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High-resolution Nanopore methylome-maps reveal
random hyper-methylation at CpG-poor regions as
driver of chemoresistance in leukemias
Alberto Magi 1,2,8✉, Gianluca Mattei1,8, Alessandra Mingrino3, Chiara Caprioli4,5, Chiara Ronchini4,

Gianmaria Frigè4, Roberto Semeraro3, Davide Bolognini3, Alessandro Rambaldi 5,6, Anna Candoni 7,

Emanuela Colombo 4, Luca Mazzarella 4 & Pier Giuseppe Pelicci 4,5✉

Aberrant DNA methylation at CpG dinucleotides is a cancer hallmark that is associated with

the emergence of resistance to anti cancer treatment, though molecular mechanisms and

biological significance remain elusive. Genome scale methylation maps by currently used

methods are based on chemical modification of DNA and are best suited for analyses of

methylation at CpG rich regions (CpG islands). We report the first high coverage whole-

genome map in cancer using the long read nanopore technology, which allows simultaneous

DNA-sequence and -methylation analyses on native DNA. We analyzed clonal epigenomic/

genomic evolution in Acute Myeloid Leukemias (AMLs) at diagnosis and relapse, after

chemotherapy. Long read sequencing coupled to a novel computational method allowed

definition of differential methylation at unprecedented resolution, and showed that the

relapse methylome is characterized by hypermethylation at both CpG islands and sparse

CpGs regions. Most differentially methylated genes, however, were not differentially

expressed nor enriched for chemoresistance genes. A small fraction of under-expressed and

hyper-methylated genes at sparse CpGs, in the gene body, was significantly enriched in

transcription factors (TFs). Remarkably, these few TFs supported large gene-regulatory

networks including 50% of all differentially expressed genes in the relapsed AMLs and

highly-enriched in chemoresistance genes. Notably, hypermethylated regions at sparse CpGs

were poorly conserved in the relapsed AMLs, under-represented at their genomic positions

and showed higher methylation entropy, as compared to CpG islands. Analyses of available

datasets confirmed TF binding to their target genes and conservation of the same gene-

regulatory networks in large patient cohorts. Relapsed AMLs carried few patient specific

structural variants and DNA mutations, apparently not involved in drug resistance. Thus, drug

resistance in AMLs can be mainly ascribed to the selection of random epigenetic alterations

at sparse CpGs of a few transcription factors, which then induce reprogramming of the

relapsing phenotype, independently of clonal genomic evolution.
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DNA modification of 5-methylcytosine (5mC) at CpG
dinucleotides is the most frequent epigenetic change in
cancers. They include genome-wide hypo-methylation in

regions of low CpG density, in conjunction with site-specific
hypermethylation of CpG-rich regions (CpG islands). It is gen-
erally thought that DNA hyper-methylation promotes tumor-
igenesis by silencing tumor suppressor genes or genes controlling
genomic instability, cell adhesion or apoptosis, while genome-
wide DNA hypomethylation causes chromosomal instability, de-
repression of retrotransposons, and occasionally oncogene
overexpression1. Aberrant patterns of methylation and associated
gene-expression signatures have also been documented in
relapsed and therapy-resistant samples in a variety of cancer-
types, yet their function in the establishment of drug-resistance
remains unclear2–5. Currently available methods of genome-scale
methylation analyses are based on bisulfite conversion of cytosine
(C) to thymine (T) followed by next- generation sequencing
(whole-genome bisulfite sequencing—WGBS; reduced repre-
sentation bisulfite sequencing—RRBS)6. They have, however,
many limitations that restrict resolution of the methylome,
including DNA degradation, due to bisulphite treatment, PCR-
induced CpG artifacts and inability to distinguish 5mC from 5-
hydroxymethylcytosine, the first product in the demethylation of
5mC6. Furthermore, C-to-T conversion creates divergence with
the reference genome, thus reducing alignment, sequencing
coverage and mapping of low complexity CpG regions. Notably,
~90% of the human genome is characterized by regions of low
density CpGs (1–3 CpG/100 bp), with most of the remaining
showing densities of ≥5 CpG/100 bp, including CpG islands6. The
last few years have seen the emergence of third-generation
sequencing technologies, based on nanopore sequencing7, which
allow analyses of single nucleic-acid molecules and produce
sequences in the order of tens to hundreds kilobases (kb). The
basic principle is the transit of single DNA filaments through a
nanoscopic pore with concomitant measurement of their effects
on the electric current of a connected electrode8,9. Current var-
iation can be then used to infer sequence-base content and to
recognize base modifications, such as 5mC10, thus allowing
quantitative assessment of methylation in native DNA, with the
potential of bypassing main limitations of bisulphite sequencing.
Furthermore, the ultra-long length of nanopore reads facilitate de
novo assembly and calling of structural DNA variants (SV),
permitting concomitant analyses of genomic and epigenomic
alterations. However, after the initial report of the human genome
and methylome by nanopore sequencing in 2018 and 2017,
respectively10,11, the potential of long-read sequencing in cancer
genomics and epigenomics has been only preliminarily explored.
Long-reads analyses have clearly shown higher accuracy and
sensitivity to detect SVs in the DNA or plasma of a few breast-
cancer12 and lung-carcinoma samples13. As well, informative
DNA methylation profiles have been obtained in breast cancer
cell lines10 and series of hepatocellular carcinoma14 and brain-
tumor15 samples.

Here we present the first study that exploits high-coverage
nanopore whole-genome sequencing (WGS) to analyze simulta-
neously genomic and epigenomic alterations in cancer, using
sample-pairs at diagnosis and relapse of Acute Myeloid Leuke-
mias (AMLs). AML is a high-mortality disease with a 5-year
survival of <30%16. Despite incorporation of targeted drugs and
immunotherapies in recent years, standard of care remains che-
motherapy, and relapse of drug-resistant disease is the main cause
of mortality16. Molecular mechanisms underlying the acquisition
of the drug-resistant phenotype, however, are not clear17.

We developed a novel computational approach properly
devised to identify DNA-methylation alterations in sample pairs
(PoreMeht), which allowed definition of differential methylation

at unprecedented resolution ( > 99% of CpGs) and analyses of
both CpG islands and sparse CpGs. We report that the drug-
resistance phenotype in AMLs is supported by the selection of
random epigenetic alterations at sparse CpGs of few transcription
factors that induce transcriptional reprogramming of the relap-
sing phenotype.

