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Aim of the study

The main aim 1s to investigate the impact of MCT8
mutations on the pathogenetic mechanisms of
AHDS.

ID Gender Date of birth Mutation Type of Mutation

Introduction

Genetics variants in SLCI6A2 gene encoding
for the monocarboxylate transporter 8
(MCTR) cause a severe X-linked intellectual
deficit known as Allan-Herndon—-Dudley
syndrome (AHDS). MCT8 promotes cellular
uptake and efflux of thyroid hormones. Active
T3 and retinoid X receptors (RXRs) can form
heterodimer complexes which bind to
hormone response elements (HREs) leading to
activation or repression of transcription.

Results
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Figure 1. Prediction and modelling of the three different mutated MCT&
performed by AlphaFold2 and visualized with PyMOL software.
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Figure 4. MTT assay after 24-48-72 hours (n=3, **p<0.01,

#xxxp<0.0001 vs CTR).
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Figure 5. Live&Dead assay revealed a decrease in live cell populations (n=3, *p<0.05 vs

MCTR8 characterization
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Figure 2. RT-qPCR Analysis of both SLCI6A2 expression and localization (n=3, *p<0.05, *#*p<0.001, #***p<0.0001 vs CTR).

DAPI-MCT& DAPI-MCTS
1 MCTS8 N
MCT8 é 5 3q MCTS8 (70 kDa) g
S 1.5 MCTS (70kDa) ) g — )
* — E 2 CTR.2  AHDS_2
:.L 1.0 CTR_1 AHDS 1 £
£ g ] Bact (42 kDa)
E 0.5 Bact (42 kDa) é’
©
] CTR_1 AHDS_1 I £ o CTR 2 AHDS_2
E oo - - CTR_2 AHDS_2
CTR_1AHDS_1 é

Figure 3. MCT8 expression via western blot and immunofluorescence (n=3, *p<0.05 vs CTR, **p<0.01).
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Figure 6. RT-PCR Analysis of iodothyronine Deionidases expression (n=3, #p<0.05, **p<0.01,
##xp<0.001 vs CTR).

Figure 7. RT-PCR Analysis of thyroid hormone signaling pathway expression (n=3, *p<0.05, **p<(
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Figure 11. Biological Processes Gene Ontology for DEGs.
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Figure 12. Cellular Component Gene Ontology for DEGs.
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Figure 14. RT-PCR of myelin associated genes revealed the downregulation of MBP: myelin basic protein,
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myelin associated glycoprotein and PMP22: Peripheral myelin protein 22 (n=3, *p<0.05, **p<0.01 vs CTR).

Figure 13. The Oil Red O staining revealed an increasing presence of lipid droplets (x**xp<0.0001 vs CTR).

Conclusions

Our data emphasize a mutation—specific impairment in patients’ specific primary fibroblasts, that can be used as pre-clinical experimental
model of this rare disease.
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