
Performing Regular Operations with 1-Limited

Automata?

Giovanni Pighizzini1, Luca Prigioniero1[0000−0001−7163−4965], and �imon
Sádovský2

1 Dipartimento di Informatica, Università degli Studi di Milano
via Celoria, 18, 20133 Milan, Italy

{pighizzini,prigioniero}@di.unimi.it
2 Department of Computer Science, Comenius University

Mlynská Dolina, 842 48 Bratislava, Slovakia
sadovsky@dcs.fmph.uniba.sk

Abstract. The descriptional complexity of basic operations on regular
languages using 1-limited automata, a restricted version of one-tape Tur-
ing machines, is investigated. When simulating operations on determinis-
tic �nite automata with deterministic 1-limited automata, the sizes of the
resulting devices are polynomial in the sizes of the simulated machines.
The situation is di�erent when the operations are applied on determin-
istic 1-limited automata: while for boolean operations the simulations
remain polynomial, for product, star, and reversal they cost exponential
in size. These bounds are tight.

1 Introduction

It is well known that regular languages are recognized by �nite automata and
are closed under several language operations. When a class of languages bene�ts
of such strong closure properties, it is quite natural to ask how much these
operations cost in terms of size of the description of recognizing devices. In
this paper we focus on the complexity of union, intersection, complementation,
product, star, and reversal. The costs of these operations on deterministic �nite
automata (1dfas) have been widely studied in the literature [7, 6, 15, 16], while
the case of two-way �nite automata (in both deterministic and nondeterministic
version) has also been considered [5, 4].

In this paper we study the descriptional complexity of language operations
on deterministic 1-limited automata (d1-las). Limited automata are a kind of
single-tape Turing machines with rewriting restrictions, introduced by Hibbard
in 1967 [2] and recently reconsidered and deeply investigated (see, e.g., [1, 8�
12, 14]). These devices are two-way �nite automata with the extra capability of
overwriting the contents of each tape cell only in the �rst d visits, for a �xed

? The research of �imon Sádovský was supported, in part, by Slovak Scienti�c Grant
Agency VEGA (Grant 1/0601/20) and by Comenius University in Bratislava (Grant
UK/258/2021).

2 G. Pighizzini et al.

constant d ≥ 0 (we use the name d-limited automaton to explicitly mention
the constant d). For any �xed d ≥ 2, d-limited automata have the same power
as pushdown automata, namely they accept exactly context-free languages [2],
while deterministic 2-limited automata recognize exactly the class of determin-
istic context-free languages [10]. For d = 0 no rewritings are possible, hence the
resulting models are two-way �nite automata. The computational power does
not increase if the rewritings in any cell are restricted only to the �rst visit. In
other words, 1-limited automata are no more powerful than �nite automata [13].
However, their descriptions can be signi�cantly more succinct. In particular, a
double exponential size gap between 1-limited automata and one-way determin-
istic �nite automata has been proved in [9], while exponential size gaps have
been proved for the conversions from 1-limited automata into one-way nondeter-
ministic �nite automata and from deterministic 1-limited automata into one-way
deterministic �nite automata.

In the study of the descriptional complexity of language operations given a
family of recognizers (source devices), the goal is the investigation of the size of
the devices (target devices) accepting the languages obtained by applying some
operations to (the languages accepted by) the source devices. Up to now, in
the literature it has been analyzed the size of target devices of the same family
as the source devices. However, the results on the succinctness of the descrip-
tion of 1-limited automata suggested us to propose a di�erent approach. Here,
for each operation we study, we �rst take �nite automata as source devices,
and we simulate the operations on them with 1-limited automata as target de-
vices. We emphasize that we consider deterministic machines only. Therefore,
we prove that, despite the capabilities of 1-limited automata of rewriting the
cells of the tape during the �rst visit do not make this model more powerful
than �nite automata, using these machines as target devices for simulating op-
erations between �nite automata yields 1-limited automata more succinct than
the equivalent �nite automata. In fact, if we consider operations between 1dfas
(as source devices), we are able to create d1-las accepting the languages ob-
tained by applying such operations that are smaller than the equivalent 1dfas
obtained by using standard constructions [16]. In particular, while the 1dfas ac-
cepting the languages obtained by applying the operations of reversal, product,
and star on the languages accepted by 1dfas cost exponential, the constructions
we provided yield equivalent d1-las whose sizes are only polynomial in the sizes
of the source 1dfas.

