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ABSTRACT
Most of the evolutionary history reconstruction approaches are

based on the infinite site assumptionwhich is underlying the Perfect

Phylogeny model. This is one of the most used models in cancer

genomics. Recent results gives a strong evidence that recurrent

and back mutations are present in the evolutionary history of tu-

mors [19], thus showing that more general models then the Perfect

phylogeny are required. To address this problem we propose a

framework based on the notion of Incomplete Perfect Phylogeny.

Our framework incorporates losing and gaining mutations, hence

including the Dollo and the Camin-Sokal models, and is described

with an Integer Linear Programming (ILP) formulation. Our ap-

proach generalizes the notion of persistent phylogeny [1] and the

ILP approach [14, 15] proposed to solve the corresponding phy-

logeny reconstruction problem on character data.

The final goal of our paper is to integrate our approach into an

ILP formulation of the problem of reconstructing trees on mixed

populations, where the input data consists of the fraction of cells

in a set of samples that have a certain mutation. This is a funda-

mental problem in cancer genomics, where the goal is to study the

evolutionary history of a tumor. An experimental analysis shows

that our ILP approach is able to explain data that do not fit the

perfect phylogeny assumption, thereby allowing (1) multiple losses

and gains of mutations, and (2) a number of subpopulations that is

smaller than the number of input mutations.
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1 INTRODUCTION
Character-based phylogeny reconstruction is one of the fundamen-

tal problems in Bioinformatics, with a large literature [10, 13, 25, 26]

focusing on a simple assumption: the input data consists of a set of

species (or individuals) for which we know the set of characters that

it possesses. In this case, the goal is to compute a phylogeny that

explains the set of input species and characters, where each edge

of the phylogeny allows characters gains and losses. Character-

based phylogenies play a crucial role in modeling the evolution

in cancer genomics. Cancer is an uncontrolled evolutionary pro-

cess of somatic mutations of tumor cells from a single founder

cell [11] creating a diverse set of subpopulations [6, 20, 27], each

originated from a single clone: each clone (and each subpopulation)

has a distinctive set of mutations. From this point of view, a tu-

mor progression is a phylogeny where clones and mutations have

the same role as species and mutations in the classical phylogeny

reconstruction setting as characters.

To fall within the classical framework we would need to obtain

data directly from a cell. Unfortunately, single cell sequencing is

not cheap [21] and is prone to errors, therefore we have to study

samples comprising lots of cells belonging to an unknown set of

subpopulations. This adds a new complication, since for each sam-

ple we know the (approximate) fraction of cells that have a given

somatic mutation. More precisely, each read extracted from the

sample is mapped against the reference genome, therefore we ob-

tain the mutations of each read. Since reads can be extracted from

repeated regions of the genome and the coverage of the reads is

not uniform throughout the genome or the cells of the sample, the
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fraction of reads that have a mutation is only an approximation

of the fraction of cells of the sample that have that mutation. In

other words, the observed frequencies are an estimate of the actual

frequencies of the mutation.

The above argument leads to define a computational problem

called variant allele frequency factorization problem (VAFFP) [7, 8,

16], where the input is the observed frequencies of the mutation

in each sample and the desired output is a phylogeny representing

the tumoral evolution, as well as the composition of each sample in

terms of the subpopulations or clones. The literature has mainly fo-

cused on the binary perfect phylogenies [7], where samples contain

mixtures of two-state characters, i.e. where each character/locus is

either mutated or not and mutation can be gained only once and

never lost in the entire history of the tumor. A possible general-

ization (that we do not explore in this paper) to the multi-state

perfect phylogeny has been recently proposed in order to take into

account the effect of copy number aberrations on alleles [8]. Then

characters that can assume different states (multi states), but as in

the binary case changes to the same state occur only once. This

restriction — known as the infinite site assumption — allows to ob-

tain efficient algorithms, but most recent studies refutes it [19] and

state that more complex models are needed to describe the tumor

evolution. In this paper we describe some efficient approaches that

overcome this limitation and allow to reconstruct phylogenies that

are more general than perfect phylogeny and are able to capture a

likely evolutionary history of the tumor studied.

We will focus on three main character-based models: the Per-

sistent Phylogeny [1] (where each character can be gained once

and lost at most once), Camin-Sokal [5] (where each character can

be gained several times, but never lost), and Dollo [9] (where each

character can be gained at most once, but lost several times). We

denote by Camin-Sokal(k) the restriction of the Camin-Sokal model

where each character can be gained at most k times in the entire

tree. Moreover, we denote by Dollo(k) the restriction of the Dollo

model where each character can be lost at most k times in the

entire tree. Clearly, the Persistent Phylogeny [1] corresponds to

the Dollo(1) model which has been recently investigated in several

works aiming to develop efficient solutions for the model [3, 4, 14]

