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Abstract: Emerging evidence suggests a profound association between the microbiota composition
in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in
modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which
have implications for breast cancer growth. However, recent research has unveiled a novel aspect of
the relationship between the microbiota and breast cancer, focusing on microbes residing within the
mammary tissue, which was once considered sterile. These localized microbial communities have
been found to change in the presence of a tumor as compared to healthy mammary tissue, unraveling
their potential contribution to tumor progression. Studies have identified specific bacterial species
that are enriched within breast tumors and have highlighted the mechanisms by which even these
microbes influence cancer progression through immune modulation, direct carcinogenic activity, and
effects on cellular pathways involved in cell proliferation or apoptosis. This review aims to provide
an overview of the current knowledge on the mechanisms of crosstalk between the gut/mammary
microbiota and breast cancer. Understanding this intricate interplay holds promise for developing
innovative therapeutic approaches.
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1. Introduction

The human body, in particular the gastrointestinal tract, is populated by a large num-
ber of bacteria, viruses, fungi, and protozoa, constituting the so-called microbiota [1], also
known as “forgotten organ” [2]. Over the past two decades, interactions between the
gut microbiota and the host have been widely studied, highlighting its crucial role in a
plethora of physiological and pathological processes. The most dominant phyla inhabiting
the gut, about the 90% of the entire gut microbiota [3], are represented by Firmicutes
and Bacteroidetes, but members of the Actinobacteria, Proteobacteria, Fusobacteria, and
Verrucomicrobia phyla are also present [4]. These microorganisms establish a symbiotic
relationship with the host and exert essential functions to preserve homeostasis. For
instance, the microbiota is engaged in several metabolic pathways, such as the fermen-
tation and absorption of undigested carbohydrates, and actively participates in energy
harvesting, storage, and the activation and regulation of the immune system [5]. This
delicate equilibrium can be subverted, and an imbalance between beneficial and potentially
pathogenic bacteria has been observed in patients suffering from different pathologies.
This condition, termed “dysbiosis”, results in drastic changes in microbial composition and
is considered the effect of the microbial barriers’ disruption related to disease. However,
recent studies have described how microbiota dysbiosis may represent the cause rather
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than the consequence of specific pathological conditions and/or events influencing the
disease outcome [6]. For example, the gut microbiota has been demonstrated to be involved
in promoting cancerogenesis, favoring tumor progression, and affecting the response to
anticancer therapies, including immunotherapy [7].

The advent of high-throughput DNA sequencing technologies has made possible to
characterize the entire human microbiome, that is, the collective genetic material of all the
microorganisms living in our organism. The findings obtained using these novel techniques
have allowed us to ascertain that, beyond the gut, other human body compartments,
historically considered sterile, host indigenous bacterial communities [1]. Moreover, in a
recent study conducted by Nejman et al., it was shown that tumors, including breast, lung,
ovary, pancreas, melanoma, bone, and brain cancers, host their own microbiome, different
from that present in the healthy counterpart [8]. It has been speculated that changes in
bacterial abundance/composition in the tumor mass may represent an effect of the disease,
related to the leakier vasculature in the tumor microenvironment that influences bacteria
recruitment [9]. However, increasing evidence points to a “causal role” of tumor-associated
bacteria in sustaining disease progression by shaping the phenotypes of cancer and immune
cells and their interaction with the surrounding stroma. These data also raise important
questions concerning the origin of these bacteria—whether they are tissue-resident or
translocate from the gut or other sites in response to specific signals.

A specific microbiota is also associated with the mammary gland, once believed to
be a microorganism-free environment [10]. The breast is mainly constituted by adipose
tissue presenting an extensive vasculature and lymphatic drainage, and, for this reason,
it represents a favorable environment for bacterial growth, particularly Proteobacteria
and Firmicutes [11]. Culture experiments proved the existence of viable bacteria in the
mammary tissue, revealing the colonization of Bacillus sp., Enterobacteriaceae sp., and
Staphylococcus sp. [10]. Interestingly, a particularly rich and diverse microbiome has been
identified in breast cancer [8]. Many studies have reported profound differences in the
microbial composition of the mammary gland between tumoral and normal tissues and
between benign and malignant tumors [8,12–14], supporting the notion that changes in
tissues’ microbial communities may influence the progression of breast cancer [12].