On the other hand, when considering 1-limited automata as source and target
devices, the simulations cost polynomial only in the case of union, intersection,
and complementation. In the case of reversal, product, and star, however, we
were able to �nd exponential lower bounds witnessing the fact that there is no
smaller automaton than the one obtained by converting the simulated d1-las
into 1dfas �rst (obtaining exponentially larger machines), and then applying the
corresponding (polynomial-size) language operation construction for obtaining
a d1-la.

Performing Regular Operations with 1-Limited Automata 3

2 Preliminaries

We assume the reader familiar with notions from formal languages and automata
theory, in particular with one-way and two-way deterministic �nite automata
(1dfas and 2dfas for short, respectively). For further details see, e.g., [3]. Given
a set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet Σ, we denote by |w| the length of a string w ∈ Σ∗, by wR the reversal
of w, and by ε the empty string. Given two languages L,L′ ⊆ Σ∗, Lc denotes
the complement of L, L∗ denotes the (Kleene) star of L, LR denotes the reversal
of L, and L ·L′, L∪L′, and L∩L′ denote the product (or concatenation), union,
and intersection of L and L′, respectively (with the usual meaning).

A deterministic 1-limited automaton (d1-la) is a 2dfa which can rewrite
the contents of each tape cell in the �rst visit only. Formally, it is a tuple A =
(Q,Σ, Γ, δ, q0, F), where Q is a �nite set of states, Σ is a �nite input alphabet,
Γ is a �nite working alphabet such that Σ ∪ {B,C} ⊆ Γ , B,C /∈ Σ are two
special symbols, called the left and the right end-markers, and δ : Q × Γ →
Q×Γ×{−1,+1} is the transition function. At the beginning of the computation,
the input is stored onto the tape surrounded by the two end-markers, the left
end-marker being at the position zero. Hence, on input w, the right end-marker
is on the cell in position |w|+1. The head of the automaton is on cell 1 and the
state of the �nite control is the initial state q0. In one move, according to the
transition function and to the current state, A reads a symbol from the tape,
changes its state, replaces the symbol just read from the tape by a new symbol,
and moves its head to one position forward or backward. Furthermore, the head
cannot pass the end-markers, except at the end of computation, to accept the
input, as explained below. However, replacing symbols is allowed to modify the
content of each cell only during the �rst visit (after that, the contents of the cell
is said to be frozen), with the exception of the cells containing the end-markers,
which are never modi�ed. For technical details see [10]. A accepts an input w
if and only if there is a computation path which starts from the initial state q0
with the input tape containing w surrounded by the two end-markers and the
head on the �rst input cell, and which ends in a �nal state q ∈ F after passing
the right end-marker. It is an easy observation that one can enforce 1-limited
automata to always rewrite each cell in the �rst visit so that they know whether
they are scanning the cell for the �rst time or not.

The size of a machine is given by the total number of symbols used to write
down its description. Therefore, the size of deterministic 1-limited automata
is bounded by a polynomial in the number of states and of working symbols,
namely, it is Θ(#Q · #Γ · log(#Q · #Γ)). In the case of deterministic �nite
automata, since no writings are allowed and hence the working alphabet is not
provided, the size is linear in the number of instructions and states, which is
bounded by a polynomial in the number of states and in the number of input
symbols, namely, it is Θ(#Σ ·#Q · log(#Q)).

4 G. Pighizzini et al.

3 Product and Kleene Star

We start our investigation by studying the operations of product and star. It is
known that the costs for these operations on 1dfas are exponential due to the
need of simulating in a deterministic way the nondeterministic choices used for
decomposing the input string. However, we show that, using d1-las as simulating
machines, the costs reduce to polynomials. Then, we analyze the simulations of
these operations when the given machines are d1-las. In this case, by studying
suitable witness languages, we prove that the costs become exponential.

3.1 Simulations of Operations on 1dfas

We now describe how to obtain a d1-la A = (Q,Σ, Γ, δ, q0, F) accepting the
concatenation of the languages accepted by two 1dfas A′ = (Q′, Σ, δ′, q′0, F

′)
and A′′ = (Q′′, Σ, δ′′, q′′0 , F

′′), in such a way that the size of A is polynomial
in the sizes of A′ and A′′. Let n′ = #Q′, n′′ = #Q′′, Q′ = {q′0, q′1, . . . , q′n′−1},
and Q′ = {q′′0 , q′′1 , . . . , q′′n′′−1}.