since its use is motivated also in other contexts [2, 23]. In particular,

in [1] it is proved that the Persistent Phylogeny Problem over a

binary matrixM can be formulated as finding a special completion

of an extended matrixMe that is a Perfect Phylogeny. Based on this

characterization, an ILP formulation for the Persistent Phylogeny

has been developed in [14]. In [7] the approach used to solve the

VAFFP problem is a combination of an integer linear programming

(ILP) formulation and a clever approach to compute the set of rel-

evant phylogenies, based on the notion of ancestry graph. Since

the last component is tightly coupled with the fact that perfect

phylogenies have as many species as characters, it is not immediate

to extend the approach of [7] to more general models. Starting,

from this ILP formulation and the main characterization in [1], we

developed a novel approach to the VAFFP problem that is entirely

based on ILP and allows to take into account the three evolutionary

models presented above. We have experimented our ILP approach

on simulated and real data to test whether allowing the models to

violate the infinite site assumption leads to better solutions, even

when the Perfect Phylogeny model is able to explain the input data.

Indeed, our experiments show that the Persistent phylogeny may

explain the input data better than the Perfect Phylogeny while

requiring a number of clones that is smaller than the number of

mutations. Finally, the inferred tree from real data on a Leukemia

tumor CLL077 reveals the losses of a mutation, though being the

tree mostly consistent with the one reconstructed by other known

methods [18].

2 PRELIMINARIES
The character-based phylogeny reconstruction problems we study

in this paper are constrained version of the general Incomplete

Directed Perfect Phylogeny (IDP) [22], where the input is an n ×m
matrixM?, whereM?(i, j) ∈ {0, 1, ?} represents the absence, pres-
ence or uncertainty of a character j in the species i respectively. A
solution consists of changing each ? into 0 or 1 obtaining a new

binary matrixMs that has a directed perfect phylogeny (since all

phylogenies of this paper are directed, we will skip this fact). The

unconstrained IDP problem has a O(mn log
2(m + n))-time algo-

rithm [22].

A binary matrixMs has a perfect phylogeny if and only if there

are not two columns containing all the pairs (0, 0), (0, 1), (1, 0) —
two columns containing all those pairs are called incompatible

or conflicting. The problem of determining if a binary matrix has

a perfect phylogeny, and to compute such perfect phylogeny if

possible, has a linear-time algorithm [12, 13]. Moreover, there exists

an ILP formulation for determining if a binary matrix has a perfect

phylogeny [15]. Since finding a perfect phylogeny is easy, the main

difficulty in solving the IDP problem consists of determining if each

? must be replaced with a 0 or a 1.

In [1] the Persistent Perfect Phylogeny has been restated as a

constrained IDP problem. More precisely, given a binary matrixM ,

they solve the IDP problem on an extended matrix Me where each

entryM[s, c] is replaced by two entries Me [s, c+] andMe [s, c−] as
follows: if M[s, c] = 1 then Me [s, c+] = 1 and Me [s, c−] = 0; if

M[s, c] = 0 then Me [s, c+] = Me [s, c−] =?. The constraint is that,

for each pair (Me [s, c+],Me [s, c−]) of ? entries, the corresponding

entries in the matrix Ms must be the same, that is Me [s, c+] =
Me [s, c−]. This additional constraints make impossible to use the

algorithm of [22], but some algorithms have been developed [3, 4],

including one based on an ILP formulation [14]. The latter algorithm

can be trivially extended to compute the perfect phylogeny with

the fewest edges.

A p × m frequency matrix F , contains the frequencies of the

mutation in a set of samples. More precisely, each entry F [t , j]
indicates the proportion of cells in sample t with the mutation j. A
p × n usage matrixU , contains the mixture of cells in each sample.

More precisely, each entryU [t , i] is the proportion of the cells in the
sample t belonging to the subpopulation i . Finally, the n×m (clonal)

matrixM contains which subpopulation has a given mutation. An

evolution modelM consists of a set of constraints that a phylogeny

T realizing the clonal matrix M must obey. For example, when the

evolution model is the persistent phylogeny, then the phylogeny T
cannot have two edges corresponding to two gains or two losses of

the same character. The P-VAFF problem can be formally defined

as follows.
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Definition 2.1. Given a p ×m frequency matrix F , a number of

clones n, and an evolution model P, the P-VAFFP (short for P-

Variant Allele Frequency Factorization Problem) asks for an p × n
usagematrixU and ann×m clonal matrixM such that (1) F = 1

2
UM ,

and (2)M admits a phylogeny under the model P.

The 1/2 factor in the definition is a technical consequence of the

fact that the healthy (wild type) cell subpopulation exists, but is not

one of the clones ofM , and human beings are diploid, that is they

have two copies of each chromosome.

We decouple the P-VAFFP problems into two different problems:

computingM andU . In fact, once we have computed a clonal matrix

M , the problem of finding a composition of samples, i.e. a usage

matrixU , compatible withM consists of finding a matrixU such

that

∑n
i=1

U (t , i)M(i, j) = F (t , j) and ∑n
i=1

U (t , i) ≤ 1 ∀t , j.
In our setting, clonal matrix M is an unknown variable gener-

ating two main issues. First, the restrictions regarding the sample

proportions become non linear. Second, we must ensure that clones

can be represented under parsimony rule P. The first difficulty can

be easily resolved since the product of two {0, 1} variables can be

expressed as a set of linear constraints. We detail this technique

in section 4. Second issue is a more daunting task since involves

the recognition problem for general parsimony rules. We deal with

this issue in section 3 by proposing an ILP formulation for the

reconstruction problem.

