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Aim: Themechanisms governing the organism’s response to exercise are complex
and difficult to study. Spectral analysis of heart rate variability (HRV) could
represent a convenient methodology for studying humans’ autonomic nervous
system (ANS). However, difficulties in interpreting the multitude of correlated
HRV-derived indices, mainly when computed over different time segments, may
represent a barrier to its usage. This preliminary investigation addressed to elite
athletes proposes a novel method describing the cardiac autonomic response to
exercise based onmultilevel exploratory factor analysis (MEFA), which reduces the
multitude of HRV-derived indices to fewer uncorrelated ANS indicators capable of
accounting for their interrelationships and overcoming the above difficulties.

Methods: The study involved 30 Italian Olympic athletes, divided into 15 cyclists
(prevalent high-intensity endurance training) and 15 shooters (prevalent technical
training with low-intensity endurance component). All athletes underwent a
complete test of a dynamic protocol, constituted by a rest-stand test followed
by a stepwise bicycle stress test subdivided into a single bout of progressive
endurance (from aerobic to anaerobic) exercise and recovery. Then, by spectral
analysis, values of 12 ANS proxies were computed at each time segment (9 epochs
in all) of the complete test.

Results: We obtained two global ANS indicators (amplitude and frequency),
expressing the athletes’ overall autonomic response to the complete test, and
three dynamic ANS indicators (amplitude, signal self-similarity, and oscillatory),
describing the principal dynamics over time of the variability of RR interval (RRV).
Globally, cyclists have significantly higher amplitude levels (median ± MAD:
cyclists 69.9 ± 20.5; shooters 37.2 ± 19.4) and lower frequency levels
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(median ± MAD: cyclists 37.4 ± 14.8; shooters 78.2 ± 10.2) than shooters, i.e., a
parasympathetic predominance compared to shooters. Regarding the RRV
dynamics, the signal self-similarity and oscillatory indicators have the strongest
sensitivity in detecting the rest-stand change; the amplitude indicator is highly
effective in detecting the athletes’ autonomic changes in the exercise fraction; the
amplitude and oscillatory indicators present significant differences between
cyclists and shooters in specific test epochs.

Conclusion: This MEFA application permits a more straightforward representation
of the complexity characterizing ANS modulation during exercise, simplifying the
interpretation of the HRV-derived indices and facilitating the possible real-life use
of this non-invasive methodology.

KEYWORDS

aerobic training, autonomic heatmapplots, autonomic nervous system,HRV, nonparametric
statistics, repeated measures, spectral analysis, cardiometabolic prevention

1 Introduction

The complexity of mechanisms governing the organism’s response
to exercise (Vatner and Pagani, 1976) has intrigued physiologists and
clinicians for over a century. Considering individual bouts, it was
readily apparent that the appropriate redistribution of the increased
blood flow necessary for the augmentedmuscular activity, according to
the specificity of target movements, results from the timely
augmentation in cardiovascular performance (Mitchell et al., 2005)
sustained by the autonomic nervous system (ANS), in particular an
increase in the sympathetic drive. From about a 4:1 ratio between
parasympathetic/sympathetic activity directed to the heart at rest, a
progressive increase in autonomic excitatory activity would lead to a 1:
4 ratio, with a marked sympathetic prevalence (White and Raven,
2014). A rapid recovery toward vagal reactivation would occur at the
end of the exercise (Coote, 2010). The possibility of studying ANS
during exercise in humans may help in this field of research, and
(parametric and non-parametric) spectral analysis of heart rate
variability (HRV) may furnish a convenient, non-invasive
methodology to investigate ANS control, as the milestone
observation by Akselrod et al. (1981) suggested.

Nevertheless, in the field of exercise, this methodology seems to
present some pitfalls that limit its usage because of technical
limitations and difficulties in interpreting the different variables
derived from various types of analysis, besides considering neural
coding (Cariani and Baker, 2022) and gender and age issues (Lucini
et al., 2017). It is not surprising that the reduction of the Low-
Frequency (LF) component of HRV (considered a prevalent marker
of sympathetic activation to the sino-atrial node) reported by
several investigators during intense aerobic exercise (Casadei
et al., 1995) aroused a rich debate about the extent to which the
LF spectral components (both in absolute power and normalized
units) can be used as an index of sympathetic regulation (Pagani
et al., 2012). Some papers (Van de Borne et al., 1997) showed that
LF spectral components were blunted by heart failure, a disease
characterized by sympathetic over-activity. In this context, careful
attention must be given to the different aspects of tonic or phasic
elements of autonomic activity, as evidenced by simultaneous
recordings of nerve activity, RR variability (RRV), and systolic
arterial pressure (Pagani et al., 1997). It became clear that the
multiple aspects of HRV cannot be interpreted directly as a

particular shift in the degree of autonomic activity and tone
(Malik and Camm, 1993). Although difficult to obtain, the
additional direct information provided by neural recordings with
exercise seems to demonstrate a reduction of sympathetic activity
with low intensity, which is subsequently overcome by intense
exercise (Fisher, Young, and Fadel, 2015). In addition, other
domains might play an unsuspected role: e.g., changes in
respiration (Bartels et al., 2004) and venous return (Lucini et al.,
2000) may play a role of hidden modulators of autonomic indices,
even in the absence of exercise.

Motivated by these drawbacks and considering the potential
translational value of clarifying the autonomic dynamics during
the entire exercise and recovery bout (Jouven et al., 2005), we
planned the present feasibility study on a small group of 30 elite
athletes from the Italian Olympic team (half characterized by
prevalent high-intensity endurance training—cyclists—and half by
prevalent technical training with low-intensity endurance
component—shooters) to investigate the autonomic dynamics
during two physiological models of sympathetic activation:
standing up and a stepwise bicycle stress test, which together
constituted the complete test of a dynamic protocol. In the present
investigation, we utilized a large RRV set of ANS proxies (i.e., HRV-
derived indices representing the cardiovascular autonomic
modulation, such as RR variance from tachogram and LF and HF
(High-Frequency) components of RRV in absolute power and
normalized units; Solaro et al., 2021a), formed by time-based and
ratio-based variables (Kerkhof et al., 2019), collected over nine time
segments (the epochs). Our research question regarded the possibility
of assessing the global autonomic profiles and the simultaneous
dynamics that govern heart period variations during a single bout
of exercise in elite athletes by overcoming the limits of the spectral
analysis. Accordingly, we considered the following interconnected
objectives addressed in this order:

1) Disclosing and synthesizing the main autonomic domains
underlying the athletes’ autonomic responses to standing up
and exercise through fewer ANS statistical indicators, capable of
better evidencing information that may remain hidden when
considering each variable separately;

2) Studying the athletes’ autonomic responses to standing up and
exercise based on the ANS indicators and comparing the
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extremes of the effects of training load, as represented by the two
different cyclist and shooter groups, to assess potentially
significant differences in the autonomic response to the
complete test;

3) Deriving individual autonomic profiles from the obtained ANS
indicators to describe the global and dynamic response to the
complete test, from which underlying autonomic mechanisms
could be inferred.

Since the collected data presented several complexities, i.e., repeated
measures obtained over a small athlete set with non-normally
distributed ANS proxies, we carried out the statistical analyses
inherent to the three study objectives by relying on a set of
integrated data-driven and non-parametric statistical methods
(Moyé, 2016). We constructed the ANS indicators by applying the
Multilevel Exploratory Factor Analysis (MEFA) method (Härnqvist,
1978; Muthén, 1991; Reise et al., 2005), which, besides reducing the
number of the ANS proxies into a few latent factors, is capable of
accounting for the repeated measures data structure by providing a
variance decomposition of the athletes’ individual information into two
sources of variation, i.e., between-athletes variation (between-subjects
analysis, global representation) and within-athletes epoch variation
(within-subjects analysis, dynamic representation). This way, the
obtained ANS indicators were used to describe the athletes’ overall
autonomic variation traits over the complete test regarded in its entirety
(global representation) and the principal RRV dynamics that unfolded
over the various test steps (dynamic representation).Moreover, we used
non-parametric inferential methods (Hollander et al., 2014) and
graphical representations to better depict ANS changes during
exercise at both group and individual levels. In particular, we built
so-called autonomic heatmap plots (also provided in the interactive
form), which proved to be potent tools, especially for detecting turning
points in the group and individual responses to exercise according to
different sports specialties and exercise steps.

2 Materials and methods

2.1 Study population and protocol

This observational, retrospective study is part of an ongoing
series of investigations focusing on using autonomic indices in elite
athletes that the Independent Ethics Committee of the University of
Milan approved on 23 September 2019. This protocol followed the
principles of the Declaration of Helsinki and Title 45, US Code of
Federal Regulations, Part 46, Protection of Human Subjects, Revised
13 November 2001, effective 13 December 2001.

In order to test a large training load history, we enrolled 30 elite
athletes from the Italian Olympic team, divided into 15 cyclists and
15 shooters (Mitchell et al., 2005). The cyclist group was composed
of 7 females and 8 males with a mean age of 25.67 years (±4.51 sd)
and age range of 18–33 years; the shooter group of 3 females and
12 males with a mean age of 32.40 years (±5.99 sd) and age range of
23–40 years. Individual good health was ensured by the athletes’
team doctor (following Italian law that prescribes annual pre-
participation screening in competing athletes) through history,
blood tests, and physical examination, inclusive of an
echocardiogram. All subjects had provided informed consent at

the visit and agreed that their anonymized data could be used for
statistical or scientific projects.

On the day of recording, after an overnight fast and a light
breakfast, avoiding caffeine and intense physical activity in the
preceding 24 h, subjects arrived at the clinic between 9:00 and
12:00 a.m. After the initial formalities and clinical assessment
lasted about an hour, they underwent a rest-stand test followed
by a maximal, incremental, stepwise bicycle stress test and an HR
recovery. After electrode positioning and 5 min of horizontal rest
and standing up (rest-stand test), athletes performed a symptom-
limited, incremental, maximum bicycle exercise test individually
titrated to reach exhaustion in about 10 min (Oggionni et al., 2021).
At the CONI site (Comitato Olimpico Nazionale Italiano—Italian
National Olympic Committee), the ECG stress test is performed
with the cycle ergometer Cardioline, Cubestress XR100 (Trento,
Italy). The stepwise protocol is purposely built for elite athletes by
CONI as follows: Step 1: Load is set at a number of watts equal to
50% of body weight; Step 2 and beyond: every 2 min, a number of
watts equal to 50% of body weight is added until load cannot be
sustained any longer. Overall, the average time taken by the athletes
for the exercise ramp was 10 ± 2 min. After that, subjects were asked
to remain seated on the bicycle with free pedaling for about 8 min.
The air conditioning system in the test room was set to 22°C ± 1°C.

