/ha at planting, number of rotations,
planning horizon, # shoots left per
stump, age: first, last thinning, harvest
and shoots selection, thinning:
periodicity, type and intensity; annual
list of silvicultural operations

Stakeholders Experts’ opinions + Literature
review

Additional inputs Silvicultural operations’ costs Economic statistics Literature review

Portugal:
LEI (75,200 ha)

Site characteristics Site index Cartography and meteorology
Institutes Models

Stand Characteristics MU area, stand: Struct, sp, age, N/ha,
Hdom and BA NFI Extrapolation from RSD and

plot inventory

Management
characteristics

N/ha at planting, planning horizon,
age: first, last thinning and harvest;
thinning: periodicity, type and intensity

Stakeholders Experts’ opinions + Literature
review

Additional inputs Silvicultural operations’ costs Economic statistics Literature review

Basal area (BA); Crown diameter (CD); Crown length (CL); Diameter (D); Diameter at Breast Height (DBH); Dominant height (Hdom); Height (H); Mean diameter (Dmean); Mean height
(Hmean); Number of trees per ha (N/ha); Site index (SInd); Species (Sp); Species distribution (Sp%); Structure index (Struct); Volume (Vol).
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The DSS used for the case study can be classified according to the amount of input data they
require (Figure 3). It should be noted that, the data required for one DSS may differ from case study
to case study: for example, SIBYLA, used in Slovakia (case studies POD and KYS) and in Bulgaria
(case studies TET and YUN) is not parametrised the same way in the two countries. Therefore,
the required input data may also depend on the modelled area and the type of outputs partners needed
for the project.
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the DSS used in Portugal: PINEA-SUBER (CHA), Globulus-PBIRROL-Pinaster-GYMMA (CHA-SOU),
CASTANEA (SOU).

5.2. Sources of Input Data

In the case studies, the input data (Table 5) came from different sources and sometimes methods
were used to validate it in the modelled area, mainly through checking values using measurements in
the field (Table 3).

The stand characteristics needed for each DSS were mainly extracted from national forest
inventories in all case studies and maps obtained from the extrapolation of remote sensing data.
In one case (Capsis-PON in France), the data used to describe the stands did not comprise statistics
from national inventory sampling plots, but a photointerpretation of the national forest inventory
aerial photos carried out by the partners.

Climatic data were taken from forest inventory classifications, long-term series of satellite photos,
nearby weather stations, maps of bio-ecological forest regions, and data from meteorological institutes.

The management characteristics are taken from cadastre information (when management type
depends on property size), current local forest management plans or meetings with stakeholders.

5.3. Outputs Provided by the DSS for the Case Studies

The outputs provided by the DSS are shown in Table 6. Depending on the case study, the outputs
mainly focused on wood production; however, for the INTEGRAL project, a number of outputs were
produced to characterise the ecosystem services in each scenario. Certain case studies detailed wood
production indicators; for example, in Bulgaria, four outputs out of eight were: harvested volume,
standing volume, mortality volume and total biomass. In other regions, indicators were mainly
developed for characterising various ecosystem services; for example, in Ireland, one output was
the total harvested volume, while the other eight were tree carbon stock, water sedimentation risk,
hen harrier habitat suitability, deer cover habitat, deer forage habitat, ground vegetation, nesting bird
habitat, red squirrel habitat and human recreation.
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Table 6. Outputs for the INTEGRAL case study areas by country and simulation period; provided directly by DSS or post-processing based.

Ecosystem Services
Evaluated by Country

(Simulation Period within
INTEGRAL)

Bulgaria
(2014–2064)

France
(2009–2069)

Germany
(2012–2042)

Ireland
(2012–2042)

Italy
(2010–2040 )

Lithuania
(2013–2073)
(2013–2043)

The
Netherlands
(2010–2100)

Sweden
(2014–2044)

Slovakia
(2014–2044)

Portugal
(2014–2111)

Ages Sd

Area of deciduous trees Sd

Average volume per tree Sd

Biomass Sd Sa [41]

Costs, incomes and profits
from forestry activities Ld

Deer cover habitat Sd

Deer forage habitat Sd

Discounted value of
harvestable stock Sa [42]

Ecological stability Ex

Fire vulnerability Sd Sa

Fuel wood Sa [41]

Ground vegetation Sd

Ground water protection In Sa [41]

Harvested volume Sd Sd Sa Sd Sd Sd Sd Sd

Hen harrier habitat
suitability Sd

Hunting income ratio in% Ex

Landscape amenity Sa Sa

Leakage of dissolved
organic carbon Sd

Leakage of methyl mercury Sd

MAI Sa Sd

Mortality volume Sd

Mushrooms Ex

Natural dynamics (% area
No-management) Sa
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Table 6. Cont.