Since both gut and local microbiota growing in the mammary gland have been pos-
tulated to influence breast cancer progression [14–17], in the present review, we aimed to
give an overview of the state of the art regarding the intricate relationship between the gut-
and mammary-tumor-associated microbes with the host in the onset and progression of
breast cancer.

2. Relationship between Breast Cancer and the Gut Microbiome

Breast cancer is the second leading cause of cancer-related deaths in women world-
wide [18]. It is a heterogeneous malignancy, and distinct molecular subtypes have been
characterized. For example, the Luminal A subgroup is characterized by estrogen receptor
(ER) expression and activity and, due to its good response to endocrine therapy, has the
best clinical prognosis. Luminal B cancers express lower levels of ER and have higher
proliferation rates compared to the previous subtype. The human epidermal growth factor
receptor 2 (HER2)\positive subgroup is ER- and progesterone receptor (PR)-negative and
comprises about 15% of all invasive breast cancers. It is more aggressive than luminal-like
tumors. Finally, triple-negative breast cancers (TNBC), the subtype with the worst survival
and the most challenging to treat, do not express hormone receptors or HER2 [19]. Such
a classification represents an extremely valuable tool for predicting the clinical outcome
and guiding the selection of the more appropriate therapy. However, it is becoming clear
that other clinical variables need to be taken into consideration, and among these, gut
microbiota is an emerging factor. Breast cancer’s occurrence and development has been
demonstrated to be affected by the gut microbiota through different mechanisms, including
the modulation of immune system activity, the alteration of estrogen levels, and the produc-
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tion of bacterial metabolites, which, in turn, exert various effect on tumor cells themselves
and their microenvironment (Figure 1).
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Figure 1. Effect of gut microbiota in the progression of breast cancer through the modulation of the
immune system, the release of bacterial metabolites, and the modulation of estrogen levels.

2.1. Gut Microbes–Immunity Crosstalk

The interaction between the commensal microbiota and the human immune sys-
tem is in a dynamic balance [20]. Gut bacteria establish a complex and coordinated set
of innate and adaptive immune responses to maintain tissues homeostasis. As a conse-
quence, when the microbiota–host balance is disrupted and dysbiosis occurs, an increased
production of inflammatory mediators, which are associated with cancer progression, is
observed [21,22]. This effect has been experimentally demonstrated well in a mouse model
of hormone receptor (HR)+ mammary cancer. Antibiotic-induced commensal dysbiosis
resulted in a significant increase at the tumor site of myeloid cells highly expressing suppres-
sive/inflammatory molecules, such as arginase-1 and IL-6 [23]. Among these inflammatory
cells, M2-like macrophages, the most frequent immune subset in the breast tumor mi-
croenvironment and associated with reduced survival in HR+ breast cancer [24], were
particularly found to infiltrate breast tumors and the normal-adjacent mammary gland
during early and advanced stages of tumor progression. These effects were recapitulated
by the fecal microbiota transplantation of dysbiotic cecal contents, demonstrating the direct
impact of gut dysbiosis on mammary tumor growth [25,26].

Neutrophils have also been reported to be influenced by gut microbiota in the context
of breast cancer [26]. In the C3-1-TAg mammary cancer mouse model, it has been observed
that infection with Helicobacter hepaticus, a gut-resident bacterium, induced breast cancer
progression associated with increased neutrophil recruitment and infiltration at the tumor
site. Neutrophil depletion inhibited mammary tumor formation, resulting in the appearance
of only a few pre-neoplastic and early neoplastic lesions in the breast tissue, as compared
to multifocal advanced lesions in non-depleted mice [26].

Moreover, in a recent published study [27], it emerged that the specific gut bacteria
is able to shape the immune response in a way that promotes or suppresses tumor de-
velopment through the regulation of the stimulator of interferon gene (STING) agonists.
In particular, the presence of cdAMP-producing Akkermansia muciniphila in the gut was
observed to induce the IFN-I pathway upon STING activation. The IFN-I production
led to the reprogramming of macrophages toward an anti-tumor phenotype and to the
stimulation of the crosstalk between natural killer (NK) and dendritic cells (DC), further
sustaining an anti-tumor immune response. Conversely, these events were halted in germ-
free mice, in which it was possible to assist with monocytes’ differentiation into pro-tumoral
macrophages [27].