3 THE P PHYLOGENY RECONSTRUCTION
PROBLEM

This section is devoted to the development of an ILP formulation

for the following decision problem:

P Phylogeny Reconstruction Problem. Given a character-based

phylogeny model P and a binary matrix M , decide if M admits a

representation in the phylogeny model P.

In this paper we focus on Dollo(k) and Camin-Sokal(k) models.

Our strategy is based on the approach discussed by Gusfield

in [14] for the Persistent Phylogeny reconstruction problem. The

formulation presented by Gusfield is founded on two main results:

(1) Every instance of the Persistent Perfect Phylogeny recon-

struction problem consisting of a binary matrixM can be

reduced to an instanceMe , consisting of a matrix over al-

phabet {0, 1, ?}, called extended matrix, of an equivalent

Incomplete Directed Perfect Phylogeny problem with ad-

ditional constraints [1].

(2) The Incomplete Directed Phylogeny problem can be stated

as an ILP problem by minimizing the number of conflicts

between characters [15].

We will extend the aforementioned results to solve the Dollo(k)
(Camin-Sokal(k)) Phylogeny Reconstruction Problem by generaliz-

ing the construction of the extended matrix proposed in [1] to those

more general models. Additionally, we extend the ILP formulation

presented in [15] in order to incorporate constraints imposed by our

generalization of (1). The later result will allow us to develop an ILP

formulation for finding a Dollo(k) or Camin-Sokal(k) tree represen-
tation for the input matrixM of the P Phylogeny Reconstruction

Problem.

3.1 Construction of the Extended Matrices
Definition 3.1. Given an incomplete binary matrixM and a set

R = {Fi (M) ≤ 0}i ∈[1,r ] of r constraints, the Modified Incomplete
Directed Perfect Phylogeny for the set R, denoted by MIDPP(M,R),
asks for finding a completion of matrixM which admits a Perfect

Phylogeny and satisfies all constraints in R

Is easy to see that if every constraint in R can be expressed as a

linear constraint in terms of the matrix entries, then the problem

MIDPP(M,R) admits a ILP formulation. The formulation can be

obtained by simply adding the set of (linear) constraint R to the

basic ILP formulation presented in [15].

Therefore, in the following we show the construction of the

extendedmatrices and the set of constraints for Dollo(k) and Camin-

Sokal(k) models.

Extended Matrix and constraints for Dollo(k). Let M be a bi-

nary matrix with n species andm characters. The extended matrix

Me,D(k ) for the Dollo(k) model is defined as follows:

• Me,D(k ) has n rows andm × (k + 1) columns, where each

character j of matrixM is associated to k + 1 columns in

Me,D(k ) denoted by j0, j1, . . . , jk .
• If M(i, j) = 1 then Me,D(k )(i, j0) = 1 and Me,D(k )(i, jl ) =

0, l ∈ [1,k].
• IfM(i, j) = 0 thenMe,D(k )(i, jl ) =? for each l ∈ [0,k].

For a character j , the column j0 represents the acquisition of char-
acter j while each of the following k columns represents a possible

loss of the gained character. In every feasible solution, a charac-

ter can be gained/lost at most once along any path from the root,

therefore, if M(i, j) = 0 it must hold that

∑
1≤l ≤k Me,D(k )(i, jl ) =

Me,D(k )(i, j0). Let us define the following set of constraints for the

matrixMe,D(k):

RD(k ) =

{ ∑
1≤l ≤k

Me,D(k )(i, jl ) = Me,D(k )(i, j0), (i, j) : M(i, j) = 0

}
(1)

Extended Matrix and constraints for Camin-Sokal(k). Let M be a

binary matrix with n species andm characters. The extended matrix

Me,CS (k ) for the Camin-Sokal(k) model is defined as follows:

• Me,CS (k) has n rows andm×k columns; each character j of
matrixM is associated to k columns inMe,CS (k ) denoted
by j1, . . . , jk .

• IfM(i, j) = 0 thenMe,CS (k )(i, jl ) = 0, l ∈ [1,k].
• IfM(i, j) = 1 thenMe,CS (k )(i, jl ) =?, l ∈ [1,k].

Every group of columns j1, . . . , jk represent the possible gain of a

character in the resulting phylogenetic tree. In every feasible solu-

tion, a character can be gained at most once on any path from the

root to a leaf, therefore we define the set following set of constrains

for the extended matrixMe,CS (k ):

RCS (k) =

{ ∑
1≤l ≤k

Me,CS (k )(i, jl ) = 1, (i, j) : M(i, j) = 1

}
(2)

Thus, the Dollo(k) ((Camin-Sokal(k)) Phylogeny Reconstruction

Problem is equivalent to solve the MIDPP problem over an extended
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matrix Me,D(k ) and constraints RD(k), as stated in the following

Theorem that generalizes the main Theorem in [1].