2.2 Autonomic evaluation

The standard ECG was continuously acquired on a digital
electrocardiograph (Cubestress, Cardioline, Italy) and stored on
digital media for later analysis. Using dedicated software
(Heartscope, AMPS, NY) (Badilini et al., 2005), first, a beat-by-
beat RR interval (RRI) series (i.e., tachogram) was obtained,
nominally with 1,000 samples/sec, and its quality (absence of
artifacts and ectopies) was ascertained. Subsequently, the following
epochs were extracted from the tachogram (average total duration
1777 ± 280 beats): 5 min nominal rest (baseline, epoch 1), followed by
5 min upright data (stand, epoch 2), and four successive exercise
segments (exercise steps, epochs 3, 4, 5, and 6), a peak (epoch 7), and
two final recovery phases (epochs 8 and 9), producing 9 sets of
sequential RRI series. These tachogram segments were then analyzed
offline with Heartscope, utilizing an autoregressive algorithm for
spectral analysis with minimal operator involvement (technical
details are in Solaro et al., 2021b). The program automatically
computes time and frequency domain indices, selecting the best
model order and verifying, in addition, the validity of the
autoregressive spectral model (through Anderson’s and Akaike’s
tests; Pagani et al., 1986). The frequency range of spectral
components was set at >0.03 Hz for Low Frequency (LF), as usual
in our laboratory, and at 0.15–0.40 for High Frequency (HF), as
suggested by the Task Force of the European Society of Cardiology
and the North American Society of Pacing and Electrophysiology,
1996, Table 2, for both rest and dynamic conditions. Occasional
spectral components beyond this range were nominally set to 0.
Recordings of subjects with recognized arrhythmias or low-frequency
breathing (below 12 cycles/min) were discarded, as previously pointed
out (Lucini et al., 2017). Our program applies a standard linear
detrending procedure to limit the impact of nonstationarities
before performing spectral analysis, as Porta et al. (2000) suggested.
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The usual autonomic evaluation in our laboratory (Solaro et al.,
2021b) considers a multiplicity of ANS proxies. In this work, we
considered the 12 variables defined in Table 1 (several remarks about
the ANS proxy selection are in Section 4.1). According to their
nature, they are distinguished into the two typologies of “time-
based” and “ratio-based” variables (Kerkhof et al., 2019), which
broadly fit the hypothesis of two neural coding modalities
(amplitude and frequency) (Pagani et al., 1997). Specifically,
time-based variables have values expressed in time measurement
units; ratio-based variables have values expressed in normalized
numbers (in the ranges [0–1] or [0–100]) derived from their
frequency in the power spectrum.

2.3 Statistical methodology

We had to meet the three interconnected objectives listed in the
Introduction by dealing with several issues of the collected data,
above all, the repeated measure data structure consisting of T � 9
consecutive observations of the p � 12 ANS proxies listed in Table 1
collected over a small set of n � 30 Olympic athletes and the non-
normality of several ANS proxies. Parenthetically, the ANS proxies
we used were not commensurable, i.e., not straight comparable in
magnitude, variability, and unit of measurement. Moreover, being
strictly correlated at both the inter-individual and intra-individual

levels (due to the repeated measure structure), the ANS proxies
needed to be handled in a multivariate sense rather than as single
variables, aiming to reduce their number and, at the same time,
preserve their informative content as best as possible.

To account for all the above and address the three objectives, we
designed the statistical methodology as a set of integrated data-
driven and non-parametric methods so that no a priori conjecture
was required on the data. That represented the advanced part of the
statistical data analysis in the study.

Before that, however, we conducted a preliminary analysis of the
single 12 ANS proxies to explore potentially shared trends over time
and the principal differences between the cyclist and shooter groups.
We focused mainly on the median profile plots of the ANS proxies
depicted separately for cyclists and shooters. Such profiles were set
up over the nine epochs with error bars around the medians given by
the Median Absolute Deviation (MAD). Moreover, we tested the
hypotheses of “no group effect,” “no epoch effect,” and “no group-
by-epoch interaction” for each ANS proxy using the non-parametric
ATS-based (Anova-Type Statistics) test for longitudinal data by
Brunner et al. (2002). Further details are in the methodological
Figure 1.

Subsequently, the first step in addressing the three objectives was
the application of the Multilevel Exploratory Factor Analysis
(MEFA) (Härnqvist, 1978; Muthén, 1991; Reise et al., 2005),
i.e., a multivariate statistical analysis method capable of detecting

TABLE 1 Definition of the ANS proxies used for the study.

Time-based variables (values expressed in time measurement units)

Variables Units Description

HR beat/min Heart rate

RR RMS ms Root mean square of successive RR intervals (RRIs)

RR TP ms2 RR power from the autoregressive spectrum of tachogram

RR LFa ms2 Absolute (a) power of LF spectral component of RRV

RR HFa ms2 Absolute (a) power of HF spectral component of RRV

RMSSD ms Root mean square of successive RRI differences

AC ms Acceleration capacity, i.e., phase-rectified signal averaging (PRSA) of the RRI series
with acceleration anchor point

DC ms Deceleration capacity, i.e., PRSA of the RRI series with deceleration anchor point

Ratio-based variables (values expressed in normalized numbers)

Variables Units Description

RR LFnu nu Normalized unit (nu) power of LF spectral component of RRV

RR HFnu nu Normalized unit (nu) power of HF spectral component of RRV

RR Ro [0–1] Regularity index, ranging from zero (maximum complexity) to one (maximum
regularity) (*)

P0v % Pattern of no change in three-beat symbolic dynamics (in percent) (*)

Note: This distinction of the ANS proxies into the two “time-based” and “ratio-based” typologies does not follow the classification in “time-domain” and “frequency-domain”measurements of

HRV proposed by the Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). It intends to differentiate the ANS proxies

whose values are provided with a temporal unit of measurement (time-based) from those expressed in normalized numbers (ratio-based), thus also accounting for the complexity and non-

linearity of HRV (Shaffer and Ginsberg, 2017). Note that RR LF and RR HF are thought to reflect phasic components of parasympathetic or sympathetic activity (Malik and Camm, 1993).

(*)Computational details on the regularity index RR Ro and definitions of the symbolic dynamic categories related to the number of heart period changes (among which P0v) are given in Porta et al., 2001.
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the main latent autonomic domains accounting for the repeated
measure data structure. Given the two-level hierarchical data
structure, we used MEFA in practice as a two-level factor
analysis, with athletes as the level-2 units [Between-Subjects (BS)
analysis] and epochs as the level-1 units [Within-Subjects (WS)
analysis] (technical details on MEFA are given in the
Methodological Appendix, Supplementary Material). Specifically,
the advanced part of the statistical analysis was performed in the
following three steps, one for each objective:

Objective 1: Disclosing and synthesizing the main autonomic
domains underlying the athletes’ autonomic responses to standing up

and exercise through ANS indicators. By MEFA, we derived a few
uncorrelated common latent factors capable of disclosing the latent
domains underlying the athletes’ autonomic response to the
complete test. Two sets of latent factors were detected (further
details are in Figure 2), each representing respectively:

a) The main latent domains describing the autonomic response to
the test considered in its entirety, i.e., the overall autonomic
variation traits characterizing the athletes (BS analysis). This
MEFA part directly referred to the athletes (the level-2 units) and
provided a global representation of the athletes’ autonomic

FIGURE 1
Description of the non-parametric testing procedures applied in the study.
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response over the entire test. In practice, this analysis referred to
the so-called BS correlation matrix RB (containing the inter-
individual correlations) to obtain qB < 12 uncorrelated BS
common factors;

b) The main latent domains describing the RRV dynamics over the
nine epochs of the complete test. That implicitly allowed the
main individual autonomic profiles to be derived over time (WS
analysis). This MEFA part directly referred to the epochs (the
level-1 units) and provided a dynamic representation of the
athletes’ autonomic response over time. In practice, this analysis
referred to the so-called pooled-WS correlation matrix RW

(containing the intra-individual correlations) to obtain
qW < 12 uncorrelated WS common factors.

In both BS andWS analyses, MEFAwas applied toRB andRW as
two distinct Exploratory Factor Analyses (EFA) with the principal
factor extraction method and varimax rotation, through which
uncorrelated common factors are derived (Reise et al., 2005;
Finch, 2020). Data adequacy for the two EFA applications was
initially assessed through the Kaiser-Meyer-Olkin (KMO) measure,
a normalized index with values between 0 and 1. KMO values below
0.6 typically indicate poor or unacceptable factorial solutions, thus
requiring some action (e.g., removing/substituting one or more
variables from the initial set) (Dziuban and Shirkey, 1974).

Besides this, Figure 2 summarizes the criteria employed to
choose the numbers qB and qW of common latent factors to keep
in analysis and the way such factors were interpreted and then
expressed in actual statistical indicators with values in the [0, 100]
range. Throughout the study, we labeled these indicators as ANS-BS
or ANS-WS, depending on the analysis type. The values of the ANS
indicators were called “scores.”

We assessed the accuracy of the main findings concerning the
ANS indicators through the following steps. First, we checked for
potential sex and age effects on the ANS indicators by fitting a series
of quantile regression models (Koenker, 2005), each having an ANS
indicator in turn as the dependent variable and sex (included as a
dummy variable, with 0 = female and 1 = male), age, and their
interaction as independent variables. Then, we tested the hypotheses
of the absence of sex, age, and their interaction effects. As for the
ANS-WS indicators, this procedure was applied at each epoch.
Second, we applied a specific resampling technique, i.e., the non-
parametric stratified balanced bootstrap (Davison et al., 1986;
Davison and Hinkley, 1997). In practice, 1,000 bootstrap samples
(with repetition) were generated for both the BS and WS analyses
such that cyclists and shooters entered each sample with the same
proportion, and the bootstrap distributions of the ANS indicators
were obtained. The uncertainty extent of the main results (e.g., factor
loadings) was then assessed through non-parametric 95% bootstrap

FIGURE 2
Synthetic description of the MEFA approach used to set up the ANS indicators.
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confidence intervals (C.I.s) computed with the BCa method and the
option “infinitesimal jackknife” (DiCiccio and Efron, 1996).