The role of gut microbiota in breast cancer progression is also supported by clinical
studies. It was found that low microbiome diversity was associated with the reduced
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survival of breast cancer patients. This condition was also accompanied by changes in
immune cell compartments, consisting in a decreased level of lymphocytes and a parallel
increased number of neutrophils [28]. Collectively, these findings clearly suggest that
the gut microbiota may influence breast cancer progression and survival through the
modulation of immune cells’ activity.

2.2. Modulation of Estrogen Levels

Especially for HR+ breast cancer, the risk of breast cancer progression is highly as-
sociated with the level of circulating estrogens [29], whose metabolism takes place in the
liver [30]. The role of estrogens as breast carcinogens has been proven by several epidemio-
logical studies, and various mechanisms have been proposed to explain their pro-tumor
effects. For example, upon binding to the specific nuclear receptor alpha (ER-α), estrogens
are able to induce the enhanced production of growth factors that, in turn, boost the pro-
liferation of breast cancer cells [31]. Moreover, estrogens have been reported to cause a
genotoxic effect through a non-ER-α-dependent mechanism. Indeed, the catabolism of
estrogens mediated by cytochrome P450 complexes generates reactive free radicals and
intermediate metabolites that cause oxidative stress and genomic damage, resulting in
increased mutation rates and a compromised DNA repair system [32,33].

C-18 steroid hormone estrogens exist in three biologically active forms, estradiol (E2,
premenopausal), estrone (E1, postmenopausal), and estriol (E3, in pregnant women), which
exert diverse biological effects. In the liver, the hydroxylation of parent estrogens E2 and
E1 produces estrogen metabolites with varying hormone potency, bioavailability, and
half-life. Estrogens and their metabolites are then conjugated through glucuronidation and
sulfonation to allow biliary excretion into the gastrointestinal tract. A fraction of conjugated
estrogens are deconjugated by the gut microbiota into free estrogens, which are then reab-
sorbed in the distal part of the intestine and, through the portal vein, distributed to other
tissues, including the mammary glands [33]. Finally, they can circulate in the bloodstream
as free molecules or bound to specific proteins. The link between estrogens and microbiota
thus relies on the ability of intestinal bacteria to release free estrogens. In 2011, Plottel and
Blaser widely discussed the “estrobolome”, defined as the collection of enteric bacterial
genes with the ability to metabolize estrogens [34]. Indeed, free estrogens are mainly
derived from the deconjugation process occurring in the gut via bacterial β-glucuronidase,
especially microbial communities belonging to the Clostridia and Ruminococcaceae fam-
ilies or the Escherichia/Shigella genus. These β-glucuronidase-producing bacteria were
frequently found to be over-expressed in dysbiotic microbiota due, for instance, to diet,
alcohol consumption, and the use of antibiotics [35,36]. The augmented abundance of such
microorganisms results in an increased concentration of circulating free estrogens, eventu-
ally contributing to breast cancer progression [37,38]. Accordingly, a case–control study
conducted on 2266 North American women affected by breast cancer and 7953 healthy
controls showed that women with a clinical history of long-term antibiotic treatment were
characterized by an elevated risk of developing breast cancer [39]. In addition, adiposity, a
condition strictly related to high circulating estrogen levels, has been associated with an
elevated breast cancer risk in postmenopausal women [40]. A meta-analysis of 50 prospec-
tive observational studies also confirmed a relationship between adult weight gain and the
risk of breast cancer in women [41].

2.3. Role of Microbial Metabolites

Besides estrogens, other metabolic pathways link the gut microbiota to breast cancer
progression. Through the metabolism and fiber fermentation of lipids or bile acids (BAs),
bacteria produce an array of molecules that can directly or indirectly interfere with tumor
cell proliferation [42,43].

Intestinal anaerobic bacteria, such as Clostridia spp., are one of the largest producers of
lithocholic acid (LCA), a secondary bile acid found to decrease breast cancer cell prolifer-
ation through the activation of the G-protein-coupled bile acid receptor 1 (TGR5) [44,45].
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Moreover, LCA is able to interfere with the mesenchymal-to-epithelial transition cell pro-
gram, increase the tumor immune cell infiltration, and affect the tricarboxylic acid cycle
(TCA) and the oxidative phosphorylation (OXPHOS) pathways [43]. Further in vitro stud-
ies demonstrated that LCA can decrease the expression of nuclear factor erythroid 2-related
factor 2 (NRF2) and up-modulate Kelch-like ECH associating protein 1 (KEAP1), causing
an imbalance between pro- and anti-oxidant enzymes, eventually impairing breast cancer
cells proliferation [46]. Finally, LCA serum levels in breast cancer patients are associated
with a high abundance of Clostridiales and Bacteroidales species. Early-stage breast cancer
patients showed lower LCA levels and a concomitant reduced abundance of Clostridiales
and Bacteroidales than healthy women [43].