Theorem 3.2. Given a binary matrix M , then M admits a phy-
logeny under the Dollo(k) model if and only if the decision problem
MIDPP(Me,D(k ),RD(k)) admits a solution.

Proof. (⇒) LetM a matrix, and let T be a Dollo(k) phylogeny
representing M . For each character j we relabel T as follows: the

edge labeled as j+ will have label j0 while edges labeled with j− are

relabeled arbitrarily from the set {j1, . . . , jk } (no two edges have

the same label). Let T̂ be the tree obtained fromM after relabeling.

It is immediate to notice that T̂ is a perfect phylogeny.

Let M̂ be the matrix associated with T̂ . Let s be a generic species,
and let c be a character. If s has the character j inM , then the path

from s to the root of T̂ traverses the edge j0 but not any of the edges
jh withh > 0, that is M̂(i, jh ) = 0 forh > 0 and M̂(i, j0) = 1. If s does
not have the character j inM , then either the path from s to the root
of T̂ does not traverse the edge j0, or it traverses the edge j0 and one

of the edges jh with h > 0. In both cases

∑k
h=1

M̂(i, jh ) = M̂(i, j0),
hence M̂ satisfies (1).

(⇐) Conversely, letM be a binary matrix whose corresponding

instance ofMIDPP(Me,D(k),RD(k )) is solved by the extendedmatrix

M̂ . We will proof thatM admits a Dollo(k) representation.
Let T̂ be a perfect phylogeny solving M̂ . Let T be the phylogeny

obtained from T̂ by replacing each label j0 with j+ and any jh with

h > 0 with j−. Just as for the first part of the proof, since the

assignment M̂ satisfies (1), for each species s and each character

j of M , one of the following three cases holds: (1) M̂(i, jh ) = 0

for h > 0 and M̂(i, j0) = 1, (2)

∑k
h=1

M̂(i, jh ) = M̂(i, j0) = 0, (3)∑k
h=1

M̂(i, jh ) = M̂(i, j0) = 1. The same argument of the first part

of the proof shows that in case (1) the path from s to the root of T̂
traverses the edge j0 but not any of the edges jh with h > 0: hence

the path from s to the root ofT traverses the edge j+ but not any of

the edges j−. In case (2), the path from s to the root of T does not

traverse the edge j+, while in case (3) the path from s to the root of

T traverses the edge j+ and of the edges j−. We conclude that the

tree T is a Dollo(k) phylogeny for the matrixM . □

Notice that a similar proof shows that the binary matrixM ad-

mits a phylogeny under the Camin-Sokal(k) model if and only if

the decision problem (MIDPP(Me,CS (k ),RCS (k ))) has a solution.

Moreover, it is quite natural to observe that every Dollo(k) (Camin-

Sokal(k)) phylogeny for the matrix M is uniquely associated to a

completion of the extended matrix which is instance to the problem

MIDPP.

Theorem 3.2 allows us to reduce the P reconstruction problem

to an ILP problem. As it was already mentioned, our formulation is

based on the one presented in [15] for the IDP problem which we

detail in the next section.

3.2 ILP formulation for the MIDPP
In this section we revisit the formulation proposed in [15] for the

IDP problem.

The input of the problem is an incomplete matrix M . The goal

is to decide if there exists a completion of the unknown entries

of M in order to obtain a (complete) matrix admitting a Perfect

a b c

1 1 0 0

2 0 1 0

3 0 0 1

4 1 1 0

5 0 1 1

6 1 0 1

a0 a1 a2 b0 b1 b2 c0 c1 c2

1 1 0 0 ? ? ? ? ? ?

2 ? ? ? 1 0 0 ? ? ?

3 ? ? ? ? ? ? 1 0 0

4 1 0 0 1 0 0 ? ? ?

5 ? ? ? 1 0 0 1 0 0

6 1 0 0 ? ? ? 1 0 0

Figure 1: Input matrix M (left) and the corresponding
Dollo(2) extended matrix (right)

000000000

100000000

100100000

100100100

110100100

110100110

c1 = c̄

a1 = ā

100110100

101110100

a2 = ā

b1 = ¯b

c0 = c

b0 = b

a0 = a

s1

s4

s5

s2

s6

s3

a0 a1 a2 b0 b1 b2 c0 c1 c2

1 1 0 0 0 0 0 0 0 0

2 1 1 0 1 0 0 1 1 0

3 1 0 1 1 1 0 1 0 0

4 1 0 0 1 0 0 0 0 0

5 1 1 0 1 0 0 1 0 0

6 1 0 0 1 1 0 1 0 0

Figure 2: A phylogeny for the input matrix M of Figure 1
(see Theorem 3.2) and the corresponding completion for the
MIDPP(Me,D(k ),RD(k )).