Let us start by brie�y recalling how a 1dfa accepting L(A′) · L(A′′) can
work. It simulates A′ on the whole input word and, every time a �nal state is
entered, it starts a parallel simulation of the automaton A′′ on the remaining
input su�x. When the end of the input is reached, if some computation of A′′
is in a �nal state, the 1dfa accepts. Since the simulating 1dfa keeps in its �nite
control, at the same time, a state of A′ and the set of states reached by all the
parallel simulations of A′′, its size is Θ(n′ · 2n′′), which is optimal [16].

In our case the goal is to avoid the exponential blowup in size by exploiting
the rewriting capability of 1-las. To this end, A still simulates the behavior
of A′ by using a state component of size n′, and marks the cells from which
the simulations of A′′ can start, that are the cells next to the ones A′ enters
some accepting state. So the simulation can be executed in a sequential rather
than parallel way. Moreover, instead of storing the set of states reached by the
simulations of A′′ in the �nite control, A encodes and writes it along the tape.
This information is then accessed, using the ability of 1-las of scanning the tape
in a two-way fashion, to start and recover the simulations of A′′.

In order to encode the set of states reached by the computations of A′′,
the tape is logically divided into blocks of n′′ cells (possibly with a �nal shorter
block). Thus, the i-th cell of each block is marked with 4 if the state q′′i is reached
by some simulation of A′′ ending in the last cell before the block, otherwise it is
marked with 7.

The written information is organized into three tracks. In particular, for each
frozen cell:
� The �rst track contains a copy of the input symbol originally contained

in the cell before the rewriting, so that it can be still accessed during the
simulations of A′′;

� The second track contains a marker indicating whether (4) or not (7) the
automaton A′ has entered an accepting state right before reading the cell,

Performing Regular Operations with 1-Limited Automata 5

i.e., by reading the input pre�x which ends in the cell immediately to the
left. So that for any cell containing 4 a simulation of A′′ can be started;

� The third track contains a marker indicating whether (4) or not (7) the
corresponding states are reachable by some simulation of A′′, as explained
above.
To make the storing and the recovering of the information about the sim-

ulation of the automaton A′′ possible while keeping the cost of the simulation
polynomial in the size of the simulated devices, the behavior of the simulating
1-la will be restricted to virtual windows of length 2n′′ that cover two successive
blocks of cells. The right block covered by a window contains, in some position,
the leftmost cell that has not been overwritten so far, to which we refer as rel-
ative frontier. We refer to the positions relative to the current window as pairs
in {0, 1, . . . , n′′ − 1} × {l,r}, where the pairs whose second element is l (resp.,
r) denote the left (resp., right) block of the window.

We now present some details on how A recognizes L(A′) · L(A′′). The d1-la
stores in its �nite control the position of the frontier in the right block of the
window, the relative position of the head within the window, and the state of
the automaton A′, which is updated every time the cell at the frontier is read.
At the beginning of the computation, the simulated state of the automaton A′ is
initialized with q′0, and the relative frontier and the relative position both point
at position 0 into the right block of the window.

Let us now show how the 1-la can overwrite each block, cell by cell, with
an encoding of the set of states reached by all computations of A′′ at the end
of the previous block and how it can mark the cells in which the simulations
of A′′ start. Let (i,r), i ∈ {0, . . . , n′′ − 1}, be the position of the frontier. Before
visiting the cell in that position, the 1-la has to gather the information to write
in the leftmost cell that has not been rewritten yet. In particular, it has
1. To check whether the simulated automaton A′ accepts the input scanned so

far: This can be easily done by using the state component devoted to the
simulation of A′ for simulating a move of A′ on the current input symbol
and verify whether it enters a state in F ′. In that case, A will write 4 on
the second track, 7 otherwise.

2. To check whether the state q′′i can be reached by some computation of A′′
before entering the (�rst cell of the) right block of the current window: This
operation is split into two phases. First, the 1-la starts (from the initial
state q′′0) the computations ofA′′ from each cell of the left block whose second
track contains 4. Then, it recovers, in turn, the computations of A′′ from
the states indicated in the third track of the cells of the left block, starting
from the leftmost position of the window, i.e., relative position (0, l). If,
during these two phases, the computation of A′′ reaches the state q′′i after
simulating the transition on the symbol in the last cell of the left block, i.e.,
relative position (n′′− 1, l), the simulating automaton has to write 4 in the
third track, 7 otherwise.