Nisin, a gut bacteriocin produced by the Gram-positive L. lactis, has also been shown
to have a highly cytotoxic effect on breast tumor cells by altering calcium ion influx across
the cell membrane and promoting cell cycle arrest [47].

Other bacterial metabolites impacting breast cancer progression are short-chain fatty
acids (SCFAs), such as butyrate, propionate, acetate, and lactate. SCFAs are the most
common types of gut microbial metabolites, primarily produced by species colonizing the
intestine, such as as Eubacterium rectale, Clostridium leptum, and Faecalibacterium prausitzii,
as well as by the lactate-utilizing species Eubacterium hallii and Anaerostipes [47], through
the fermentation of dietary fibers [48].

Evidence in breast cancer patients has shown that sodium butyrate has a promising
anti-tumor activity on breast cancer cells alone or in combination with other anti-cancer
agents [49–53], for example, the anti-HER2 antibody trastuzumab [54].

The diamine cadaverine, another bacterial metabolite derived from the decarboxyla-
tion of lysine and arginine, is known to inhibit breast cancer cells growth, migration and
invasion, as well as suppressing epithelial-to-mesenchymal transition [45].

Overall, studies highlight how several bacterial metabolites can exert an anti-tumor
effect against breast cancer cells. It should be considered that not all metabolites produced
by the microbiota possess anti-cancer activity, but, instead, some of them are able to
promote tumor growth, as shown in other cancer types [47,55]. However, to the best of our
knowledge, no pro-tumorigenic bacterial metabolites have been identified in the context of
breast cancer yet.

3. Breast Microbiome and Its Impact on Breast Cancer

Accumulating evidence indicates a consistent role of breast-tissue-resident bacteria
in the onset and progression of breast cancer [14], but the origin of these bacteria remains
unclear, and different hypotheses are debated. A study performed in canine breast tumors
revealed the presence of bacteria belonging to the Bacteroides family in the tumor tissue, as
well as in the mouth and gut [56], sustaining the notion of a possible bacterial translocation
from the oral cavity to the intestine and, eventually, to the mammary tissue. However,
the isolation from mammary tumors of bacteria typically inhabiting the skin, such as
Staphylococcus epidermidis and Micrococcus luteus, shows a scenario in which these microbes
may have reached the mammary gland through the nipples and then spread through the
gland lobules and ducts [16].

Furthermore, live bacteria have been found within tumor cells and tumor-associated
immune cells [8,15], suggesting that cancerous and host cells may be exploited as a shuttle
to help microorganisms spread to the tumor or the adjacent normal mammary tissues [57].
Interestingly, Fu et al. also revealed that intracellular bacteria have the ability to induce the
rearrangement of the breast cancer cell cytoskeleton, which confers tumor cells a higher
resistance to fluid shear stress. This results in an increased survival rate during cancer cell
transport through blood vessels and, consequently, an enhanced metastatic potential [15].

Several studies revealed modifications in the tumoral mammary gland microbial
composition compared to the normal tissues and among tumors at different stages [8,12].
Urbaniak et al. reported that Enterobacteriaceae, Staphylococcus, and Bacillus were highly
abundant in breast cancer patients compared to healthy individuals [14]. Xuan et al. [58]
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found the presence of Sphingomonas yanoikuyae in normal breast tissue and its dramatic
reduction in the tumoral tissue, whereas the bacterium Methylobacterium radiotolerans
was the most significantly enriched in the tumoral tissue. In an Asiatic cohort of breast
cancer patients, Propionicimonas, Micrococcaceae, Caulobacteraceae, Rhodobacteraceae,
Nocardioidaceae, and Methylobacteriaceae were enriched in tumors [59]. In the same study,
a decrease was observed in the Bacteroidaceae family, and a parallel increase was observed
in the genus Agrococcus as the malignancy developed. Moreover, cancer development also
correlated with an augmented presence of Fusobacterium, Atopobium, Gluconacetobacter,
Hydrogenophaga, and Lactobacillus genera [60].