Phylogeny. The main strategy is the minimization of the conflicts

between pairs of characters. In virtue of the Perfect Phylogeny

Theorem, the IDP problem will have a solution if and only if the

optimal value of the problem is zero.

In what follows, we briefly explain the key elements of the ILP

and we discuss the required changes for its use in the MIDPP prob-

lem.

Variables. We define a binary variable Y (i, j) for each unknown

position of M . With abuse of notation, Y (i, j) will be a constant

for every known position of the matrix of valueM(i, j). Since the
objective is to determine if two columns are in conflict, for every pair

of columns p,q we define a binary variableC(p,q) that indicates the
existence of a conflict between these two columns. To establish if

two columns are in conflict, binary variables B(p,q,a,b) are defined
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for each pair of columns (p,q) and for each possible pair of values

(a,b) ∈ {0, 1}2
. These variables indicate if for the (ordered) pair of

columns (p,q) there exists a row i where Y (i,p) = a and Y (i,q) = b.
Similarly to the variable Y (i, j), if for a pair (p,q) it already exits

among known entries of the matrix a row where Y (i,p) = a and

Y (j,q) = b then B(p,q,a,b)will be considered as a constant of value
1.

Inequalities. For every pair of columns (p,q), every binary pair

(a,b) ∈ {0, 1}2
and every i , the following set of inequalities

B(p,q,a,b) ≥ 1 − [a + (−1)a · Y (i,p)] − [b + (−1)b · Y (i,q)] (3)

force the variable B(p,q,a,b) to be 1 if and only if columns p,q
exhibit the pair (a,b) in some rows. On the other hand, the following

inequalities forces variables C(p,q) to be 1 when characters p and

q are in conflict.

C(p,q) ≥ B(p,q, 0, 1) + B(p,q, 1, 0) + B(p,q, 1, 1) − 2 (4)

Objective Function. Since we aim to minimize the number of

conflicts, the objective function is defined as: min

∑
(p,q)C(p,q).

This formulation can be extended to solve the P phylogeny re-

construction problem under different P models Section 3 in order

to find minimal conflict completions. Nevertheless, in the recon-

struction problem we are mainly concern about feasible solutions

with no conflicts. For this reason, we consider an alternative version

of constraint (4):

B(p,q, 0, 1) + B(p,q, 1, 0) + B(p,q, 1, 1) ≤ 2 (5)

Hence, we can state the Dollo(k) (Camin-Sokal(k)) phylogeny
reconstruction problem as any feasible solution of the set of con-

straints (3), (5) and RD(k ) ( RCS (k )).
Additionally, since the number of total negated characters corre-

sponds to N (M) = ∑m
j=1

∑k
l=1

B(j0, jl , 1, 1), we can state the prob-

lem of finding a parsimony representation with the minimum num-

ber of conflicts by considering the solution of the following mini-

mization problem: min

∑
(p,q)C(p,q) s.t. (3), and (4).

4 THE CLONAL RECONSTRUCTION
PROBLEM

In this section we present an ILP formulation for the P-VAFFP.

Let us recall that a P-VAFFP instance is a p ×m frequency matrix

F , a number of clones n and a model M. The objective is to find

matricesU andM , defining clone populations and the configuration

of different samples, such that F = 1

2
UM where matrixM admits a

phylogeny satisfying rule P.

Variables. Variables are the entries of usage, clonal and extended
matrices which we denote by U ,M andMe respectively. Extended

matrix is constructed according to Section 3.1 based on the consid-

ered phylogeny model.

The formulation is divided in two sets of inequalities. The first

part of the formulation deals with the feasibility of sample pro-

portions for a set of clones. The second set of inequalities ensures

that clones can be explained by an evolutionary history following

a specific phylogeny model using the extended matrix formulation

proposed in Theorem 3.2.

On the one hand, the relation between the proportion of the

somatic mutations in the samples and the proportion of clones in

the samples can be described as:

1

2

n∑
i=1

U (t , i)M(i, j) = F (t , j). (6)

That is, for each sample t ∈ [1,p], clone i ∈ [1,n] and mutation

j ∈ [i,m] the sum of the proportions of clones present in the sample

t which present mutation j must be equal to F (i, j). Since each

sample row t in matrix U describe a sample composition then it

holds:

n∑
i=1

U (t , i) ≤ 1. (7)

The (non linear) product of Equation 6 can be expressed in a lin-

ear form by introducing a set of auxiliary binary variables X (t , i, j)
as follows:

n∑
i=1

X (t , i, j) = F (t , j), X (t , i, j) ≥ 0, X (t , i, j) ≤ M(i, j),

X (t , i, j) ≤ U (t , i), X (t , i, j) ≥ U (t , i) +M(i, j) − 1

(8)

On the other hand, we must guarantee that the clonal matrix

M admits a phylogeny under the P model. As it was discussed in

Section 3, it is possible to state the P phylogeny reconstruction

problem as a solution for an IDP problem on the corresponding

extended matrix (Theorem 3.2).