After gathering this information, the 1-la moves the head to the frontier, over-
writes the cell, and the frontier is moved to the next cell. When the last cell of

6 G. Pighizzini et al.

the window is overwritten, the window shifted forward of one block (i.e., it is
shifted n′′ − 1 cells to the left), so the right block becomes the left one and the
frontier points at position (0,r).

When the machine detects the end of the input, indicated by the right end-
marker C, it has to check whether some simulation of A′′ halts in some accepting
state. This can be done with the same approach described in Item 2, but the two
procedures of the two phases continue the simulations until the last cell of the
input rather than stopping in position (n′′ − 1, l). The d1-la accepts if, during
the two phases, some state in F ′′ is reached at the end of the input or if the
simulated state of A′ is �nal and the initial state of A′′ is �nal as well.

By computing the size of the resulting d1-la A, we are able to state our
result on the acceptance of the product of two regular languages (represented
by 1dfas) by a d1-la.

Theorem 1. Let A′ = (Q′, Σ, δ′, q′0, F
′) and A′′ = (Q′′, Σ, δ′′, q′′0 , F

′′) be two

1dfas. Then there exists a d1-la accepting L(A′) · L(A′′) with O(#Q′#Q′′
4
)

states and 5#Σ + 2 working symbols.

Let us now turn our attention to the star operation. Let A = (Q,Σ, δ, qI , F)
be a 1dfa. The d1-la N for L(A)∗ can implement an approach similar to the
one used for the product, so we now illustrate the main di�erences.

In this case, the only automaton to be simulated is A. The �rst simulation
is started from the leftmost input cell. N then starts a new simulation every
time a (simulated) �nal state is entered by some simulated computation of A.
If, at the end of the input, some simulation reaches a �nal state, then the 1-la
accepts.

To implement this strategy, the tape of N is still organized as for the simula-
tion of the product, i.e., it is logically split into blocks of size#Q and three tracks
are used to store a copy of the input, indicating whether or not some simulation
of A has entered an accepting state on the previous cell, and a marker indicating
whether or not the corresponding states are reachable by some simulation of A.

Before entering a new cell, N �rst checks whether the pre�x already visited
is in L(A)∗. This is done by recovering the simulations of A (from the states
encoded on the third track) and starting the new ones (from the cells of the
second track marked with 4), and checking whether some of them reaches a
state in F . After that, N checks whether the state whose index is equal to the
index of the frontier (relative to the block) is reached at the end of the previous
block by some simulation. Once this information is computed, the automaton
moves the head on the cell at the frontier and overwrites it.

When the right endmarker is reached, N only needs to check whether some
simulated device is in a �nal state and, in that case, accepts.

Theorem 2. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists a d1-la
accepting L(A)∗ with O(#Q4) states and 5#Σ + 2 working symbols.

Performing Regular Operations with 1-Limited Automata 7

3.2 Simulations of Operations on d1-las

We now focus on the size costs of the operations of product and star on d1-
las. An immediate approach is to convert the source d1-las to 1dfas, and
then to apply the constructions shown in the previous section. Since converting
d1-las into 1dfas costs exponential in size [9], this procedure yields exponential-
size d1-las for the two operations we are considering. Here, we show that this
strategy cannot be improved, in fact we prove exponential lower bounds for these
operations.

For each integer k ≥ 2, let us consider the language of the strings obtained
by concatenating at least two blocks of length k, in which the �rst and the last
blocks are equal: Lk = {w{a, b}knw | n ≥ 0, w ∈ {a, b}k}.

A d1-la Ak may recognize Lk as follows. It �rst scans the leftmost block w
of length k of the input, overwriting each symbol with a marked copy. Then, Ak

repeats a subroutine which overwrites any subsequent block of length k, say x,
with some �xed symbol], while checking in the meantime whether x equals w
or not. This can be achieved as follows. A boolean variable matched is used to
keep track of whether or not the pre�xes of x and w compared so far match. At
the beginning of the inspection of x, the device assigns true to matched, then
it iteratively inspects the symbols of x. Suppose that all the symbols to the
left of the j-th symbol of x have been inspected and overwritten by]. Before
inspecting the j-th symbol of x, �rst, Ak, with the help of a counter modulo k,
moves the head leftward to the position j of w and stores the unmarked scanned
symbol σ in its �nite control; second, it moves the head rightward until reaching
the position j of x, namely, the leftmost position that has not been overwritten
so far. At this point, Ak compares the scanned symbol (i.e., the j-th symbol
of x) with σ. If the two symbols di�er, the machine assigns false to matched. If,
after inspecting a block of length k, Ak detects that the next symbol is the right
endmarker, then it stops the computation, accepting in case matched contains
true. Otherwise Ak repeats the subroutine described above in order to inspect
the next block.