Results
Nanopore reads coupled to a novel computational method
extends analyses of differential methylation to sparse CpGs
(outside CpG islands). We analyzed tumor samples at diagnosis
(T) and relapse (R) from three AML patients (UD5, UD10 and
AML2) who received standard chemotherapy and relapsed with
chemoresistant disease (supplementary Table 1). DNA from each
sample was sequenced on the GridION instrument using R9.4
flow cells (Supplemental Material), obtaining 5–10 million reads
per sample (supplementary Fig. 1a) for a total of ~60− 100 bil-
lion bps after quality filtering (supplementary Fig. 1c), average
read size of 10–15 Kb (supplementary Fig. 1b) and sequencing
coverage of 20–30x (supplementary Fig. 1d).

Analyses of 5mC, using Nanopolish10, predicted methylation
of ~22.6 millions of CpG groups, for a total ~28 millions of CpG
sites (84% CpG groups contained one CpG site; 10% two CpG
sites) (supplementary Table 2) that represent ~99% of all CpGs of
the human genome18. Remarkably, between 75 and 95% of all
CpG groups were supported by 10 reads (Fig. 1a), a percentage
much higher than obtained by classical bisulfite-conversion
methods (50-70% for WGBS and 20–25% for RRBS)19.

Percentage of methylation (β) was calculated at each CpG
group as the ratio between methylated and analyzed CpGs
(supplementary Fig. 2). For all the six samples, β had an average
value of 0.8 (supplementary Fig. 3) and showed the typical
bimodal distribution of methylation data20,21, with the two modes
located at 0 for hypo-methylated and 1 for hyper-methylated
CpGs (Fig. 1b). β values were highly correlated between the six
samples, especially for matched sample pairs (T-R, supplemen-
tary Fig. 4l).

Differential methylation between R and T samples was
calculated by computing β values differences at each CpG group
(Δβ= βR− βT). Δβ takes values in the range [−1,1], where Δβ > 0
or < 0 indicates, respectively, hyper- or hypo-methylation of the
relapse- vs. diagnosis-samples. For all three AML pairs, Δβ values
showed a trimodal distribution with hyper- (Δβ > 0.3) or hypo-
(Δβ <− 0.3) methylation of only ~3% of all CpGs (Fig. 1c).

Since genomic distribution of DNA methylation follows strong
local-patterns, differential methylation across genomic regions
(differentially methylated regions, DMRs) are considered statis-
tically and biologically more informative than differentially-
methylated CpGs22. In WGBS datasets, DMRs are identified as
groups of consecutive CpGs with concordant hypo- or hyper-
methylation, upon segmentation of Δβ values of spatially ordered
cytosines23,24. This approach, however, is suboptimal for the
analyses of long-read methylation data, which are instead
characterized by large low-density CpG regions alternated with
small high density CpG regions.

We thus developed a novel tool (PoreMeth) based on a
heterogeneous form of the shifting level model (SLM)25, which
integrates distances between consecutive CpGs in the segmenta-
tion algorithm. PoreMeth is fed with Δβ values and generates
genomic segments with increased (hyper-) or decreased (hypo-)
methylation levels between two samples (Fig. 1d), which are then
evaluated for statistical significance using the Wilcoxon-rank sum
test (Supplemental Material). PoreMeth was validated in silico by
analyses of a reported synthetic dataset of differential
methylation23 (Supplementary Figs. 5–11) and shown to
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outperform currently used methods (Metilene and BSmooth)23,24

in terms of both precision and recall, especially for highly noisy
data (supplementary Fig. 12).

We then applied PoreMeth to the three AML sample pairs.
DMRs were assigned to segmented regions using a Δβ cutoff of
0.3 (>0.3, hyper-methylated; < 0.3, hypo-methylated) and a
significance of p < 0.05 (supplementaryData 1). We identified
1,269 DMRs for UD5 (947 kb of genomic regions), 1,149 for
UD10 (1,211 kb) and 1,314 for AML2 (1,142 kb), including both
hyper- and hypo-methylated DMRs (Fig. 1e).

All three relapsed samples showed a significantly larger fraction
of hyper-methylated vs. hypo-methylated DMRs, in terms of
numbers (822 vs 447 for UD5, 972 vs 177 for UD10 and 1206 vs

108 for AML2) and total size (589 kb vs 378 kb for UD5, 1047 kb
vs 164 kb for UD10 and 1033 kb vs 109 kb for AML2) (Fig. 1e).
Due to the high-resolution of the Nanopore maps, ~30% of
DMRs showed a CpG density ≤2 CpG/100 bp (e.g. the resolution
limit of WGBS) and ~ 70%≤3 CpG/100 bp (resolution limit of
ERRBS) (Fig. 1f), suggesting that the identified DMRs involve
both high density CpG regions (CpG islands or CGIs) and sparse
CpGs (NoCGI)26.

Average size of DMRs was 700–800 bp for all three AML pairs,
with a distribution ranging from hundreds bp to tens kb and no
significant differences between hyper- and hypo-methylated
(Fig. 1g). Thus, long-read sequencing coupled to our novel
computational method allows definition of differential

Fig. 1 Methylation frequency distribution and Poremeth. a Shows the fraction of covered CpG groups as a function of sequencing depth. b Reports the
density distribution of β values, while c the density distribution of Δβ values. d Shows the SLM model. Δβ values are modeled as the sum of two
independent stochastic processes mi and ϵi, where mi is the unobserved mean level and ϵi is normally distributed white noise (ϵi � Nð0; σ2ϵ Þ). mi changes
according to a geometric distribution (with parameter η) incrementing its value by the normal random variable δi (δi � Nð0; σ2μÞ) . To take into
consideration the sparse nature of CpGs along the genome, the probability (η) to jump from two different state mi (Pr(zi)= 1) depends the distance di
between consecutive CpGs. Distribution of the Δβ values of the DMRs detected by Poremeth on the three pairs of AML samples (e, red for UD5, green for
UD10 and blue for AML2). Text on left (right) side of the plot reports the total number (#) and total size (in kb) of hypomethylated (hypermethylated)
DMRs. f Shows CpG density distribution of the DMRs detected by Poremeth on the three pairs of AML samples (red for UD5, green for UD10 and blue for
AML2). Vertical continuous line indicates the resolution limit of WGBS (≤2 CpG/100 bp), while vertical dotted line indicates ERRBS resolution limit (≤3
CpG/100 bp). Text on left (right) side of the the plot reports the total number (#) and percentage (%) of DMRs detected by PoreMeth with CpG density
≤2 CpG/100 bp (≤3 CpG/100 bp). The violin plots in (g) show the size distribution of hyper-methylated (orange) and hypo-methylated (light-blue) DMRs
detected by PoreMeth in the analysis of the three AML samples.
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methylation at unprecedented resolution, extending analyses of
CpG islands, as achieved until now, to sparse CpGs, which
represent about 40% of all DMRs in the tested sample-pairs.