In another study, Costantini et al. [61] reported that the most abundant genus found
in the mammary tissue is represented by the bacterial genus Ralstonia, further increased in
the breast tumoral tissue. Moreover, in the same study, the presence of Methylobacterium
and Sphingomonas genera in the healthy mammary tissue was also observed, according to
previous studies. Variations in the microbiota composition were also detected among the
different breast cancer molecular subtypes. Banarjee et al. [62] firstly identified a unique
microbial signature associated with triple-negative breast cancer. In a following work,
the same authors defined four different microbial signatures associated with ER+, HER+,
triple positive (ER+, PR+ and HER2+), and TNBC subtypes [13] (Table 1). The idea that
each breast cancer molecular subgroup is characterized by a peculiar pattern of bacteria is
also strengthened by Smith et al., who described a specific abundance of Eucaryarchaeota,
Cyanobacteria, and Firmicutes phyla in TNBC [63]. These data support the notion that
mammary dysbiosis, either being the cause or the consequence of tumor implantation, does
occur in breast cancer and that changes in the microbiome are plausibly associated with its
progression and with the intrinsic property of the specific subtype.

Moreover, in a study of 668 breast tumor tissues present in The Cancer Genome Atlas
(TCGA) data set, the microbiome profile was correlated with the expression of specific
tumor genes [64]. Interestingly, the presence of some bacteria, such as Listeria fleischmannii,
was strongly associated with genes involved in the epithelial-to-mesenchymal transition,
while Haemophilus influenza was correlated with pathways related to tumor growth, cell
cycle progression, E2F signaling, and mitotic spindle assembly.

Collectively, these findings reveal that a peculiar tumor-associated microbiota com-
position can be associated with some features intrinsic to tumors. However, this type of
study is still at its infancy and requires further investigation. For example, it is still unclear
whether a correlation between specific bacteria and mutations harbored by breast cancer
cells exists. This topic is particularly interesting considering that a genotoxic activity of
Escherichia coli, Staphilococcus, and Bacterioides fragilis, isolated from breast tumors, has
been clearly described [14,65].

Table 1. Specific bacterial taxa found to be associated with the microbiota of triple-negative breast
cancer tissue.

Taxa Enriched in TNBCs Reference

Actinomycetaceae, Caulobacteriaceae, Sphingobacteriaceae,
Enterobacteriaceae, prevotellaceae, Brucellaceae, Bacillaceae,

Peptostreptococcaceae, Flavobacteriaceae
[62]

Actinomyces, Bartonella, Brevundimonas, Coxiella, Mobiluncus,
Mycobacterium, Rickettsia, Sphingomonas [66]

Azomonas, Alkanindiges, Caulobacter, Proteus, Brevibacillus,
Kocuria, Parasediminibacterium [67]

3.1. Mechanistic Role of Breast Microbiome in the Progression of Breast Cancer

As for the gut microbiota, recent studies have revealed various mechanisms through
which local mammary-tumor-associated bacteria might play a role in breast cancer pro-
gression, including a direct carcinogenic activity, effects on cell growth or apoptosis, the
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modulation of the immune response, and the production of metabolites that, in many ways,
can affect tumor biology (Figure 2 and Table 2).
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(growth or apoptosis), inducing DNA damage, modulating the immune system, and releasing
bacterial metabolites.

Table 2. Bacterial species found to be associated with the microbiota of breast cancer tissue, in
patients, and in murine models and their function in the progression of breast cancer.

Breast Cancer Tissue Bacteria Molecular Mechanism Reference

Human Escherichia coli and
Staphylococcus

Induction of DNA double-strand break and
genomic instability in vitro [14]

Human Clostridiales

Inhibition of tumor growth by producing the
metabolite trimethylamine N-oxide (TMAO)

that activates CD8+ T cells- mediated
antitumor-immunity

[53]

Human Fusobacterium nucleatum
Breast tumor progression and metastases by
fap-2 dependent binding of the bacterium to

breast cancer tissue Gal-GalNac
[68]

Mice Staphylococcus, Lactobacillus
and Streptococcus

Breast tumor lung metastases by modulating
the stress response and influencing cancer cell

viability, altering the cell cytoskeleton
[15]