It is possible to implement Ak with a number of states linear in k and 7
working symbols (the input symbols and their marked copies, the endmarkers,
and the symbol]).

Let us now consider the language L2
k, namely the product of Lk with itself. In

this case, the ability of rewriting the tape cell contents of d1-las does not come
in handy. This is because, ideally, the d1-la cannot know in advance where to
�split� the input string into two parts belonging to Lk. This idea is con�rmed by
the proof of the following result:

Theorem 3. For any integer k ≥ 2,

� There exist two d1-las A′ and A′′ of size linear in k such that any d1-la
accepting L(A′) · L(A′′) needs size at least exponential in k.

� There exists a d1-la A of size linear in k such that any d1-la accepting

L(A)∗ needs size exponential in k.

8 G. Pighizzini et al.

Proof. Let us consider the language Lk. Using the approach described above, it
is possible to recognize Lk with a d1-la of size linear in k.

Let us turn our attention to the language Lk ·Lk = L2
k. To give a lower bound

for the size required by any 1dfa accepting it, we are now going to describe a set
of pairwise distinguishable strings for this language. We remind the reader that
two strings x, y are distinguishable with respect to a language L when there is
a string z such that exactly one of the two strings xz and yz belongs to L. The
cardinality of each set of strings which are pairwise distinguishable with respect
to L gives a lower bound for the number of states of each 1dfa accepting L.

Let us consider the list x1, x2, . . . , xN , with N = 2k, of all the strings
in {a, b}k in some �xed order. For each subset S ⊆ {1, 2, . . . , N}, we de�ne
a string wS as follows. Let S = {i1, i2, . . . , in}, 1 ≤ i1 < i2 < . . . < in ≤ N . We
de�ne wS = xi1xi1xi1xi2xi1xi3xi1 · · ·xinxi1 if S 6= ∅, otherwise w∅ = ε. In other
words, if S is nonempty, then wS is the ordered sequence of factors correspond-
ing to the elements of S interleaved with occurrences of xi1 . In particular, xi1
occurs at the beginning of the sequence and after every factor. Now, consider
two sets S, T ⊆ {1, 2, . . . , N}, with S 6= T . Hence, there is a string x ∈ {a, b}k
contained exactly in one of them. Without loss of generality, assume x ∈ S
and x /∈ T . We prove that wSx ∈ L2

k and wTx /∈ L2
k. Let x = xi` . If ` >

1, then xi1xi1xi1xi2xi1 · · ·xi`−1
xi1 ∈ Lk and xi`xi1xi`+1

xi1 · · ·xinxi1xi` ∈ Lk.
If ` = 1, then xi1xi1 ∈ Lk and xi1xi2xi1 · · ·xinxi1xi1 ∈ Lk. Hence, in both
cases, wSx ∈ L2

k. On the other hand, the string wTx is not in L2
k because x does

not occur in any other position of wT . Actually, for the same reason, wTx /∈ L∗k.
This observation easily allows to extend our result to the star operation. Hence x
distinguishes wS and wT with respect to both the languages L2

k and L∗k. Since
there are 2N subsets of {1, 2, . . . , N}, each 1dfa accepting Lk ·Lk and each 1dfa

accepting L∗k needs at least 22
k

states. Moreover, since the conversion of d1-las
into 1dfas costs exponential [9], each d1-la accepting Lk · Lk and each d1-la
accepting L∗k has size at least 2O(k). ut

In conclusion, starting from two d1-lasA′ andA′′ accepting the languages L′
and L′′ (resp., from a d1-la A accepting a language L), a d1-la for L′ · L′′
(resp., L∗) can be obtained by converting A′ and A′′ (resp., A) into 1dfas,
and then applying the transformation of Theorem 1 (resp., Theorem 2). These
constructions are optimal, in fact we proved that the exponential blowup in size
due to the conversion into 1dfas cannot be avoided.