Objective 2: Studying the autonomic response to standing up and
exercise in the whole athlete set and comparing cyclists and shooters
through the ANS indicators. As a first analysis step, the ANS-BS and
ANS-WS indicator distributions were dealt with by estimating their
within-group density curves with the Bowman-Azzalini (BA)
method (Bowman and Azzalini, 1997). In the specific case of the
ANS-WS indicators, this estimation was carried out at each epoch.
At the same time, to better display the disclosed RRV dynamics over
time, the median profile plots of the ANS-WS indicators (with error
bars around the medians given by 95% bootstrap C.I.s) were built for
the whole athlete set and the cyclist and shooter groups.

Figure 1 resumes the non-parametric testing procedures applied
to both the global ANS-BS indicators and the dynamic ANS-WS
indicators. Regarding the inspection of potential differences between
cyclists and shooters based on the estimated within-group density

curves, we performed two complementary analyses, by which we
compared:

a) The cyclists’ and shooters’ ANS-BS indicator distributions to
detect significant overall differences in their autonomic traits;

b) The cyclists’ and shooters’ ANS-WS indicator distributions to
disclose significant differences in their RRV dynamics at each
epoch.

In particular, to test the hypothesis of “no group difference” (or
also, “no group effect”), we relied on the BA permutation test
(Bowman and Azzalini, 1997), the Jonckheere-Terpstra (JT)
permutation test for ordered alternatives, the Kolmogorov-Smirnov
(KS) bootstrap test, and the Studentized Wilcoxon Rank-Sum
(StWRS) permutation test (Hollander et al., 2014; Helwig, 2019).
In the case of the ANS-WS indicators, the False Discovery Rate (FDR)
p-value adjustment (Benjamini and Hochberg, 1995) was applied to

FIGURE 3
Within-group median profile plots of the study ANS proxies set up for the cyclist and shooter groups over the nine epochs.
Legend: In each panel, blue profiles regard the cyclist group, and red profiles the shooter group. Error bars around the median are given by ± MAD
(Median Absolute Deviation). Numerical data are reported in Supplementary Table S1, with the median and MAD computed over all the epochs, and in
Supplementary Tables S3, S4, with the median and MAD computed at each epoch. The median profile plots built over the whole athlete set are displayed
in Supplementary Figure S1, with numerical data in Supplementary Table S2. Supplementary Table S5 reports the test results of several pairwise
comparisons of interest (i.e., stand-rest, peak-rest, and recovery last phase-peak) considered in both the whole athlete set and the cyclist and shooter
groups. Meaning of the ATS-based test (see description in Figure 1):− “Group” intends the ATS-based test for the null hypothesis of “no group effect,”−
“Epoch” intends the ATS-based test for the null hypothesis of “no epoch effect,”− “Group-by-Epoch” intends the ATS-based test for the null hypothesis of
“no interaction between groups and epochs,” evaluated for each ANS proxy. Significant results at the 0.05 level are written in bold.
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preserve the nominal significance level associated with the overall “no
group effect” null hypothesis tested over all the epochs together.

Besides this, we studied the trends of the RRV dynamics over time
based on the median profile plots of the ANS-WS indicators. We
tested the overall hypothesis of “no epoch effect” in the whole athlete
set using the non-parametric ATS-based test (Brunner et al., 2002).
Then, we studied the presence of increasing or decreasing trends
between every two consecutive epochs by applying the ATS-based test
and the permutation Wilcoxon signed-rank (WSR) test (Helwig,
2019) with the FDR p-value adjustment (Benjamini and Hochberg,
1995). At the same time, we compared the cyclists’ and shooters’ RRV
dynamic trends by testing the hypotheses of “no group effect,” “no
epoch effect,” and “no group-by-epoch interaction” for each ANS-WS
indicator using the non-parametric ATS-based test (Brunner et al.,
2002).

Objective 3: Deriving individual autonomic profile.We set up the
so-called autonomic heatmap plots to describe each athlete’s
autonomic profile as his/her response to the complete test
considered in its entirety and at every epoch. Such profiles
represent the most detailed description because they combine the
BS and WS analyses. The athletes’ scores on a specific ANS-BS
indicator were paired with those on the related-meaning ANS-WS
indicator and depicted in the same heatmap plot. Graphic cells were
then colored by gradually increasing their tonality according to the
score magnitude, i.e., lighter colors for lower scores and darker
colors for higher scores. Numeric data underneath the graphic cells
were reported unencoded in the interactive heatmap plots, where the
individual scores can be displayed by mouse hovering. This way, one
can easily visualize, also for comparisons, each athlete’s general
autonomic state over the exercise entirety (BS analysis) and each
athlete’s autonomic response to exercise along the epochs (WS analysis).

Throughout the study, the nominal test significance level was set
at 0.05. We performed the statistical analyses with the R software,
version 4.3.0 (R Core Team, 2023), together with the following
contributed packages: “corrplot” for the correlation plots of the
correlation matrices RB and RW (Wei and Simko, 2021); “psych”
(Revelle, 2022) for the implementation of the two-level factor analysis;
“ks” (Duong, 2007; Duong, 2022) for PKDE; “quantreg” (Koenker,
2023) for the quantile regression models; “boot” (Canty and Ripley,
2021) for the bootstrap; “nparLD” (Noguchi et al., 2012) for the ATS-
based test; “nptest” (Helwig, 2021) for the permutation version of the
WSR and StWRS tests; “sm” (Bowman and Azzalini, 2021) for the BA
test and smoothed empirical density curves; “DescTools” (Signorell
et al., 2021) for the permutation JT test; “ggplot2” (Wickham, 2016)
for the construction of all the other graphs; “plotly” (Sievert, 2020) for
the interactive autonomic heatmap plots.

3 Results

Descriptive statistics of the 12 ANS proxies and several non-
parametric test results (Supplementary Tables S1–S5) indicate the
presence of trend patterns that are worth examining further. On this
point, Figure 3 displays the within-group median profile plots for
each ANS proxy referred to the cyclist and shooter groups, along
with the ATS-based test results. Two remarks are worth making.
Firstly, regardless of the group, some trend patterns shared by
specific ANS proxies are visible over the epochs (also see
Supplementary Figure S1). Several median profiles have a similar
increasing (e.g., RR Ro and P0v) or decreasing trend (e.g., RR RMS,
RMSSD, and DC) until peak exercise (epoch 7) with reversal
afterward. Moreover, RR TP, RR LFa, and RR HFa median

TABLE 2 Descriptive statistics (mean ± sd and median ± MAD) of the cyclists’ and shooters’ percentages of maximal heart rate (HR) recorded at rest and stand and
during the bicycle stress test.

Cyclists

HR.1% HR.2% HR.3% HR.4% HR.5% HR.6% HR.7% HR.8% HR.9%

Mean 32.34 43.49 50.58 60.49 81.09 93.93 100 80.43 56.65

sd 4.19 7.53 4.35 4.64 4.25 2.18 0 5.92 7.06

Median 32.61 42.51 50.11 59.44 81.56 93.05 100 81.33 57.65

MAD 1.42 4.25 3.18 2.06 3.39 1.42 0 2.16 4.23

Shooters

HR.1% HR.2% HR.3% HR.4% HR.5% HR.6% HR.7% HR.8% HR.9%

Mean 42.20 52.63 54.73 63.46 82.31 94.58 100 86.18 69.57

sd 6.96 9.24 8.05 7.86 4.53 2.19 0 3.16 4.81

Median 39.56 52.74 55.33 65.38 82.01 94.61 100 85.93 69.66

MAD 3.18 7.46 5.38 5.03 3.15 1.07 0 1.79 3.69

low intensity HR%< 55 moderate intensity 55 ≤ HR% < 75 high intensity 75 ≤ HR% ≤ 90 very high intensity HR% > 90

Legend: Exercise intensity levels based on the guidelines in Pelliccia et al. (2021, Table 4):

Note: Individual percentages of maximal heart rate at each epoch (Supplementary Table S6) are given by HR.t% � (HR.t/HR max)100%, where HR.t is the heart rate at epoch t (t � 1, . . . , 9) and

HR max is the individual maximal heart rate recorded during the bicycle stress test. For each group, 100% corresponds to the mean or median HR max. The minimum mean and median HR.t%

over the epochs are written in italics; the highest mean and median HR.t% smaller than 100% are written in bold.
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values come close to zero during the exercise up to epoch 7, then
slightly increase during the recovery phases; AC and DC have a
similar trend but opposite directions. Besides this, in addition to the
well-known excitatory effects of standing up, RR LFnu increases
until epochs 3 and 4; then, it dramatically decreases till the exercise
peak (epoch 7) and returns to previous higher levels during recovery
(Supplementary Figure S1). A similar inverse profile is present for
RR HFnu. In order then to better understand the athletes’
hemodynamic changes during exercise at the various epochs, we
referred to the guidelines by Pelliccia et al., 2021, Table 4, and
calculated the percentages of the maximal heart rate (reached at
epoch 7) for each athlete (Supplementary Figure S6) along with
descriptive statistics (Table 2).

As a second remark, the ATS-based test supports the presence of
a significant epoch effect on all the studied ANS proxies, while in
almost all the cases, there is a significant group-by-epoch
interaction, thus suggesting that, overall, cyclists and shooters
have different autonomic responses to the complete test (Figure 3).

The above-noted similar trends shared by specific ANS proxies are
indicative of the presence of intense correlations among them. On this
point, Figure 4 displays the correlation plots of the BS correlationmatrix
RB (with the inter-individual correlations) and the WS correlation
matrix RW (with the intra-individual correlations) together with the

significance test results for the hypotheses of null correlations. Many
significant and high (negative or positive) correlations are apparent in
both matrices, e.g., the high positive BS andWS correlation coefficients
of RR TP and RR RMS or the high negative BS and WS correlation
coefficients of AC and RR RMS. Moreover, concerning the adequacy of
both RB and RW for factor analysis, the KMO measure equals 0.704 in
BS analysis and 0.778 in WS analysis, thus denoting that the two
correlation matrices are sufficiently suitable for MEFA application.

All the above considerations fully justify the MEFA application to
synthesize the 12ANS proxies in fewer indicators. The following describes
the construction of such ANS indicators and their main findings.