Mice Staphylococcus epidermidis

Increased T regulatory cell infiltration in the
tumor and complement pathway activation

in vivo, and increased pro-tumoral M2
macrophages phenotype in vitro

[16]

Mice Micrococcus luteus
Reduction of mammary tumor growth in vivo,

and increased anti-tumoral M1 macrophage
phenotype in vitro

[16]

Mice Bacteroides fragilis
Breast tumor progression and metastasis

through the secretion of the B. fragilis
toxin (BFT)

[65]

3.1.1. Carcinogenic Effect on the Host Genome

Urbaniak et al. compared the normal and cancerous breast tissues of patients under-
going mastectomy for breast reduction in the absence of neoplastic disease or for surgical
resection of the tumor. In cancerous tissue compared to normal tissue, a higher abun-
dance of Enterobacteriaceae and Staphilococcus was found [14], and subsequent culture
experiments allowed the isolation of Escherichia coli and Staphylococcus aureus, two species
belonging to the aforementioned genera. These bacteria are reported to possess a direct
carcinogenic activity mediated by the production of colibactin, a genotoxin able to induce
double-stranded DNA breaks and genomic instability [69,70]. Accordingly, the authors
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observed that HeLa cells exposed to Escherichia coli had significantly higher levels of histone-
2AX phosphorylation, a marker of DNA double strand-break. A similar effect was also
induced by Staphylococcus [14].

Moreover, a toxin from Bacteroides fragilis, a gut-colonizing bacterium also found in
the mammary gland, can induce epithelial hyperplasia to promote tumor growth and
metastatization via the β-catenin–Notch1 axis [65].

3.1.2. Effect on Cell Growth/Apoptosis

One of the mechanisms regulating the crosstalk between microbes and the host is
based on the expression of pattern-recognition receptors (PRRs), such as Toll-like receptors
(TLRs), by different types of immune and non-immune cells. These receptors can sense
microbial changes occurring in the tumor microenvironment and modulate the immune
system activity and, in certain circumstances, tumor cell growth/proliferation [71]. For
instance, it has been reported that Fusobacterium nucleatum, previously demonstrated to be
associated with colorectal cancer (CRC) [72], is implicated in breast cancer growth [12,68]
through the activation of TLR4/NF-kB pathway in cancer cells [73].

Moreover, it has been also demonstrated that this bacterium, through the Fap2 lectin
protein, can bind Gal-GalNac, a sugar present in high levels, on breast tumor cells’ surfaces,
causing an acceleration of breast cancer growth and the development of metastases [70,72].

3.1.3. Effects on the Immunity

In a TNBC mouse model, we have recently observed the abundant presence of
Staphylococcus epidermidis in the tumor niche [16]. In particular, Staphylococcus epidermidis
was found to be responsible for an extremely inflamed tumor microenvironment, deter-
mined by its strong ability to induce pro-inflammatory cytokine secretion and complement
activation, reported to sustain tumor growth [74]. The in vivo peritumoral transfer of this
bacterium was also demonstrated to be associated with a significant increase in immuno-
suppressive T regulatory cells into the tumor nodules and, when co-cultured in vitro with
bone-marrow-derived macrophages (BMDM), to promote a pro-tumor phenotype. Accord-
ingly, antibiotic treatment, by the abundance of lowering Staphylococcus epidermidis, reduced
tumor growth. The anti-tumor effect mediated by antibiotic treatment was accompanied by
the appearance of Micrococcus luteus in the tumor mass. Unlike Staphylococcus epidermidis,
Micrococcus luteus, when in vivo peritumorally transferred, exerted an anti-tumor activity
by inducing an M1 macrophage phenotype and by reducing myeloid-derived suppressor
cell (MDSC) infiltration [16]. These findings are in line with previously published data
revealing the abundant presence of the Micrococcaceae family in healthy breast samples
and of Staphylococcaceae in tumoral tissues [14].

Moreover, the bacterium Sphingomonas, detected in the healthy mammary gland, is
able to induce the activation of invariant NKT (iNKT) cells [75], important mediators in
cancer immunosurveillance and in the control of breast cancer metastases [76]. Accordingly,
an increased level of Sphingomonas in healthy compared to tumoral mammary tissue
has been observed to be associated with a higher expression of TLR2, -5, and -9 and of
antimicrobial response effectors IL-12A, bactericidal/permeability-increasing protein (BPI),
and myeloperoxidase (MPO), suggesting its possible protective role in cancer by sustaining
immunosurveillance [58].