4 Union, Intersection, and Complementation

4.1 Simulations of Operations on 1dfas

It is well known that for union, intersection, and complement, the simulations
are easier than the ones for product and star. Even if the target machines are
1dfas, it is possible to obtain polynomial-size simulating devices. For union and
intersection, the resulting 1dfa is obtained by simulating in parallel the 1dfas
accepting the two given languages. Hence, it has a number of states which is the

Performing Regular Operations with 1-Limited Automata 9

product of the number of states of the two given 1dfas. This cannot be improved
in the worst case [16].

If we use a 2dfa as target machine, it can perform the simulation of the
�rst 1dfa during a sweep from left to right, then, when the end of the input
is reached, the head is brought at the beginning of the tape and the simulation
of the second 1dfa is started. In the case of the union, the 2dfa accepts if the
simulation of at least one 1dfa accepts, while, in the case of the intersection, the
input is accepted if both the simulated 1dfas accept. The 2dfas implementing
these simulations only need to store, in their state, the copies of the simulated
machines, plus one state used to move backward the head at the end of the �rst
simulation. So the total number of states of the simulating devices is 1 plus the
sum of the numbers of states of the two simulated 1dfas.

From the resulting 2dfas we can directly obtain equivalent d1-las that,
during the �rst sweep, simply overwrite each tape cell with a copy of the symbol
it originally contains.

Theorem 4. Let A′ = (Q′, Σ, δ′, q′0, F
′) and A′′ = (Q′′, Σ, δ′′, q′′0 , F

′′) be two

1dfas. Then there exist

� a d1-la for the language L(A′) ∪ L(A′′) and

� a d1-la for the language L(A′) ∩ L(A′′)

with #Q′ +#Q′′ + 1 states and 2#Σ + 2 working symbols.

The d1-la for the complement can be obtained with a construction analogous
to the standard one used for obtaining a 1dfa for complementation, i.e., just by
complementing the set of the accepting states.

Theorem 5. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists one d1-la
with #Q states and #Σ + 3 working symbols which accepts L(A)c.

4.2 Simulations of Operations on d1-las

Let us now suppose that source and target machines are d1-las. We give con-
structions based on a result on linear-time simulations of 1-las in polynomial
size: In [1] it is showed that, given a 1-la, paying a polynomial growth in size it
is possible to obtain an equivalent one that works in linear time. The idea of the
construction is similar to the technique used for the simulation of the product
of Section 3: the simulating device works on a virtual window of �xed size that
is shifted along the tape in a one-way manner. Along each window it is stored
the information useful to simulate the behavior of the 1-la on the cells to the
left of the window without accessing such portion of the tape anymore. In this
way, it is possible to bound the number of visits to each cell (for further details
we address the reader to [1, Theorem 1 and Lemma 6]).

Lemma 1. For each d1-la A = (Q,Σ, Γ, δ, q0, F) there exists an equivalent

d1-la A′ working in linear time with O(#Q4) states and (#Q + 1) ·#(Γ \ Σ)
working symbols.

10 G. Pighizzini et al.

For the simulation of union and intersection of the languages accepted by
two d1-las, the machines are simulated in parallel. In particular, two (possibly
di�erent) virtual windows are used and shifted independently. Before entering a
new cell, the simulating device computes the information about the windows of
the simulated d1-las (in this phase, only the cells of the two windows are visited:
it is used the window of the �rst simulated device and then, when the information
has been gathered, the window of the second simulated device is used). Then
the new cell is entered and the information is written (on two tracks of the
tape), together with the symbols written by the simulated devices (on two extra
tracks).

When the end of the input is reached, in the case of the union the simu-
lating device accepts if at least one simulation accepts, and in the case of the
intersection it accepts if both the simulated devices accept.

Theorem 6. Let A′ = (Q′, Σ, Γ ′, δ′, q′0, F
′) and A′′ = (Q′′, Σ, Γ ′, δ′′, q′′0 , F

′′) be

two d1-las, n′ = #Q′, and n′′ = #Q′′. Then there exist

� a d1-la for the language L(A′) ∪ L(A′′) and

� a d1-la for the language L(A′) ∩ L(A′′)
with O(n′

4
n′′

4
) states and (n′+1)(n′′+1)#(Γ ′ \Σ)#(Γ ′′ \Σ) working symbols.