Objective 1: Construction of the ANS indicators. Regarding the
BS analysis, Table 3 reports the factor loadings of the ANS proxies
and the first qB � 2 common factors extracted from RB (Figure 4,
panel A) and kept in the study according to the criteria listed in
Figure 2. The two factors together explain 68.01% of the total BS
variance (95% C.I.: [62.35%, 79.13%]). BS factor 1 (38.89% of total
BS variance; 95% C.I.: [34.16%, 49.51%]) represents the Amplitude
domain because it is highly positively correlated with almost all the
time-based variables, except AC, for which the correlation is highly
negative. At the same time, having a loading not exceeding the fixed
threshold, HR has a negligible link with this factor. BS factor 2
(29.12% of total BS variance; 95% C.I.: [20.59%, 36.89%]) denotes

FIGURE 4
Correlation plots of the between-subjects correlation matrix RB (containing the inter-individual correlation coefficients) and the within-subjects
correlation matrix RW (containing the intra-individual correlation coefficients).
Legend. Panel A: In the lower triangular part of the correlation plot of RB, displayed values are the Pearson correlation coefficients computed for
every pair of the averaged ANS proxies (�Xj, �Xl), for all j, l � 1, . . . , 12 with j ≠ l, (Methodological Appendix in Supplementary Material). Panel B: In the lower
triangular part of the correlation plot of RW, displayed values are the Pearson correlation coefficients computed for every pair of the within-athletes-
centered ANS proxies (~Xj, ~Xl), for all j, l � 1, . . . , 12 with j ≠ l, (Methodological Appendix in Supplementary Material). In each numerical cell,
background gray shades denote the empirical significance level of every performed test for null correlation:

≤≤ ≤ ≤

Specifically, the tested null hypotheses are: in Panel A,H0: ρ(�Xj, �Xl) � 0 vs.H1: ρ(�Xj , �Xl) ≠ 0, for all j ≠ l; in Panel B,H0: ρ(~Xj, ~Xl) � 0 vs.H1: ρ(~Xj , ~Xl) ≠ 0, for all
j ≠ l. In the upper triangular part of the two correlation plots, the correlation coefficients are represented as ellipses, including the empirical significance
level code internally: *** = P ≤ .001. ** = .001 < P ≤ .01. * = .01 < P ≤ .05. KMO factor adequacy measure: KMO in BS analysis = 0.704 [95% bootstrap C.I.:
[0.686, 0.762]; KMO in WS analysis = 0.778 [95% bootstrap C.I.: [0.739, 0.816].
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the Frequency domain since it is strongly correlated with the ratio-
based variables (positively with RR LFnu, RR Ro, and P0v, and
negatively with RR HFnu). After extraction, the two BS factors are
re-expressed by PKDE into the amplitude and frequency BS
indicators (labeled in the following with AMP-BS-Ind and FRE-
BS-Ind, respectively) with scores in the [0, 100] interval.

Complementary to the BS analysis, the WS analysis provides
the principal descriptors of the RRV dynamics unfolded during
the complete test. Table 4 displays the factor loadings of the first
qW � 3 common factors extracted from RW (Figure 4, panel B),
which together reproduce 75.83% of the total WS variance (95%
C.I.: [73.47%, 80.14%]). Once again, the first factor, WS factor 1
(45.62% of total WS variance; 95% C.I.: [43.09%, 48.93%]),
represents the Amplitude domain because it strongly
correlates with the same time-based variables linked to the BS
factor 1, in addition to HR (high negative correlation).
Regarding the ratio-based variables, WS factor 2 (17.66% of
total WS variance; 95% C.I.: [17.39%, 18.64%]) represents the
Signal Self-Similarity domain, given its high positive
correlations with RR Ro and P0v, while WS factor 3 [12.55%
of total WS variance; 95% C.I.: (11.45%, 14.61%)] denotes the
Oscillatory domain since it is highly positively correlated with
RR LFnu and negatively with RR HFnu. As before, the

amplitude, signal self-similarity, and oscillatory WS factors
are transformed by PKDE into the corresponding indicators
with scores in the [0, 100] interval. These three ANS-WS
indicators are labeled in the following: AMP-WS-Ind
(amplitude), SSS-WS-Ind (signal self-similarity), and OSC-
WS-Ind (oscillatory), respectively.

After construction, these ANS indicators are checked for
potential sex and age bias. The analysis based on the quantile
regression models does not indicate the presence of significant
sex, age, and sex-by-age effects on any indicator (Supplementary
Tables S7, S8). Accordingly, the ANS indicators have not been
adjusted for sex and age effects before proceeding to the subsequent
analyses [by applying, e.g., the statistical methodology in Solaro et al.
(2021a)].

Objective 2: Statistical analyses based on the ANS indicators.
Figure 5 displays the two within-group density curves estimated for
AMP-BS-Ind (panel A) and FRE-BS-Ind (panel B), along with the
non-parametric test results (Figure 1). This analysis compares
cyclists and shooters based on their principal overall autonomic
variation traits captured over the entire test according to a global
representation. The BA test confirms that the cyclists’ and shooters’
curves differ significantly on both indicators. Moreover, the JT, KS,
and StWRS tests indicate that the cyclists’ AMP-BS-Ind distribution

TABLE 3 Between-subjects (BS) factor analysis with the principal factor extraction method arrested to the first two common factors: Rotated factor loadings with
the varimax method and 95% bootstrap confidence intervals (C.I.s.).

Variables BS factor 1 BS factor 2

Loadings 95% bootstrap C.I.s(*) Loadings 95% bootstrap C.I.s(*)

RR RMS 0.867▲ 0.723 0.954 −0.405 −0.817 −0.241

RR TP 0.840▲ 0.430 0.947 −0.290 −0.915 −0.167

RR LFa 0.681▲ 0.329 0.892 0.031 −0.235 0.569

RR HFa 0.654▲ 0.324 0.797 −0.275 −0.789 −0.145

RMSSD 0.854▲ 0.721 0.987 −0.380 −0.868 −0.108

AC −0.760▲ −0.937 −0.294 0.231 0.019 0.975

DC 0.752▲ 0.102 0.926 −0.068 −0.979 0.106

HR −0.494 −0.805 −0.266 0.559 0.229 0.853

RR LFnu −0.185 −0.833 0.014 0.707▲ 0.386 0.881

RR HFnu 0.340 0.158 0.844 −0.708▲ −0.878 −0.323

RR Ro −0.229 −0.867 −0.097 0.915▲ 0.801 0.976

P0v 0.014 −0.142 0.471 0.904▲ 0.739 0.997

% of total BS variance 38.89% 34.16% 49.51% 29.12% 20.59% 36.89%

cumulative % of total BS variance 38.89% 34.16% 49.51% 68.01% 62.35% 79.13%

% of total BS communality 57.18% 50.98% 71.42% 42.82% 31.63% 49.67%

cumulative % of total BS communality 57.18% 50.98% 71.42% 100.00% — —

Note: Total BS communality (i.e., total reproduced BS variance) = 8.161, total BS variance = 12, percentage of total BS variance explained = 68.01%, (95% bootstrap C.I.: [62.35%, 79.13%]).

Printed values are the factor loadings, i.e., correlation coefficients between the ANS proxies and the first qB � 2 BS common factors. Black triangles mark the loadings greater than, or equal to, 0.6

in absolute value. Interpretation underlying the first two BS factors: BS Factor 1 = Amplitude BS factor (variables and loadings colored in light blue), BS Factor 2 = Frequency BS factor (variables

and loadings in yellow).

(*)Due to the small number of observations (n = 30 values for each averaged ANS, proxy), numerical problems were encountered during the bootstrap procedure applied to the BS factor

analysis. So-called “ultra Heywood” cases occurred in which one or more communalities were computed greater than 1, so the corresponding solutions (123 in all) were discarded from the

study. The bootstrap analyses are then based on 877 out of 1,000 bootstrap samples.
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TABLE 4 Within-subjects (WS) factor analysis with the principal factor extraction method arrested to the first three common factors: Rotated factor loadings with
the varimax method and 95% bootstrap confidence intervals (C.I.s.).

Variables WS factor 1 WS factor 2 WS factor 3

Loadings 95%
bootstrap C.I.s(*)

Loadings 95%
bootstrap C.I.s(*)

Loadings 95%
bootstrap C.I.s(*)

HR −0.810• −0.847 −0.772 0.149 0.103 0.312 −0.105 −0.721 −0.022

RR RMS 0.857• 0.814 0.903 0.189 0.134 0.267 0.005 −0.065 0.469

RR TP 0.854• 0.823 0.887 −0.107 −0.196 −0.008 −0.248 −0.412 −0.144

RR LFa 0.723• 0.661 0.798 −0.034 −0.139 0.029 0.131 0.001 0.267

RR HFa 0.603• 0.517 0.716 −0.156 −0.237 −0.109 −0.442 −0.527 −0.368

RMSSD 0.914• 0.859 0.949 −0.257 −0.355 −0.221 −0.123 −0.213 −0.059

AC −0.856• −0.903 −0.779 0.271 0.215 0.434 −0.011 −0.243 0.073

DC 0.829• 0.771 0.894 −0.203 −0.442 −0.151 0.022 −0.087 0.287

RR Ro −0.153 −0.205 −0.121 0.953• 0.899 0.968 0.041 −0.012 0.138

P0v −0.150 −0.203 −0.108 0.962• 0.948 0.973 0.110 0.077 0.322

RR LFnu 0.355 0.276 0.496 0.091 0.034 0.189 0.782• 0.702 0.868

RR HFnu 0.199 0.131 0.513 −0.027 −0.116 0.021 −0.761• −0.843 −0.624

% of total WS variance 45.62% 43.09% 48.93% 17.66% 17.39% 18.64% 12.55% 11.45% 14.61%

cumulative % of total WS variance 45.62% 43.09% 48.93% 63.28% 61.14% 66.85% 75.83% 73.47% 80.14%

% of total WS communality 60.16% 58.03% 62.16% 23.29% 22.17% 25.32% 16.55% 15.27% 18.71%

cumulative % of total WS communality 60.16% 58.03% 62.16% 83.45% 81.79% 85.26% 100.00% — —

Note: Total WS communality (i.e., total reproducedWS variance) = 9.099, total WS variance = 12, percentage of total WS variance explained = 75.83%, (95% bootstrap C.I.: [73.47%, 80.14%]).

Printed values are the factor loadings, i.e., correlation coefficients between the ANS proxies and the first qW � 3WS common factors. Black circles mark loadings greater than, or equal to, 0.6 in

absolute value. Interpretation underlying the first three WS factors: WS Factor 1 = Amplitude WS factor (variables and loadings colored in light blue), WS Factor 2 = Signal Self-Similarity WS

factor (variables and loadings in yellow), WS Factor 3 = Oscillatory WS factor (variables and loadings in green).