Ecosystem Services
Evaluated by Country

(Simulation Period within
INTEGRAL)

Bulgaria
(2014–2064)

France
(2009–2069)

Germany
(2012–2042)

Ireland
(2012–2042)

Italy
(2010–2040 )

Lithuania
(2013–2073)
(2013–2043)

The
Netherlands
(2010–2100)

Sweden
(2014–2044)

Slovakia
(2014–2044)

Portugal
(2014–2111)

Nesting birds habitat Sd

Potential to protect soil
and water In [43]

Recreational value In In Sd [44] In In Sd

Red squirrel habitat Sd

Reindeer herding areas Sd

Relative stocking Sd

Saproxylic biodiversity Sd Sd Sd

Shannon diversity In

Total carbon content Sd Sd Sd Sd [45] Sa Sd

Total carbon stock in trees Sa Sd Sd

Total cork production Sd [46]

Total biodiversity Sd In Sd Sa Sd Sa

Total growing stock Sd Sa Sd Sd Sa [41] Sd

Total growing stock in
mature stands Sd Sd

Total harvested volume by
diameter class Sd

Total pine nuts production Sd [47]

Total standing value Sd Sd

Total thinned volume Sd

Total volume Sd

Tourism visitors Ex

Water sedimentation risk Sd

Wind vulnerability Sd Sa

Text codes: Expert estimation [Ex]; Index [In]; Provided by DSS directly for each stand [Sd]; Provided by DSS directly for each strata [Sa]; Provided by DSS directly for the landscape [Ld].
Colours codes: Weighted sum by stand area (ha)
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As shown in Figure 4, the amount of output data (Table 6) provided by the tools for INTEGRAL 
is strongly related to the number of inputs (Table 5). A simple explanation for this is that in order to 
provide a wide range of information about a landscape, more complex modelling tools which need 
more input data are required. There is only a limited number of cases, such as SOU and CHA, in 
which landscape heterogeneity and the high number of models require many inputs for a limited 
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These two different case studies illustrate the diversity of outputs produced within the project.
This variety is not only related to the DSS used, but also to the regional specificities and interests of the
case studies. It can be observed that, even though the same tool (SIBYLA) was used for the Slovakian
and the Bulgarian case studies, the outputs were different.

5.4. Relationship between Inputs and Outputs

As shown in Figure 4, the amount of output data (Table 6) provided by the tools for INTEGRAL
is strongly related to the number of inputs (Table 5). A simple explanation for this is that in order to
provide a wide range of information about a landscape, more complex modelling tools which need
more input data are required. There is only a limited number of cases, such as SOU and CHA, in which
landscape heterogeneity and the high number of models require many inputs for a limited number of
outputs. Some of these outputs (listed in Table 6) were generated specifically for the project, and as they
stand they do not fully represent the total outputs that the DSS are able to provide without carrying
out additional work. However, this could mean that when choosing a landscape DSS based on growth
models, the type and output number needed must be well-defined in order to pick the appropriate
tool. In addition, the use of a more complex system which requires additional data and effort could be
worthwhile as more landscape indicators are provided in the end. Nevertheless, this graph illustrates
the need to develop more proxies on the landscape scale so that most of the values listed in Table 6 can
be estimated for all landscapes.
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6. Discussion

6.1. Strengths and Weaknesses of the Listed Tools

The first limitation experienced in all the cases studies is the validity domain of the available
tools. In a prospective study or when working on socioeconomic scenarios which comprise a
broad set of possible futures such as in the INTEGRAL project [13] it is pertinent to work on
forest landscape evolution under very diverse management options. As a consequence, in most
cases it is necessary to foresee stand structure and associated services under extreme management
options: short rotations, unusual thinning regimes (combination of biomass and timber products),
unmanaged forest, tree species replacement, use of improved material, etc. Yield tables are obviously
not adapted to address untested management. Empirical growth models often face the challenge of