Differentially methylated genes are hypermethylated at CpG-
islands or sparse CpGs and only occasionally differentially
expressed. To evaluate the functional impact of differential
methylation, we annotated each DMR to genes and genic element
by using the Refseq gene models for 5' regulatory regions (Reg),
gene bodies (GB), and 3'UTR and to datasets of regulatory ele-
ments such as CpG islands, DNase I hypersensitive sites (DHSs),
transcription-factor binding sites (TFBS) and the FANTOM5
database for enhancers (see methods).

As expected from CpG density distribution, 26, 65 and 45%
DMRs (for UD5, UD10 and AML2 respectively) overlapped
CGIs, while the remaining were located outside, at sparse CpGs
(Supplementary Table 3).

DMRs at CGIs were almost exclusively hyper-methylated (96-
98% in the three samples) while DMRs at sparse CpGs were
hypo- or hyper-methylated (54–46, 63–37 and 86–14% in the
three samples) and represented the only regions of hypo-
methylation in the relapsed samples. Most DMRs mapped within
annotated genes (72, 72 and 77% for UD5, UD10 and AML2,

respectively) and overlapped DHSs (95, 97 and 96%) and TFBS
(83, 89 and 88%), with a small fraction also overlapping
enhancers (16, 10 and 16%) (Supplementary Table 3).

Numbers of genes involved by DMRs (differentially-methy-
lated genes; DMGs) were ~1000 per patient (Fig. 2a). 30–50%
showed DMRs at 5' regulatory regions (Reg), 30–50% at gene-
bodies (GB) and ~10% at 3'untranslated regions (3'UTR). DMRs
at 5' regulatory regions, 3'UTR and enhancers formed sharp
peaks, while DMRs at internal exons and/or introns were
uniformly distributed across the entire gene-body (Supplemen-
tary Fig. 13). Approximately 100 additional genes were predicted
by FANTOM5 as regulated by hyper- or hypo-methylated
enhancers (138, 66 and 128 for UD5, UD10 and AML2,
respectively).

Most DMGs were hyper-methylated (~70, ~85 and ~93% in
UD5, UD10 and AML2, respectively, Fig. 2a). In the genes hyper-
methylated at 5' regulatory regions, DMRs mainly involved CpG
islands (~74% across the three samples: 59, 87 and 70% for UD5,
UD10 and AML2). Involvement of sparse CpGs was instead
predominant in the genes hyper-methylated at gene-bodies or
enhancers (~60% across the three samples). Hypo-methylated
genes were almost entirely associated with DMRs overlapping
sparse CpGs (~90%), regardless of their position within genes

Fig. 2 DMRs functional classification. Table in (a) reports the number of genes affected by all, hyper-methylated (Hyper) and hypo-methylated (hypo)
DMRs. For each patient we also report number of genes with DMRs overlapping 5' regulatory region (Reg, including 1–5 kb from TSS, promoters, first exons
and 5'UTRs), gene-body (GB, including internal introns and exons), 3'UTR and enhancers (genes predicted by FANTOM to be regulated by enhancers).
The discrepancy between total number of genes (All) and the sum of Reg, GB and 3'UTR is due to the fact that few genes have DMRs in more than one
genic element. The barplot of (b) reports the total number of DM genes with DMRs at different genomic elements (5' regulatory region, Reg, internal
introns and exons, GB, 3'UTR and enhancers of Fantom Genes). with DMRs in all regions (All, both inside and outside CGIs), inside CpG islands (CGI) and
outside CpG islands (NoCGI) at different genomic elements (5' regulatory region, Reg, internal introns and exons, GB, 3'UTR and enhancers of Fantom
Genes). Textured bars show the number of DMGs with DMRs in sparse CpG regions (NoCGI). Numbers above bars show the percentage of DMGs in
sparse CpG regions. Horizontal brackets above each group of three bars summarize average percentages of the three samples. The barplot of (c) reports
the total number of DM-DEGs for the four regulatory categories: over-expressed genes with hyper-methylated DMRs (Hyper-Over), over-expressed genes
with hypo-methylated DMRs (Hypo-Over), under-expressed genes with hyper-methylated DMRs (Hyper-Under), under-expressed genes with hypo-
methylated DMRs (Hypo-Under). Numbers above each bar show the relative percentage of DM-DEGs with respect to all DM-DEGs for each sample.
Horizontal brackets above each group of three bars summarize average percentages within the three samples. The barplot of (d) report the number of
hyper- and hypo-methylated DM-DEGs with respect to total number of DMGs in CGIs and sparse CpG regions (NoCGI). Textured bars show the number
of DM-DEGs. Numbers above each bar show the percentage of DM-DEGs with respect to DMGs. Horizontal brackets above each group of three bars
summarize average percentages within the three samples.
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(Fig. 2b). Thus, the relapse methylome is prevailing hyper-
methylated at CpG islands of 5'-regulatory regions or at sparse
CpGs of gene-bodies.

To investigate the impact of DMRs on gene expression we
performed triplicate RNA-sequencing analyses (RNAseq) of the
six AML samples, and analysed differential gene-expression
between relapse vs diagnosis samples using the DESeq2 tool27.
We identified 3997, 4677 and 1759 differentially expressed genes
(DEGs; adjusted p-value < 0.05 and absolute log2FC > 0.5, Supple-
mentary Data 2) in UD10, UD5 and AML2, respectively, with
different ratios of over- and under-expressed genes (2044 vs 1953
in UD5; 2,890 vs 1,787 in UD10 and 495 vs 1,264 in AML2)
(Supplementary Table 4).