(*)Bootstrap analyses are based on 1,000 samples (i.e., no numerical problem occurred during the bootstrap procedure).

FIGURE 5
Panel plot of the estimated density curves of the amplitude and frequency BS indicator distributions in comparing the cyclist and shooter groups.
Legend: Themeaning of the ANS-BS indicator scores is reported below in Supplementary Figure S2, which displays the total and within-group beeswarm
plots (along with box plots on the background) of the amplitude and frequency BS indicator distributions. The meaning of the statistical tests reported in
each panel is given in Figure 1. Significant results at the 0.05 level are written in bold.
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(blue curve) is significantly more concentrated on higher scores than
shooters (red curve), while the cyclists’ FRE-BS-Ind distribution is
significantly more concentrated on lower scores than shooters.

The two columns of panels in Figure 6 display two types of
analyses concerning the three RRV dynamics over time expressed by
the respective ANS-WS indicators (dynamic representation). These
analyses are based on the median profile plots built on the whole
athlete set (first column of panels) and the within-group median
profile plots for the cyclist and shooter groups (second column).
Regarding the whole athlete set, the ATS-based test proves the
presence of a significant epoch effect in all the cases. However, it
can be immediately noted that the three RRV dynamics have very
different trends over the epochs. AMP-WS-Ind (panel A) has a U-like
median trend, starting at similar highest levels in rest and stand
(epochs 1–2), then significantly decreasing during the exercise steps

until the peak (epochs 3–7) and subsequently significantly increasing
during the recovery steps (epochs 8–9). On the other hand, SSS-WS-
Ind (panel C) has a wave-like median trend, increasing from rest to
stand until the third exercise step (epochs 1–5), then decreasing until
the peak (epoch 7), lastly increasing again in the first recovery step
(epoch 8) and subsequently decreasing in the last recovery step (epoch
9). Finally, OSC-WS-Ind (panel E) has an inverted U-like median
trend in the first six epochs, in particular with a significant increase
from rest to stand (epochs 1–2), and then a monotonic increase from
epoch 6 until the last recovery step (epoch 9).

Regarding the comparisons between cyclists and shooters
(Figure 6, second column of panels), the ATS-based test signals a
significant group-by-epoch interaction on AMP-WS-Ind and OSC-
WS-Ind (the group and epoch main effects are also significant),
i.e., there is evidence that cyclists and shooters differ significantly on

FIGURE 6
Total (first column of panels) and within-group (second column) median profile plots, plus 95% bootstrap confidence intervals, of the amplitude,
signal self-similarity, and oscillatory WS indicator scores over the nine epochs.
Note: Numerical data concerning the median scores and 95% bootstrap C.I.s are reported in Supplementary Table S9 for the whole athlete set and
Supplementary Table S10 for the cyclist and shooter groups. Themeaning of the ANS-WS indicator scores is reported below in Supplementary Figure S3,
which displays the total and within-group beeswarm plots (along with box plots on the background) of the three ANS-WS indicator distributions. The
ANS-WS indicators are ordered decreasingly according to their percentage of reproduced total WS variance (Table 4). The meaning of the statistical
tests reported in each panel is given in Figure 1. Significant results at the 0.05 level regarding the overall null hypotheses: “no epoch effect,” “no group
effect,” and “no group-by-epoch interaction,” tested with the ATS-based test, are written in bold. Significance level code for the comparisons between two
consecutive epochs in the first column of panels:−ATS-based test: *significant at 0.05 level, **significant at 0.01 level, ***significant at 0.001 level (numerical
data are in Supplementary Table S11); Wilcoxon signed-rank (WSR) test: †significant at 0.05 level, ††significant at 0.01 level, †††significant at 0.001 level; ns: not
significant (numerical data are in Supplementary Table S12). Meaning of the labels “C ↑ S” and “C ↓ S” in the second column of panels (numerical data are in
Supplementary Tables S13–S16; Supplementary Figures S4–S6): C ↑ S and C ↓ S in bold indicate that all the BA, JT, KS, and StWRS tests, together with 95%
bootstrap C.I.s, agree in indicating that cyclists generally have higher (C ↑ S) or lower scores (C ↓ S) than shooters; the same labels in italics indicate that not all
the tests produce significant results. The absence of the labels indicates that at least two significant results have not been found.
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the amplitude and oscillatory dynamics during the test. In contrast,
no significant group or group-by-epoch effects are present on SSS-
WS-Ind; the only significant effect concerns the epochs. A more in-
depth investigation is performed at each epoch by examining the
non-overlapping bootstrap C.I.s along with the two within-group
estimated density curves (Supplementary Figures S4–S6) with the
tests mentioned in Section 2.3 and Figure 1. Significant results of all
these procedures are resumed in the second-column panels through
the labels “C ↑ S” (cyclists with higher scores) and “C ↓ S” (cyclists
with lower scores). In the AMP-WS-Ind case (panel B), the two
groups differ mainly in the high-intensity exercise steps (epochs 5–7;
see Table 2), where the shooters’ density curve significantly
concentrates on higher scores than cyclists. In contrast, at epoch
9, the JT and StWRS tests indicate that the cyclists’ density curve
significantly concentrates on higher scores than shooters
(Supplementary Figure S4). The same analysis carried out for
SSS-WS-Ind (panel D and Supplementary Figure S5) confirms
the ATS-based test results: No significant difference between the
two groups is found. Moreover, in the OSC-WS-Ind case (panel F
and Supplementary Figure S6), all the considered tests agree in
indicating that the shooters’ density curve significantly concentrates
on higher scores than cyclists at epoch 1 (at epoch 6, only the KS test
is significant), and on lower scores at epochs 3 (with the only
exception of the bootstrap C.I.s), 4, and 8.

Objective 3: Individual autonomic profile. Figure 7 displays the
individual profiles in the form of three autonomic heatmap plots
obtained by combining, respectively, the AMP-BS and AMP-WS
indicators, the FRE-BS and the SSS-WS indicators, and the FRE-BS
and the OSC-WS indicators. This way, each athlete’s autonomic
response to the complete test can be examined by looking
simultaneously at his/her level on the specific overall amplitude or
frequency domain (first columnof cells) and his/her progression level on
the corresponding RRV dynamic (i.e., amplitude, signal self-similarity,
or oscillatory; rectangles of cells on the right). Moreover, cyclists and
shooters are separated in each autonomic heatmap plot to provide
clearer insights into their main differences. An interactive version of
each autonomic heatmap plot in Figure 7 is reported in Supplementary
Material, where individual scores can be viewed on mouseover.

The cells in Figure 7 are colored by increasing tonality
according to the low/high athletes’ ANS indicator scores. As
an instance of reading, in the first heatmap plot concerning the
amplitude (panel A), the shooter with ID 2007 has the lowest
AMP-BS-Ind score (equal to 1.81, the cell with the lightest
yellow), i.e., the lowest amplitude level over the entire test.
Interestingly, his/her amplitude profile over the epochs (given
by the AMP-WS-Ind cells on the right) is associated with color
tonality variations among the most limited ones. In other words,
his/her amplitude levels tend to vary little during the test (range
of ID 2007 AMP-WS-Ind scores: 43.34, the minimum observed
one) compared to the whole athlete set (min range: 43.34, median
range: 82.89, max range: 99.31). A similar remark holds for the
shooter with ID 2004 (range of AMP-WS-Ind scores: 46.04), the
athlete with the second-lowest AMP-BS-Ind score (equal to 5.66).
Conversely, when moving towards higher AMP-BS-Ind scores
(cells with darker colors), the athletes tend to have color tonality
variations on AMP-WS-Ind among the widest ones. For instance, the
cyclist with ID 1004 has the highest AMP-BS-Ind score (equal to
98.32, the cell with the darkest blue) and a variation of his/her AMP-

WS-Ind scores over the epochs among the most elevated ones (range
of AMP-WS-Ind scores: 98.19). In general, hence, cyclists have darker
colors on AMP-BS-Ind (i.e., higher scores with median ± MAD:
69.91 ± 20.50) than shooters (median ± MAD: 37.22 ± 19.44) and
stronger color tonality variations on AMP-WS-Ind over the epochs
than shooters, as expressed by the highest median range over the
epochs (cyclists: 91.04 vs. shooters: 76.13).

The second autonomic heatmap plot (panel B) combines
frequency (FRE-BS-Ind) and signal self-similarity (SSS-WS-Ind).
In contrast to amplitude, there is no visible correspondence between
low/high frequency levels and low/high variations in the individual
signal self-similarity profiles. As already observed (Figure 5, panel
B), the shooters have higher FRE-BS-Ind levels (median ± MAD:
78.17 ± 10.23) than cyclists (median ± MAD: 37.44 ± 14.76).
However, the variations observed in the SSS-WS-Ind profiles
over the epochs are very similar across the two groups, as
expressed by the similar min, median, and max ranges. This
finding is consistent with the previous analysis results (Figure 6,
panel D).

The third autonomic heatmap plot (panel C) combines
frequency (FRE-BS-Ind) and oscillatory (OSC-WS-Ind). Unlike
before, there is a more apparent correspondence between low/
high frequency levels and high/low variations in the individual
oscillatory profiles. Specifically, cyclists having lower FRE-BS-Ind
levels are characterized by wider OSC-WS-Ind variations (median
range: 87.67) than shooters (median range: 65.74). This finding
aligns with the previous analysis results (Figure 6, panel F).

As a final summary, the synoptic Figure 8 reports, in essence,
the methodological framework, the main findings concerning the
ANS-BS and ANS-WS indicators, and the sensitivity level of the
ANS-WS indicators in detecting the rest-stand postural change
(epochs 1–2), the step changes in the exercise fraction (epochs
2–9), and sports specialties differences (cyclists vs. shooters). The
strength of sensitivity for each ANS-WS indicator is provided by
the number of concordant significant test results (see the legend
below in Figure 8). Summing up, SSS-WS-Ind and OSC-WS-Ind
have the strongest sensitivity in detecting the rest-stand change,
while AMP-WS-Ind has no strength. Nonetheless, AMP-WS-Ind
has the strongest sensitivity in detecting the athletes’ autonomic
changes between every two consecutive steps in the exercise
fraction, while SSS-WS-Ind has a medium sensitivity level, and
OSC-WS-Ind has the weakest sensitivity. Finally, AMP-WS-Ind
and OSC-WS-Ind have a medium level of sensitivity in capturing
the difference between cyclists and shooters in specific epochs of
the stress test, while SSS-WS-Ind has no strength.