Notice that the set of constraints RD(k ) and RCS (k ) are defined
for a known incomplete matrixMe , while we have an incomplete

matrix that is only described by a set of variablesM(i, j). Therefore
we have to modify the set of constraints in order to overcome this

problem. Namely, for each clone i and mutation j, we define the
following set of constraints on the variables Y :

Me (i, j0) −
∑

1≤l ≤k
Me (i, jl ) = M(i, j) for the Dollo(k) model, and

(9)∑
1≤l ≤k

Me (i, jl ) = M(i, j) for the Camin-Sokal(k) model. (10)

Thus, the P-VAFFP corresponds to finding a feasible solution

with the linear constraints (7), (8), (9), (3), (5) for the Dollo(k)
model, and (7), (8), (10), (3), (5) for the Camin-Sokal(k) model.

Finally, let me the number of columns in the matrix Me , our

formulation has O(nme +m
2

e +mpn) variables and O(m2

e + npm)
constraints.

4.1 Clonal Reconstruction admitting errors
Since frequency matrices are obtained experimentally, they can

only contain approximation of the actual frequencies. Hence, we

have to incorporate frequency errors in the formulation of the

problem, most notably in the construction of the usage matrixU .

Let us define the p ×m matrix E, where E(t , j) represents the error
of the frequency F (t , j).

The set of constraints bounding the difference between input

frequencies and the frequencies associated to our proposed solution

(that is, corresponding to the product UM) is:

−E(t , j) ≤
n∑
i=1

X (t , i, j) − F (t , j) ≤ E(t , j)
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Since now our goal is to minimize the overall error introduced

in the reconstruction, the objective function is:

min

∑
(t, j)∈[1,p]×[1,m]

E(t , j)

5 EXPERIMENTAL RESULTS
We implemented our approach with a Python program called gppf
that receives a frequency matrix M and outputs the corresponding

ILP in a format that is then fed to Gurobi 6.5.2. The program gppf
is available at https://github.com/AlgoLab/gppf. All experiments

have been performed on an Ubuntu 14.04 server with four 8-core

Intel Xeon E5-4610v2 2.30GHz CPUs (hyperthreading was enabled

for a total of 16 threads per processor). The proposed ILP formu-

lations have been experimented to test how the proposed general

models (Persistent Phylogeny, Dollo(k) and Camin-Sokal(k)) fit the
input data w.r.t. the Perfect Phylogeny model. For this purpose we

have tested the formulation in both simulated and real data. The

size of the instances are typical for real data applications such as

liquid cancer and in particular Leukemia for which we show here

the inferred (persistent) tree for a real instance (CLL077). For our

experiments we have generated different sets of frequency matrices

F as follows:

(1) generate a clonal n ×m matrixM by using the tool devel-

oped in [17], called ms, obtaining a Perfect Phylogeny on

n clones andm mutations.

(2) In order to avoid obtaining only matrices admitting a Per-

fect Phylogeny, some values of the original are modified

randomly from 0 to 1.

(3) Generate a usage matrixU of dimensions p × n assigning

to each clone a proportion in each sample. Those values

are chosen randomly, following a Dirichlet distribution.

The number p of samples is decided a priori and n is the

number of clones imposed byM .

(4) MultiplyU andM to generate a p ×m frequency matrix F .

Generated matrices are used as input of our implementation

for different formulation settings. Finally, we measure the quality

of the predictions for each phylogeny model, by considering the

total error. We remark that we do not compare the predicted clonal

matrix M with the original, since different models can generate

diverse clonal evolution trees.

The parameters of the implementation are the maximum num-

ber of clones that a solution can use (expressed as the percentage

of the number of mutations), the maximum time permitted for

each execution, the maximum number of persistent character al-

lowed, and a parameter k associated to the model Dollo(k) and the

Camin-Sokal(k) in the formulation. Moreover, we have introduced

a timeout on the running time, since the generated ILP problem is

often large and its resolution could require a considerable amount

of time. Nevertheless, imposing a timeout allows the ILP solver to

compute a solution with a small total error.

We evaluate the obtained solutions according to the following

measure:

ErrorF (F ) =
∥F − F ∥
∥F ∥

Where F is the input frequency matrix, F is the frequency matrix

inferred by the solution, and ∥A∥= [∑i j |ai j |2]1/2
is the Frobenius

norm. This metric give us the ratio between the total error and

the optimal value, therefore it is not too dependent on the actual

values.

Previous works focused on Perfect Phylogeny as the evolution-

ary model, thereby restricting the attention to a number of clones

equal to the number of mutations. Since more general evolutionary

models are allowed, the number of clones might be different, the

user can provide the maximum number of clones. We have investi-

gated the effect of choosing different values for such pameter. More

precisely, we have explored bounding the number of clones to be at

most 100%, 80%, 60% and 40% of the maximum number of clones in

the instance, which is a representative set of values. We recall that

these values are upper bounds, while the actual number of clones

used in the actual solution might be smaller.