Detectable RNAseq signals were found in ~70% of DMGs (75,
61 and 66% in UD5, UD10 and AML2, respectively) with ~ 15%
also showing differential expression in sample-pairs (DM-DE
genes: 23, 12 and 8% in UD5, UD10 and AML2, respectively)
(Supplementary Fig. 14 and Supplementary Table 5). DM-DE
genes showed either classical (hypo-methylation/over-expression
or hyper-methylation/under- expression) or alternative (hyper-
methylation/over-expression or hypo-methylation/under- expres-
sion) epigenetic correlations, with hyper-methylated and under-
expressed genes the most frequently occurring (~45%), followed
by hypermethylated and over-expressed genes (~30%) (Fig. 2c).

Analyses of the association between differential DMG expres-
sion and Δβ values at DMRs showed correlation between
increased methylation and decreased expression of DMGs with
DMRs at 5' regulatory regions, much weaker at 3'UTRs and
absent at gene-bodies, as reported in ref. 28, irrespective of the
presence of DMRs at CGIs or sparse CpGs (Supplementary

Figs. 15–16). Remarkably, hyper-methylated genes with DMRs in
sparse CpGs showed a higher fraction of DEGs with respect to
those with DMRs in CGIs (21 vs 7%) (Fig. 2d), especially for
DMRs at 5'-regulatory and gene-body regions (Supplementary
Figs. 17–18). Thus, only 10–20% of the DM genes at relapse are
also differentially expressed. They are most frequently hyper-
methylated and under-expressed and accounts for only 2–5% of
all DEGs (Supplementary Table 5).

Under-expressed genes with hyper-methylation at sparse CpGs
are enriched in transcription factors. To investigate the con-
tribution of differential methylation to chemoresistance, we first
characterized relapse-specific transcriptional patterns. Over- and
under-expressed DEGs were largely overlapping across the three
samples (40–70% of DEGs shared among 2–3 samples) (Sup-
plementary Fig. 19), suggesting that the relapse phenotype is
characterized by common modules of transcriptional
reprogramming.

To functionally characterize these modules, we performed
over-representation analyses (ORA) against a collection of
cancer-related pathways (selected from KEGG29), tumor sup-
pressor genes (TSGs) and oncogenes (selected by COSMIC30),
transcription factors (TFs)31 and genes associated with drug
resistance (GEAR, a database that contains genetic associations
with 148 anti-cancer drugs across 952 cancer cell lines32). Each
relapse AML sample showed over-representation of over- and
under-expressed DEGs in TFs, drug-resistance genes, cancer-
mutated genes (oncogenes and TSGs) (Fig. 3a) and several
cancer-related pathways (mTOR, MAPK, ErbB, FoxO, TNF and
HIF-1 signaling, apoptosis) (Supplementary Fig. 20).

Fig. 3 Impact of DMRs on gene expression. a, b Show the results of ORA on DEGs (a), DMGs, under-expressed DM-DEGs, FL- and SL-TG-DEGs (b) for
GEAR, Oncogenes, TSG and TF categories. Each cell of the plots reports the number of genes for each category. For both panels a-b color of each cell
reflects the statistical significance expressed by Fisher exact test as in the color legend. c Reports the total number of DE-TGs of the first- (FL-) and
second-level (SL-) regulatory cascade induced by over- and under-expressed TFs with hyper- or hypo-methylated DMRs (DM-DE-TF) in CpG islands (CGI)
and sparse CpG regions (NoCGI) at different genomic elements (5' regulatory region, Reg, internal introns and exons, GB, 3'UTR and enhancers of Fantom
Genes). In each cell of the table is reported the number of DE-TGs for each regulatory category. For each sample, color of each cell reflects the proportion
of DE-TGs shared with the other two samples. d–f Show GRNs induced by under-expressed DM-DE-TFs with DMRs at sparse CpG regions of the gene-
body for UD5 (d), UD10 (e) and AML2 (f). Yellow large-size nodes are DM-DE-TFs, medium-size nodes are FL-DE-TFs and small-size nodes are FL-DE-
TGs. Green nodes represent under-expressed TGs, while red nodes over-expressed TGs.
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In order to test the functional effect of DMRs at each genomic
feature, we then performed ORA of DM and DM-DE genes,
distinguishing those with differential methylation overlapping
CGIs or sparse CpGs at different genic elements. DM and DM-
DE genes with DMRs overlapping CpG islands showed no
significant over-representation of any of the tested datasets,
regardless of methylation status or expression (Fig. 3b and
Supplementary Figs. 21 and 23). The same was observed for the
hypo-methylated DM (Supplementary Fig. 21) and DM-DE
(Supplementary Fig. 22) genes at sparse CpGs. Hyper-methylated
DM-genes at sparse CpGs, instead, were enriched in TSGs and
TFs (Fig. 3b) and a few cancer-pathways in all three patients
(Supplementary Fig. 22). Under-expressed, but not over-
expressed, DM-DE genes at sparse CpGs were enriched in TFs
(Fig. 3b and Supplementary Fig. 22). Most notably, enrichments
were restricted to DM and DM-DE genes with hypermethylated
DMRs overlapping sparse CpGs at gene bodies (Fig. 3b).

Thus, the three relapsed AMLs share common transcriptional
patterns, characterized by deregulated expression of oncogenes/
TSGs, TFs and chemoresistance genes. DM-DE genes, instead,
showed significant enrichment of under-expressed TFs with
hyper-methylated DMRs overlapping sparse CpGs at gene-
bodies. The effect of DMRs on the expression of these DM-DE-
TFs is reported in Supplementary Figs. 23–35. Chemo-resistance
genes were not significantly over-represented, suggesting that
differential methylation plays a marginal role to the establishment
of the chemoresistance phenotype.

A few transcription factors under-expressed and hyper-
methylated at sparse CpGs induce large gene-regulatory net-
works that are highly-enriched in chemoresistance-associated
genes. We hypothesized that the selective pressure of drug
treatments is exerted on the transcriptional targets (TGs) of the
hyper-methylated and under-expressed TFs (DM-DE-TFs). To
identify putative TGs of DM-DE-TFs we interrogated RegNet-
work, a database containing experimentally-observed or predicted
transcriptional or post-transcriptional regulatory relationships33,
and crossed the output with our dataset of relapse-specific DEGs
(Supplementary Fig. 37).