4 Discussion

In this preliminary investigation, we describe the cardiac
autonomic response in elite athletes to a single bout of progressive
endurance exercise (epochs 3–7) and a recovery (epochs 8–9) preceded
by a rest-stand test (epochs 1–2), considering both global (Between-
Subjects − BS) and dynamic (Within-Subjects − WS) views of an
integrated process (Malliani et al., 1991). An important aspect of
exercise regards the dynamics of ANS changes with various levels of
exercise intensity (from rest to recovery, as shown by the within-group
median profile plots of the single ANS proxies in Figure 3), which
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requires an ad hocmethod of analysis also capable of accounting for the
inter-individual and intra-individual correlations (Figure 4). In
particular, we observe that an integrated statistical approach based
on MEFA is capable of catching the differences in ANS responses to a
dynamic protocol between two different training modalities. Instead of
analyzing individually the information distributed among numerous

ANS indices (Figure 3), MEFA reduces the total information to two
ANS-BS indicators (for the inter-individual correlations) and three
ANS-WS indicators (for the intra-individual correlations), respectively.
Such indicators provide two different, though complementary,
representations of the autonomic regulation of the sino-atrial node
by capturing the latent autonomic domains underlying the complete

FIGURE 7
Autonomic heatmap plots of the cyclists’ and shooters’ individual autonomic profiles.
Note: The heatmap plots in panels B and C contain the same first graphical column, which refers to the frequency BS indicator scores. The IDs of
cyclists and shooters are ordered consistently with their increasing amplitude BS indicator scores (panel A) and frequency BS indicator scores (panels
B-C). Some descriptive statistics within the two groups are reported on the right hand of the heatmap plots. Specifically, in the case of the two ANS-BS
indicators (AMP-BS-Ind and FRE-BS-Ind), denoted generically by Y , median(Y) ± MAD(Y), min(Y), and max(Y), together with
range(Y) � max(Y) −min(Y), are computedwithin the cyclist and shooter groups. In the case of the three ANS-WS indicators (AMP-WS-Ind, SSS-WS-Ind,
and OSC-WS-Ind), given their scores Yi over the nine epochs for each athlete, the range is first computed for each athlete over the epochs:
range(Yi) � max(Yi) −min(Yi), with i � 1, . . . , 30. Then, the minimum, median, and maximum ranges are provided within the cyclist and shooter groups.
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test of the dynamic protocol (Figure 8). These findings should be
combined with the compelling observation, derived from
electroneurographic experiments, that changes in the relative
balance between oscillations may serve as a marker of functional,
inhibitory/excitatory states (Pagani et al., 1997). This effect may be
reached through changes in the average activity of vagal and
sympathetic central neurons but also the balance between LF and
HF oscillations, thus emphasizing the different nature of multiple
coding modalities, like, in this case, amplitude and oscillatory codes.

4.1 Criteria adopted for selecting the studied
ANS proxies

One crucial aspect of the study was the selection of the ANS
proxies. Thousands of studies have addressed HRV as a proxy of
vagal and sympathetic control, utilizing various algorithms and

experimental models and considering myriad HRV variables,
which “applied in individual studies hinders easy and reliable
comparisons of methods and results. Some of the indices are
redundant, and others discriminative only with respect to
particular influences or disturbances” (Hoyer et al., 2019).
Related-HRV indices may be organized in categories reflecting
specific fields of application: e.g., in ANS development
(amplitude, complexity, and patterns) (Hoyer et al., 2019), in
cardiovascular clinics (from simple statistics to non-linear
estimates) (Malik and Camm, 1993; Task Force of the European
Society of Cardiology and the North American Society of Pacing and
Electrophysiology, 1996), or specific applications like the physiology
of exercise (low, moderate, and elevate intensity). The still ongoing
debate relates to the importance of various parameters of HRV,
which continued to grow in indices and clinical relevance, and the
capacity of HRV to better reflect autonomic tone (signal amplitude) or
responsiveness (phasic/oscillatory activity) (Malik and Camm, 1993).

In the early 1980s, we started to find a way to assess autonomic
evaluation from RRV based on a dual feedback model (Pagani et al.,
1986; Malliani et al., 1991) suggested by experiments demonstrating
the existence of positive feedback reflexes and through a simple
monovariate approach utilizing RRV short-term and autoregressive
(parametric) spectral analysis. With bioengineering terms, we
considered HR, time and frequency domain indices, and linear/
non-linear models that were approximately divided into vagal (HF)
and sympathetic (LF) linked parameters according to a duality in
neural circuitry (Schwartz et al., 1973). In order to account for major
non-linearities of the exercise protocol and maintain a direct
appreciation of novel techniques, we combined the indices we
started with (Pagani et al., 1986) with newer ones (non-linear,
complexity, symbolic, and phased rectified signal average) (Hoyer
et al., 2019), so as to select the 12 ANS proxies in Table 1. In
particular, eight are the unitary variables we usually consider in our
laboratory (both as amplitude and as normalized units: HR, RR RMS
and RMSSD, RR TP, LF, and HF; these latter two are traditionally
both amplitude and purely ratio-based). The other considered four
variables derived from novel techniques: the phase rectified indices
AC and DC (Bauer et al., 2006) and two representations from
entropy (RR Ro) and symbolic dynamic (P0v) categories (Porta
et al., 2001). As pointed out in Section 2.2, we distinguished these
12 ANS proxies into the two “time-based” and “ratio-based” variable
typologies (Table 1) to differentiate the proxies preserving the time
measurement unit (“time-based”) from the proxies expressed in
normalized numbers (“ratio-based”); this dichotomy can be
regarded as a broad fitting to the hypothesis of two neural
coding modalities: amplitude and frequency (Pagani et al., 1997).

Besides this, several statistical technical questions were
considered in selecting the 12 ANS proxies. Firstly, factor
analysis methods (such as MEFA) require the presence of a
sufficient level of multicollinearity (i.e., roughly medium/high
correlations) among the input observed variables, as reflected by
the KMO index (see the note below Figure 4), to achieve satisfactory
results in terms of latent constructs. The more the observed variables
are correlated, the better the results derived from the application of
factor analysis will be in terms of data dimensionality reduction
(i.e., a few latent factors capable of reproducing the observed
correlations with limited information loss) and interpretability of
the extracted latent factors (i.e., latent factors highly correlated with

FIGURE 8
Synoptic figure summing up the meaning and main findings
concerning the ANS indicators.
Note. The sensitivity level of the ANS-WS indicators in detecting
the three aspects of interest (i.e., the rest-stand postural change, the
step changes in the exercise fraction, and the differences between
cyclists and shooters) is based on the number of jointly significant
results achieved on the considered non-parametric tests. All the
details concerning such evaluations are reported in Supplementary
Tables S17–S19. Specifically:−As for the changes in rest-stand and
exercise fraction, the sensitivity level is evaluated over the whole
athlete set through the 95% bootstrap C.I.s, the ATS-based test, and
the WSR test (Supplementary Tables S17, S18). The “Ep t.t+1”
indications reported in the green cells under the “exercise fraction”
column refer to the changes from epoch t to epoch t+1 that have
received at least two significant test results. In particular, bold-written
“Ep t.t+1” indicates that all the test results are significant;−as for the
cyclists vs. shooters comparison, the sensitivity level is evaluated
through the overall ATS-based tests for group or group-by-epoch
effects, 95% bootstrap C.I.s, and the BA, JT, KS, and StWRS tests
(Supplementary Table S19). The “Ep t” indications reported in the green
cells under the “sports specialties” column refer to the comparisons
that have received at least two significant test results at epoch t. In
particular, bold-written “Ep t” indicates that all the test results are
significant at epoch t.
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a few, possibly distinct observed variables). Consequently, selecting
these specific ANS proxies gave a priori internal consistency to the
set of input variables and allowed us to obtain a few statistical
indicators with clear meaning and high cumulative percentages of
reproduced (BS and WS) total variance (Tables 3-4). Secondly, we
confined our selection to no more than 12 ANS proxies to avoid
numerical problems in executing the statistical procedures,
particularly the bootstrap. Given the small size of the athlete set
(n � 30), numerical problems already occurred in the BS analysis
(see the note below Table 3), while the WS analysis did not
experience this issue because it is based on a higher number of
observations (nT � 270) (Section 2.3; Figure 2).

4.2 An integrated statistical approach based
on MEFA and ANS

This MEFA application has yielded a more straightforward
representation of the complexity that characterizes ANS
modulation during stand and exercise by reducing the total
information to two ANS-BS indicators and three ANS-WS
indicators. The ANS-BS indicators, deriving from the averaged
ANS proxies (Figure 2), give a global representation of the
athletes’ autonomic characteristics, expressing the main overall
athletes’ autonomic variation traits over the entire test. These
indicators are also used to discover the autonomic traits that
might distinguish cyclists and shooters globally. The ANS-WS
indicators, deriving from the within-athletes-centered ANS
proxies (i.e., ANS proxies with values adjusted for each athlete’s
means computed over the epochs, Figure 2), allow for a
representation of the athletes during the complete test net of
their overall magnitudes reached on the ANS proxies. Hence,
they can provide a dynamic representation of the RRV
mechanisms underlying the entire test independently of the
athletes’ overall ANS proxy averages and, accordingly, can be
used to compare cyclists and shooters based on such obtained
RRV dynamics. In this sense, it is not contradictory to see overall
higher amplitude BS indicator levels in cyclists than shooters
(Figure 5, panel A) and, at the same time, the cyclists’ blue
profile of the amplitude WS indicator significantly more shifted
toward lower median scores at epochs 5–7 than the shooters’ red
profile, without other significant differences at the remaining epochs
(excepted epoch 9, Figure 6, panel B. See also Supplementary
Figure S4).