Sustainability 2017, 9, 599 26 of 31

young ages modelling and extreme regime thinning, making their use problematic when running
biomass management options. Process based growth models or hybrid models are often calibrated
for a certain range of climatic conditions and their results should be interpreted with caution when
reused outside their validity domain; however, they are expected to provide more reliable results if
the climatic variables provided are trustworthy. The simulation of management options not always
considered by growth models, such as unmanaged forests, assumes that the growth model can take
complex parameters into account, including mortality (94% of INTEGRAL growth models), natural
regeneration (10% of INTEGRAL growth models), mixed species (29% of INTEGRAL growth models)
or trees species succession.

Almost all of the case studies in the INTEGRAL project have applied a regionally specific tool and
growth model, and when this is not the case (e.g., SYBILLA, EFISCEN, LandClim), the parameterisation
is regionally specific. There was very little exchange of growth and yield information between case
studies. Especially in the light of climate change and regionally unknown management, one could
consider the exchange of growth and yield information between regions to be better able to incorporate
future situations in projections into the future. Moreover, our review revealed that most existing DSS
are not able to manipulate information about climate and land use extensively, being limited to forest
(i.e., NFI). Alternative workarounds could be found for all these cases, but assumptions underpinning
these workarounds should be clearly explained to the end-user and identified from the beginning.

Figure 2 shows that there are many strategies to deal with the lack of data. Common sense
assumes that the bigger and the more heterogeneous the forest landscape to be modelled, the more
virtual stands you need to properly represent of the diversity of sites, tree species, stand structures and
forest management. Each landscape simulation is a trade-off between the complexity of the situation,
the outputs required and the data available to get a realistic result.

The fact that the Table 5 shows that some indicator for assessment of sustainable management
at landscape level in some regions relied on the expert knowledge, shows that there is still a
lack of relevant and validated indices that could be simulated in DSS for those specific items on
large landscapes.

One important strength of the afore-described tools is that they can provide quantitative
information which takes into account landscape characteristics and the heterogeneity of forest
management over large areas. Some of the tools based on non-spatially explicit strata, offer a simple
way to group homogenous plots or pixels in a realistic way and are probably the easiest to handle.
Other more spatially explicit tools have the advantage of providing landscape indicator maps that are
excellent for communication, but these can be misinterpreted if the underlying hypotheses are not
well understood.

The different strategies on the sampling described in this paper are demonstrating that with a
limited amount of input data, we can provide a good set of indicators adapted to regional issues (water
quality, recreational value, mushrooms, etc.) on large landscapes for the three pillars of sustainability:
ecology, economy, social. It also demonstrates that an additional effort in data collection is worthwhile
as the number of outputs to assess sustainability increases with the amount of inputs. In addition,
with the development of new dendrometric parameter acquisition tools, such as drones, satellites and
LIDAR [48,49], the possibility of obtaining accurate data over large areas will increase. The combination
of these stand data with digital elevation models, soils maps, and regional climate forecast [37] offer a
promising avenue for landscape simulation tools. As input data becomes more reliable, the outputs will
increase in accuracy and reliability for multiple uses and, more specifically, for resource assessment.

6.2. How Can the Appropriate Tool Be Selected to Run a Landscape Simulation in a Given Region?

The main criteria to consider before engaging in any forest landscape simulation are the existing
forest status and the drivers that will be used to affect landscape evolution. Commonly, the main
changes affecting a forest landscape are land use, management practices, hazards and climate. As also
pointed out by Muys et al. [50], the main challenges for the current DSS rely on (i) simultaneously



Sustainability 2017, 9, 599 27 of 31

considering the ecosystem services trade-offs; (ii) balancing forest management options with the
implications of local climate and land use changes (afforestation and deforestation); and (iii) including
the local communities’ needs and stakeholders’ expectations (i.e., social science component) while
simulating management effects on forest stand (or landscape) development. In particular, Pastorella
et al. [51] highlighted that stakeholders perceive DSS as inadequate to differentiate the stakeholders’
perceptions and needs, but INTEGRAL project tackled this challenge.