The DM-DE-TFs of the three samples (n= 26, 12 or 8 in UD5,
UD10 or AML2) identified, respectively, a total of 689, 501 and
187 DE-TGs, which may represent the first-level of the gene-
regulatory network (GRN) perturbed by DMRs (Supplementary
Fig. 38). Strikingly, for all three patients, the largest GRN (268, 49
and 178 DE-TGs in the three samples) was supported by under-
expressed DM-DE-TFs hyper-methylated at sparse CpGs of gene-
bodies (Fig. 3c). The other categories showed none or smaller
GRNs, usually present in one or two patients and supported by
DMRs involving sparse CpGs (Fig. 3c and Supplementary
Figs. 39–40).

Remarkably, the few under-expressed DM-DE-TFs hyper-
methylated at sparse CpGs of gene-bodies showed direct TF-
DNA interactions with >50% of the DE-TGs of first-level GRNs,
strongly supporting a direct effect of these TFs in deregulating the
inferred GRNs (see Methods and Supplementary Table 6).

Inspection of first level GRNs showed that in all three AMLs a
large proportion of TGs (mainly those regulated by under-
expressed DM-DE-TFs hyper-methylated at sparse CpGs of gene-
bodies) were again TFs (first-level differentially expressed TFs—
FL-DE-TFs: 24%, 59% and 29% in UD5, UD10 and AML2,
Supplementary Fig. 40). Computation of all potential TGs of FL-
DE-TFs revealed the existence of second-level GRNs (SL-DE-
TGs), which were significantly larger than first-level GRNs, with
the largest again supported by under-expressed DM-DE-TFs
hyper-methylated at sparse CpGs in gene-bodies (Fig. 3c–f and

Supplementary Figs. 41–42). Globally, 26, 12 and 8 DM-DE-TFs
potentially affect the transcription activity of 69% (3210, UD5),
88% (3512, UD10) and 55% (969, AML2) of all DEGs
(Supplementary Fig. 38).

In all first- and second-level GRNs, the percentages of over- or
under-expressed DE-TGs ranges between 30 and 70% (Supple-
mentary Figs. 43–46), suggesting that the regulatory cascade
induced by DM-DE-TFs has both activation and repression
activity. Strikingly, 6, 2 and 5 TFs (in UD5, UD10 and AML2)
hyper-methylated at sparse CpGs of gene-bodies potentially
contributed to the deregulation of ~50% (Supplementary Fig. 44)
of all DEGs in the three samples (n= 2263, 1798 and 947). Of
them, a large fraction was in common across 2 or 3 samples (45%,
52% and 52%) (Fig. 3c and Supplementary Figs. 47–48).

Thus, a few hyper-methylated and under-expressed TFs with
DMRs at sparse CpGs of gene-bodies potentially modify
transcription of thousands of genes in each of three relapsed
AMLs (Fig. 3d–f), suggesting that transcriptional deregulation
induced by these DMRs propagates and amplifies through
subsequent levels of GRNs converging to the disruption of
similar or even identical pathways in the different samples.

To evaluate the impact of GRNs on the chemoresistance
phenotype, DE-TGs were subjected to ORA using the same
datasets as above. Results showed that among first-level GRNs,
DE-TGs induced by DM-DE-TFs hyper-methylated at sparse
CpGs of gene-bodies were over-represented in TSGs, TFs and
drug-resistance genes (Fig. 3b) and some cancer-related pathways
(Wnt, MAPK, HIF-1, Cell cycle and apoptosis; Supplementary
Fig. 49) in all the three patients. Pathway over-representation
became significantly more prominent in second-level GRNs for
all the analyzed datasets (Fig. 3b and Supplementary Fig. 51).
Notably, drug-resistance genes, which were not significantly
enriched in DM or DM-DE genes, were instead highly over-
represented in both first- and second-level GRNs (Fig. 3b and
Supplementary Figs. 49 and 51).

Together, these data suggest that transcriptional reprogram-
ming of the relapsing phenotype, including chemoresistance, can
be largely ascribed to regulatory perturbations supported by a few
TFs hyper-methylated at sparse CpGs of their gene-bodies.

Most notably, analyses of DEGs found in other cohorts of
treated AML patients34,35 (see Methods), showed, for all three
patients, a significant overlap with first- and, second-level GRNs
and all DEGs (Supplementary Fig. 55), suggesting the existence of
common modules of transcriptional reprogramming in chemo-
resistant AMLs.

Hyper-methylated DMRs at sparse CpGs are poorly conserved
across samples, are under-represented at their genomic posi-
tions and show high methylation-entropy. We then investigated
mechanisms of DMR accumulation in the relapsed samples.
Analyses of the genomic distribution of DMGs across the three
AML-samples showed a large extent of overlap among 2 or three
samples for the DM-genes with DMRs located at CpG islands
(39% 30% and 24% for hyper-methylated DMGs in UD5, UD10
and AML2 respectively, Fig. 4a). The overlap was most prominent
for hyper-methylated DMRs at 5'-regulatory regions or gene
bodies, either over- or under-expressed (Supplementary
Figs. 44–45). Surprisingly, DM-genes with DMRs located at
sparse CpG showed no or marginal overlap across the three
samples, suggesting different mechanisms of DMR generation at
CpG islands or sparse CpGs (Fig. 4a and Supplementary
Figs. 53–54).

We then computed the observed vs expected ratio for the
occurrence of DMRs at any given genomic region. Hyper-
methylated DMRs overlapping CpG islands showed significant
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over-representation at all genic and regulatory regions (5'UTRs,
promoters, first exons, internal exons, introns and enhancers).
Hyper- and hypo-methylated DMRs at sparse CpGs, instead, did
not show significant over- or under- representation (with the
exception of enhancers), suggesting a markedly higher level of
stochasticity for the latter (Fig. 4b).

To confirm this hypothesis, we measured the randomness of
DNA methylation at CpG sites (methylation entropy) for each
genic and regulatory element, using the Shannon entropy36.
DNA-methylation entropy is minimal when all cells share same
DNA-methylation patterns, maximal when instead all possible
patterns are equally represented. Strikingly, DNA-methylation
entropy of all genic and regulatory elements was markedly higher
at sparse CpGs, as compared to CpG islands (Fig. 4c), confirming
high DNA-methylation stochasticity at CpG-poor regions.

Thus, formation of hyper-methylated DMRs at CpG islands or
sparse CpGs is the consequence of highly ordered or stochastic
processes, respectively, suggesting the involvement of active,
enzymatically-driven vs random processes of DNA methylation.
Chemotherapy may then select randomly-generated methylation
patterns at sparse CpGs associated with a resistance phenotype.