5.1 Simulated Data
For the simulated data, we have generated two different data sets:

Exp. 1 contains 100 frequency matrices composed of 6 sam-

ples and 10mutations. Matrices are generated from a 20×20

clonal matrix M . The phylogenetic models tested in this

set are: Perfect, Persistent, Dollo(2) and Camin-Sokal(2).

Exp. 2 contains 10 frequency matrices with 12 samples and

25 mutations, generated by a 25 × 50 clonal matrixM , The

models tested in this set are: Perfect, Persistent, Dollo(4)

and Camin-Sokal(4).

Figure 3 shows how the error of each solution varies as a func-

tion of the running time for both experiments. Analyzing those

plots, we note that the total error rapidly stabilizes. Therefore we

have decided to set a time limit for the running time equal to 5

minutes for Exp. 1 and 2 hours for Exp.2, since allowing a large

time limit results in only marginal improvements of the quality of

the solutions computed.

In almost all cases the solver uses the entire available time to find

a solution. The only exception is the Perfect Phylogeny model when

maximum number of clones is 40% of the mutations. Moreover, we

notice that the computed solutions usually use fewer clones than

maximum allowed.

Figures 4 and 5 shows the total error of the solutions obtained

under different phylogenetic models and different upper bounds on

the number of clones for the set Exp. 1 and Exp. 2 respectively. Ad-

ditionally, Tables 1 and 2 exhibit the number of instances for which

the general phylogeny models outperform the Perfect Phylogeny

model on both datasets.

As we can see from Figure 4, the obtained solutions have average

error smaller than the 15% of the input matrix norm. As expected,

we observe that the error of all models increases as we decrease the

number of maximum clones allowed. The increase in the total error

is larger for the Perfect Phylogeny model, since it is not sufficient to

correctly explain the instances for a small number of clones. In fact,

Table 2 shows that, in almost all instances, a general phylogeny

model outperform the results of the Perfect Phylogeny solution.

In Figure 5 and Table 2 we see that Dollo(4) and Camin-Sokal(4)

have worse total error than more restricted models. This effect is

due to the much larger size of the ILP formulation for Dollo(4) and
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A. Experiment 1

B. Experiment 2

Figure 3: Mean error evolution of solutions in terms of time.

Camin-Sokal(4), which does not allow to find a proper solution

within the allotted timeout (Figure 3). Nevertheless, we note that

Persistent model obtains better results than the Perfect Phylogeny,

especially when the allowed number of clones is small. The experi-

mentations and considerations exposed here required a total of 105

CPU hour for Exp. 1 and 120 CPU hour for Exp. 2.

5.2 Real Data
Wealso tested ourmodels on real cancer data, in particular Leukemia

data from [24] because liquid tumors seem to have the fewest so-

matic mutations, therefore we are able to calculate an optimal solu-

tion in a reasonable amount of time.We have been able to compute a

Figure 4: Error for the solutions obtained from Exp. 1 under
different evolutionary models

Total error Persistent Dollo(2) Camin-Sokal(2)

Clone limit 100%

≤ PPE 100/100 94/100 47/100

≤ 90% PPE 99/100 92/100 18/100

≤ 80% PPE 97/100 86/100 10/100

≤ 50% PPE 74/100 66/100 0/100

Clone limit 80%

≤ PPE 100/100 97/100 53/100

≤ 90% PPE 99/100 91/100 11/100

≤ 80% PPE 89/100 84/100 4/100

≤ 50% PPE 44/100 39/100 0/100

Clone limit 60%

≤ PPE 98/100 92/100 51/100

≤ 90% PPE 91/100 83/100 2/100

≤ 80% PPE 74/100 62/100 1/100

≤ 50% PPE 13/100 17/100 0/100

Clone limit 40%

≤ PPE 90/100 93/100 79/100

≤ 90% PPE 70/100 74/100 0/100

≤ 80% PPE 43/100 43/100 0/100

≤ 50% PPE 0/100 0/100 0/100

Table 1: Comparison between evolution models on Exp. 1.
Each entry contains the number of instances (out of 100)
where the formulations based on the Persistent Phylogeny,
Dollo(2), Camin-Sokal(2) models obtain a total error that is
smaller than the one obtained with the Perfect Phylogeny
model.

clonal evolution for the CLL patient 077[7, 18] under the Persistent

Phylogeny model in approximately 3 days of computation.

We cannot directly compare the persistent tree we inferred (Fig-

ure 6.A) with AncesTree [7] (Figure 6.C), because the latter infers

only seven of the 16 mutations present in the sample. In order to

perform such comparison we had to restrict the instance to contain
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Figure 5: Errors for the solution founded for instances in
Exp. 2 for different phylogenetic models.

only the mutations that are also in the solution computed by An-

cesTree. The output is presented in Figure 6.D and shares several

structural similarities with the AncesTree solution. Moreover, we

would also like to point out that our solution for the restricted

instance (Figure 6.D) has zero errors (and is therefore optimal).