Besides that, several crucial aspects regarding these indicators
and the statistical methodology employed for their construction are
worth stressing. Firstly, for reasons similar to those advanced in
Solaro et al. (2021a), the ANS indicators we built through the MEFA
application and the PKDE transformation are not to be intended as
measurement indicators of the various aspects involved in the ANS
control during exercise, e.g., the magnitude of the ANS changes over
the exercise epochs. Constructing measurement indicators requires,
first of all, the availability of larger sets of subjects representing more
comprehensive ranges of different characteristics. Moreover,
roughly speaking, the metric property inherent in the original
ANS proxies should be conveyed to the statistical indicators as
far as possible to have actual measurement indicators. On this point,
one can assume that the extracted common factors represent a new

coordinate system of smaller dimensions than the one given by the
original observed variables, on which basis subjects can be inspected
more readily. In this sense, the common factors represent a sort of
new metric system in which the original values of variables are
replaced and condensed by factor scores. Let us assume that this new
coordinate system well represents the subjects (e.g., roughly, subjects
with similar variable values should have similar factor scores or
subjects with very different variable values should have very different
factor scores). If transformations like the ones based on cumulative
distribution functions, such as PKDE, are applied to factor scores,
then the rank order of scores does not change, but the intervals
between scores do. In particular, small differences at the center of the
factor distributions tend to be amplified, while large differences in
the distribution tails tend to be compressed (see the remarks by
Murphy and Davidshofer, 2004, chap. 5, on the “area
transformations”). In other words, the transformation we applied
to the ANS latent factors does not preserve the metric system
induced by the ANS latent factors. Nonetheless, within the scope
of this preliminary investigation, we aimed, above all, to capture the
ANS changes over the epochs by representing the main latent
autonomic domains with fewer indicators and, on these bases, to
compare two athlete groups characterized by different training
modalities. From this point of view, the ANS indicators we built
are to be regarded more appropriately as process indicators capable
of capturing the transitions of the ANS control from one epoch to
another during the entire test and between different training
modalities.

Secondly, MEFA turned out to be a very flexible methodology to
meet the objectives listed in the Introduction and Section 2.3. Unlike
traditional dimensionality reduction techniques such as EFA or
Principal Component Analysis (PCA), MEFA is capable of
providing a variance decomposition into sources of variation
linked to the various levels of a hierarchical data structure. In
this study, having a two-level data structure, we provided a
decomposition of the athletes’ individual information into a
between-athletes variation and within-athletes epoch variation,
from which two different representations (global and dynamic) of
the athletes’ cardiac autonomic response to the complete test have
been derived. Moreover, unlike PCA and similar to EFA (of which
MEFA is an extension), MEFA meets the primary goal of the factor
analysis methods, i.e., seeking the latent causes (expressed by the
common latent factors) that could explain the linear relationships
among the observed variables. In our study, such linear relationships
are expressed by the BS and WS correlation matrices (Figure 4), for
which two sets of ANS-BS and ANS-WS latent factors were derived
(Tables 3–4) [see the corresponding factor models (14)–(15) in
Methodological Appendix, Supplementary Material].

Thirdly, strictly related to the above remarks, MEFA shares the
same flexibility as EFA in extracting latent factors with specific
statistical properties, such as the uncorrelation of the ANS latent
factors we obtained. The principal factor (or also principal axis)
extraction method, along with the varimax rotation (or variance
maximizing rotation), is the most conventional technique in factor
analysis, which allows for the extraction of uncorrelated common
factors such that they can be more easily interpreted based on their
loadings with the observed variables (Finch, 2020). Simplifying the
interpretation of the ANS-BS and ANS-WS latent factors derived in
a preliminary investigation was our main reason in favor of the
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uncorrelation property. However, it is generally possible to obtain
correlated common factors by applying alternative rotation
methods, such as the “oblique rotations” (e.g., the oblimin
rotation, which is widely used in psychometrics), instead of
“orthogonal rotations,” such as the varimax rotation (Finch,
2020), or even to obtain statistically independent factors by
applying Independent Component Analysis (ICA), which, despite
being an alternative dimensionality reduction technique, can be
regarded as another factor rotation method (Hastie, Tibshirani, and
Friedman, 2009, chap. 14).

As a final consideration, the ANS indicators used in the study are
the extracted BS and WS latent factors to which the PKDE
transformation was applied. Since the PKDE is not a linear
transformation, from a theoretical point of view, there is no
certainty that the obtained indicators have correlations precisely
equal to zero (or numerically very close to zero). It might occur that,
after transformation, the correlation coefficients slightly increase in
absolute value. Nonetheless, their values are typically of small
magnitude and then statistically negligible, as we checked in
our case.

4.3 The bicycle exercise: Global and dynamic
representations of cardiac autonomic
regulation

Exercise is a powerful excitatory stimulus to ANS, which may be
examined non-invasively utilizing several autonomic indices that are
frequently assessed individually. For example, the dynamics of the
increase in the sympathetic drive during exercise could be assessed
by the NU power of the LF component of RRV, at least to an extent
(Rimoldi et al., 1990; Casadei et al., 1995; Lucini et al., 2004). Our
novel approach provides two major advancements, i.e., a global and
a dynamic representation of the athletes’ cardiac autonomic
response to exercise with few informationally rich statistical ANS
indicators.

In the global representation, the ANS-BS indicators,
representative of the entire test, are limited to two domains,
i.e., amplitude (linked to the time-based proxies) and frequency
(linked to the ratio-based proxies) (Table 1), and carry about 39%
and 29% of the BS total variance, respectively (Table 3). As shown in
Figure 5, cyclists globally have significantly higher amplitude and
lower frequency levels than shooters. Hence, considering the two
different sports specialties as extremes of global components, the
overall profiles of amplitude and frequency are accordingly different:
prevailing amplitude in cyclists (vagal/parasympathetic
predominance) and prevailing frequency in shooters (sympathetic
predominance), a part of which is constituted by a high LF
oscillatory component. This difference between the groups
represents most likely the effects of long-term physiological
remodeling (Oggionni et al., 2021) due to the different loads of
endurance training, as exemplified by cyclists and shooters (Mitchell
et al., 2005).

Low-frequency neural rhythmsmay also exert influences outside
the cardiovascular domain, e.g., affecting fine muscular control
(Lodha and Christou, 2017). Stress and sympathetic drive may
also influence these rhythms, possibly through the locus
coeruleus (Mather et al., 2017) or other central autonomic nuclei.

Regarding the dynamic representation, Figure 6 synthesizes the
profiles of the single 12 ANS proxies represented in Figure 3 using
only the three obtained ANS-WS indicators, i.e., the amplitude,
signal self-similarity, and oscillatory WS indicators, which
reproduce, respectively, nearly 46%, 18%, and 13% of total WS
variance (Table 4). This graphical representation of the median
profiles built over the whole athlete set (first column of panels) and
within the cyclist and shooter groups (second column) furnishes a
novel representation of the exercise dynamics described as a
response to posture, several steps of exercise, and recovery.
Notably, the percentages of the maximal heart rate (reached at
epoch 7) obtained at epochs 3 and 4 (Table 2) suggest that both
cyclists and shooters were exercising at low-moderate intensities
(corresponding to a prevalent aerobic metabolic pathway (Pelliccia
et al., 2021; Table 4)), while the percentages at epochs 5 and 6 suggest
that they were exercising at high or very-high intensities
(corresponding to a prevalent anaerobic metabolic pathway
(Pelliccia et al., 2021; Table 4)).

By focusing on the whole athlete set, we first observe that the
rest-stand response (epoch 1 vs. epoch 2) is characterized by no
change in the amplitude indicator (Figure 6, panel A), a moderate
increase in the signal self-similarity indicator (panel C), and a
marked shift from low to high in the oscillatory indicator (panel
E). The performed tests indicate that the signal self-similarity and
oscillatory indicators have a strong sensitivity level in capturing the
rest-stand transition, while amplitude has no strength (Figure 8).

Particular trends are observed for the exercise fraction (epochs
2–9). First, in amplitude (Figure 6, panel A), there is a graded
stepwise reduction from a high level in stand to nearly zero at peak
exercise and then an increase in the recovery steps, according to a
U-like trend. This indicator has the strongest sensitivity level to
exercise bout; it is the most responsive to the athletes’ autonomic
changes between every two consecutive stress test steps (Figure 8). In
signal self-similarity (panel C), a wave-like trend is observed with a
dip at peak exercise. This indicator has a medium sensitivity level
because it recognizes the athletes’ autonomic changes at every two
consecutive steps starting from moderate-intensity exercise (epoch
4) to the last recovery step (epoch 9) (Figure 8). In oscillatory (panel
E), we observe an inverted U-like trend in the first six epochs,
followed by a monotonic increase until the last recovery step. This
indicator has the lowest sensitivity level; it signals only fewer step
transitions, in particular, the transition from moderate to high
intensity (epochs 4–5) and from very high intensity to peak
exercise (epochs 6–7) (Figure 8).

Regarding the comparisons between cyclists and shooters,
changes in the amplitude and oscillatory WS indicators are
different in the two athletes’ groups across the dynamic protocol,
being more evident in cyclists (Figure 6, second column of panels).
In particular, the progressive reduction of the amplitude WS
indicator during exercise epochs and its increases in the recovery
phases are more pronounced in cyclists (Figure 6, panel B), thus
suggesting that high-intensity endurance training is characterized by
more evident dynamic changes in parasympathetic control. Also, the
increase of the oscillatory WS indicator during the first phases of
exercise (characterized by a prevalent aerobic metabolism, Table 2)
is more evident in cyclists, suggesting that high-intensity endurance
training is more characterized by an evident sympathetic activation
during aerobic exercise (Figure 6, panel F).
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Of particular clinical interest is this capability of the oscillatory
indicator to catch the different response profiles of two different
training modalities: Athletes with a prevalent high-intensity
endurance training (cyclists) present an evident increase on this
indicator in the first (epochs 3–4) (aerobic) steps of exercise, a
paradoxical reduction at epochs 5–7 (characterized by a prevalent
anaerobic metabolism) (Pelliccia et al., 2021), and an increase during
recovery, while athletes with a less endurance training present from
the beginning of exercise a paradoxical reduction on this indicator
(Figure 6, panel F). Other papers present in the literature (Casadei
et al., 1995; Lucini et al., 2004) show a progressive increase of LFnu
in normal subjects performing a low intense exercise (from 10% to
30% of maximal heart rate), and many papers show that aerobic
endurance (long-term) training is capable of positively affecting
ANS control (Joyner and Green, 2009; Lucini et al., 2020a) inducing
a shift toward a prevalent parasympathetic control. These findings
point out the importance of aerobic endurance training (not
maximal prevalent anaerobic exercise) in modulating ANS
control and the capability of autoregressive HRV to depict this
clinical effect.