Long-reads sequencing identifies few, sub-clonal and patient-
specific structural-variants in relapsed AMLs. Finally, we
investigated whether chemotherapy also selects genomic variants
associated with the resistance phenotype, by using nanopore (for
SVs) and whole-exome sequencing (WES) data (for single
nucleotide variants—SNVs, and small insertions/deletions—
InDels).

To identify relapse-specific SVs with nanopore datasets we
used NanomonSV on the three AML pairs and, after visual
inspection of alignment signatures, we identified 5, 3 and 4 SVs in
UD5, UD10 and AML2 samples, respectively (see methods and
Supplementary Table 7). None was present in 2 o 3 samples.

Annotation of genomic features showed that 8 of the 12
validated SVs detected by NanomonSV overlap with genes and
that four of these directly affect coding sequences (a large deletion
including IL15, SETD7 and MAML3; three medium-size deletion
that affect respectively, TUSC7, ADCY7, CAV2, Supplementary
Table 7).

Analyses of putative involvement in cancer revealed a potential
role only for the tumor-suppressors TUSC737 and SETD738.
TUSC7 was associated to chemoresistance in one single study in

Fig. 4 Mechanisms of DMRs selection. For each AML sample, the barplot of (a) reports the fraction of DMGs shared with other samples. Results are
reported for hyper- and hypo methylated DM genes with DMRs in CGIs and in sparse CpG regions (NoCGI). Numbers above bars show the percentage of
shared DMGs. Horizontal brackets above each group of three bars summarize average percentages of the three samples. Observed vs expected analysis
(b) is reported for hyper- (orange) and hypo-methylated (light-blue) DMRs overlapping genic elements (1–5 kb from TSS, Promoter, 5'UTR, First Exon,
internal exons and introns and 3'UTR) inside CpG islands (CGI) and outside CpG islands (NoCGI). Over- and under-representation is defined by red and
blu intensities according to color legend. Asterisks over each cell indicate statistical significance (*p-value < 0.01, **p-value < 0.001, ***p-value < 0.0001) of
observed vs expected ratio. c Show the distribution of methylation entropy in different genomic features inside and outside CGIs for the three sample at
diagnosis. Asterisks indicate statistical significance (calculated with t-test, *p-value < 0.01, **p-value < 10−5, ***p-value < 10−10) of the difference between
ME in CGIs and outside CGIs. for each genomic feature.
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esophageal squamous cell carcinomas39. Allelic-fraction analyses
of the TUSC7 deletion, however, showed relatively-low VAF
(36%, Supplementary Table 7), arguing against a role in the
acquisition of a chemoresistance phenotype in this case. The
other SVs showed variable VAFs (all <0.3).

In general, all SVs exerted no effecst on gene expression, with
the exception of the large deletion of AML2 that include six genes
all significantly under-expressed (ZNF330, MGST2, MAML3,
SCOC, NAA15 and INPP4B, Supplementary Table 8). Analyses
of gene mutations in the same three AML-pairs by WES gave
similar results: low numbers of relapse-specific mutations (11, 6
and 2 in the UD5, UD10 and AML2 samples), all mutations
present at sub-clonal frequencies (from 10 to 40%), none
functionally related to the drug-resistance phenotype (Supple-
mentary Table 9).

Thus, relapse AML-samples are characterized by a few patient-
specific SVs and DNA mutations that are unlikely to be involved
in the acquisition of the drug-resistant phenotype.

Discussion
We report the first WGS concomitant analyses of genetic and
epigenetic alterations of human cancer using high-coverage
nanopore data. To detect epigenomic modifications, we devel-
oped a novel computational method (PoreMeth), which allowed
assignment of methylation to >99% CpGs of the human genome,
with an average density of 1 CpG/100 bp. Most notably, ~40% of
DMRs felt within low-density CpG regions (2 CpG/100 bp). As a
reference, NGS-based RRBS or WGBS approaches generally
identify DMRs in regions with CpG density ≥3 or ≥2 CpGs/100
bp, corresponding to ~20 or ~50% of the genome respectively6.
Thus, PoreMeth analyses of whole- genome long-read sequences
provided an unprecedented resolution of the cancer methylome.
Analyses of differential expression identified several thousands of
DEGs in the relapsed AMLs, largely overlapping across the three
patients. As previously reported28, methylation nearby TSSs
correlated negatively with gene expression, much less for 3'UTR
and enhancers and not at all for gene-bodies. Notably, however,
the vast majority of differentially-methylated genes were not
differentially expressed, as previously reported40, suggesting that
a large fraction of the aberrant DNA-methylation observed in our
samples is a merely-passenger event that accompanies AML
evolution, with weak or no effect on the relapsed/chemoresistance
phenotype. Consistently, gene/pathway over-representation ana-
lyses of differentially-methylated and expressed genes showed no
enrichment of any relevant gene set, with the exception of those
carrying hyper-methylated DMRs overlapping sparse CpGs at
gene-bodies, which showed significant over-representation of
TFs. Surprisingly, analyses of putative targets of these TFs
revealed the existence of large gene-regulatory networks (GRNs)
made of over- and under-expressed genes, largely overlapping
among the three samples and highly-enriched for chemoresis-
tance genes. The GRNs were supported by few and largely
patient-specific TFs: NCOR2, CUX1, ARID3A, ETV6, RERE,
TFDP1 in the UD5 sample, RARa, BRF1 in UD10, and CUX1,
NCOR2, RREB1, GTF2I, ZBTB16 in AML2. These are critical
regulators of cell fate and differentiation in hematopoietic cells
(e.g., ARID3A, RERE), are frequently mutated in AMLs (e.g.,
CUX1, ETV6, RARa), and posses a dual function of transcription
activator or repressor (CUX1, ARID3A, ETV6, RARa, RREB1,
GTF2I)41–45 which is consistent with the presence in the GRNs of
both over- and under-expressed genes. Strikingly, alone, these
twelve TFs support 2263, 1798 and 947 GRN-DEGs, which
represent 55, 38 and 50% of all DEGs, for UD5 UD10 and AML2
respectively.