We have compared our predictions with those of PhyloSub [18]

(Figure 6.B). PhyloSub compacts different mutations in the same

clone while we infer a tree in which each mutation correspond to

a vertex. The differences between the two are that the cluster of

mutations containing NAMPTL, PLAG2616, SLC12A1, BCL2L13

and GPR158 occurs before mutation EXOC6B while in our model

the latter occurs first. The main differences are that the clone con-

taining mutation COL24A1 in our model contains also mutation

EXOC6B while it doesn’t in PhyloSub, on contrary in our model

the clone containing LRRPC16A does not contain NAMPTL and

in PhyloSub does. The most interesting fact regards the clone that

contains NOD1: in PhyloSub it lies on a branch that does not con-

tain EXOC6B, while we have predicted a phylogeny where such

clone occurs after the acquisition and the loss of EXOC6B.

From the experiment on CLL077, we can see that our prediction

is similar to that obtained with the other available tools, but we

incorporated in the evolutionary history two mutations losses, that

is our evolutionary history is not consistent with the limitations of

the Perfect Phylogeny model.

Total error Persistent Dollo(4) Camin-Sokal(4)

Clone limit 100%

≤ PPE 3/10 0/10 0/10

≤ 90% PPE 3/10 0/10 0/10

≤ 80% PPE 3/10 0/10 0/10

≤ 50% PPE 2/10 0/10 0/10

Clone limit 80%

≤ PPE 5/10 0/10 0/10

≤ 90% PPE 3/10 0/10 0/10

≤ 80% PPE 3/10 0/10 0/10

≤ 50% PPE 0/10 0/10 0/10

Clone limit 60%

≤ PPE 6/10 0/10 0/10

≤ 90% PPE 5/10 0/10 0/10

≤ 80% PPE 4/10 0/10 0/10

≤ 50% PPE 4/10 0/10 0/10

Clone limit 40%

≤ PPE 7/10 0/10 1/10

≤ 90% PPE 5/10 0/10 1/10

≤ 80% PPE 5/10 0/10 1/10

≤ 50% PPE 4/10 0/10 1/10

Table 2: Comparison between evolution models on Exp. 2.
Each entry contains the number of instances (out of 10)
where the formulations based on the Persistent Phylogeny,
Dollo(4), Camin-Sokal(4) models obtain a total error that is
smaller than the one obtained with the Perfect Phylogeny
model.

6 CONCLUSIONS AND FUTUREWORK
In this paper we have proposed a ILP formulation of the problem

of reconstructing the evolutionary history of tumors, where the

evolutionary tree is character-based and can violate the infinite site

assumption of the Perfect Phylogenymodel. First, we have proposed

an ILP framework for the Dollo(k) and Camin-Sokal(k) models —

k is a bound on the number of losses and gains of each mutation.

Then we have shown how to extend it for solving the Variant Allele

Frequency Factorization Problem under those evolution models. We

have performed an experimental analysis on simulated and real data

which shows that the Persistent and Dollo(k) model for k > 1, allow

to obtain phylogenies whose predicted frequencies are closer to

the true frequencies than those obtained via the Perfect Phylogeny

model. Mainly, our approach achieves good performances when

the input data do not fit the Perfect Phylogeny model, but the

number of recurrent or back mutations is relatively small. Moreover,

our approach allows to relax the constraint that then number of

clones is equal to the number of distinct mutations. These promising

results have been obtained with ILP formulations that have not

been optimized for efficiency.

Future research will be devoted to further investigate our ap-

proach on larger instances (more samples and mutations): this will

require to improve the computational efficiency of the ILP formu-

lation or adopting some combinatorial strategies to govern the

introduction of a small number of mutation losses and gains in the

solution, as our initial analysis has not investigated the scalability
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A.

Germline

SAMHD1

EXOC6B
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PLA2G16
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NAMPTL-

LRRC16A
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MAP2K1
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B.

Germline

BCL2L13; NAMPTL;

GPR158; SAMHD1;

SLC12A1

KLHDC2; COL24A1;

NOD1; HMCN1;

MAP2K1

DAZAP1; EXOCB6;

GHDC; OCA2;

PLA2G16

LRRC16A

C.

Germline

GPR158

MAP2K1

HMCN1

NOD1

PLA2G16

EXOC6B

LRRC16A

D.

Germline

MAP2K1 HMCN1 GPR158

EXOC6B

PLA2G16

LRRC16A GPR158

EXOC6B

NOD1

Figure 6: Persistent inferred tree for tumor CLL077 (A) Tree inferred by gppf, the red circular vertices are the losses of a mutation,
therefore we have two clonal expansion where mutations EXOC6B and NAMPTL are lost during the clonal evolutionary history. B. shows the
tree inferred by PhyloSub, while C. shows the result of AncesTree. D. shows the solution under the Persistentmodel for the restricted instance
presented in [7] for the AncesTree algorithm.

of the approach. Moreover, we would like to assess the biological

soundness of the solutions provided by our approach.
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