To accept the complement of the language accepted by a d1-la A, again
Lemma 1 can be used to perform a linear-time (and therefore, halting) simulation
ofA. The simulating d1-la accepts ifA enters a loop or if it is not in an accepting
state at the end of its computation.

Theorem 7. Let A = (Q,Σ, δ, q0, F) be a d1-la. Then there exists a d1-la
with O(#Q4) states and (#Q+1)#(Γ ′\Σ) working symbols which accepts L(A)c.

5 Reversal

The last operation we study is the reversal. Even in this case, the d1-la for the
reversal of the language accepted by a 1dfa A can be obtained by exploiting
just the capability of the simulating machine of scanning the input in a two-way
fashion, so, again, we �rst give our result for 2dfas. Roughly, starting from the
initial state of A with the head positioned on the last symbol of the input word,
it accepts if, simulating the transitions of the 1dfa scanning the input from
right to left, enters a �nal state when the head reaches the left endmarker. This
approach yields a 2dfa with a number of states equal to the one of the simulated
machine, plus two states for adjusting the position of the head along the tape
at the beginning and at the end of the computation.

As a consequence, we are able to construct an equivalent d1-la that uses
the same strategy of the obtained 2dfa, with the only di�erence that, during
the �rst sweep from left to right, it rewrites on each cell a copy of the symbol it
scans.

Theorem 8. Let A = (Q,Σ, δ, q0, F) be a 1dfa. Then there exists one d1-la
with #Q+ 2 states and 2#Σ + 2 working symbols which accepts L(A)R.

Performing Regular Operations with 1-Limited Automata 11

In the case of d1-las, the reversal has an exponential cost in size. The expo-
nential upper bound can be obtained by converting the d1-la into a 1dfa and
then applying Theorem 8. A matching exponential lower bound has been proved
in [1].

Theorem 9 ([1, Theorem 4]). For any integer k ≥ 2, there exists a d1-la A
of size linear in k such that any d1-la accepting L(A)R needs size exponential

in k.

References

1. Guillon, B., Prigioniero, L.: Linear-time limited automata. Theor. Comput. Sci.
798, 95�108 (2019)

2. Hibbard, T.N.: A generalization of context-free determinism. Information and Con-
trol 11(1/2), 196�238 (1967)

3. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading, Massachusetts (1979)

4. Jirásková, G., Okhotin, A.: On the state complexity of opera-
tions on two-way �nite automata. Inf. Comput. 253, 36�63 (2017).
https://doi.org/10.1016/j.ic.2016.12.007

5. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way
nondeterministic �nite automata. Fundam. Informaticae 110(1-4), 231�239 (2011).
https://doi.org/10.3233/FI-2011-540

6. Leiss, E.L.: Succint representation of regular languages by boolean au-
tomata. Theor. Comput. Sci. 13, 323�330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

7. Maslov, A.N.: Estimates of the number of states of �nite automata. In: Doklady
Akademii Nauk. vol. 194, pp. 1266�1268. Russian Academy of Sciences (1970)

8. Pighizzini, G.: Limited automata: Properties, complexity and variants. In: DCFS
2019, Proceedings. Lecture Notes in Computer Science, vol. 11612, pp. 57�73.
Springer (2019). https://doi.org/10.1007/978-3-030-23247-4_4

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25(7), 897�916 (2014)

10. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fundam.
Inform. 136(1-2), 157�176 (2015)

11. Pighizzini, G., Prigioniero, L.: Limited automata and unary languages. Information
and Computation 266, 60�74 (2019)

12. Pighizzini, G., Prigioniero, L., Sádovský, �.: 1-Limited Automata: Witness Lan-
guages and Techniques. J. Autom. Lang. Comb. (2022), to appear.

13. Wagner, K.W., Wechsung, G.: Computational Complexity. D. Reidel Publishing
Company, Dordrecht (1986)

14. Yamakami, T.: Behavioral strengths and weaknesses of various models of limited
automata. In: SOFSEM 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11376, pp. 519�530. Springer (2019)

15. Yu, S., Zhuang, Q.: On the state complexity of intersection of regular languages.
SIGACT News 22(3), 52�54 (1991). https://doi.org/10.1145/126537.126543

16. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic op-
erations on regular languages. Theor. Comput. Sci. 125(2), 315�328 (1994).
https://doi.org/10.1016/0304-3975(92)00011-F