Analyses of GRN-associated chemio-resistance genes revealed
multiple gene de-regulations consistent with activation of differ-
ent mechanisms of chemotherapy-resistance in the relapsed
AMLs, including increased drug efflux, reduced drug uptake,
increase pH in the extracellular environment and intracellular
drug inactivation. TF gene-targets also showed over-
representation of several pro-survival intracellular signaling
pathways that have been implicated in both tumor development
and chemo-therapy resistance (decreased apoptosis; enhanced
DNA repair; activation of the TGF-b, p38 MAPK stress-response
and phosphoinositide 3-kinase (PI3K) pathways; activation of
Wnt/-catenin signaling cascade and the crosstalk STAT signaling
pathway) (see Supplementary Data 3). Thus, hyper-methylation
of sparse CpGs at gene bodies of few and patient-specific master
TFs is the main source of gene deregulation in the chemo-
resistant phenotype.

Distinct mechanisms of aberrant methylation may be operative
at CpG islands or sparse CpGs. The occurrence of hyper-
methylated DMRs overlapping CpG islands was significantly
over-represented in all genic and regulatory elements, at variance
with hyper-DMRs at sparse CpGs, which were instead char-
acterized by high levels of randomness and heterogeneity
(methylation entropy). Moreover, overlaps across the three
samples was larger for genes with DMRs at CpG islands (20-
60%), as compared to genes with DMRs at sparse CpGs (5-15%).
Thus, formation of hyper-methylated DMRs at CpG islands or
sparse CpGs is the consequence of highly ordered or stochastic
processes, respectively, suggesting the involvement of active,
enzymatically-driven vs random processes of DNA methylation.

Patterns of CpG methylation are established by two partially-
redundant de novo DNA methyltransferases, DNMT3A and
DNMT3B46. It has been recently reported that CpG-island
hypermethylation in AMLs is mediated by DNMT3A and that
also occurs in normal hematopoietic progenitors in response to
cytokine-induced hyper-proliferation, implying that it is not
required for myeloid leukemogenesis and merely reflects activa-
tion of a cell-cycle checkpoint earlier during leukemogenesis47.
Most genes with CpG-island hypermethylation were not expres-
sed in AMLs47, as we observed in our relapsed AMLs, suggesting
that they represent passenger epigenetic mutations for the che-
moresistance phenotype.

Genome-scale mapping of CpG methylation-kinetics revealed
highly-variable and context-specific activities of DNA-
methylation enzymes, with high methylation turnover in tran-
scribed gene-bodies and reduced de novo and maintenance
methylation in CpGs at active regulatory regions48. Maintenance
of CpG methylation during mitosis is mediated by the DNMT1
methyltransferase, which targets hemi-methylated DNA and
catalyzes methylation during and after DNA replication49. The
maintenance activity of DNMT1, however, is imprecise, thus
leading to accumulation of spontaneous ‘epimutations’50.
DNMT1, however, is catalytically active also on unmethylated
DNA and has been recently shown to possess de novo methyla-
tion activity50–52. Notably, DNMT1 and UHRF1, a E3 ligase that
mediates DNA targeting of DNMT1, are widely overexpressed in
cancer53, including AMLs54, suggesting that aberrant expression
of DNMT1 may also generate CpG hyper-methylation in cancer
cells, as shown in model systems55. We propose a model whereby
accumulation in the relapsing AMLs of hyper- or hypo-
methylation at sparse CpGs of gene-bodies is the consequence
of the selective pressure of chemotherapy on the epigenomic
heterogeneity of primary leukemias, as generated by maintenance
failures and aberrant expression of DNMT1 (epigenetic-instabil-
ity at CpG-poor regions). Consistently, DNMT1 is was sig-
nificantly under-expressed in all three patients, contrary while
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DNMT3A and DNMT3B did not show expression changes across
the three samples (Supplementary Table 10).

In principle, epigenetic alterations are reversible, thus opening
the possibility of pharmacological modulation of epigenetic het-
erogeneity to prevent the emergence of drug resistance in
cancer cells.

Materials and methods
Samples preparation. Diagnosis and relapse samples were collected for each AML
patient in two different Italian Institutions: Azienda Socio-Sanitaria Territoriale
Papa Giovanni XXIII, Bergamo, and Azienda Sanitaria Universitaria Integrata di
Udine, Udine, as part of research projects approved by the relevant Institutional
Ethical Committees. Mononuclear cells (MNCs) were isolated by density gradient
centrifugation using Ficoll-Paque Plus from bone marrow samples of AML patients
with blasts infiltration around 70%. After centrifugation and recovery of the MNCs,
the remaining erythrocytes were lysed using lysis buffer (155 mM NH4Cl, 10 mM
KHCO3, 0.1 mM Na2EDTA). DNA was extracted from the isolated MNCs. The
existence of SNVs with VAF > 0.4 in both T and R samples (Supplementary
Table 8) allows to estimate that tumor purity can be considered >80%.

Long read sequencing, filtering and alignment. DNA from each of three pairs of
matched AMLs was sequenced on the GridION X5 instrument with a run-time of
48 h by using five or six individual R9.4 flow cells for each sample (see Supple-
mental Material). The reads generated by each run were base-called using Guppy
v2.0.2 and quality assessment was performed with NanoR56 and PyPore57. High-
quality pass reads were then aligned against the human reference genome (hg19)
with minimap258.

Methylation. Occurrence of 5mC was determined with Nanopolish (v. 0.8.5) on
the raw signals from Nanopore’s sequencers, by first tracking signal-data for each
base called read in FASTQ, (“nanopolish index”), then aligning files in BAM
format and calling methylation at reference CpGs with the “nanopolish call-
methylation”. Any given site was considered methylated or unmethylated when the
log likelihood ratio was > or < 2.5, respectively. Methylation frequencies (β) at
reference CpGs were then summarized using the “calculate methylation frequency”
script, which clusters nearby CpGs to produce the final calls (since nanopore
signals depend on multiple bases).

PoreMeth. SLM are a special class of hidden markov models in which sequential
observations x= (x1,… , xi,… , xN) are considered to be realizations of the sum of
two independent stochastic processes xi=mi+ ϵi, where mi is the unobserved
mean level and ϵi is normally distributed white noise.