3.1.4. Microbial Metabolites Production

It is still unclear whether tumor-infiltrating bacteria can produce metabolites, as largely
demonstrated for gut microbiota. However, based on data present in the literature, it is
possible to obtain some insights. For instance, Bacillus cereus, capable of metabolizing
progesterone into 5-alpha-pregnane-3,20-dione (5αP) [77], was found to be higher in breast
cancer patients than in healthy ones [10,14]. Since 5αP is believed to promote tumor
development by stimulating cell proliferation, it is plausible to speculate that at least part
of this molecule may be of bacterial origin [78].
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Moreover, in a recent study performed in a cohort of patients with TNBC, a high
abundance of Clostridiales in tumoral tissue was associated with an activated immune
microenvironment [79]. Specifically, the presence of these bacteria positively correlated
with the production of the metabolite trimethylamine N-oxide (TMAO), a compound able
to activate CD8+ T cells-mediated antitumor immunity and M1 macrophages, further
supporting the idea of a metabolically active tissue-resident microbiota [76].

4. The Gut–Breast Microbiota Axis

The existence of axes between gut microbiota and different body areas, such as the
liver, lung, and brain, has already been reported, but no definitive proof is available today
on the crosstalk between the gut microbiota and the mammary glands. However, it was
observed that treatment with orally administered probiotics is highly effective in the cure
of mastitis and that probiotics become detectable in human milk [80], strongly suggesting
that an interconnection between gut microbiota and the breast may exist.

Gut-resident bacteria may leave the intestine through breaches in the epithelium,
which is frequent during dysbiosis, and translocate to the mammary gland via the blood
or lymphatic systemic circulation. An alternative escape route is represented by intestinal
dendritic cells, which are reported to uptake bacteria in the intestinal mucosa through
their ability to open the tight junctions between epithelial cells [81]. Since dendritic cells
are migratory cells, they can reach distant sites, such as the mammary tissue, through the
vascular system.

Furthermore, a third possible participant in the gut-microbiota–breast tissue dialog
may be represented by bacteria metabolites. These bacterial products, produced in the
intestine, may be absorbed by the intestinal mucosa and released into the bloodstream
through which they can virtually reach all the body compartments, including mammary
glands, exerting their biological functions in loco.

Although there are many insights regarding the possibility of a gut–breast axis, further
investigations are still required not only to finally prove its existence but also to identify
the players involved in their crosstalk.

5. Conclusions

A large symbiotic microbiota resides in the human intestine and exerts fundamental
roles in health and disease. Since it is able to regulate host metabolism and shape the
immune system, the gut microbiota has been revealed to affect breast cancer progression.
More recently, bacteria have also been found to be a component of the breast mammary
tissue, but their pathobiological role is poorly understood due to their low biomass. Many
studies have clearly demonstrated that mammary tissue microbiota changes in the presence
of a tumor, representing a scenario in which the tumor-associated microbiota actively
participates in the constitution of the complex tumor microenvironment.

The present review summarizes what is known about the relationship between specific
bacteria and breast cancer progression and, concomitantly, highlights what is still missing in
the literature. Indeed, there are many open questions that represent weaknesses in this field:
(i) Does a direct link really exist between the gut and the mammary microbiota composition?
(ii) Are they seeded in the tumor microenvironment early on in tumorigenesis, or are they
recruited as the tumor alters the microenvironment? (iii) Which bacteria can be defined
as “good” or “bad”? (iv) What are the metabolic products or the structural molecules
mechanistically involved in their effects on cancer cells? (v) Do different species share a
common mechanism that is able to impact tumor cell biology and could represent potential
therapeutic targets? A limitation of studies aiming to answer these questions is that the
use of mouse models might not be exhaustive, as they do not allow one to consider many
factors affecting the human microbiome, such as diet, host genetics, and age. Thus, only
studies on human subjects may represent the future direction of microbiome research to
deconvolute the complex microbiota–tumor crosstalk and to open new avenues to shape
the cancer microenvironment toward a favorable context through the modulation of gut
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and/or local microbiota. Antibiotics, probiotics, prebiotics, and fecal microbiota transfer are
strategies that are used to modulate the gut microbiome in the treatment of many infectious
diseases and are currently investigated as potential anti-cancer therapeutic options.
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