The lowest sensitivity level of the oscillatory WS indicator achieved
in the exercise fraction (Figure 8) and the above-mentioned paradoxical
reduction pattern need a special comment. This indicator increases with
orthostatic stimulus in both athletes’ groups; during the first steps
(aerobic endurance exercise), it increases in cyclists while it starts
decreasing in shooters; during high intensities-maximal exercise steps
(prevalent anaerobic endurance exercise), it paradoxically decreases in
both athletes’ groups, being more evident in cyclists; then it increases
during recovery (Figure 6, panel F). This paradoxical pattern is
obviously evident also considering the single ANS variables derived
from frequency analysis of HRV (Figure 3), and it was already observed
by other researchers (Casadei et al., 1995), stimulating a great discussion
regarding the usefulness of variables (in particular LFnu) derived from
autoregressive HRV frequency domain in describing sympathetic
responses to high-intensity exercise. Moreover, similar behavior of
LFnu is observed in athletes performing strength exercises (exercise
modality typically characterized by prevalent anaerobic metabolism)
(Iellamo et al., 2019). Also, heart failure patients present similar
paradoxical reduction variables derived from frequency analysis of
HRV (in particular LFnu) (Van de Borne et al., 1997), while more
direct ANSmeasures, such asMSNA (Katayama and Saito, 2019), show
elevated overall sympathetic activity. This paradoxical pattern may be,
albeit only in part, explained considering that conditions characterized
by high levels of sympathetic activity (such as high intensity/maximal
exercise or heart failure) present an extreme afferent involvement from
the periphery (muscle reflexes, chemoreflexes, hyperventilation, etc.),
which disturb the complex interaction of the multiple mechanisms
involved in determining the final rhythms that are analyzed using the
autoregressive spectral analysis approach (Malliani et al., 1991).
However, the clear, dynamic pattern and its differences between the
two athlete groups, characterized by different endurance load training,
corroborate the importance of considering this indicator as a useful
parameter to depict the ANS responses during exercise. In fact, the
momentum when it paradoxically decreases with the increase of
exercise load differs per the two athlete groups (Figure 6, panel F).

Nonetheless, using more complex analyses that also consider
non-linear variables may offer an opportunity to manage, albeit in
part, this pitfall (Porta et al., 2001). Moreover, the combination of

the high-frequency rate of spikes with the critical ephaptic
transmission of unmyelinated fibers might determine a narrow
bandwidth performance. In the present study, the signal self-
similarity WS indicator identified by the MEFA approach
aggregates the HRV indices P0v and RR Ro derived from the
non-linear pattern analysis and complexity analysis (Porta et al.,
2001). This indicator (Figure 6, panels C–D) progressively increases
from rest to high-intensity exercise (epoch 5), then drastically (and
paradoxically) decreases with maximal exercise (epoch 7). It seems
more robust in suggesting the physiological increases of sympathetic
outflow during exercise than the oscillatory WS indicator (Figure 6,
panels E–F), which aggregates the HRV frequency-domain variables
RR LFnu (considered a marker of prevalent sympathetic modulation
to the sino-atrial node) and RR HFnu (considered a marker of
prevalent vagal modulation to the sino-atrial node) derived from the
linear analysis.

4.4 Autonomic heatmap plots

A further in-depth statistical analysis offers the possibility to depict
the individual dynamic response to orthostatic or exercise stimuli. In fact,
a deeper perusal of data considering the athletes’ individual autonomic
profiles indicates clearly that the two athlete groups respond differently
to bicycling stress. These profiles are well described by color-coded,
autonomic heatmap plots (Figure 7), which, combining the global and
the dynamic representations of the ANS indicators, allow for a complete
description of the athletes’ autonomic response to the entire test
evidencing changing amplitude and frequency (in its signal self-
similarity and oscillatory components) over time.

In particular, the amplitude dynamic underlying the response to
exercise (Figure 7, panel A) appears with the AMP-BS scores that tend
to be higher in cyclists (darker colors in the first cell column). Then,
the exercise steps show higher AMP-WS scores for cyclists at rest and
stand (darker colors) that rapidly transform into lower scores (lighter
colors) at peak exercise, followed by a rapid (albeit incomplete)
recovery (darker colors). Overall, cyclists’ amplitude profiles appear
to have higher variations than shooters.

The frequency dynamic is shown subdivided into its two
components, signal self-similarity and oscillatory, in the heatmap
plots in panels B and C, respectively. Regarding panel B, no visible
difference in changing signal self-similarity over time is appreciated
between cyclists and shooters, although shooters tend to have higher
FRE-BS scores (darker colors in the first cell column). Therefore, this
heatmap plot reveals the part of the overall frequency domain not
sensitive to cyclist and shooter differences. In contrast, in the frequency-
oscillatory dynamic (panel C), cyclists appear with lower FRE-BS scores
(lighter colors in the first cell column) and wider OSC-WS variations
than shooters (colors with greater tonality changes). Therefore, this
heatmap plot evidences the part of the overall frequency domain
sensitive to cyclist and shooter differences. Notably, the oscillatory
WS indicator appears particularly sensitive to standing up, which is
substantially not signaled by the other two amplitude and signal self-
similarity WS indicators. This behavior suggests that the non-linear
profile of LFnu with increasing intensity of exercise rather than a flaw of
the algorithm is a reflection of an intrinsic non-linear code.

All the above indicates that different athletic fitness translates
into different athletic phenotypes characterized by different
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mechanisms underlying the autonomic response to standing up and
exercise. Such an autonomic response should then be more
adequately intended as an overall reaction to the exercise in its
entirety, on the one hand, and in its single dynamics unfolding
during the exercise execution, on the other hand. In particular, the
difference between rest (epoch 1) and peak exercise (epoch 7) in the
amplitudeWS indicator (panel A) may be taken as the essence of the
individual autonomic response to exercise, whichmight be viewed as
a proxy of increasing performance.

4.5 Study limitations

This study presents some limitations.
Firstly, the study population is limited to a small set of athletes.

Nevertheless, they are elite athletes representing the extreme in
endurance training loads: prevalent high-intensity endurance
training (cyclists) and prevalent technical training with a low-
intensity endurance component (shooters).

Secondly, the clinical routine did not comprise a cardiopulmonary
stress test and/or lactate evaluation to precisely define the anaerobic
threshold and then the exercise steps characterized by prevalent aerobic
or anaerobic metabolism. However, for each subject, we calculated the
value corresponding to the percentage ofmaximal heart rate (reached at
epoch 7) (Table 2; Supplementary Table S6) and, referring to ranges
reported by international guidelines (Pelliccia et al., 2021), we verified
that the exercise performed in epochs 3 and 4 could be considered of
low/moderate intensity (prevalent aerobic metabolism) and the exercise
performed in epochs 5, 6, and 7 could be considered of high/very high/
maximal intensity (prevalent anaerobic metabolism).

Thirdly, autoregressive spectral analysis of HRV does not
“measure” nerve activity but provides indirect indices of sino-
atrial autonomic control. On the other hand, this methodology
nowadays may be considered the de factomethodology (Shaffer and
Ginsberg, 2017) to study cardiac autonomic control non-invasively.
Moreover, the use of advanced algorithms (considering linear and
non-linear indices) and advanced statistics, such as the definition of
statistical indicators based on MEFA, contribute to corroborating
the validity of using this technique in the clinical field.

Finally, we only studied the autonomic response of heart rate
and postponed our interest to other important targets, in particular
arterial vessels. This may be a valuable topic, as documented by a few
investigations on exercise in humans (Lucini et al., 2004) or dogs
(Rimoldi et al., 1992), whereby the reduction of LF power of RRV
with increasing exercise intensity is associated with an increase of LF
power of arterial pressure variability and a reduction of LF of RRV.
The availability of multiple signals (RRV and Arterial Pressure
Variability) may also permit the analysis of complex closed-loop
control mechanisms, like baroreflexes (Baselli et al., 2001).

5 Conclusion

This study offers a novel view regarding the importance of the
autoregressive spectral analysis of HRV as a non-invasive
methodology to describe the dynamic of exercise responses, mainly
focusing on the differences between exercise levels characterized by
prevalent aerobic or anaerobic metabolic pathways, thus rendering

this methodology well-suited to a clinical endeavor. The application of
an integrated data-driven and non-parametric statistical approach
based on MEFA permits a more straightforward representation of the
complexity that characterizes ANS modulation during exercise,
summarizing and differentiating the different contributions of
many HRV-derived indices and simplifying the interpretation of
results. In this sense, the proposed approach may be regarded as a
novel way to consider the spectral analysis of RRV during exercise,
which aims at overcoming its limits and dealing with the possible
inconsistencies of some indices (e.g., the paradoxical reduction of
LFnu in high-intensity exercise) observed by several researchers (e.g.,
Casadei et al., 1995). MEFA can detect, synthesize, and separate the
total information content into common latent factors that, through a
convenient transformation, can be expressed in statistical process
indicators capable of being analyzed separately since they are set up to
be uncorrelated. This procedure represents a sort of a posteriori
treatment of the HRV-derived indices in assessing the athletes’
autonomic response during incremental exercise, allowing for a
better comprehension of the RRV dynamics, including those
deriving from the most debated ANS proxies, and more immediate
comparisons among athletes from different sports disciplines, thus
facilitating the possible real-life and clinical use of this non-invasive
methodology. This approach based on MEFA has, in fact, the
potential to be applied in all clinical contexts where a multiplicity
of quantitative variables is repeatedly observed, e.g., over time, and the
objective is to study the evolution of specific pathological and
physiological subjects’ conditions (e.g., in the presence of
administered treatments or various interventions) through the
construction of synthetic statistical indicators.

Of particular interest is the issue of how coaches and athletes
could implement the study of the autonomic nervous system using
HRV in their everyday practice. Nowadays, this methodology
might be helpful to detect the ANS modifications during
routine training (Lucini et al., 2021), to define different ANS
profiles characterizing different training routines corresponding,
for instance, to different roles in soccer (Lucini et al., 2020b), and
to show the benefic effect of mental training to manage stress in
female elite soccer players (Pagani et al., 2023). The complex
approaches to HRV analysis employing ad hoc statistics also
seem (Lucini et al., 2018) to be helpful: “to understand the
differences in autonomic regulation between excellent athletes
and those skilled enough to qualify for the Olympics” (Miglis
and Muppidi, 2018). In this study, we presented a further step
in these directions using an advanced statistical analysis approach
for constructing statistical indicators, which might help translate
the non-invasive study of ANS employing HRV into sport
everyday practice.
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