The INTEGRAL project demonstrates that in most European regions, it is possible to find growth
models [15] and landscape DSS [52] matching the on-site species and that workaround options exists,
although they may affect the accuracy of the results, requiring their cautious interpretation. When
simulation includes the replacement of on-site species by a very new species (Table 2 vs. Table 3), it is
extremely risky to use models without carrying out field trials to calibrate the site indices. This is true
for most of the species replacement strategies.

An increasing interest in landscape simulation relates to conversion of forest to biomass [53].
The INTEGRAL results show that a very limited number of models are currently able to take short
rotations and biomass production into account; this is an issue that must be considered before making
any choices.

As climate was not a variable taken into account in the INTEGRAL European case studies,
a limited number of growth models used (37% in INTEGRAL) can account for climate change
uncertainty; according to the ForestDSS Community of Practice (ForestDSS.org) [52,54] inventory only
19% of existing DSS can. This issue will become increasingly important in the future and could become
a key criterion when selecting a landscape simulation for running forecasts over decades.

Data availability is an important criterion, and DSS providing a large set of outputs with a limited
number of input data will always be preferred. A challenge for simulation is to design a tool in which
there is a compromise between accuracy, relevance of the results, and input data collection work.

Output parameters should be clearly targeted before choosing a tool; a complex model requiring
huge input data compilation efforts is not necessary, if the expected result is only growing stock. Output
parameters, and the way they are built (see reference in Table 5), are of course very important, as they
comprise the way in which simulated landscapes sustainability will be compared. As demonstrated
in this paper, in most cases timber production and dendrometric data are well described. Particular
attention should be given to the other indicators (Table 6) that are derived from these values, in order to
assess sustainability on the landscape level: biodiversity [5], vulnerability, standing value, recreational
index [44], carbon storage, etc.

To increase the effectiveness of sustainable forest management through the use of decision support
tools, the standardization of data and approaches would be needed. For example, the inclusion of
criteria and indicators for sustainable forest management as available at EU scale may improve the
evaluation of the implications of decision support tools on forest functionality towards a standardized
way. Some proposals come from Santopuoli et al. [55] for social and cultural sustainability, and by
Pereira et al. [56] for biodiversity conservation. However, the different representation of the forest
landscape in the different DSS makes adoption of landscape level post-calculation indicators applied
in other regions or DSS difficult.

7. Conclusions

In conclusion, the main findings from the implementation of the DSS within the INTEGRAL
project in European forest landscapes denote that: (i) there is a large diversity of tools which run
landscape simulation; (ii) whatever tools is selected it is possible to consider local ecological and
socio-economic conditions; (iii) landscape dynamics as a consequence of external disturbance still
need to be included (i.e., land use change and climate); and (iv) comparison between case studies is
rather difficult due to poor standardisation of adopted data and approaches. Taking these issues into
account, the end-user needs a user-friendly [57] decision support tool which will run forest landscape
simulation and make the most of existing (online) information (NFI, soil maps, past and future climate,
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etc.) and use data automatically collected from drones or remote sensing data. In consequence, the user
will be able to focus on the definition of forest management depending on end-user expectations and
output analysis, instead of focusing on site characteristics at the initial stages.

The INTEGRAL project also highlighted the high impact of forest management decisions on
forest ecosystem services linked to local communities for different landscapes in Europe. To assess
this impact using decision support tools, process-based and agent-based approaches should be
combined in order to detect and compare peculiarities and differences between European forest
landscapes or socio-economic scenarios. Accordingly, from decision-making to the operational level,
the sustainability in forest landscapes may be enhanced through simultaneously considering the local
communities’ needs and the resilience and vulnerability of forest ecosystems to increasing stresses
and anthropogenic pressures. It is therefore necessary to develop a good understanding of forest
owner choices and to validate robust indicators able to assess forest sustainability and vulnerability
throughout very large areas from these new datasets and the existing growth models. Improving
and enhancing the valorisation of forest management as a driver of local development should be the
mandate for developing the future-oriented decision support tools.

Finally, in order to make current decision support tools more flexible in consideration of
forest management options, sustainability indicators and spatial interactions would be expected
to consider ecosystem dynamics and driving forces (e.g., sustainable development policies) in a more
integrated way.
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42. ForestPortal Informačné Listy LTIS. Available online: http://www.forestportal.sk/lesne-hospodarstvo/
informacie-o-lesoch/trhove-spravodajstvo/Pages/informacne-listy-ltis.aspx (accessed on 15 December
2016).
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