The mean level mi does not change for long intervals and its duration follows a
geometric distribution: the probability that mi takes a new value at any point i is
regulated by the parameter η and when it changes, mi is incremented by the normal
random variable δi (δi � Nð0; σ2μÞ). To take into account the sparse distribution of
CpGs along the genome, as in ref. 59 we extended the classical SLM to an
heterogeneous form59, where η depends on this distance between consecutive CpGs
(di) with the following formula:
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Moreover, since Δβ takes values in the range [−1,1], we modeled ϵi with
truncated gaussian distributions with upper and lower bound 1 and −1 respectively
(ϵi � N1

�1ð0; σ2ϵÞ).
To estimate the parameters of the heterogeneous truncated-gaussian shifting

level model (HTGSLM), and consequently segment the Δβ profiles, we developed a
two-step algorithm in which we first calculate mean and variances and we then
apply the Viterbi algorithm.

After segmentation, each segment is tested for differential methylation by using
the Wilcoxon rank-sum test on the β values of test and control samples. PoreMeth
is freely available at https://sourceforge.net/projects/poremethtool/.

Annotation. DMRs were annotated to Refseq gene models, CpG islands, DHSs,
TFBS and enhancers (predicted by FANTOM5) by using annotatr version 1.2060.
Refseq gene models annotations include from 1 to 5 Kb (1to5Kb) upstream of the
TSS, the promoter (1 kb upstream of the TSS), the 5' untranslated region (5'UTR),
first exons, exons, introns, 3'UTR, and intergenic regions. FANTOM5 permissive
enhancers were determined from bi-directional CAGE transcription as in ref. 61. In
all the analyses we performed, 5' regulatory regions (Reg) include 1to5Kb, pro-
moter, 5'UTR and first exon while gene bodies (GB) include internal exons and
introns. Deletions and duplications were annotated by including all the genomic
elements within the interval between the two breakends.

Over-representation analysis (ORA). Pathways for ORA were selected by the
network of ‘PATHWAYS IN CANCER’ of KEGG database and the Oncogenic
Signaling Pathways in The Cancer Genome Atlas62. Gene lists of these pathways
were downloaded from https://www.kegg.jp/kegg/download/(KEGG), COSMIC
genes from https://cancer.sanger.ac.uk/cosmic/file_download, GEAR genes from
http://gear.comp-sysbio.org, RegNetwork from http://regnetworkweb.org/. ORA
was performed by using fisher-exact test63 using the list of all UCSC genes as
background.

RNA-seq. RNA quality was evaluated using Agilent RNA 6000 Nano Kit on the
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, USA). RNAseq
libraries were prepared using TruSeq Stranded Total RNA Library Prep Gold
(Illumina, San Diego, CA, USA) according to the manufacturer’s protocol and
sequenced using 50bp paired end sequencing mode on Illumina Novaseq 6000
platform (Illumina, San Diego, CA, USA). To perform counts of transcripts from
paired-end reads we used Salmon64 v. 0.14.1, in mapping-based mode and the
reference transcriptome GRCh37 from Ensembl. The resulting qf files were
imported in R by the package tximport and the transcripts were collapsed to the
genes by EnsDb.Hsapiens.v75 (v. 2.99.0) package to perform counts normalization
and the statistical analysis with DESeq2 (v. 1.30.1). Results with an adjusted
p-value, scored by Benjamin-Hopkins formula, greater than 0.05 were filtered.
Direct TF-DNA interactions between DM-DE-TFs and DE-TGs were downloaded
from UniBind database (unibind.uio.no), considering only robust interactions.
RNA-seq data for the validation cohorts were downloaded from ArrayExpress for35

and from SRA for34. Data were analyzed by applying the same RNA-seq pipeline
described above for our dataset.

Observed vs expected analysis. The observed vs expected ratio for the occur-
rence of a DMR in any given genomic region was calculated using the following
formula:
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¼ log2
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where SizeDMR
GF is the total size of DMRs overlapping a genomic feature GF, SizeDMR

Total
is the total size of identified DMRs, SizeGenome

GF is the total size of a genomic feature
GF in the genome and SizeGenome

Total is the total size of the genome.
Statistical significance of observed vs expected ratio for the occurrence of DMRs

in any given genomic element was calculated by using montecarlo simulations. In
brief, for each sample, we randomly generated n genomic segments (where n is the
number of hypo- or hyper-methylated DMRs found by Poremeth) with the same

size distribution of real datasets and we then calculated ODMRs
GF

EDMRs
GF

. The P-value is the

relative ranking of the real ODMRs
GF

EDMRs
GF

among the sample values from the Monte Carlo

simulation. For each analysis we performed 1 million simulations.

Methylation entropy. Methylation entropy (ME) was calculated by using the
formula introduced in ref. 36:

ME ¼ e
b
∑ � ni

N
þ Log

ni
N

� �
ð3Þ

where e is entropy for code bit, b is the number of CpG sites, ni is the occurrence of
methylation pattern i and N is the total number of reads overlapping the b CpG
sites. For each genomic feature, ME was calculated by using b= 3 and averaged
across all the CpG sites within the feature.

Structural variant detection and validation. Relapse-specific SVs detection was
performed by using and NanomonSV. We downloaded NanomonSV version 0.4.0
from https://github.com/friend1ws/nanomonsv and we applied it to the three AML
pairs with default parameter settings by using relapsed samples as tests and tumor
samples as controls. SVs with VAF (ratio between reads supporting SV and total
number of reads) <0.1 were filtered out. SVs detected by NanomonSV were vali-
dated by visual inspection by using IGV version 2.9.4 and Samplot version
(see Supplemental Material for more details).

AML Illumina WES analysis. Genomic DNA was extracted from cryopreserved
bone marrow (BM) mononuclear cells using QIAGEN’s AllPrep DNA/RNA kit.
Libraries were prepared following SureSelectXT Low Input Reagent Kits (Agilent
Technologies) procedure for dual-indexing, target enrichment and capture. Paired-
end sequencing was performed on a Novaseq instrument at ~200x coverage.
Somatic variants were called against germline reference (remission BM, UD5 and
UD10; BM derived fibroblasts, AML2) using state-of-the-art computational pipe-
lines, such as Mutect, Pindel and Somatic_Indel_detector. Only mutations with
variant allelic frequency ≥10% were considered in the presented analysis.
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Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Nanopore sequencing data in fastq format have been deposited in the NCBI Sequence
Read Archive under accession number PRJNA879930. RNASeq in fastq format have
been deposited in the NCBI Sequence Read Archive under accession number
PRJNA879971. RNASeq normalized counts and Methylation frequency data are available
at Gene Expression Omnibus under accession numbers GSE213686.
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